

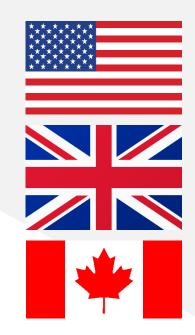
PRESENTATION TO ONTARIO POWER GENERATION BOARD OF DIRECTORS MEETING – LEARNING SESSION

RUMINA VELSHI, PRESIDENT & CEO RAMZI JAMMAL, EXECUTIVE VICE-PRESIDENT & CROO CANADIAN NUCLEAR SAFETY COMMISSION SEPTEMBER 24, 2021

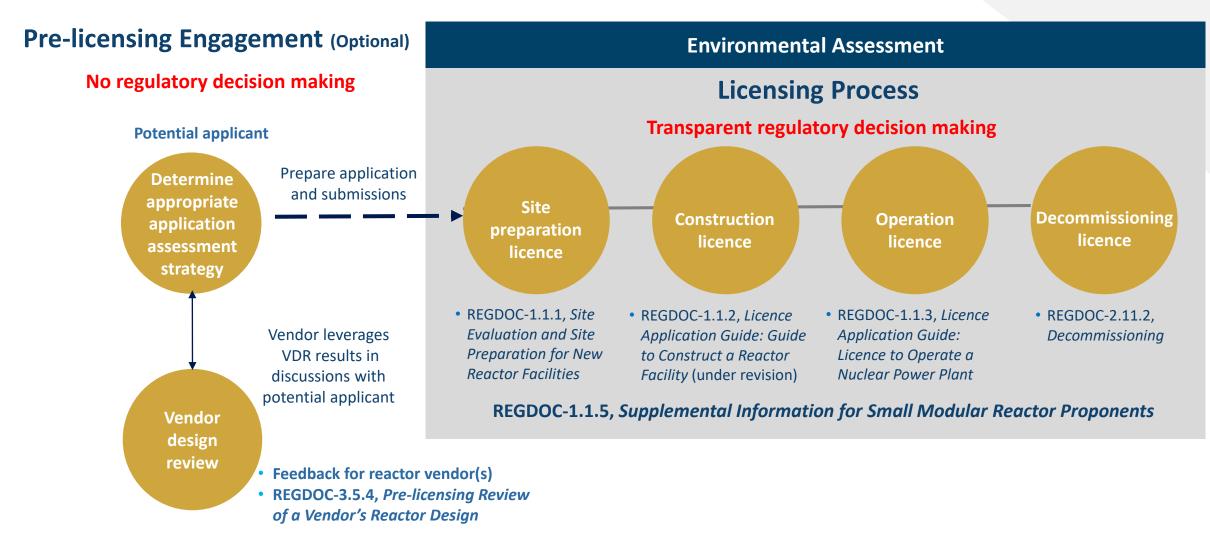
Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

PURPOSE OF MEETING

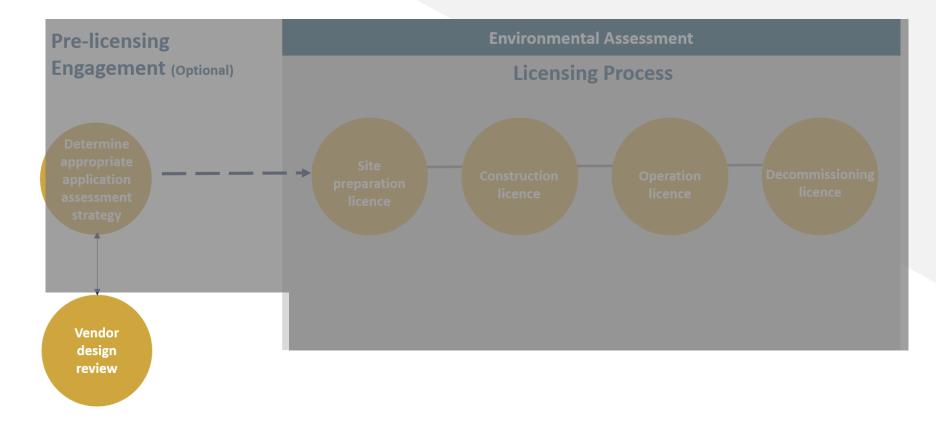
- SMR readiness focus on international collaboration
- CNSC's licensing and pre-licensing processes

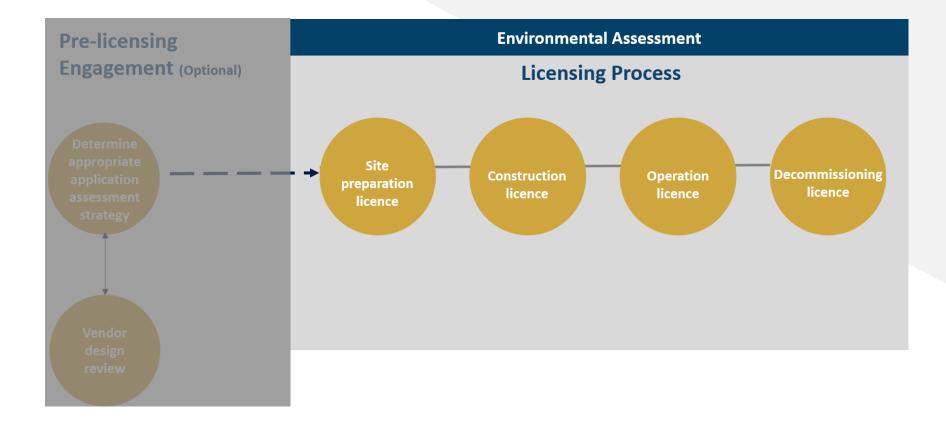

CNSC PERSPECTIVE/EXPECTATIONS

- Objective, independent decision making and oversight
- Safety focus at all times; licensees ultimately responsible for safety
- Safety culture must be paramount in all Board actions and decisions
- Modern, agile and flexible regulator for innovative technologies
- Regulatory readiness depends upon sustained involvement in the process
- Relationship and trust building are key to social acceptance



GLOBAL PERSPECTIVE


- CNSC cooperates and shares information with a number of countries and organizations on advanced reactor technologies
- Canadian Chairpersonship of Commission on Safety Standards
- Leads and participates in the IAEA advanced reactor initiatives, meetings, standards development, and peer reviews
- Participates in NEA advanced reactor working groups
- Collaborates with the US NRC and UK ONR under memoranda of cooperation
- Draft communique on NEA trilateral arrangement between Canada, the US and UK recently published


Pre-licensing Engagement and Licensing Process Overview

VENDOR DESIGN REVIEW

LICENSING APPROACH FOR SMRS

CNSC Licensing Approach

- The applicant submits info to meet requirements for each safety and control area; CNSC staff provide recommendations on licensing to the Commission
- The Commission is the decision maker and makes the decisions through a public hearing process
- It is the proponent's obligation to ensure a complete application submission
- The licensee has the primary responsibility for safety

Information Dissemination Licensing Process for Class I Nuclear Facilities and Uranium Mines and Mills

REGDOC-3.5.1, Ve	1510112		
May 2017			

Safety and Control Areas

Management

• Management systems

- Human performance management
- Operating performance

Facility and equipment

- Safety analysis
- Physical design
- Fitness for service

Core control processes

- Radiation protection
- Conventional health and safety
- Environmental protection
- Emergency management and fire protection
- Waste management
- Security
- Safeguards
- Packaging and transport

CNSC Licensing vs Technology "Licenseability"

- The VDR process helps technology developers understand CNSC regulatory requirements
- VDR outputs identify any potential barriers to licensing essentially the "licenseability" of the design
- The licensing process requires a licence application that includes sufficient information to demonstrate a reactor can be safely constructed, operated and decommissioned
- Submissions lacking sufficient details will cause delays
- Staff apply a graded approach to reviews and compliance verification throughout the lifecycle of nuclear facilities

10

Licensing Process Timeline for Advanced Reactors

Site Preparation • 24 months	 Construction Typically 32 months OPG DNNP request for 24 months CNSC and OPG staff to finalize timeline through administrative protocol 	Operation • 24 months
Site Preparation • 24 months	Const Opera • 40 m	

Agile full lifecycle licensing approach allows for combined licences and the use of hold points

First of a Kind vs Nth of a Kind

- Technology developers have highlighted the benefit of modular construction and Nth of a kind reactor deployment
- CNSC's regulatory approach ensures lessons learned from first of a kind are implemented for future deployments or design improvements
- Review timeline may be significantly reduced if the design has been previously constructed and safely operated
- Other non-technical factors that must be considered include
 - engagement with Indigenous groups and the public
 - potential federal impact assessment and/or provincial environmental assessment
 - establishment of provincial emergency management capabilities for nuclear emergencies

Conclusion

- The CNSC is ready to regulate SMRs, regardless of the technology selected
- Vendor design reviews provide CNSC staff important experience and knowledge regarding designs not present in Canada
- The CNSC's licensing process is clear, predictable, transparent and inclusive
- The timeliness of CNSC reviews is impacted by the quality and completeness of the information provided
- The CNSC is a modern, agile and flexible regulator, but will issue a licence only if the safety case is demonstrated

nuclearsafety.gc.ca

(f) (v) (v) (in) (a) (a)

Canadä

Canadian Nuclear Commission canadienne de sûreté nucléaire

APPENDIX A: CANADIAN NUCLEAR SAFETY COMMISSION (CNSC) MANDATE

- Regulate the use of nuclear energy and materials to protect health, safety, security and the environment
- Implement Canada's international commitments on the peaceful use of nuclear energy
- Disseminate **objective** scientific, technical and regulatory **information** to the public

APPENDIX B: Vendor Design Review Purpose

Opportunity for vendors to

- verify understanding of Canadian requirements
- obtain early feedback from CNSC staff on how
 - Canadian requirements for design and safety analysis are being addressed
 - novel design features and approaches are being demonstrated

Opportunity for CNSC staff to

- develop an understanding of both the vendor and its design concept
- anticipate regulatory challenges before a licensing process is triggered

APPENDIX B (continued): Vendor Design Review Focus Areas

1	General plant description, defence in depth, safety goals and objectives, dose acceptance criteria	11	Pressure boundary design
2	Classification of structures, systems and components	12	Fire protection
3	Reactor core nuclear design	13	Radiation protection
4	Fuel design and qualification	14	Out-of-core criticality
5	Control system and facilities	15	Robustness, safeguards and security
6	Means of reactor shutdown	16	Vendor research and development program
7	Emergency core cooling and emergency heat removal systems	17	Management system of design process and quality assurance in design and safety analysis
8	Containment/confinement and safety-important civil structures	18	Human factors
9	Mitigation of design extension conditions	19	Incorporation of decommissioning in design considerations
10	Safety analysis (PSA, DSA, hazards)		

APPENDIX B (continued): Vendor Design Review Process

- VDRs are carried out in 3 phases
 - *Phase 1:* determine whether the vendor's design and management system complies with the Canadian regulatory requirements
 - *Phase 2:* determine whether fundamental barriers to licensing exist, and whether any major, generic safety issues exist with the design
 - *Phase 3:* provide the vendor the opportunity to follow up with specific focus areas that have more scrutiny by the regulator
- Provides information that can be leveraged to inform licensing for a specific project – it is neither a design certification nor a licence
- No regulatory decisions are made