

Cataract following low dose ionising radiation exposures: Mechanistic understanding and current research

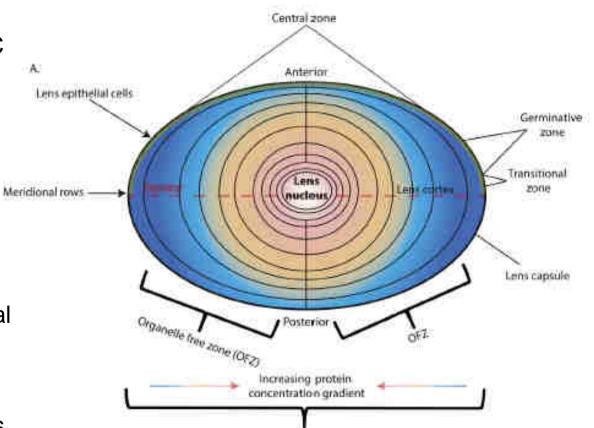
Liz Ainsbury, PHE

CNSC/CRPA Webinar: Lens of the eye – 21st March 2018

Human Lens

Diameter ~9-10 mm, thickness ~4.5 mm

Germinative zone of LEC

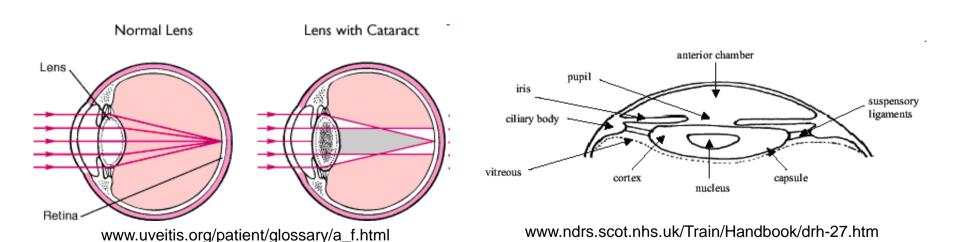

Growth factors

-> differentiation

-> lens fibres

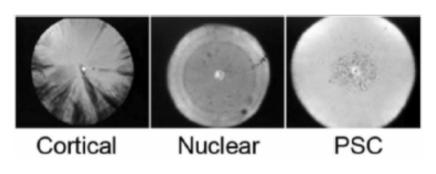
Tight temporal and spatial organisation

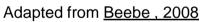
Deregulation -> cataracts

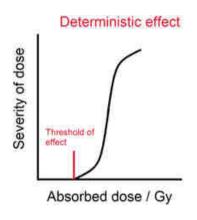


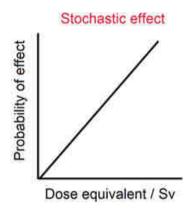
Radiation cataracts

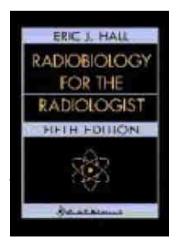
Cataracts are most frequent cause of blindness worldwide


Multifactorial aetiology: Age related effect; Genetic component (congenital cataracts); Also: Sunlight, alcohol intake, nicotine consumption, diabetes, persistent use of corticosteroids, and *ionising radiation...*





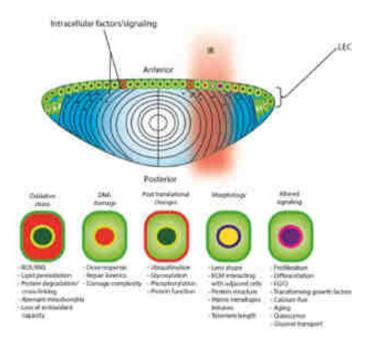

Radiation induced cataracts


Ionizing radiation is generally (but not exclusively) associated with posterior sub-capsular opacities

Well established paradigm: Radiation cataract is a deterministic, late, effect

ICRP, 1990 (and 2007), and others: Thresholds for radiation induced cataracts: 2 Gy acute; 4 Gy or higher fractionated/ chronic exposures

ICRP 2011: Threshold ~ 0.5 Gy...

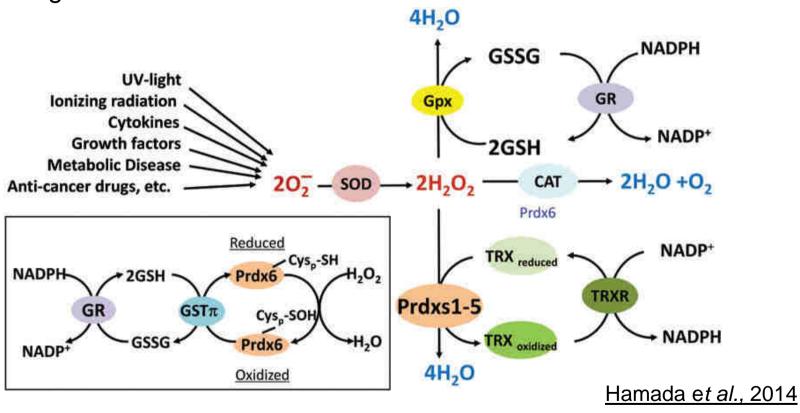


How does ionising radiation cause cataracts?

Target cells: Germinative Zone on lens epithelium (?)

Potential mechanisms might include:

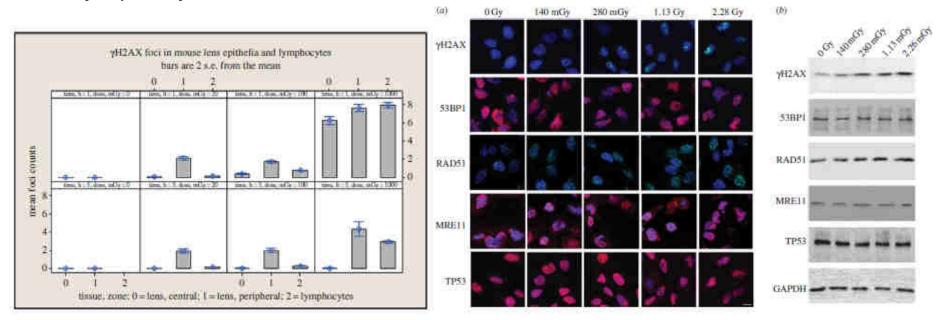
- Oxidative stress
- DNA Damage/Repair/Mis-repair
- Intracellular signalling
- Gene expression
- Cellular proliferation / mobility / migration
- Damage to proteins/ECM/lipids
- Post translational modifications
- Senescence
- Systemic/Non-targeted effects ...



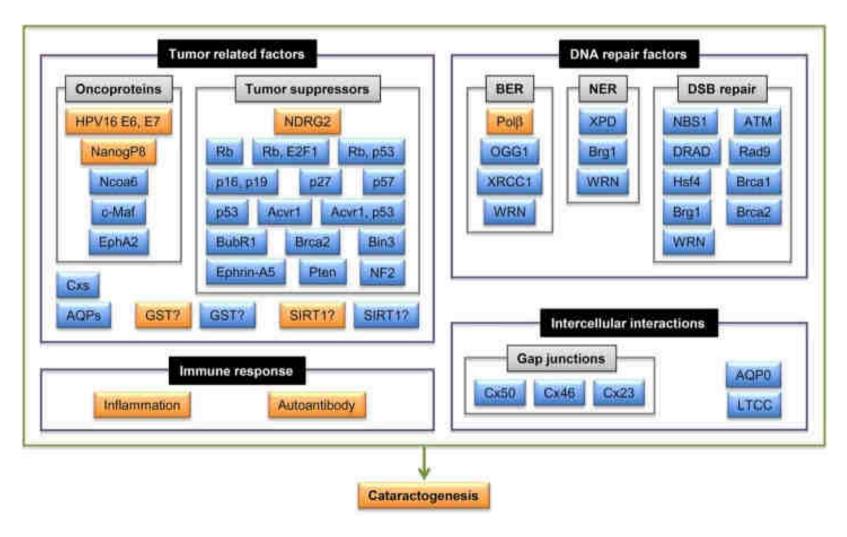
Modifying factors: Dose, Dose rate, Age at exposure, Genetic background ...

What do we know about oxidation?

ROS: Degradation, cross-linking, aggregation of lens proteins, DNA damage


-> Aberrant lens epithelial cell division, cell migration, differentiation...

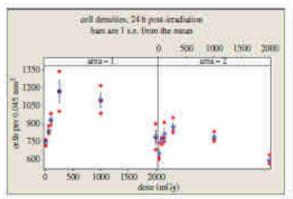
Evidence from a study looking at DNA damage and repair

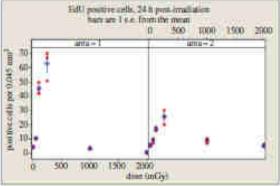

Markiewicz et al., 2015:

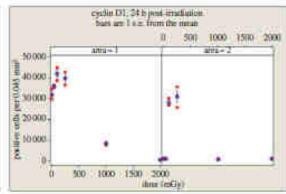
- Low dose, dose-response for DNA damage response in the lens
- Lens (peripheral region) is more sensitive than circulating lymphocytes

Signalling: Tumour related factors

Hamada and Fujimichi, 2015


Data on stimulation of proliferation


<u>Fujimichi and Hamada, 2015:</u> "IR not only inactivates clonogenic potential but also stimulates proliferation of surviving unactivated clonogenic HLE cells"


IR -> abnormal activity

Historical data: Irradiation induces excessive proliferation of rabbit lens epithelial cells; suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats

Markiewicz et al. 2014:

Some publications on lens protein modifications

Abnormal lens protein accumulation -> Aggregation, lens scatters light instead of focusing on the retina

Bloemendal et al, 2004: Lens crystallins: α -, β - and γ -, form the refractive medium of the lens; proteins e.g. αA - or αB - protect from aggregation

Muranov et al., 2010: Protein changes in irradiated lenses similar to those seen in old age

Wiley et al., 2011: Role of abnormal cellular proliferation, e.g. p53 effect?

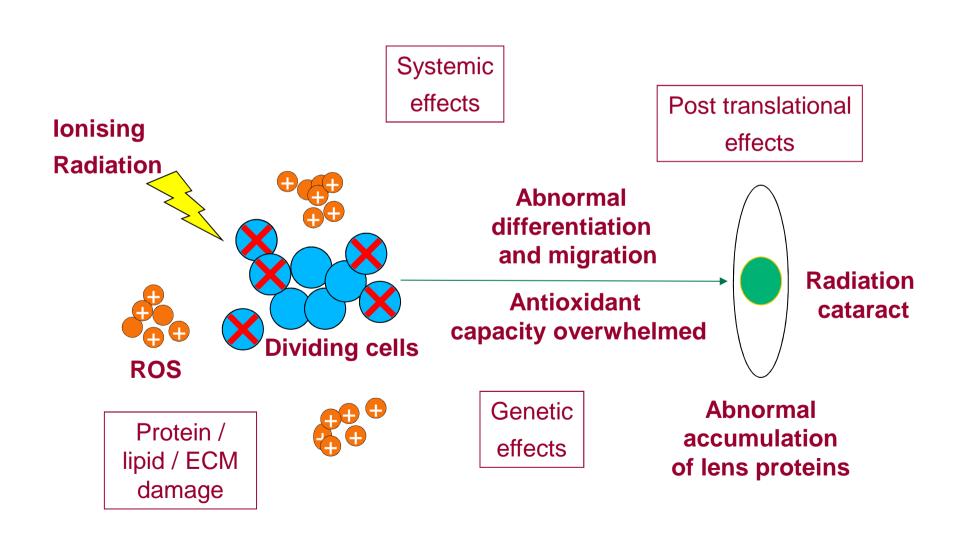
<u>Fujii et al., 2001:</u> Role of post translational modifications? May reduce solubility to alter transparency

Some genetics data

Mouse models: ATM, RAD9, BRAC1 genes control signalling for DNA damage response signalling; Heterozygosity of these genes known to leads to increased risk of cancers

Worgul et al., 2002:

- Cataracts earliest in homozygotes for Atm, then heterozygotes, then wildtype
- Severity and latency proportional to number of damaged cells attempting differentiation
- Atm homozygotes/heterozygotes genetic predisposition to cataracts


Kleiman et al., 2007: Cataracts develop earlier and in greater numbers in Atm/Rad9 double heterozygotes

Smilenov et al., 2008: Atm/Rad9/Brca1 double heterozygotes showed increased resistance to apoptosis and increased radiation sensitivity

Humans: e.g. Cataractogenic mutations in human crystallin genes

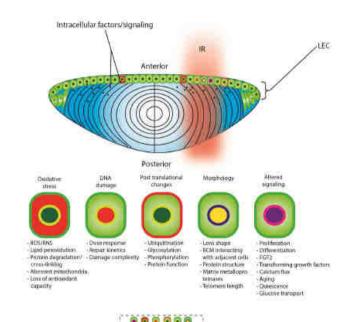
(Very basic) summary of current (incomplete) mechanistic hypothesis

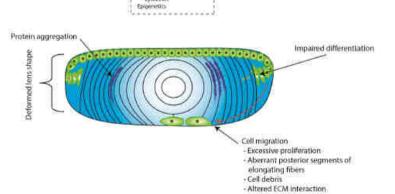
What do we know?

Understanding of lens biology (structure, physiology, process of fibre cell formation)

Radiation causes posterior subcapsular cataracts

High dose responses; impact of RBE, LET, DR

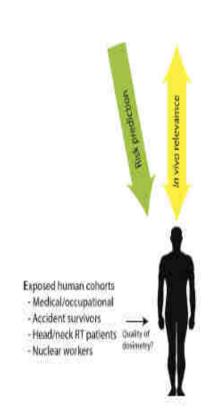

Number of potential competing/parallel mechanisms from wider cataract studies


Cellular and tissue level studies *ex vivo* or *in vitro* support the paradigm of genomic damage of lens epithelial cells as key mechanisms of cataractogenesis

Genetic background (e.g. heterozygosity for *Atm* or *Ptch1*), gene expression

Age dependence, impact of normal aging

Cataract detection/assessment


- Gap junctions Eq. Octov43

What don't we know?

Research model

in vivo (ex vivo) models

Accelerated aging

dose deposition

- Smoking

- UV exposure - Obesity - Diabetes

Hypertension

- Asthma

- Steroids

- COPD

- Eye injury/Inflammation

Confounding factors

+ Nuclear/cortical

+Latency period length

Monte Carlo modeling of

- Alcohol consumption - Background IR exposure

In vitro cell culture models - Human - Animal - H.Os Identification of murine strains statable for endpoints

Questions to be addressed experimentally - <100 mGy IR exposure - Stochastic vs deterministic (radiation protection) - Acute vs. protracted exposure (dose rate) - Identify markers of cataract initiation and progression (diagnosis/prognosis) - Induction of impaired proliferation/differentiation by radiation exposure

Genetic/environmental conditions

- Diet
- Circadian rythm
- Age/gender
- Epigenetic altered gene expression

Opacity monitoring

- Lens shape
- Standardized grading
- Epithelial cell density

LDLensRad Project

EJP CONCERT LDLensRad: Towards a full mechanistic understanding of low dose radiation induced cataracts

Objective:

"To advance knowledge to solve the question of how radiation causes and/or promotes cataracts.

This will be achieved by providing concrete evidence of the ability of radiation exposure <= 500 mGy to cause cataracts, the impact of dose protraction on the dose response and the biological mechanisms behind cataractogenesis."

EUROPEAN JOINT PROGRAMME - CONCERT

TRANSNATIONAL CALL FOR PROPOSALS (2016)

FOR

"RADIATION PROTECTION RESEARCH IN EUROPE"

PROPOSAL APPLICATION FORM

Please note

- All fields must be completed using "Calibri font, size 11" character
- Incomplete proposals (proposal missing any sections), proposals using a different format or exceeding length limitations of any sections will be rejected without further review.
- In case of inconsistency between the information registered in the submission tool and the information included in the PDF of this application form, the information registered in the
- . Refer to the "GUIDELINES FOR APPLICANTS" for information about the proposal structure

Page

Specific research questions

- Is there a low dose dose-response in radiation cataractogenesis?
- What is the impact of dose rate?
- What is the impact of genetic background?
- What is the impact/involvement with the 'normal' aging process?
- How are oxidative stress and intracellular communication, DNA damage, translational, proteomic and lipidomic responses, proliferation and lens morphology impacted by radiation?
- Can the lens be viewed as an indicator of global radiosensitivity?
- Are radiation cataracts most appropriately viewed as a deterministic/tissue reaction or a stochastic effect?

LDLensRad will contribute to answering some of these questions but:

Further collaborative research is needed!

Project collaborators and Advisory Board members

Elizabeth AINSBURY¹, Tamara AZIZOVA²*, Stephen BARNARD¹, Clare BRICKNELL¹, Claudia DALKE³, Laurence DAUER⁴, Ilaria De STEFANO⁵, Joseph DYNLACHT⁶, Michele ELLENDER¹, Lillian GARRETT², Joachim GRAW², Nobuyuki HAMADA®, Sabine M. HÖLTER², Miguel JARRIN®, Munira KADHIM¹®, Alexia KALLIGERAKI®, Simona LEONARDI¹¹, Mariateresa MANCUSO¹¹, Jayne MOQUET¹, Christopher OTTAWAY¹, Daniel PAWLICZEK², Simonetta PAZZAGLIA¹¹, Roy QUINLAN®, Anna SARAN¹¹, Rick TANNER¹, Barbara TANNO¹¹, Alice UWINEZA®, Kevin WHITEHILL¹, Roisin McCARRON¹, Gabriele BABINI¹²

- 1: Public Health England Centre for Radiation, Chemical and Environmental Hazards, Radiation Effects Department, Chilton OX11 ORQ Oxford, United Kingdom
- 2: Southern Urals Biophysics Institute 19, Ozyorskoe Shosse, Ozyorsk 456780 Chelyabinsk oblast, Russia
- 3: Helmholtz Zentrum München GmbH ngolstädter Landstraße 1 85764 Oberschleißheim, Germany
- 4: Memorial Sloan Kettering Cancer Center 1275 York Avenue NY 10065 New York, United States
- 5: Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile / Guglielmo Marconi University, Department of Radiation Physics Lungotevere Thaon di Revel, 76 00196 Rome, Italy
- 6: Indiana University School of Medicine 535 Barnhill Drive, RT 041 IN 46202-5289 Indianapolis, United States
- 7: Helmholtz Zentrum München GmbH Ingolstädter Landstraße 1 85764 Oberschleißheim, Germany
- 8: Central Research Institute of Electric Power Industry 2-11-1 Iwadokita, Komae-shi 201-8511 Tokyo, Japan
- 9: Durham University Stockton Road DH1 3LE Durham, United Kingdom
- 10: Oxford Brookes University Headington Campus OX3 0BP Oxford, United Kingdom
- 11: Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile Lungotevere Thaon di Revel, 76 00196 Rome, Italy
- 12 :Università degli studi di Pavia, Via Bassi, 6 27100 Pavia Italy

Acknowledgements

EU FP7 DoReMi and Horizon 2020 CONCERT projects. The LDLensRad project has received funding from the Euratom research and training programme 2014-2018 in the framework of the CONCERT [grant agreement No 662287].

UK Department of Health, Public Health England
UK Health and Safety Executive
National Institutes for Health Research
Society for Radiation Protection
NCRP SC1-23 Colleagues

Unless otherwise stated, all figures taken from:

Contents lists available at ScienceDirect

Mutation Research/Reviews in Mutation Research

journal homepage: www.elsevier.com/locate/reviewsmr Community address: www.elsevier.com/locate/mutres

Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research

Elizabeth A. Ainsbury^{a,*}, Stephen Barnard^a, Scott Bright^b, Claudia Dalke^d, Miguel Jarrin^e, Sarah Kunze^d, Rick Tanner^{a,1}, Joseph R. Dynlacht^{c,1}, Roy A. Quinlan^{e,1}, Jochen Graw^{d,1}, Munira Kadhim^{b,1}, Nobuyuki Hamada^{f,**}

Thank you for listening!

Questions/Comments/Suggestions?

Liz.Ainsbury@phe.gov.uk