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1.0 PROPOSED SCOPE 

Quantification and understanding of uncertainty sources is an essential requirement of best-
estimate (BE) reactor analysis simulation as it provides a reliable metric by which the quality 
of the predictions can be assessed. Although direct comparison against measurements provides 
the ultimate evidence that simulation predictions are reliable, the true value of any BE 
simulation lies in its ability to analyze reactor conditions for which measurements are 
unavailable. Therefore, there is a clear need to characterize, i.e., to propagate and prioritize, all 
sources of uncertainties in order to reliably use the results of BE calculations in the various 
aspects of reactor design, operation, and safety. 

This study investigates the feasibility of the development of a first-of-a-kind integrated 
framework for uncertainty characterization (UC) with primary application to CANDU 
neutronics calculations. The goal is to provide a comprehensive and scientifically defendable 
methodology for characterizing uncertainties in all BE reactor analysis calculations, including 
both steady state and transient simulations. The framework will be based on open-source 
libraries for standard UC process algorithms as well as novel algorithms, to be developed and 
implemented by this project, to enable efficient execution for CANDU reactor analysis 
applications.  

The UC framework (UCF) is to accomplish four primary functions. First, it will identify all 
sources of uncertainties resulting from modeling assumptions, numerical approximations, 
nuclear data uncertainties, and technological parameters uncertainties. Second, it will 
propagate the identified uncertainties to the responses of interest such as the core eigenvalue, 
power distribution, bundle enthalpy rise, etc. Third, it will map the propagated uncertainties to 
the wide range of operating conditions. Fourth, it will generate a priority identification and 
ranking table (PIRT) which identifies and ranks according to importance the dominant sources 
of uncertainties. 

Despite the importance of uncertainties, the nuclear simulation codes have always lacked an 
integrated framework for their characterization. This is primarily due to: a) the complex nature 
of nuclear models, i.e., based on a multi-level homogenization strategy where a number of 
models are linked together in a sequential or circular manner to account for the wide range of 
physical phenomena involved, the large variations in energy and length scales, and the various 
forms of feedback mechanisms; b) the individual simulations codes requiring long execution 
times and being associated with voluminous size of input and output data streams; and c) the 
recent advances in uncertainty algorithms have been primarily demonstrated for modern 
software platforms, i.e., new codes; it is however difficult to incorporate these advances in 
some of the legacy codes used extensively in the design and regulatory spaces.  

Given these challenges, the proposed UCF must employ efficient techniques to reduce the 
computational cost required to propagate and prioritize uncertainties, which is otherwise 
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intractable with conventional UC techniques. The reduction algorithms selected in this study 
are based on recent advances in reduced order modeling (ROM) techniques which have been 
recently applied with success to other LWR reactors physics simulation, e.g., BWRs and PWRs 
[Bang,, 2012]. Our objective is to propose a number of viable approaches based on ROM to 
propagate the various sources of uncertainties, including parameters and modeling 
uncertainties, in typical CANDU reactor analysis calculations. We also discuss the expected 
challenges and needed resources to construct a UCF that can provide comprehensive 
characterization of uncertainties in an affordable manner that can be scientifically defended.  

This report is organized as follows. Section 2.0 provides a short background on UC and its 
basic process algorithms for characterization of parameters and modeling uncertainties. 
Section 3.0 overviews the sources of uncertainties in CANDU reactor physics calculations, 
and discusses some of the challenges of employing basic UC process algorithms for their 
characterization. Section 4.0 provides an overview of ROM techniques/algorithms, which 
represent the enabling engine for the UCF application to CANDU calculations.  

Section 5.0 proposes a preliminary implementation plan of the UC basic process algorithms 
and their ROM rendition to characterize the various sources of uncertainties outlined in section 
3.0. Section 6.0 describes both the UCF hardware and software requirements. Section 7.0 
overviews existing UC toolkits that may be leveraged in support of the proposed UCF. A pilot 
study is conducted in section 8.0 to illustrate the application of the UC algorithms and provide 
an initial demonstration of the contribution of the various sources of uncertainties considered 
in this project. The UCF’s milestones and deliverables are listed in section 9.0 along with 
proposed timeline for their completion over a five-year performance period.  

Five appendices are appended to the supplement the discussions whenever needed. Appendix 
A provides additional background on UC; Appendix B discusses a short literature review of 
sensitivity analysis methods; Appendix C discusses the range finding algorithm, the basic 
ingredient of ROM techniques; Appendix D explains the differences between the two major 
ROM approaches, the dimensionality reduction and the surrogate model construction; and 
Appendix E provides an overview of the CRANE and EPGPT tools which are developed by 
the author and his collaborators to render reduction in support of the pilot study. 
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2.0 UC BACKGROUND 

Uncertainties are unavoidable in any simulation, since all constructed physical and/or 
engineering models representing the scientific bases for any simulation, are approximations of 
reality. For high consequence systems, such as nuclear reactors, the uncertainties must be well 
characterized to ensure safe and reliable operation during normal operation and accident 
scenarios. Characterization of uncertainties refers to all engineering analyses conducted to 
provide scientifically-defendable quantities that measure the reliability of the reactor 
simulation predictions.  

Traditionally, uncertainties in reactor calculations have been addressed using a conservative 
bounding analysis. Later, the best estimate plus uncertainty (BEPU) method has been sought 
as a more realistic alternative to the conservative bounding analysis, contingent upon the 
proper quantification of uncertainties of BE simulation results. To fully realize the benefits of 
the BEPU method, one must explicitly account for all sources of uncertainties, including initial 
and boundary conditions, modeling and numerical sources of uncertainties, as well as those 
originating from the individual codes used in the overall coupled simulation. 

The UC involves two primary processes. The first process, referred to as uncertainty 
quantification (UQ), propagates all known sources of simulation uncertainties in order to 
understand their impact on the reactor behavior. The second process, referred to as sensitivity 
analysis (SA), acts in conjunction with UQ to help identify the key sources of uncertainties. 
We discuss these processes here but more details are given in Appendix A on the basic UC 
definitions, and Appendix B on SA.  

The UQ process devises a metric that is used to measure uncertainties. The measurement 
process may be thought of as a hypothetical, i.e., virtual, experiment that determines all 
possible outcomes/states/results/values of the phenomenon under consideration [Hubbard, 
2010]. An important part of this process is to assign probabilities to the various possibilities. 
The combined possibilities and their associated probabilities are often described by a 
probability density function (PDF) or a histogram which may be viewed as the metric by which 
uncertainty are measured, i.e., quantified. Other metrics that are functions of the resulting PDF 
or histogram could also be employed to measure uncertainties. Examples include the mean, the 
standard deviation, kurtosis, etc., of the PDF or the histogram; and tail probability that is the 
probability to exceed a certain value, commonly referred to as failure probability.  

We distinguish here between two types of UC exercises, experimentally-based and code-based, 
with the latter being the focus of this project. An experimentally-based UC exercise involves 
a direct comparison between simulation predictions and real experimental measurements, 
typically referred to as bias. The advantage of this exercise is that it provides a clear-cut 
quantification of the bias between simulation and reality. Its disadvantage is that it does not 
explain how the bias magnitude relates to the various sources of uncertainties inherent in the 
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simulation. Because of that, it is difficult to map this bias to other conditions not covered by 
the available experiments.  

A code-based UC exercise, however, implies a self-assessment of the uncertainty sources, i.e., 
the code propagates its own known uncertainties, and provides them as part of the standard 
output along with BE results. In doing so, one can apportion the propagated uncertainties to 
the various sources of uncertainties, and can devise methods for their mapping to other 
operating conditions. The primary disadvantage of code-based UC techniques is that it 
propagates the “known” sources of uncertainties only, implying that all modeling inadequacies 
that are unknown to the modeler cannot be properly quantified. Ideally, one should employ a 
combination of the two exercises to fully characterize uncertainties and devise methods for 
their mapping to all operational conditions of interest.  

The UCF investigated in this study will be focusing on the code-based UC only and will be 
designed to accomplish the following four tasks: a) Identification of Uncertainty Sources; b) 
Propagation of Uncertainty Sources; c) Mapping of Uncertainty Sources; and d) Prioritization 
of Uncertainty Sources. The first three tasks may be referred to as part of an UQ analysis, while 
the last one is commonly known as SA. These tasks are discussed in the next four subsections. 

2.1 Identification of Uncertainty Sources 

From a high level, any BE simulation code developed to predict the behavior of a given 
engineering system may be viewed as a set of procedures/rules that are used to manipulate 
the model input data in order to generate a set of output responses that can be used directly 
or after some further manipulation to measure the performance of the engineering system. 
The set of procedures/rules are collectively referred to as a model of the engineering 
system. The model reflects our understanding of the physical phenomena governing the 
behavior of the engineering system. The model is developed in the form of mathematical 
equations whose solution can be used to calculate the output responses. These equations 
must be manipulated further to enable their solution on a digital computer. This overall 
process contains several sources of uncertainties which may be grouped into three 
categories, modeling, numerical, and parameter uncertainties.  

2.1.1 Modeling uncertainties 

Any modeling scheme introduces two fundamental sources of modeling 
uncertainties, one originating from the modeler’s incomplete knowledge about the 
physics governing the system, and the other resulting from the modeling 
simplifications and approximations introduced to achieve computational efficiency. 
Conceptually, the first source is the most difficult one to quantify since it requires 
one to make quantitative statements about one’s lack of knowledge. The second 
source can, in principle, be quantified. This requires the development of algorithms 
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to capture the effect of the modeling simplifications and how they propagate and 
interact with other sources of uncertainties.  

The first source can only be quantified if one has access to experimental data. In 
our proposed implementation, we will focus on code-based UC only, therefore our 
inherent assumption here is that uncertainties resulting from the modeler’s lack of 
knowledge are extremely negligible. Since our focus is on neutronics calculations 
only, this assumption is not inadequate since the physics behavior of neutrons 
transport inside nuclear reactor cores are well understood and have been extensively 
validated over the years.  

Specifically, we will assume that the Monte Carlo pointwise cross-section models 
provide perfect representation of the physics of neutron transport inside the 
CANDU core. While this assumption can be challenged for specific models, it will 
be assumed valid for the range of problems of interest to us in this project. 
Accordingly, the UCF will focus on capturing the second source only; that is 
resulting from the use of modeling approximations, such as the use of diffusion 
theory, multi-group approximations, cell lattice reflective boundary conditions, 
numerical discretization errors, etc.  

2.1.2 Numerical uncertainties 

Further, one must discretize the model’s equations, often developed in an abstract 
mathematical form involving continuous integral and/or differential operators, to 
generate a set of algebraic equations that can be manipulated further by computers. 
This process is referred to as numerical discretization and is also expected to 
contain numerical uncertainties, commonly referred to as errors (the difference 
between uncertainties and errors is described in section 2.1.4). 

For deterministic radiation transport, the UCF will lump both modeling and 
numerical uncertainties under the name of modeling uncertainties. In doing so, we 
will assume that the Monte Carlo simulation contains no numerical uncertainties. 
This is not a perfect assumption, because even in Monte Carlo simulation, one has 
to discretize the angular variable used to describe the neutron direction of travel 
into angular bins, which gives rise to numerical uncertainties. In thermal reactors, 
we expect this source of numerical uncertainty to be negligibly small given the 
short mean free path of the neutrons. In fast reactors however, this source of 
uncertainty needs to be adequately quantified.   

2.1.3 Parameter uncertainties 

All input data to a computational model, typically referred to as parameters, could 
contain uncertainties which propagate throughout the model and give rise to 
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response uncertainties. Input data uncertainties are unavoidable because input data 
are either experimentally evaluated or generated using pre-processor codes (cf., 
section 2.1.6 for the various classes of input data). The objective is to determine all 
possible responses variations, often described in the form of a probability 
distribution function (PDF), due to all possible input data variations within their 
known ranges of uncertainties.  

Conceptually, this source of uncertainties is the easiest to quantify via a standard 
UQ sampling-based approach, cf. section 2.2.1. Prioritizing the dominant sources 
of uncertainties however using a conventional SA approach is computationally 
infeasible for typical CANDU reactor models due to the large number of input data. 
Therefore, an important requirement for the UCF is the development of ROM 
algorithms capable of propagating and prioritizing uncertainties in a 
computationally efficient manner. 

2.1.4 Uncertainty Types 

There are fundamentally two types of uncertainties, aleatory (i.e., random or 
irreducible) and epistemic (i.e., systematic or reducible) [Jaynes, 2009]. Aleatory 
uncertainties originate due to inherent randomness in the physical model itself 
which renders them irreducible, i.e., they cannot be minimized/reduced with 
additional measurements. For example, the number of counts registered in a 
detector is inherently random - the associated standard deviation of the counts will 
depend on the nature the radiation interactions inside the detector volume and 
therefore cannot be reduced even if the counting experiment is repeated an infinite 
number of times.  

Epistemic uncertainties refer to biases in the calculations which result from 
approximations, assumptions, or lack of knowledge about the true value of model 
input data. For example, if the nominal value of v, neutron fission yield, used in BE 
calculations is lower than its true value, the associated reactor analysis model will 
consistently under-predict the core’s critical eigenvalue.  

Epistemic uncertainties are reducible in principle with additional measurements. 
For example, by repeating the experiments used to measure v, better estimates of 
its true value can be evaluated. The distinction between the two types is important 
and must be done carefully. By way of an example, in the above detector example, 
the number of counts measured is subject to an aleatory uncertainty; however the 
mean value of the counts measured over a given time interval suffers from an 
epistemic uncertainty, implying that a better estimate of the mean can be obtained 
with additional measurements. 
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In reactor analysis, both aleatory and epistemic uncertainties are present and must 
be carefully quantified. Examples of aleatory uncertainties include the dimensions 
and compositions of the various materials comprising the reactor core, all subject 
to manufacturing tolerances. This follows because any manufacturing process 
cannot render the exact engineering specifications, and hence a level of uncertainty 
is to be expected. Epistemic uncertainties include nuclear data, e.g., microscopic 
cross-sections, thermal-hydraulics data, e.g., heat transfer coefficients, and 
systematic errors resulting from numerical, e.g., discretization and iterative 
techniques, and modeling, e.g., use of homogenization theory, approximations.  

It is instructive to mention that the terms ‘error’ and ‘uncertainty’ have been 
traditionally used to distinguish between systematic (i.e. epistemic) and random 
(i.e. aleatory) sources of uncertainties. This distinction is not needed in our context, 
and hence the two terms will be used interchangeably.  

2.1.5 Uncertainty Representation 

Both aleatory and epistemic uncertainties are described using PDFs. Let p(x) be a 
PDF which defines the following quantity [Jaynes, 2009]: 

 
2

1

1 2Pr ( )
x

x

x x x p x dx     

Depending on the type of uncertainty, the above quantity has two different 
interpretations. Recall that aleatory uncertainty implies that x (representing a 
component of the input data) does not take on a single value because it is random 
in nature. In this case, the above definition measures the frequency of finding x in 

the interval [ 1 2,x x ].  

Contrary to that, epistemic uncertainty implies that x takes on a single value which 
is unknown. However, based on the evidence available (i.e., from experiments, 
expert judgment, etc.), one can speak of the likelihood (or the probability) of 
finding the true value in a certain interval. Note that these two interpretations are 
distinctly different, however they are both referred to as probabilities. We will 
distinguish these differences whenever needed. 

The most common PDF is the normal Gaussian distribution, which is described by 

a mean value x, representing the nominal value for x used in BE calculations, and 
a standard deviation describing either the modeler’s confidence in the mean value 
for epistemic uncertainties, or the inherent randomness of aleatory uncertainties, 
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C  

This representation is used to denote the PDF of multiple input data, aggregated in 

a vector x with mean x such that the ith component [x]i is the mean value of the ith 
input data [x]i, and Cx is a matrix that characterizes the correlations between the 
data.  

Input data correlations are unavoidable whether the data are directly measured, 
obtained from a fitting procedure, or pre-calculated using preprocessor codes. For 
Gaussian parameters, a covariance matrix is sufficient to describe all correlations. 
Its diagonal elements represent the variance (square of standard deviation) of the 
individual data, and the off-diagonal elements are measures of the correlations. A 
diagonal matrix with zero off-diagonal elements implies a set of input data that are 
uncorrelated. The covariance matrix is symmetric and of the form: 

  ij i jij
  C  

where [*]ij denotes the element at the intersection of the ith row and jth column. The 

ij  is the standard correlation coefficients between the ith and jth input data; it ranges 

between 1   and 1 . A 1ij   implies perfect positive correlation, i.e., both 

parameters move in the same direction. The i  is the standard deviation of the ith 

parameter. 

The covariance matrix may also be decomposed using rank revealing 
decompositions [Meyer, 2001]: 

TC WΣW  

where r rΣ   is a diagonal matrix   2
iii

Σ


, and n rW  is an orthonormal 

matrix, i.e., its columns are mutually orthogonal and of unit norm, i.e., 

 1 2 .... rw w wW   where T
i j ijw w  , and ij  is the standard Kronecker delta 

function which is equal to zero for all i and j pairs except when i j , it is equal to 

one. The implication of this decomposition is that one can transform the originally 

correlated input data into an uncorrelated set defined by: Tx x W


, where the ith 

uncorrelated input data  ix


 has a standard deviation of i


.  

Notice that the number of uncorrelated input data is r, which can be anywhere 
between 1 and n. The case of r n  means that the original input data are correlated, 
but not perfectly. With r n  however, the implication is that there are n r  perfect 



15 | 120 
 

correlations between the data, which allows one to reduce the effective number of 
input data from n down to r.  

In this case, one can recast the UC problem as follows. Note that in the original UC 
formulation, one is given x and their prior PDF, and wishes to determine the PDF 

of y such that:  y f x . In the recast formulation, one first transforms the input 

data into an uncorrelated set x


 and determine their associated PDF, then applies 

UC to the transformed model  y f x 
. This represents one of the core ideas 

required to render feasible the application of UC techniques to CANDU reactor 
problems. As will be discussed later, ROM techniques achieve significant 
dimensionality reduction by identifying all the correlations between the various 
variables, e.g., model parameters, flux solution, power distribution, etc.  

2.1.6 Uncertainty Sources Classification 

To describe how the various sources of uncertainties are propagated using the 
proposed UCF, we employ the following representation of a typical reactor analysis 
simulation model. Let the responses of interest, e.g., critical eigenvalue and bundle 
enthalpy, etc., be described by: 

 , ,y f x    

where y is a vector whose components represent the responses of interest. The 

vectors x, , represent the input data to the model classified into three groups as 
shown in Fig.  2.1.  

- The first group x is taken to represent all input model physics parameters, e.g., 
nuclear cross-sections, heat transfer coefficients, friction factors, etc., referred 
to hereinafter as “model parameters” for short.  

- The second group   represents all the parameters that can be controlled by the 
operator, referred to as “control parameters”, e.g., fuel design including 
composition and geometry details, coolant flow rate, soluble boron content, 
control rod position, etc.  

- The third group  represents all the decisions made by the modeler, e.g., use of 
deterministic vs. probabilistic model, use of a specific resonance treatment 
model, a specific numerical iterative technique, etc., which will be referred to 
as “modeling decisions”.  

Note that the model and control parameters are typically continuous variables, 

whereas the modeling decisions are generally symbolic, e.g. or for 

Monte Carlo continuous cross-section model, and or for multi-group 
deterministic model, etc.  
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Most practitioners refer to model parameters and control parameters uncertainties, 
as simply parameter uncertainties, whereas uncertainties resulting from modeling 
decisions are typically referred to as modeling errors/uncertainties. We will employ 
these terminologies in our discussion 

Model parameters x are either experimentally measured/evaluated or calculated 
from preprocessor models and therefore must contain uncertainties. This follows 
because any experimentally-measured value contains uncertainties due to the 
systematic errors and noise in the measurement procedure; and any preprocessor 
model is, as mentioned before, a form of approximation of reality and hence 
contains uncertainties. By way of example in neutronics calculations, the 
continuous ENDF cross-sections are based on the fitting of experimental 
differential cross-section measurements to well-established nuclear models, cf. 
section 3.1. The multi-group cross-sections however are calculated based on a 
preprocessor model in which an assumed or calculated flux shape is used to collapse 
the continuous cross-sections into multi-group format.  

 

Fig.  2.1 Uncertainty Sources Classification 

Control parameters  are set by the operator/analyst/designer, and their associated 
uncertainties are typically a result of the engineering mechanism by which the 
respective parameters are controlled. For example, the enrichment of the fuel 
depends on the accuracy of the manufacturing process at the fuel enrichment plant. 
Just like model parameters, control parameter uncertainties are described by PDFs. 
In practice, uniform PDFs, as opposed to normal distributions, are often used with 
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control parameters. This is because maximum and minimum limiting parameter 
values can be defined with uniform PDFs, which allows the modeler to assign zero 
probabilities to extreme values that are non-physical – not possible with the long 
tails of the normal distribution. 

The modeling decisions   are symbolic, e.g., alpha-numeric, and therefore cannot 

be described using PDFs. Their values are arbitrarily assigned by the modeler to 
denote the type of assumptions and approximations employed to simplify the 
analysis models. Special algorithms must therefore be devised to propagate these 
uncertainties, and enable their mapping to the intended range of operating 
conditions. 

2.2 Propagation of Uncertainty Sources 

There are fundamentally two different UQ approaches: the sampling-based approach and 
the reduced order modeling (ROM)-based approach, both depicted in Fig.  2.2. The 
sampling approach emulates the basic definition of UQ; it tries to determine all possible 
responses variations resulting from parameters uncertainties by executing the model as 
many times as possible. The results of the many executions are combined statistically to 
derive quantities of interest, such as mean, standard deviation, failure probabilities, 
parameters sensitivities, etc. The ROM approach replaces the original model with a model 
of reduced complexity, often referred to as a surrogate model. The premise is that the 
surrogate model can be executed much more efficiently and as many times as required for 
both the UQ and SA analyses. Details on the ROM approach are described section 4.0. 

The basic algorithm behind all sampling-based methods is to randomly sample all input 
parameters from their prior PDFs and execute the forward model [Helton, 2006]. After 
each execution, the responses variations are recorded and the procedure is repeated with 
different random samples until a reliable estimate of responses PDFs is obtained. This 
method is advantageous because of its simplicity and ability to obtain detailed (i.e., all 
moments) PDFs for all responses. This is primarily important for a general nonlinear model 
and general input parameters PDFs where the responses PDFs are expected to deviate 
considerably from the Gaussian shape. Another advantage is that the number of samples is 
independent of the number of input parameters n. 

Two notable examples of this methodology in the nuclear engineering communities are the 
Total Monte Carlo (TMC) method developed by the NRG group in the Netherlands 
[Rochman, 2014], and the SAMPLER super-sequence developed by ORNL in the United 
States [Williams, 2013]. TMC is designed to propagate basic nuclear data uncertainties 
starting at the ENDF level, cf. section 3.1, to macroscopic core attributes of interest using 
Monte Carlo continuous cross-section simulation. The SAMPLER super-sequence 
propagates the uncertainties starting with the multi-group cross-sections, cf. section 3.2. 
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                         (a) Sampling-based UQ                      (b) ROM-based UQ 

Fig.  2.2 Fundamental UQ Approaches 

The primary challenge facing sampling-based methods is that it is very difficult to infer the 
importance of the various sources of uncertainties, i.e., difficult to determine sensitivity 
information, when the number of afforded random samples is much smaller than the 
number of uncertainty sources.  One can show that the number of required samples is 
proportional to ns, where s is the order of sensitivity information, i.e., s=1 denotes second-
order derivatives, and n is the number of uncertainty sources. This renders the sampling-
based UQ approach infeasible for the full characterization of uncertainties in typical 
CANDU reactor physics calculations. 

The rest of this section will focus on presenting the basic UC algorithms used for the 
propagation and prioritization of parameter and modeling uncertainties. After ROM 
techniques are introduced in section 4.0, and the sources of uncertainties specific to 
CANDU reactor physics calculations are fully exposed in section 3.0, we will explain how 
the basic UC algorithms can be modified using ROM techniques to render efficient 
execution for CANDU applications. 

The mathematical rendition of the basic UC algorithm may be described as follows. Let’s 
say one is interested in calculating the first moment of the response PDF due to 
uncertainties in the model parameters x, this may be written as follows: 
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( , , ) ( )y f x p x dx     

This expression implies an averaging of the response function y over the range of possible 
values for x, with the weights determined using the PDF of x, i.e., p(x). 

In the late 19th century, it was proved that this integral may be evaluated numerically: 
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This integral implies that one needs to evaluate the function f at random samples xi that are 
drawn from the PDF p(x). More importantly, the theorem guarantees convergence of the 
summation to the true value of the integral as the number of samples approaches infinity.  

Moreover, it can be shown that the convergence speed is proportional to the square root of 
the number of samples. This theorem represents the basis for all sampling techniques. The 
most powerful feature about this theorem is that the convergence of the summation to the 
true integral depends only on the number of samples, implying no dependence on the 
number of model parameters. The next two sub-sections apply this algorithm to propagate 
parameters and modeling uncertainties. 

It is important to note here that while this algorithm is very efficient in capturing the main 
features, i.e., moments, of a general PDF, it is not very effective in capturing extreme (low 
probability) events, i.e., which typically happen at the tail of the PDFs and referred to as 
failure events. In this case, one must rely on more sophisticated sampling strategies to 
ensure that enough samples are produced in the failure region.  

2.2.1 Parameters uncertainty propagation 

Propagation of parameters uncertainties begins with the determination of the PDFs 
that describe their prior uncertainty. Regarding control parameters, their prior 
uncertainties are based on the engineering tolerance of the associated parameters, 
e.g., fuel enrichment, diameter of the fuel pin, etc. Regarding model parameters, 
their prior uncertainties are typically determined using a combined experimental 
and evaluation procedure, which requires careful propagation of uncertainties from 
both the experiment and the evaluation procedure. An example of that is the 
evaluation of the ENDF pointwise continuous cross-sections, cf. section 3.1.  

Once the prior uncertainties in the form of PDFs are available, the model responses 
uncertainties can be determined using the following sampling procedure, referred 
to as UQp, with the superscript p denoting the parameters to distinguish it from the 
algorithm discussed in the next section for modeling uncertainties propagation.  
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- Generate N samples of the parameters that are consistent with their prior PDFs. 
- Execute the model N times and record and/or histogram responses variations.  
- Determine the responses PDFs and/or moments thereof. 

The most common moments include the mean (which represents the average value 
for the response of interest) and the standard deviation (which measures the 
analyst’s confidence in the mean value or its inherent randomness). 

The number of samples required to get adequate statistics (i.e., first and second 
moments) on the responses of interest is typically in the range of few to several 
hundred samples for a general model. If the model is perfectly linear, one needs 
only two samples to fully characterize the response PDF, one sample at the nominal 
parameter value, and another at a perturbation thereof. One can show that for a 
linear model, the uncertainties in the responses of interest may be given by the 
following formula: 

T
y xC SC S  

where S is denoted as the sensitivity matrix, which contains the first order 
derivatives of the responses with respect to the parameters, i.e., 
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In neutronics calculations, the derivatives are typically determined using an adjoint 
approach, however they can also be determined using forward finite differencing 
approach: 
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This expression implies that in the forward finite differencing approach one has to 
perturb each input parameter once and execute the code to calculate the derivatives 
of all responses with respect to the given parameter. The computational cost is 
therefore proportional to the number of parameters, which is prohibitive for typical 
reactor neutronics models.  

The adjoint approach however requires a single execution of the forward model and 
a single execution of the adjoint model to calculate the derivatives of a single 
response with respect to all model parameters. If one is interested in calculating the 
derivatives of all responses, the cost of adjoint calculations also becomes 
prohibitive. In the proposed UCF, both the numbers of responses and parameters 
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are large, since we are interested in propagating uncertainties throughout all the 
codes comprising a standard CANDU computational sequence. For example, in cell 
lattice calculations, the parameters represent the multi-group cross-sections and the 
responses are the few-group cross-sections functionalized in terms of a wide range 
of core conditions. To overcome this problem, we employ ROM techniques as 
described in section 4.0 to minimize the number of required forward and/or adjoint 
model executions to a manageable number. 

2.2.2 Modeling uncertainty propagation 

Different from model and control parameters, modeling decisions responsible for 
the modeling uncertainties are symbolic in nature, they describe a known change in 
the modeling assumptions or the numerical approximation techniques which cannot 
be described using a continuous variable with an associated prior PDF. To address 
this situation, the uncertainties are propagated by conducting two UQp studies, each 
with a different modeling decision. We will denote this approach by UQm, where m 
denotes modeling uncertainties.  

By way of an example, consider the uncertainties resulting from the use of 
continuous cross-sections Monte Carlo model vs. a deterministic multi-group 

model, referred to in terms of their associated decision variables  and, 
respectively, as depicted in Fig.  2.3. In this case, the response denotes the 
discrepancies (i.e., bias) between the models predictions for the quantities of 
interest, e.g., core’s critical eigenvalue. Propagation of the uncertainties resulting 
from these different modeling decisions is done as follows: 

- Generate N samples for the control and model parameters 
- Execute the model N times with a user-defined modeling decision, e.g., 0   

- Re-execute the model N times with a different modeling decision, e.g., 1   

- Record the differences in the responses between the two above cases, and their 
variations over the N model runs, and histogram the results.  

- Determine the responses PDFs and/or moments thereof. 

Given that the number of modeling decisions is problem- and/or analyst- 
dependent, we will lump all decisions together and focus only on their aggregated 
effect. In particular, we will consider the following cases: 

- 0  : The most accurate neutronic model available, assumed to be a 

Monte Carlo model with explicit representation of spatial heterogeneity and 
continuous cross-sections.  

- 1  : Deterministic model with multi-group cross-sections, and 

homogenized spatial regions. In section 5.0, we describe how modeling 
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uncertainties resulting from different levels of homogenization can be 
quantified, with each level denoted by a different value for   

 

 

Fig.  2.3 Propagation of Modeling Uncertainty 

2.3 Mapping of Uncertainty Sources 

Mapping of uncertainties implies the ability to determine how uncertainties are scaled 
between the different operational conditions, i.e., how do uncertainties in the fresh fuel 
map to the discharged fuel? This is an important capability for any UCF to support model 
validation needs. This follows because in model validation, one needs to identify the range 
of operational conditions over which the model is considered an adequate representation 
of reality. Adequacy is measured in terms of uncertainty, where areas in the operational 
phase space are identified such that their associated uncertainty is below given preset 
tolerance on the maximum uncertainty allowed. 

Code-based uncertainties are easier to map because they simply involve repeating the UC 
exercise with different operational conditions. Experimentally-based uncertainties 
however are much more difficult to map, because as discussed earlier, they aggregate all 
sources of uncertainties, offering almost no insight on their sources, and how they may be 
mapped.  

We focus in this project on code-based uncertainties. As discussed earlier, we split the 
sources of uncertainties into two groups, control and model parameters, (collectively 
referred to as parameter uncertainties), and modeling decisions (referred to as modeling 
uncertainties or errors). Parameter uncertainties, as discussed in the previous section, are 
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propagated using a straightforward sampling approach. To render their mapping, the UC 
exercise can be repeated for all operational conditions of interest.  

This straightforward approach is not adequate for mapping modeling uncertainties. This is 
because modeling uncertainties require the execution of an additional model, that’s the 
high fidelity model, which forms the basis for estimating modeling inadequacies. The 
execution of the high fidelity model is typically very expensive, and cannot be repeated for 
all possible operational conditions of interest. If it was practical, one would not need to 
execute the lower fidelity model at all. Therefore, one must devise an effective mapping 
strategy that uses limited number of high fidelity model executions to map the uncertainties 
for all conditions of interest, for which no high fidelity model predictions are available. An 
example of that is the ability to characterize the modeling errors resulting from 
homogenization theory in core-wide depletion calculations using a limited number of 
Monte Carlo simulations for small sections of the core. To achieve that, we explain below 
how the UQm is extended to map uncertainties.   

The idea of the UQm mapping algorithm is to establish a mapping between two sets of 
conditions (as defined by the control parameters), the first represents the intended domain 
of operation, and the second represents the conditions for which the high fidelity model 
predictions are available. The assumption is that the UQm algorithm described in section 
2.2.2 has already been employed to propagate modeling uncertainties for the second set of 
conditions, and one desires to map these uncertainties to the first set of conditions where 
only the lower fidelity model predictions are available.  

The UQm mapping algorithm employs the lower fidelity model to generate a joint PDF 
using the standard sampling-based UQ approach applied to both sets of conditions. This 
joint PDF describes how modeling uncertainties are expected to be correlated between the 
two sets of conditions, which facilitates the mapping of modeling uncertainty.  

The UQm mapping algorithm is described as follows by way of an example: consider that 
one is interested in estimating the modeling uncertainties for the few-group constants used 
in downstream CANDU core-wide calculations. Few-group constants have to be 
functionalized in terms of a wide range of conditions, including different burnup, different 
fuel temperatures, coolant voiding and temperature, soluble boron content, with and 
without interstitial control and reactivity devices, etc. This requires the execution of the 
lattice code many times. We assume that a high fidelity model, e.g., Monte Carlo with 

continuous cross-sections, denoted by = 0, is available for execution for only a small 

number of the above noted conditions, denoted by 0 , where 0  specifies the control 

parameters such as fuel temperature, soluble boron content, etc. Let 1  represent the 

conditions for which high fidelity model predictions are not available, and to which 
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modeling uncertainties are to be mapped. Symbolically, one can perform the following 
operations 

High Fidelity Model:   0, , 0y f x        

Lower Fidelity Model:  0, , 1y f x       and  1, , 1y f x       

Note that the lower fidelity model can be executed readily for both sets of conditions, 0  

and 1 , whereas the high fidelity model is only available at the 0  conditions. The UQm 

mapping algorithm is split into three steps.  

1. Determine the modeling uncertainties at conditions 0  

- Using the algorithm in section 2.2.2, calculate the PDF of y describing the 

modeling uncertainties at the conditions 0 . Denote this PDF by p(y,0). Recall 

that this requires 2N model executions, N times using the high fidelity model, 
and N times with the lower fidelity model. 

2. Generate Joint PDF between 0  and 1  conditions (Fig.  2.4) 

- Identify all sources of uncertainties, and their associated prior PDFs. 
- Generate N samples for all parameters.   

- Execute the lower fidelity model twice for both sets of conditions 0  and 1 . 

- Record the responses variations for both conditions. 

- Produce a scatter plot for the responses at 0 (x-axis) vs. the responses at 1  

conditions. 
3. Mapping of Modeling Uncertainties from 0  to 1  conditions (Fig.  2.5) 

- Plot the p(y,0) on the x-axis.  
- Using parametric (e.g., fitting techniques [Box, 1987]) or nonparametric (e.g., 

kernel density estimators [Silverman, 1986]) techniques, map p(y,0) from the 

x- to the y-axis, and denote the mapped PDF by p(y,1). 
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Fig.  2.4 Generation of Joint PDF of Two Operating Conditions 

 

 

Fig.  2.5 UQm Mapping Algorithm 
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2.4 Prioritization of Uncertainty Sources 

This step is referred to as sensitivity analysis (SA). It aims to determine in a quantitative 
manner the importance of the various sources of uncertainties to the propagated response 
uncertainty. This step is important as it provides guidance on modeling improvements that 
are required to reduce uncertainties. The basic UC-based SA algorithm is based on the 
following theorem, denoted by variance-based decomposition theorem [Saltelli, 2000].  

      | |x xVar E yVar E Vy xx ar y      

This theorem states that the variance of a given response may be split into two components, 
one due to the input model parameter x (the red term), and the other (the blue term) due to 
all other model parameters. The red term is referred to as the variance of the conditional 
expectation, whereas the blue term is the expectation of the conditional variance. Appendix 
A contains a general overview of SA methods. 

This theorem can be used to split the propagated uncertainty into many different ways 
depending on the goal of the analysis. For example, for simple linear models with n 
parameters, one can split the RHS into n different terms. The implication is that the 
computational cost becomes dependent on the number of parameters. With nonlinear 
models, the nonlinear interactions between the parameters must also be taken into account, 
which, depending on the model, could grow exponentially with the number of model 
parameters (referred to as the curse of dimensionality).  

To render practical implementation, the UCF must employ recent advances in ROM to 
reduce the computational cost required to identify the most dominant sources. Particularly, 
in support of SA, the UCF will split the uncertainties into three primary components, one 
from the model parameters, another from control parameters, and one last from the 
modeling decisions. The individual sources associated with each of these three components 
will be identified and ranked using ROM. The reason for this split is that control parameters 
uncertainties are typically aleatory uncertainties which cannot be reduced, whereas model 
parameters are typically epistemic uncertainties, and can be reduced with additional 
measurements. Finally, modeling uncertainties will be identified since they are directly 
related to the decisions made by the modeler. This will help give insight on the modeling 
decisions contributing the most to the propagated uncertainties.  

Note that from an algorithmic viewpoint, both model and control parameters are 
propagated using the same approach, i.e., the UQp approach, whereas the modeling 
uncertainties are propagated using the UQm approach, and mapped using the UQm mapping 
algorithm.  



27 | 120 
 

3.0 UNCERTAINTY SOURCES IN CANDU CALCULATIONS 

In neutronics simulation, uncertainties arise from many sources, including uncertainties from 
basic nuclear parameters, i.e., point-wise cross-sections, manufacturing tolerances on 
geometry, burnt fuel isotopics, etc. Uncertainties also originate from modeling 
approximations/assumptions often introduced to render practical execution, e.g., multi-group 
approximation, reflective boundary conditions assumption in cell lattice calculations, etc. 
Finally, numerical approximations, resulting from discretizing the continuous equations into 
algebraic forms amenable for computer manipulation, also introduce uncertainties in the 
simulation results, see section 2.1 for more details.   

In this section, we explain how uncertainties are introduced into the CANDU neutronic 
computational sequence, divided up into four stages as shown in Fig.  3.1.  

 

Fig.  3.1 CANDU Computational Sequence 

3.1 ENDF Pointwise Cross-sections Generation 

The first stage is common to calculations of all different types of reactors. It is done once 
by cross-section experimentalists/evaluators, and is typically repeated only when new 
cross-section measurements become available. The product is an ENDF library that can be 
used by reactor analysts for all reactor types. The raw cross-section measurements are 
referred to as differential measurements (shown in Fig.  3.2 as the noisy data). These 
measurements are fitted to analytical models (shown as orange contour), which contain a 
number of undetermined coefficients, referred to as nuclear reaction model parameters. An 
example of nuclear reaction model parameter is the resonance width and center when the 
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fitting is done under a resonance. These analytical models are based on nuclear theories 
such as the R-matrix theory. An example of a code that performs these calculations is the 
SAMMY code of ORNL [Larson, 1984]. The fitting procedure is based on a generalized 
least-squares procedure, also known as Bayesian Estimation, which requires some initial 
guesses for the nuclear reaction model parameters. The measurements are fed in a 
sequential manner to the algorithm, wherein the model parameters determined from a 
previous iteration (i.e., with a given set of measurements) are used as the initial guess for 
the next iteration (i.e., the next batch of measurements). The process is repeated a number 
of times until all available measurements are employed. In doing so, it is left to the 
evaluator(s) to discard measurements which are believed to contain outliers, i.e., 
measurements with high uncertainties that are not consistent with the rest of measurements. 
This process of selecting or discarding measurements relies solely on the common sense 
judgments exercised by the evaluator(s). An important result of the least-squares fitting 
procedure is the uncertainties (in the form of covariance matrices) of the reaction model 
parameters.  

The uncertainties in this stage originate from two sources, first the differential cross-section 
measurements uncertainties, and the nuclear reactor model forms used to describe the 
continuous cross-sections. Given the maturity of nuclear models and the evaluation 
procedure, the cross-section fitting results are considered by most practitioners to be 
satisfactory for all reactor analysis calculations. Accordingly, the basic assumption in most 
neutronic UQ studies is that nuclear reaction model parameters represent the main source 
of uncertainty for all downstream calculations. To our knowledge, this assumption has 
never been validated using a rigorous methodology, and hence we suggest that it should be 
assessed as part of the proposed UCF application. Possible ideas for the quantification of 
this source of uncertainty are discussed in section 5.1. 

 

Fig.  3.2 Evaluation of Point-wise Cross-Sections 
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3.2 Multi-group Cross-section Generation 

This stage collapses the pointwise cross-sections into a multi-group format using assumed 
flux shapes. The number of groups are typically selected based on a combination of expert 
judgment and a trial-and-error approach that attempts to resolve all aspects of the flux 
spectrum, expected to affect the integral quantities of interest such as eigenvalue, reaction 
rates, etc. This stage is specific to the flux spectrum expected in the reactor, and hence must 
be repeated for different reactor types. Since our interest in this work is on CANDU 
reactors only, this stage needs to be done only once.  

Regarding the uncertainties of the multi-group cross-sections, they can be estimated by 
propagating the uncertainties of the nuclear reaction model parameters using the standard 
sandwich relationship described in section 2.2.1. A typical computer code that performs 
this stage is the PUFF code of the SCALE’s code package, developed by ORNL [Wiarda, 
2006].  

The multi-group cross-sections contain essentially two different sources of uncertainties, 
one originating from the nuclear reaction parameters used to construct the continuous 
cross-sections, and the other from the assumed flux shape. Currently, a tool like PUFF 
accounts only for the first source of uncertainty (under the constraints of linearity 
assumption), implying that the flux shape is assumed to have no uncertainty. This latter 
source of uncertainty is difficult to estimate because the real flux shape is unknown a priori.  

Therefore, assumed flux shape uncertainty must be treated as a source of modeling 

uncertainty using a decision variable , see section 2.1.6 for the definition. To estimate this 
source, one must be able to compare the predictions against a high fidelity model that 
directly uses the continuous cross-sections, i.e., without any collapsing. The discrepancies 
between the predictions of the low and high fidelity models can be used estimate the 
modeling bias, which has to be repeated to take into account its dependence on other 
modeling conditions, such as composition, temperature, etc., i.e., control parameters. The 
next section discusses how the UQm methodology, cf., section 2.2.2, could be employed to 
estimate this source of uncertainty.  

Finally, notice that it is not clear whether the uncertainties resulting from the assumed flux 
shape are independent of the nuclear reaction model parameters uncertainties. The UCF 
should be employed to investigate their dependence. To our knowledge, this investigation 
has never been attempted before. 

3.3 Cell Lattice Calculations 

In this stage, one calculates the few-group cross-sections for the cell lattices expected to be 
loaded in the CANDU core. These calculations must be repeated every time a new cell 
lattice design is introduced. Cell lattice calculations start with the multi-group cross-
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sections, and calculate the few-group cross-sections for a wide range of core conditions. 
The result is a very large matrix of few-group cross-sections, which are fitted to polynomial 
expressions to facilitate their interpolation in downstream core-wide calculations. 

The brute force application of the forward-based UQ approach would prove to be 
computationally expensive, even if one is not interested in capturing sensitivity 
information. This is because the UQ computational cost will be few to several hundred 
times higher than the cost required to generate the reference few-group cross-sections, 
which is large considering the wide range of conditions that must be captured to properly 
functionalize cross-sections.  

To provide an idea about the size of the data streams flowing through cell lattice 
calculations, consider a typical transport code that is used to calculate the few-group cross-
sections. The code is to be executed a number of times equal to NB x NC x NL times, where 
NB refers to the number of burnup steps, and NC is the number of branch cases required to 
functionalize cross-section dependence on core conditions such as fuel and coolant 
temperature, coolant voiding, boron content, etc, and NL is the number of cell lattice types 
in the core which is typically 1 for standard CANDU cores. This product is in the order of 
1000 for typical CANDU cores. To propagate uncertainties, one would need to repeat these 
model executions N times, which is in the order of few to several hundreds. This results in 
in the order of 105 model executions which is prohibitive in practical applications.  

If Monte Carlo model is employed to propagate the uncertainties, e.g., using a Total Monte 
Carlo approach [Rochman, 2014], the cost gets multiplied by another factor representing 
the ratio of the computational cost of executing Monte Carlo to that of an equivalent 
deterministic code. This factor is typically in the order of 100, and could be more if 
responses include space and energy-resolved data.  

Variance reduction techniques, used to accelerate Monte Carlo convergence, could reduce 
this factor to be comparable to or slightly higher than deterministic calculations. Variance 
reduction techniques are used to bias particles histories from birth to death based on given 
reference solutions. Since the UC model executions represent small perturbations from a 
reference case, variance reduction techniques are expected to be very effective in reducing 
the cost of Monte Carlo executions.   

Further, if one is interested in identifying the dominant contributors to the propagated 
uncertainties via an SA, one needs to execute the sequence a number of times that is 
proportional to the number of model parameters. In this case, the parameters represent the 
multi-group cross-sections. For typical multi-group libraries, this number is in the order of 
105 for typical CANDU calculations to account for tracking about 70 isotopes using few 
hundred energy groups, and two to four reactions per nuclide, e.g., fission, absorption, 
scattering, capture, etc. This increases the number of required code runs to be in the order 
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of 106 to 109 executions, which is prohibitive despite the expected increase in computer 
power. 

In this stage, two sources of uncertainties are introduced, one from the multi-group cross-
sections propagated from the previous stage, and the other resulting from the modeling 
assumptions, such as the use of reflective boundary conditions, and the use of a 
deterministic transport solver, and the use of multi-group instead of continuous cross-
sections. The first source is again straightforward to account for. The computational cost 
becomes impractical when sensitivity information is required, i.e., to understand the 
contribution of the individual multi-group cross-sections on the propagated few-group 
uncertainties.  

The second source depends on the modeling decisions taken and therefore must be treated 
as a source of modeling errors. First, regarding the use of deterministic transport solver and 
multi-group cross-sections, this source could be identified by comparing model predictions 
against a high fidelity continuous cross-section Monte Carlo model. The second source is 
more difficult to account for because it depends on the type of neighboring bundles in the 
reactor core. To account for that source, one must emulate the impact of the neighbors via 
a super cell lattice calculations (i.e., 3x3 array of 9 bundles), see section 5.3.3 for more 
details on how to accomplish this. 

Finally, similar to the previous stage, the correlations between the multi-group 
uncertainties and the modeling uncertainties (resulting from the transport model, multi-
group cross-sections, and neighbors approximations) are to be investigated by the proposed 
UCF. 

3.4 Downstream Core-wide Calculations 

The last stage involves the calculation of core-wide power distribution during steady state 
and transient conditions starting with the few-group cross-section data. For typical 
CANDU models, the number of few-group cross-sections is equal to NFG x NB x NC x NL 
where NFG is the number of few-group cross-sections generated per a single transport 
model execution, which is in the order of 10, representing the thermal and fast absorption 
cross-sections, transport cross-section, fission cross-sections, prompt neutron yield, and 
energy release, and Xe and Sm fast and thermal absorption cross-sections. If macroscopic 
depletion model for core calculations is used, the total number of few-group cross-sections 
is in the order of 104. If microscopic depletion models are used, this number is scaled by 
the number of nuclides tracked at the core level to account for the individual nuclides’ 
cross-sections. 

The sources of uncertainties in core-wide calculations include, uncertainties from the few-
group cross-sections; uncertainties from the radiation transport model employed (e.g., 
nodal diffusion theory assumptions, and two energy-group cross-section representation); 
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and uncertainties from non-neutronic models, e.g., thermal-hydraulics models, and their 
associated correlations used to describe the transfer of the heat from the fuel to the coolant, 
and the corresponding feedback into neutronics calculations, e.g., fuel temperature 
feedback, coolant and moderator temperature and density feedbacks; and finally any 
uncertainties from the control parameters such as the lattice dimensions, fuel composition, 
flowrates, inlet coolant temperatures, etc.  

The first source, i.e., few-group cross-section uncertainties, can be treated using a standard 
UQp sampling-based approach as described earlier. The second source, i.e., the radiation 
transport model, can be estimated using the UQm methodology by using core-wide Monte 
Carlo models. This will also require the UQm mapping algorithm to allow the efficient 
mapping of uncertainties to the wide range of core configurations, since cannot afford to 
execute core-wide Monte Carlo simulation for all conditions of interest. The third source, 
i.e., non-neutronic models, can also be propagated using the UQp and UQm and its 
associated mapping algorithm, but will be considered to be outside the scope of the current 
proposal since our focus will be only on neutronic sources uncertainties. 
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4.0 ROM BACKGROUND 

If infinite computer power is available, one could apply the UC algorithms, i.e., UQp, UQm, 
and UQm mapping algorithm, and SA, cf., section 2.2, in a brute force manner. In reality 
however, nuclear reactor physics calculations continue to challenge the state-of-the-art 
computing platforms despite the startling growth in computing power realized over the past 
few decades. This is mainly due to the incredible detail of heterogeneities characteristic of 
reactor analysis models.  

Moreover, as discussed earlier, the computational cost of UC is expected to depend on the 
number of uncertain parameters and the model nonlinearity. Therefore, a brute force UC 
application to a CANDU reactor analysis model is expected to require in the order of 106-109 
model executions, which is not practically possible. This represents the top challenge for any 
UC practitioner: How to reduce the number of required model runs and/or how to make them 
affordable? 

ROM refers to any process that reduces the complexity (i.e., order) of the analysis models. If 
the complexity is reduced, the number of uncertainty sources could be reduced, which will 
reduce the number of required model runs. This type of reduction is referred to as 
dimensionality reduction. Also, reducing the complexity helps reduce the cost of the 
calculations which renders repeated model execution to be affordable. This type of reduction 
constructs a model of reduced complexity that can be used in lieu of the original model, hence 
the common terminology of ‘surrogate’ model, i.e., it can be used to replace/represent the 
original model for the sake of completing UC analysis. This section discusses these two types 
of reduction, i.e., dimensionality reduction (DR), and surrogate model construction (often 
referred to as function approximation), with more details given in Appendix D.  

4.1 Function Approximation or Surrogate Model Construction 

Function approximation focuses on replacing the original function f used to describe the 
relationship between the model input data (i.e., parameters) and responses by a simpler 

parametric function f  in the form of an analytic expression with a number of 

undetermined coefficients, e.g., polynomial expansion. The coefficients are determined via 
fitting against a number of executions of the original function. Depending on the manner 
by which the approximating function is selected, one may categorize function 
approximation techniques into two categories, mathematical function approximation, and 
physics-based function approximation. 

4.1.1 Mathematical-based Function Approximation 

In this category, the functional form is selected in a heuristic manner, based solely 
on the modeler’s familiarity and experience with running the model many times 
over a wide range of conditions. For example, consider that one is interested in 
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replacing the transport solver by a surrogate model to investigate the effect of fuel-
to-coolant ratio on the core’s critical eigenvalue. In this case, the modeler executes 
the transport solver numerous times with different fuel-to-coolant ratios, and 
visually establishes a trend. The closest function from a template of pre-determined 
functions is selected, e.g., second order polynomial with unknown coefficients.  

Many methods fall under this category, like polynomial chaos expansion, stochastic 
collocation techniques, response surface methodologies, polynomial expansions, 
Lagrange polynomial expansion, etc. The main advantage of this approach is that 
it can be applied in a black box manner, i.e., non-intrusive manner, precluding the 
need for code modifications or any direct knowledge of the inner workings of the 
model.  

The mathematical-based function approximation approach faces two primary 
challenges. First, the choice of the parametric function form is heuristic and is only 
based on an expert opinion. This renders difficult the quantification of the errors 
resulting from the approximation, and more importantly the mapping of such errors 
to other operational conditions. Second, the number of model executions required 
to determine the unknown coefficients is unrealistically high for reactor analysis 
problems. This follows because the number of model executions is a function of 
the number of parameters as well as the order of nonlinearity of the model. At a 
minimum, for a linear surrogate model with n parameters, one must execute the 
original complex model n times, which could be prohibitive in CANDU reactor 
physics applications, see sections 3.3 and 3.4 for typical sizes of the uncertainty 
spaces encountered in CANDU reactor physics applications. 

4.1.2 Physics-based Function Approximation 

In this category, the functional form is solely determined by the physics model, i.e., 
no assumptions or selection from pre-determined template of functions is made. 
The primary advantage of this approach is that one can establish reliable error 
bounds on the surrogate model predictions. The primary challenge is that one must 
have intimate knowledge of the inner workings of the model, implying knowledge 
of the model equations, and the type of solver employed, and assumptions made, 
etc., and sometimes the availability of the adjoint-solver is required.   

An example of a physics-based function approximation technique is the exact-to-
precision generalized perturbation theory (EPGPT), developed by the author and his 
collaborators over the past several years [Wang, 2013]. It has been recently 
implemented in the SCALE code package as a super-sequence, named CRANE 
[Mertyurek, 2014]. This capability allows one to replace the transport solver 
completely by an analytical expression capable of calculating the angular flux and 
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the eigenvalue to a preset user-defined tolerance, which can be set to match the 
machine precision of the standard forward transport model. The primary 
requirement of this approach is the availability of an adjoint solver for the transport 
code, which may not be available to the practitioners.   

It is noteworthy to mention that direct application of either the mathematical or the 
physics-based function approximation techniques to a high dimensional model, 
such as a CANDU reactor analysis model, is computationally infeasible. Therefore, 
it is important to apply dimensionality reduction (discussed in section 0) first prior 
to the development of either types of surrogates.   

4.2 Dimensionality Reduction 

Instead of approximating f, the DR approach reduces the effective number of degrees of 
freedom used to describe the input data. In doing so, the function f remains unchanged. An 
important feature of DR techniques is that one can upper-bound with high confidence the 
errors resulting from the reduction, which allows one establish a scientific approach that 
ensures the reliability of the reduced models. This feature is lacking from conventional 
function approximation techniques such as polynomial chaos, Fourier expansion methods, 
response surface techniques, etc. The reason for that is explained in Appendix D. 

4.2.1 Basic Reduction Idea 

ROM-based DR techniques provide a rigorous mathematical approach by which 
the uncertainty space can be effectively shrunk into a manageable size to enable the 
practical application of UC techniques. The idea is to identify the so-called active 
degrees of freedom (DOFs) which are strongly correlated with the response 
variations. Inactive DOFs denote directions in the parameter space that have 
negligible impact on the responses of interest. Earlier studies have shown that the 
number of active DOFs in reactor physics calculations (for a wide range of reactor 
types, e.g., BWRs, LWRs, SFRs) is in the order of few hundred, which is 
considerably smaller than the nominal size of the uncertainty space, expected to be 
in the millions to billions [Bang, 2012, Jessee, 2011, Abdel-Khalik, 2008]. The 
implication is that one can recast all UC algorithms in terms of the active DOFs 
which renders the process computationally manageable.  

To describe ROM mathematically1, rewrite the model equation as follows: 

 , ,y xy f x  Q Q  

                                                 
1 We limit the reduction to the x parameters only to minimize the notational cluttering. In principle, one can apply the 
reduction to all input parameters including both model and control parameters. 
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where n n
x

Q   and m m
y

Q   are projection operators on the active subspaces, 

which are mathematical constructs (in the form of rectangular matrices) that 
describe the active DOFs. Appendix D provides extensive intuitive details on the 
meaning of these operators.  

These matrices have small ranks as compared to the their sizes, i.e., xr n  and 

yr m ; the ranks represent the number of active DOFs. The mathematical 

interpretation of these matrices may be best described using a visual argument. 
Consider that x lives in a three dimensional space and y in a two dimensional space. 

Let xQ  be a projection onto a two dimensional subspace (a plane that passes 

through the origin), and let yQ be a projection onto a one dimensional subspace (a 

line that passes through the origin). The reduction implies that while x has three 
DOFs, only two are important, i.e., the third orthogonal component has a negligible 
impact on the response of interest. In the y-space, while there are two responses, 
they are perfectly correlated. One can therefore recast the model above as follows: 

 ( ) ( ) , ,r ry f x    

where the superscript (r) refers to the reduced parameters. To complete UC, one 

must use the transformations xQ  and yQ  to calculate the PDFs for the reduced 

variables, which is mathematically trivial to do, since the transformation operators 
are linear.  

In principle, one can also render nonlinear dimensionality reduction, where the 
reduction operators are nonlinear. This is however considered beyond the scope of 
the current project, mainly because significant reduction can be attained with linear 
reduction for reactor analysis problem, thereby precluding the need for 
sophisticated nonlinear reduction techniques.  

Note that linear DR does not mean that one is linearizing the original model. It 
simply means that the reduced parameters are linearly related to the original 
parameters, however the functional form of the original model being reduced 
remains unchanged.  

Finally, the errors resulting from the reduction can be constrained by a preset 

tolerance  according to the following relationship: 

   , , , ,y xf x f x     Q Q   for all x, and  

One can show that this upper-bound is satisfied with high probability, i.e., 

1 10 sp   , where s is a small integer that corresponds to an additional number of 
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model executions. For example, if one wants this bound to be satisfied with 
probability 0.99999, one needs to execute the original model 5 additional times with 
randomized parameter values. Details on this are discussed in Appendix C. 

Fig. 4.1 illustrate the optimum application of both DR and surrogate construction 
techniques. First, the active subspaces for both the parameters and responses spaces 
are identified. Next surrogate model construction techniques are applied assuming 
that the spaces are now replaced by the respective active subspaces only. This 
significantly reduces the cost required to build the surrogate model, allowing it to 
be a useful tool in subsequent UC calculations. 

 

Fig.  4.1 ROM Application 

4.2.2 Basic Reduction Algorithms 

Fundamentally, there are two core reduction algorithms, a gradient-based and a 
gradient-free reductions, as shown in Fig.  4.2; the green box implies a loop of N 
model executions. Gradient-based reduction implies that with access to the 
derivatives of the responses with respect to the parameters, one can identify an 
active subspace for the parameters. Gradient-based reduction is currently the only 
state-of-the-art approach for reducing the parameter space dimensionality for 
standalone codes when the number of afforded model executions is much smaller 
than the number of model parameters2. Derivatives in neutronics calculations are 
best calculated using variational (i.e., adjoint) methods. Therefore, the gradient-
based reduction approach is mostly useful for neutronic solvers which have an 

                                                 
2 When the number of afforded model executions is much higher than the number of parameters, one can render 
reduction in the parameter space without direct access to the derivatives [Kramer, 2011]. These methods will not be 
discussed here because in reactor analysis, the number of model parameters is much higher than the number of afforded 
model executions.  
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adjoint capability and can calculate the derivatives of their responses with respect 
to the nuclear cross-sections and composition data. 

Gradient-free reduction implies that only forward model executions are required to 
render reduction in the response space. While this approach is not effective for 
performing parameter reduction for standalone codes (see previous footnote), it is 
very effective for codes connected in a chain, because the output responses of one 
code are fed as input parameters to the next code in the chain. 

 

                                                   (a) Gradient-Free                        (b) Gradient-Based 

Fig.  4.2 Fundamental ROM DR Approaches 

Both the gradient-based and gradient-free reductions rely on an algorithm from 
matrix theory, referred to as range finding algorithm (RFA) [Halko, 2011]. RFA 
employs randomized model executions to generate snapshots of the output 
responses (for gradient-free reduction) or the derivatives (for gradient-based 
reduction), which are subsequently filtered using rank revealing decompositions 
[Meyer, 2001] to identify the active DOFs and the associated active subspaces. 
Details on the RFA are provided in Appendix C. 

To explain the distinction between gradient-based and gradient-free reduction, 
consider the following situation, shown in Fig.  4.3, involving a coupling between 
a thermal analysis code, a radiation transport code, and a cross-section processing 
code. The transport code calculates the power distribution P starting with cross-
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sections processed at given temperatures T by the cross-section processing code. 
The power P is fed to the thermal code to calculate the temperature distribution T, 

which is fed to the cross-section processing code to generate new cross-sections  
for the transport code.  

If one is interested in calculating an active subspace for the cross-section space 
using only the transport code, one must have access to the derivatives of the 
transport code responses with respect to the cross-sections. If interested in 
calculating an active subspace for the power distribution using transport code only, 
one can employ the gradient-free approach by simply randomizing the cross-
sections and executing the code N times as described below. 

                      

Fig.  4.3 Typical Reactor Analysis Code Chain 

Now, if one wants to take advantage of the whole chain, one can render the 
reduction using gradient-free approach only or a hybrid of both the gradient-free 
and gradient-based approaches. In the former, the transport code is first used to 
generate an active subspace for the power distribution. The thermal code is 
executed next with randomized power distributions that are constrained to the 
active subspace just determined. The result is an active subspace for the temperature 
distribution. The process is repeated with the cross-section generation code to 
produce an active subspace for the cross-section space. This approach has been 
demonstrated in earlier work [Khuwaileh, 2013], and shown to result in a smaller 
active subspace for the cross-section space than determined using the transport code 
alone. The reason for this is that the active subspace determined with the entire 
chain identifies the active DOFs that are important to the entire chain which are 
expect to be less than those of individual codes.  

In the latter approach, one can generate an active subspace at the intersection of 
two codes using two different reductions. For example, at the cross-section space, 
the transport code can generate an active subspace using gradient-based methods, 
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while the cross-section processing code can generate another active subspace using 
gradient-free method as just described. These two active subspaces are expected to 
be different. One can employ intersection techniques [Wang, 2014] to identify a 
single subspace that combines the active DOFs that are important to both codes. 
Earlier work has shown that the best results (in terms of the size of the active 
subspace) are obtained with a hybrid use of gradient-free and gradient-based 
methods. The performance is degraded slightly when only gradient-free methods 
are employed to render reduction for the whole chain. The application of this idea 
has been applied to a number of problems, including thermal-neutronic coupling 
[Khuwaileh, 2013], and quasi-state depletion calculations [Bang, 2012], where the 
Bateman equation, resonance calculations, and transport calculation are executed 
sequentially to deplete the fuel in lattice cell and core-wide calculations.  

Fig.  4.4 depicts a typical reduction for a code chain composed of two codes (limited 
to two codes only for demonstration purposes). The flowchart on the right shows 
the original (pre-reduction) chain, where a subset of the output of model #1 is 
passed as input to model #2. In the left flowchart, gradient-free reduction is applied 
to the model #1, and the resulting active subspace is used to confine the random 
samples for model #2.  

Fig.  4.5 shows how both the gradient-free and gradient-based reductions can be 
combined when gradient-free reduction is not enough. This approach is typically 
used when sensitivity information must be evaluated and the sizes of the active 
subspaces generated using gradient-free approach are too large to render practical 
implementation. In this case, model #2 is used to generate an active subspace using 
the gradient-based approach, while model #1 uses a gradient-free approach. 

Based on past experience, the gradient-free approach is most effective for thermal 
and neutronics coupling, and for depletion calculations, both may be referred to as 
multi-physics models. This is because adjoint-based calculation of the derivatives 
for a multi-physics model is typically impractical for two reasons. First, one must 
implement an adjoint capability suited for a multi-physics coupling which requires 
substantial and intrusive code modifications, and strong familiarity with the source 
codes of all the coupled physics models. Second, the computational cost required 
for multi-physics adjoints does not scale linearly with the cost of single-physics 
adjoints, because now one must obtain achieve iterative convergence across all 
coupled physics.  

In more realistic scenarios, a multi-physics model is equipped with an adjoint 
capability for the neutronic solver only. In this case, one could use a hybrid 
approach that combines both the gradient-based and gradient-free reduction to gain 
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maximum reduction. Fig.  4.5 depicts this situation, where model #2 is equipped 
with an adjoint capability, whereas model #1 is only available in a forward mode.  

 

                                                 (a) Post-Reduction                    (b) Pre-Reduction 

Fig.  4.4 Gradient-free Reduction for Code Chain 

 

 

Fig.  4.5 Combined Gradient-based & free Reductions 
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In this case, model #2 is used to identify an active subspace for its input parameters, 
which are also the output responses of model #1. An additional active subspace can 
be determined using model #1. The intersection between these two subspaces is 
used as the basis for reducing the dimensionality of the model #2 parameters. Like 
before, the errors resulting from this type of reduction can be rigorously assessed 
to ensure that no important components are erroneously discarded. 

Finally, in some situations, none of the codes in the chain have an adjoint capability, 
implying that one must rely only on the gradient-free approach which may not be 
adequate enough to render the needed level of computational efficiency.  

To address this, we first would like to note that in all previous applications, the 
active subspaces were determined using the actual codes through which 
uncertainties are to be propagated. ROM however provides a valuable flexibility in 
the determination of the active subspace by allowing the user to calculate the 
reduction errors for a general user-defined active subspace. The implication here is 
that one could use a different but representative code to determine the active 
subspace via a gradient-based reduction approach, and then employ such subspace 
to constrain the parameter perturbations for the computational code of interest, i.e., 
the one through which uncertainties are to be propagated. This situation is depicted 
in Fig.  4.6. 

 

Fig.  4.6 Gradient-based Reduction with Representative Adjoint Model 

To accomplish reduction via a different code, one must construct models, say for 
the cell lattice calculations, and apply the gradient-based reduction as illustrated 
earlier. The only requirement here is that both the original model and the 
representative model must use the same data interfaces, e.g., both should use the 
same number of groups for cross-section representation.  
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The rest of this section will detail the mathematical description of the above 
reduction methods, including gradient-based, gradient-free, and their hybridization.  

The gradient-free algorithm is implemented as follows: 

1. Generate N samples of the parameters according to their expected ranges of 
variations 

2. Execute the (forward) model to calculate the corresponding responses samples

1,...,i Ny    

3. Aggregate the responses samples in a matrix  1 2 .... m N
Ny y y  Y    

4. Using rank revealing decomposition, calculate yQ . 

Qualitatively, this algorithm calculates response variations resulting from 
perturbations along random directions in the parameter space. The result is the 

matrix yQ which can be used to represent all possible response variations within 

the tolerance set by the user. 

For the gradient-based reduction, we need to define a pseudo response z, which 
represents a random linear combinations of the model responses, it describes the 
adjoint-equivalent of executing a model in a forward mode with randomized 
parameter perturbations.  

Tz y  

where  is a random vector that contains the weights used to combine the model 
responses. Assume that the derivatives3 of z with respect to x are available, i.e., 
dz dx . The algorithm proceeds as follows: 

1. Generate N samples of the parameters according to their expected ranges of 
variations 

2. Execute the model (typically the adjoint model) to calculate 
1,...,i N

dz dx


 

3. Aggregates the derivatives in a matrix 
1 2

.... n N

N

dz dz dz

dx dx dx
 

  
 

Z    

4. Using rank revealing decomposition, calculate xQ   

This approach calculates the gradient of the pseudo response at random points in 
the parameter space. If the model is linear, the gradient remains the same. However 
for nonlinear model, the gradient variations will identify directions in the parameter 

                                                 
3 This reduction can be applied to both control and model parameters. To minimize the notations clutter, it is described 
here for model parameters only.  
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space that are responsible for nonlinear variations. By employing a randomized 
approach, one can determine the matrix Qx, whose columns represent all parameter 
directions to which the response variations are sensitive.  

Finally, when rendering reduction for a chain of codes, the reduction results for a 
given code are employed to generate randomized samples for the next code. 
Consider the case where the first code in the chain generates via gradient-free 
reduction the responses y and their active subspace represented by the matrix Qy. 
The input parameter perturbations for the next code can be determined as follows:  

1. Assume that the next code in the chain reads y directly. 
2. Generate N random samples of yi according to their expected ranges of 

variations. 

3. Project the samples using: i y iy y Q . 

4. Use the projected samples iy  to execute the next code in the chain. 

For the general case when both gradient-based and gradient-free reductions are 
combined, the mathematical details are more involved, and the interested reader 
may be referred to a previous publication [Wang, 2014].   
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5.0 UCF IMPLEMENTATION PLAN FOR CANDU REACTOR CALCULATIONS 

This section explains how the UCF can employ the UC techniques discussed in section 2.0, 
and their ROM rendition discussed in section 4.0, to characterize the uncertainties for a typical 
CANDU reactor analysis sequence which were discussed in section 3.0. Our focus will be on 
introducing ideas that may be used to capture the various sources of uncertainties, and their 
algorithmic requirements, and associated implementation challenges. Whenever appropriate, 
flowcharts and/or some implementation details will be given to provide some perspective on 
the computational cost required, the computer codes and computational resources; however 
the information presented is not meant to be comprehensive or to provide a detailed 
implementation plan.  

The discussion is split into four subsections, mirroring the four stages of CANDU reactor 
analysis calculations that are described in section 3.0. In each subsection, we will refer to the 
related model and control parameters, representing parameter sources of uncertainties, and the 
modeling decisions representing the modeling uncertainty sources. References to the basic UC 
algorithms, i.e., UQp, UQm, and UQm mapping algorithm, described in section 2.0 will also be 
made.  

5.1 ENDF Pointwise Cross-sections Generation 

The primary source of uncertainties here is the one originating from the differential cross-
section measurements which are used based on a fitting procedure to calculate the nuclear 
reaction model parameters. This uncertainty analysis exercise is already done by 
evaluators, and the uncertainties of nuclear model parameters are available in the ENDF 
format in the covariance file MT=33. An example code that performs these calculations is 
the ORNL’s SAMMY code [Larson, 1984]. 

These uncertainties are assumed to represent the starting point for all downstream 
calculations. The inherent assumption here is that modeling uncertainties resulting from 
the choice of the form of nuclear reaction models are already included in the uncertainties 
of the reaction model parameters. This assumption is considered by many practitioners to 
be adequate, although it has never been validated. Using our nomenclature defined in 
section 2.1.6, we will assume that all uncertainties are embedded in the nuclear reaction 
model parameters. 

1. Model parameters: differential cross-section measurements 
2. Model parameters uncertainties: differential cross-section measurements uncertainties 
3. UC Algorithm: Bayesian Generalized Least-Squares Fitting 
4. Control parameters: none 
5. Modeling decisions: choice of the nuclear models, e.g., R-matrix theory, single- or 

multi-level Breit-Wigner resonance models, etc. 
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5.1.1 Propagation of differential cross-section measurement uncertainties 

As described in the earlier section, the nuclear reaction model parameters are 
generated from a fitting procedure, which is subject to its own errors. For example, 
the model form used to represent the cross-sections is selected by the analyst. Also, 
given the wide range of cross-section variations with neutron energy, the entire 
neutron energy range is split into sub-regions, whose boundaries are determined by 
the analyst, wherein each region has its own reaction model and its own parameters. 
One could separate all these selections made by the analyst into a number of 
modeling decision variables. However, we will assume that all sources of errors 
and uncertainties are assumed aggregated in the overall residual terms representing 
the minimized discrepancies between the measured differential cross-sections and 
the fitted ones which are fully represented by the reaction model parameters 
uncertainties. The validity of this assumption remains to be assessed.  

5.1.2 Propagation of modeling uncertainties from nuclear reaction models 

To understand the impact of modeling decisions, i.e., choice of nuclear reaction 
models, an UQm algorithm could be employed to generate the ENDF pointwise 
cross-sections using different nuclear reaction models (which could be done using 
the ORNL’s SAMMY code). The resulting ENDF libraries can be used to estimate 
the standard reactor physics quantities such as eigenvalue, and lattice power 
distribution using a continuous cross-section Monte Carlo model for a single cell 
lattice. This will provide the justification whether the modeling uncertainties can 
be safely discarded.  

5.1.3 Propagation of overall uncertainties 

If the previous investigation indicates the form of the nuclear reaction models 
introduces a noticeable level of uncertainty, one could adjust the Bayesian fitting 
procedure to account for that effect. This is done by artificially increasing the 
differential cross-section measurement uncertainties to account for the uncertainties 
resulting from the nuclear reaction models uncertainties. This results in increasing 
the uncertainties of the nuclear reaction model parameters.  
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5.2 Multi-group Cross-section Generation 

In this stage, the goal is to calculate the multi-group cross-sections and propagate their 
uncertainties which are the starting point for all downstream CANDU reactor analysis 
calculations. As mentioned in section 3.2, this stage is done only once using an assume 
flux shape that is representative of the CANDU thermal spectrum. The uncertainties are 
propagated from the previous stage in the form of uncertain reaction model parameters. 
The uncertainty sources and the proposed algorithms for their propagation are described as 
follows: 

1. Model parameters: nuclear reaction model parameters 
2. Model parameters uncertainty: covariance matrix in ENDF format 
3. UC algorithm: UQp, i.e., forward sampling-based UQ approach 
4. Control parameters: null 
5. Modeling decisions: flux shape used to collapse the continuous cross-sections 
6. UC algorithm: UQm 
7. Correlation between model and decision parameters: UQp 

The UCF application to this stage will achieve three main milestones:  

5.2.1 Propagation of continuous cross-sections uncertainties 

This milestone represents a straightforward application of the linearized UQ 
approach that employs the sandwich equation, cf. section 2.2.1. It starts with the 
nuclear reaction model parameters reference values and their covariance matrices, 
and for a given flux shape, it calculates the references multi-group cross-sections 
and their uncertainties in the form of a covariance matrix. This process is already 
completed by computer codes like NJOY ERRORJ module, and SCALE PUFF 
code. The basic assumption of the linearized UQ approach is that the cross-sections 
variations result in linear variations in the multi-group cross-sections, which is 
considered an acceptable assumption by most practitioners.  

To our knowledge, this assumption has not been rigorously verified, which is 
seamlessly done by propagating the nuclear reaction model uncertainties using a 
sampling-based UQp approach. Comparison of the standard deviations and the 
correlation structure of the multi-group cross-sections and their impact on integral 
quantities of interest such as the eigenvalue could help determine whether the 
linearity assumption is acceptable. 

5.2.2 Propagation of uncertainties resulting from assumed flux shaped 

This milestone needs to establish whether the assumed flux shape impacts the 
propagated multi-group cross-section uncertainties. Initially, a SA study could be 
devised to determine the relative importance of this term. This can be done by 
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repeating milestone in section 5.2.1 with different flux shapes and checking the 
variations in the multi-group cross-sections uncertainties. These uncertainties can 
be integrated with sensitivity profiles from cell lattice calculations to determine 
their impact on important metrics, such as reactivity coefficients, peaking factors, 
etc. If the effect is small, this source of uncertainties could be discarded. If it is 
important, we proceed to completing the next milestone. 

5.2.3 Propagation of overall uncertainties 

Here we focus on propagating the uncertainties resulting from the assumed flux 
shape, then combine that with those resulting from nuclear reaction model 
parameters, and finally investigate any correlations between them.  

To estimate the uncertainties resulting from the assume flux shape, we employ the 
UQm algorithm, wherein the assumed flux shape is considered one of the modeling 
decisions that result in modeling errors. Consider a cell lattice model of a fuel 
bundle modeled via a high fidelity Monte Carlo continuous cross-section model. 
This model can calculate a detailed flux solution and collapse the continuous cross-
sections into multi-group cross-sections as the responses of the Monte Carlo model. 
These predictions can be compared to those generated directly with an assume flux 
shape. The discrepancies represent a measure of the errors resulting from the 
assumed flux shape. To convert these discrepancies into a PDF, we repeat this 
process for different compositions that are expected throughout depletion. The 
result is a PDF that describes the uncertainties in the multi-group cross-sections 
resulting from the assumed flux shape. 

To combine the two sources of uncertainties, the milestone in section 5.2.1 is 
repeated but now with the flux shape uncertainties included as part of the uncertain 
model parameters set using a standard UQp approach. 

5.3 Cell Lattice Calculations 

In this stage, the goal is to estimate the few-group cross-sections uncertainties resulting 
from the uncertainty sources described below: 

1. Model parameters: multi-group cross-sections 
2. Model parameters uncertainty: covariance matrix in multi-group format 
3. UC algorithm: ROM-based UQp 
4. Control parameters: null 
5. Modeling decisions: transport solver, multi-group approximation, and reflective 

boundary conditions. 
6. UC algorithm: UQm, and UQm mapping algorithm 
7. Correlation between model and decision parameters: ROM-based UQp 
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The few-group uncertainties must be generated as a function of the wide array of conditions 
required for downstream core calculations, e.g., fuel temperature, coolant density and 
temperature, boron content, etc. Here, the UCF will achieve three main milestones:  

5.3.1 Propagation of multi-group cross-sections uncertainties 

These uncertainties can be propagated using a straightforward UQp approach like 
before, however given our interest in estimating the contribution of the various 
sources of uncertainties, we will have to rely on an ROM-based approach to 
supplement the standard UQp approach. This is because the number of multi-group 
cross-sections is too large to render a forward SA approach practical. The proposed 
approach combines both adjoint and forward model executions to propagate and 
prioritize the dominant sources of uncertainties. The result is a ranking table of all 
multi-group cross-sections and their contributions to the few-group uncertainties.  

The requirement here is to have a cell lattice code capable of calculating both 
forward and adjoint fluxes. The combined used of forward and adjoint capabilities 
allows one to reduce the effective dimensionality of the uncertainty space to a 
manageable size to complete UC.  

The algorithm is carried out in two steps. The first step focuses only on the 
identification of the active subspace of the uncertainty space, which represents the 
multi-group cross-sections with dominant impact on the few-group cross-section 
uncertainties. The second step employs a standard UQp approach to propagate the 
dominant uncertainties only. Previous work has shown that the effective 
dimensionality of the space for typical LWR calculations is only in the order of 10 
to 100 dimensions [Abdel-Khalik, 2014].   

This approach has two distinct advantages. The errors resulting from restricting the 
uncertainty space to an active subspace can be rigorously quantified and can be 
made very small rendering them negligible for all practical reactor analysis 
applications, as shown by earlier studies [Bang, 2012, Wang 2013].  

The second advantage is that the reduction can be carried out with a code that is 
different from the one used to propagate uncertainties. This is very valuable because 
the selected cell lattice code may not have the capability to calculate the adjoint 
solution. In this case, one could use a similar code, e.g., SCALE’s NEWT, to do 
the adjoint calculations. The only requirement here is that the two codes employ 
the same energy-group structure for the cross-sections to ensure consistency of the 
reduction results.  
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5.3.2 Propagation of uncertainties resulting from the transport solver and multi-group 
approximation 

This milestone will investigate the impact of the transport solver and multi-group 
cross-section approximation on the propagated few-group cross-section 
uncertainties. To our knowledge, this investigation has not been done before. The 
basis for this will be a high fidelity Monte Carlo model whose predictions will be 
compared to the standard cell lattice code used in CANDU calculations. The main 
requirement here is that the Monte Carlo model employed must be able to calculate 
the few-group cross-sections.  

The main obstacle here is computational in nature since Monte Carlo is 
computationally intensive. The computational cost could be reduced significantly 
by employing two techniques, first by reducing the effective dimensionality of the 
uncertainty space, as explained in section 4.2, and by employing variance reduction 
techniques to accelerate Monte Carlo convergence. As described in section 4.2.2, 
one can reduce the dimensionality of the uncertainty space using a representative 
code (i.e., different from the one through which uncertainties are to be propagated). 
In this case, one could rely on a fast-executing deterministic code to reduce the 
dimensionality of the uncertainty by determining the active subspace, which is 
subsequently used to propagate uncertainties using the Monte Carlo code [Abdo, 
2015]. The errors resulting from the uncertainty space reductions are very small, 
and can be quantified rigorously, as described earlier.  

Regarding variance reduction, earlier work has shown that if one is interested in 
executing many Monte Carlo models that are closely similar, one can employ the 
adjoint solution to draw weight-window maps that bias the particles histories 
resulting in accelerated convergence [Zhang, 2014]. Noticeable improvements in 
performance have been noticed by using this approach. In our case, the set of model 
runs represent perturbations of the multi-group cross-sections around some their 
nominal values, as determined by the multi-group covariance matrix. The weight-
windows can be drawn using a deterministic adjoint solver as described earlier. 
Clearly, the main requirement here is that the Monte Carlo model employed should 
have the means to perform variance reduction.  

With these two acceleration techniques, we expect uncertainties to be propagated 
and prioritized in an efficient manner using Monte Carlo models. This will allow 
one to get an improved estimate of the few-group uncertainties that is not 
contaminated by modeling errors resulting from the transport solution. 
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5.3.3 Propagation of uncertainties resulting from the reflective boundary conditions 

This uncertainty is treated as a source of modeling errors resulting from a modeling 
decision, and hence can be propagated using the proposed UQm approach, cf. 
section 2.2.2. To achieve that, one has to set up two models, one representing the 
standard single bundle cell lattice model, and another representing a higher fidelity 
model that takes into account the effect of the neighbors using a super cell lattice 
model, i.e., with the surrounding 8 bundles as shown in Fig.  5.1.  

In this approach the 8 neighboring cells to be surrounding the reference cell lattice 
in the core are modeled explicitly to understand their impact on the few-group 
cross-sections4. Given that the neutrons mean free path is shorter than the 
characteristic length of a single cell lattice in a CANDU reactor, the 3x3 super cell 
is expected to capture this source of uncertainty.  

The UQm approach can be used to calculate the discrepancy between the few-group 
cross-sections calculated using the standard single model cell lattice model and the 
super cell lattice model. This discrepancy is calculated for a wide range of 
conditions, i.e., different compositions, temperatures, etc., to generate a joint PDF 
that relates the high fidelity and lower fidelity model predictions. An UQm mapping 
algorithm, cf. section 2.3, could then be employed to map the uncertainties to all 
possible neighbor configurations expected in the real core. 

 

                                             (a) 3x3 Super Cell                                      (b) Standard Cell Lattice 

Fig.  5.1 Cell Lattice Models 

                                                 
4 Other variations are also possible in the super cell design to account for the presence of absorber devices between 
adjacent lattices and lattice cell at the core radial boundary whose adjacent lattice cells are expected to be significantly 
dissimilar in design. 
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Also, given that in practice one cannot model all possible super cells expected in 
the core, the UQm mapping algorithm can be employed to map the modeling 
uncertainties for the specific core loading, without having to repeat super cell 
calculations for each lattice and its surroundings in the core.  

5.3.4 Propagation of overall uncertainties 

This step focuses on combining all sources of uncertainties estimated in sections 
5.3.1, 5.3.2, and 5.3.3 using a sampling-based UQp approach. Depending on the 
size of the relative contributions of each source, several approaches can be devised. 
The most accurate approach is to repeat the algorithm in section 5.3.3 but now allow 
for the perturbation of multi-group cross-sections along with the composition and 
temperature variations. The simplest approach is to assume these sources of 
uncertainties are independent and combine them using the standard sandwich 
quadratic formula.  

5.4 Downstream Core-wide Calculations 

In this final stage, the goal is to estimate the uncertainties in the core attributes such as core 
reactivity, bundle enthalpy rise, control rod worth, etc. during steady state and transient 
calculations which result from the following sources of uncertainties: 

1. Model parameters: few-group cross-sections and thermal-hydraulic parameters (e.g., 
friction factors, heat transfer coefficients, all parameters associated with empirical 
correlations) 

2. Model parameters uncertainty: covariance matrix in few-group format (this format is 
not standard, and is dependent on the core simulator model employed). 

3. UC algorithm: ROM-based UQp approach. 
4. Control parameters: core conditions, e.g., flow rate, boron content, etc. 
5. Modeling Decisions: transport solver, few-group approximation, and non-neutronic 

models 
6. UC algorithm: UQm 
7. Correlation between model, control, and decision parameters: ROM-based UQp 

The UCF application over this stage will achieve the following milestones: 

5.4.1 Propagation of few-group cross-section uncertainties 

As mentioned earlier, given the enormous size of the few-group cross-sections, an 
initial reduction of the uncertainty space will be done based on the UC results from 
cell lattice calculations. This reduction does not require any adjoint calculations at 
the core level. It can be achieved using filtering techniques, i.e., RFA, of the 
samples generated during the propagation of uncertainties through cell lattice 
models. This initial reduction helps reduce the size of the few-group uncertainty 
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space to a manageable size, expected to be in the order of 100, based on previous 
experience with LWR models [Jessee, 2011, Bang, 2012, Abdel-Khalik, 2008]. At 
this small size, a standard UC approach could be employed to propagate and 
prioritize the multi-group cross-section uncertainties and the control parameters 
uncertainties.  

5.4.2 Propagation of control parameters and non-neutronic parameters uncertainties 

Control parameters uncertainties are addressed here because in reality some of the 
input data to the core simulator are measured at the plant and hence are subject to 
measurement uncertainties. These uncertainties can be easily addressed using a 
standard UQp approach since their number is small. Also, notice that the model 
parameters are expanded to include non-neutronic parameters. We propose not to 
include these sources to confine the discussion to neutronic analysis only. Based on 
discussions with CNSC staff, a decision could be made whether these uncertainties 
should be propagated in the present study. Finally, regarding the decision 
parameters, as mentioned before, we propose to exclude the propagation of 
modeling errors resulting from non-neutronic models in the present study, and 
focus only on errors resulting from the use of few-group nodal diffusion theory 
employed in standard CANDU core-wide calculations. 

5.4.3 Propagation of uncertainties from few-group nodal theory approximation  

To propagate the uncertainties resulting from the use of diffusion theory and few-
group cross-section approximation, we propose to employ a Monte Carlo model of 
a small region of the core, e.g., one-quarter or one-eighth core model at a wide 
range of core conditions, including different compositions, coolant and fuel 
temperature variations, etc. Using the UQm approach, the discrepancies between the 
two model predictions sampled at the range of core conditions generates a PDF that 
describes the effect of modeling errors on core attributes of interest. Also, like 
before, all sources of uncertainties, i.e., modeling errors, few-group cross-section 
uncertainties, and control parameters, can be combined by repeating the UQp 
approach but now with the inclusion of all sources of uncertainties. 
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6.0 UCF REQUIREMENTS 

To realize the UCF benefits, all calculated uncertainties must be subject to rigorous verification 
and validation exercises such as those employed for model verification and validation. Further, 
the computational cost must be small enough to render practical routine execution along with 
BE calculations. This section discusses these two high level requirements, along their 
associated software and hardware requirements.  

6.1 Verification and Validation of the UCF Results 

Similar to any new code development effort, rigorous verification and validation exercises 
must be set in place to ensure credibility of the UCF results. In the standard V&V process 
applied to a general BE model, the verification exercise asks the question of whether the 
model has been implemented correctly. In other words, has the analyst made any mistakes 
while implementing the model? Is the model producing the expected results? If the model 
can be solved analytically, are the predictions generated by the code matching the 
analytical results? Validation asks different questions such as: does the model represent an 
adequate representation of reality? are the model predictions consistent with 
measurements? The verification questions are mathematical in nature; they compare the 
predictions of a conceptual model to its computerized version, while the validation 
questions are physical in nature; they compare a conceptual model predictions to reality. 

Both verification and validation questions can be customized to lend credibility to the 
implementation of the UCF under investigation in this study. With regard to verification, 
one is interested in providing evidence that the UC algorithms are implemented correctly. 
For example, one would be interested to verify whether the random samples have been 
generated in a manner that is consistent with their prior PDFs, and whether the samples 
been correctly constrained to their respective active subspaces, etc. With regard to 
validation, one needs to assess whether the assumptions made about the various uncertainty 
sources are adequate. To do that, one must compare the uncertainties to the actual 
discrepancies found between real experimental measurements and model predictions. For 
example, the validation exercise could help determine whether it is acceptable to discard 
some of the uncertainty sources such as the nuclear reaction model forms used to construct 
the pointwise cross-sections. It could also assess whether the linearity assumption used to 
propagate the reaction model parameters uncertainties is adequate. An important overall 
question that must be answered by the validation exercise is whether the observed 
discrepancies are statistically consistent with the propagated uncertainties. The statistical 
consistency can be measured with metrics like chi-square. If the consistency checks fail, it 
is possible that the uncertainties propagated are under or over-estimating the real 
uncertainties. 
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6.2 Routine Execution  

The importance of routine characterization of uncertainties via UQ and SA analyses has 
been heavily emphasized by the nuclear engineering community in order to optimally 
realize the benefits of advanced modeling and simulation software used for reactor 
analysis. Currently, the existing methods for UC are computationally inefficient rendering 
them unsuitable for routine execution along with BE calculations. Therefore, there is a 
stringent need to devise efficient UC algorithms that can render the process 
computationally tractable on a routine basis.  

To render a successful UCF implementation, one must develop three layers of algorithms 
to support the application of ROM to UC analysis: a) Basic UC/ROM process algorithms; 
b) UC CANDU-specific algorithms; and c) Buffer codes for the various computational 
codes comprising a typical CANDU computational sequence.  

6.2.1 Basic UC/ROM algorithms 

The first layer, basic UC/ROM process algorithms, refer to all the fundamental 
operations required to support the algorithms of the second layer. These basic 
algorithms include statistical packages to compute and process probability density 
functions and moments, design randomized samples from given distributions, 
perform decomposition of the uncertainty space, supporting linear algebra 
decomposition algorithms, and pattern recognition and data reduction algorithms. 
These process algorithms have been developed by researchers in many scientific 
communities, and therefore are readily accessible from the public domain. 

Most of these process algorithms are already available under open-source licenses 
in a number of toolboxes for UC and ROM that have been developed by 
practitioners in a number of scientific communities. With little effort, these process 
algorithms could be extracted for use in a customized framework for CANDU 
applications. For example, the NASA UQTools toolkit [NASA 2012], the 
Lawrence Livermore National Laboratory PSUADE toolkit [PSUADE 2011], the 
Los Alamos National Laboratory GPMSA Toolkit [GPMSA Website]. All these 
toolkits are readily available and their associated process algorithms have already 
received sufficient level of verification to justify their adoption for the proposed 
framework. A detailed discussion of these tools is given in section 7.0 

6.2.2 UC CANDU-specific algorithms 

The second layer involves building CANDU-specific algorithms using the basic 
process algorithms, e.g., UQp, an algorithm for the propagation of parameter 
uncertainties, UQm, an algorithm for propagation of modeling uncertainties, UQm 
mapping, an algorithm for the mapping of uncertainties, and ROM-SA, an 
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algorithm to prioritize the dominant sources of uncertainties. As described earlier, 
some of these algorithms have been implemented in a generic form in a number of 
publically available UQ toolkits, cf. section 7.0. However, considerable level of 
customization is needed to suite CANDU reactor analysis applications, especially 
in regard to the UQm and UQm mapping algorithms since they are closely tied to the 
sources of modeling uncertainties, which are model-specific.  

The sequence of CANDU calculations will also dictate the optimum manner in 
which these algorithms are employed. For example, at the multi-group level, one 
needs to implement an intersection subspace approach that combines the active 
subspace generated by gradient-based reduction and the active subspace inferred 
from the multi-group covariance matrix. At the few-group level, an ROM-SA 
algorithm needs to be applied prior to the application of the UQp algorithm to core-
wide calculations. These decisions are be based on the analyst’s familiarity with the 
CANDU reactor analysis sequence, and hence customization is needed to maximize 
the efficiency of the UC application. Examples of the level of customization of the 
basic UC/ROM process algorithms are given in section 5.0.  

6.2.3 Buffer codes construction 

Finally, the third layer involves the construction of buffer codes to read and write 
the interfaces of all the computational codes in the CANDU reactor analysis 
sequence. They must provide the functionalities to perturb the parameters and read 
the responses as needed by the basic process algorithms, and allow one to constraint 
the perturbations to the active subspace as required by the CANDU-specific 
algorithms. Except for heavily-protected proprietary codes, e.g., HELIOS multi-
group cross-section format [Casal, 1992], writing buffer codes is a straightforward 
process once the codes’ input and output files formats are provided. This layer 
requires the most customization, and hence must be conducted every time a new 
code is introduced in the computational sequence.  

6.3 Computational resources requirements 

This section describes the computational resources requirements in terms of parallel code 
environment, data storage and manipulation by the various UC/ROM algorithms. To 
determine these needs, one must address two closely related questions. The first one is what 
kind of computing platforms are required. To ensure UC is applied on a routine basis, one 
must confront the reality of industrial calculations which largely depend on desktop 
computers. Access to supercomputing resources is only available to government national 
laboratories and academic institutions typically on a need basis. Therefore, the 
developments of UC/ROM process algorithms must take into consideration the limited 
computer power available to the nuclear practitioners, including fuel vendors, utilities, and 
regulators. 



57 | 120 
 

The second question is how much computational overhead in terms of computer time and 
storage is needed to complete UC? The computational overhead cannot greatly exceed the 
overhead needed for BE calculations; otherwise it will not be realistic to expect 
practitioners to perform these analyses on a routine basis. Assuming that BE calculations 
are done on desktop computers, the computational overhead for UC must not exceed the 
computational power provided by a small cluster of few hundred nodes. 

Regarding storage requirements, it must be noted that while computer storage is relatively 
cheap, brute force application of UC algorithms is not advisable, because it could result in 
massive storage requirements which negatively impacts the efficiency of UCF calculations. 
By way of an example, a brute force sampling-based UQ algorithm would generate a 
covariance matrix for the few-group cross-sections, expected to have a size that is 
proportional to the squared number of few-group cross-sections. This number is extremely 
large considering that the few-group cross-sections are functionalized in terms of a wide 
range of core conditions for typical CANDU core-wide calculations. Having to store and 
manipulate that amount of data is computationally unsound, and therefore ROM techniques 
must be carefully employed to not only reduce the computational cost of the UCF 
calculations, but also reduce the data streams that are flowing between the various codes, 
and are used to characterize uncertainties.   

6.3.1 Parallel Code Environment 

Access to a small computing cluster consisting of few hundred nodes (a minimum 
of 100 nodes, each with a dual core) is necessary to render the process of uncertainty 
characterization computationally feasible. This is because the UC/ROM process 
algorithms require executing the associated reactor analysis models few hundred 
times. Employing a small cluster will ensure that the time required for the UC 
application is of the same order of magnitude or slightly higher than the cost of 
reference BE calculations. Without a cluster, the computing cost on a single 
machine would be approximately three orders of magnitude higher than reference 
BE calculations.  

To better explain the value of parallel computing environment, one may split the 
computational overhead of the overall UCF into two components, a primary 
component which involves the repeated code executions, and a secondary 
component which prepares the perturbed input files, and processes the output files 
using UC/ROM process algorithms.  

The first component is embarrassingly parallel, since it requires only coarse-
grained parallelization implying that the computational time will scale directly with 
the number of available processors. This is achieved by directly distributing the 
number of code executions on all available processors, i.e., one code execution per 
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processor. The only requirement here is the availability of a submission queue on 
the cluster to allow simultaneous submission of multiple code executions on 
multiple processors. Coarse-grained parallelization is a direct consequence of the 
use of randomized techniques to identify the active subspaces, wherein each code 
run the model parameters are selected randomly, i.e., independently of all other 
code executions. This is one of the primary advantages of the ROM process 
algorithms proposed in this framework, as it allows the analyst to reach the 
theoretical maximum efficiency of the parallel computing environment. The 
availability of a computing cluster and the associated submission queue may be 
considered hard requirements for the UCF. Absent these requirements, the 
computational cost for UC will be practically infeasible.  

With regard to the second component, the computational algorithms require first 
the aggregation of all the output results followed by performing statistical analysis 
and ROM techniques on the results collected from all processors. These 
computations require fine-grained parallelization, implying that the algorithms 
must be written using parallel environment instructions such as OpenMP and MPI 
multi-threading or combination of the two. Given that the bulk of UC/ROM process 
algorithms are mainly inner product and matrix-vector products operations, their 
parallelization is seamless resulting in a very high efficiency that is close to the 
theoretical maximum value achieved coarse-grained parallelization. This 
requirement can be easily realized as most of the UC/ROM process algorithms 
available in the public domain have already been parallelized to maximize their 
performance.  

6.3.2 Data Management Server 

A data management server must be developed to facilitate the exchange of data 
between the various UC/ROM process algorithms and the CANDU reactor analysis 
codes, expected to vary considerably in their associated data types and structures. 
Data management is therefore an integral component to the UCF application to 
CANDU cores. This is because CANDU reactor analysis codes must be executed 
repeatedly to generate realizations that can be used to properly represent the wide 
ranges and types of the uncertainties inherent in the simulation. Given the 
complexity of CANDU models, the sizes of the data streams associated with these 
realizations are expected to be very large, typically numbering in the millions. A 
brute force data management server that relies on sequential text files to process, 
temporarily store, and recall the data as needed by the various process algorithms 
would result in poor performance and hence must be avoided.  

Data management servers also have the advantage of standardizing the formats of 
the data being processed. This is an important characteristic as the UC/ROM 
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process algorithms are expected to be agnostic to the data being processed, and 
hence standardization of data formats is essential.  

Therefore, a modern data management server must be either developed or adopted 
to ensure flexibility and efficiency in handling the CANDU numerically-intensive 
data structures in order to minimize the time required for their temporary storage 
and recall as required by the proposed framework. Given that this is not a unique 
problem to CANDU simulation, we recognize that many data management servers 
have been proposed and successfully employed over the past two decades in 
different scientific disciplines. One notable data management approach is the HDF5 
data format, which we believe would be ideal for the UCF application.  

The HDF5 format provides a versatile data structure that can represent very 
complex data objects and a wide variety of data, with efficient recall and temporary 
data storage. Moreover, enough experience exists in the nuclear engineering 
community as evident by recent applications by fuel vendors and government 
laboratories. For example, the RAVEN [Alfonsi, 2013] environment has 
demonstrated the ability to store the mapping between the variations of the input 
files and the resulting values for the responses of interest in the output files in the 
form of databases constructed using HDF5 formats.   

6.3.3 Job Management Software 

The job management software is needed to handle and coordinate the execution of 
the two fundamental components of the UCF described in section 6.3.1. In the first 
component, the management software must generate the needed input files for the 
various models, dispatch the input files to the parallel environment, execute the 
models on the various processors, and aggregate the resulting output files from all 
processors. In the second component, the software needs to execute UC/ROM 
process algorithms to determine active subspaces, which are employed by the first 
component to determine the samples used to construct the needed input files. The 
integration between these two components is therefore crucial for the successful 
and efficient implementation of the UCF. 

The RAVEN environment, developed at the Idaho National Laboratory, is less than 
two years old. The main developer of RAVEN was invited to give a talk to the 
contractor about its recent status. A preliminary evaluation of RAVEN shows that 
it is carefully designed to suit the implementation of UC/ROM process algorithms. 
In particular, RAVEN allows the user to specify the number of jobs it is allowed to 
run simultaneously, and the number of MPI environment per job, and number of 
MPI multithreads. RAVEN will interfaces with the queuing system on the cluster 
and request a total number of cores equal to the product of the above three values. 
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Once obtained the needed numbers of cores RAVEN will use the MPI 
implementation (a version of MPI needs to be installed on the cluster) to distribute 
the job over the available resources and ensuring that, if computational resources 
are freed by the conclusion of one of the submitted jobs, new jobs are submitted as 
long as new samples are needed. RAVEN can use the queuing system but could be 
run on single nodes, in this case it will use MPI to allocate the resources but it will 
not need to interact with the queuing software. When used on a single machine, 
RAVEN will simply submit as many job as the size of the batch and relay on the 
OS to distribute them. 

6.4 Reactor analysis software requirements 

This subsection discusses the requirements of all the software tools employed in typical 
CANDU reactor analysis calculations. These requirements include: 

6.4.1 Accessibility to input and output files formats 

Because the UC algorithms need to perturb the parameters to the various computer 
codes employed in the overall analysis, access to the input file formats is necessary. 
If the input files are only available in binary format, the code developers or the 
programmer manuals must be consulted to identify these formats. The output files 
formats are also needed, because as explained earlier, ROM approaches will be 
designed to devise reduction at the interfaces of the various codes, e.g., the few-
group cross-sections at the interface between cell lattice and core calculations.  

6.4.2 Variance reduction capability 

To characterize the uncertainties resulting from modeling assumptions, access to 
Monte Carlo continuous cross-section models is a must. The challenge here is that 
one must execute the Monte Carlo model in the order of several hundred times, 
sometimes for a standard cell lattice, sometimes for a super lattice, and other times 
for the whole reactor core. This is computationally expensive, and is unlikely to be 
possible with some considerable acceleration of Monte Carlo simulation.  

Given the nature of the repeated simulations, each representing a perturbation off 
of a nominal case, variance reduction techniques provide an excellent tool to speed 
up Monte Carlo convergence to render the process computationally tractable. If the 
variance reduction capability is not available, one must increase the computational 
resources discussed in section 6.3.1 by two orders of magnitude, which is the 
approximate computational savings expected with variance reduction techniques.  
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6.4.3 Capability to calculate few-group cross-sections with Monte Carlo models 

In support of cell lattice calculations, the UCF intends to calculate the modeling 
uncertainties resulting from the use of deterministic multi-group cross-sections in 
cell lattice calculations, and their impact on the few-group cross-sections used in 
downstream core-wide calculations. To achieve this, one must be able to generate 
the few-group cross-sections using a Monte Carlo continuous cross-section model. 
For some Monte Carlo codes, e.g., SERPENT [SERPENT, 2011] and KENO 
[SCALE, 2011], this is a standard feature, and for others, such as MCNP [MCNP 
Website], some minor work is needed to define tallies that homogenize the cross-
sections in the form of few-groups.  

6.4.4 Availability of deterministic adjoint transport solver 

The most significant reduction in reactor analysis calculations occurs at the cell 
lattice level, therefore one must devise the best ROM algorithm to render the 
maximum reduction possible. As discussed in section 2.0, the best ROM algorithm 
is one that combines both gradient-based and gradient-free reduction. The gradient-
based reduction requires access to the derivatives of the model responses with 
respect to its input parameters. Therefore, ideally, one would want to use a cell 
lattice physics code that has an adjoint solver. However, if this capability is not 
available, ROM provides an alternative approach wherein a different but 
representative transport code could be used in lieu of the original lattice physics 
code to calculate the adjoints. The adjoints are employed to calculate the active 
subspace which is then fed to the original lattice physics code to propagate and 
prioritize uncertainties. The only requirement of this alternative approach is that the 
representative code must employ the same multi-group cross-section energy 
structure to ensure consistency of the active subspace between the two codes. If the 
two codes do not employ the same energy structure, one could in principle transfer 
the active subspace, but this process is expected to introduce an additional source 
of uncertainties, which could be easily avoided.  

In our experience [Bang, 2012], [Wang, 2013], the most significant reduction in the 
size of the uncertainty space occurs in the third stage of CANDU computational 
sequence, i.e., cell lattice calculations, cf. section 3.0. The implication is that in 
order to get the best reduction, one needs the adjoint solver or a representative code 
with an adjoint capability, as discussed in section 4.2.2, in order to realize the 
maximum reduction possible using the gradient-based ROM approach. For the 
other three stages, i.e., ENDF library generation, multi-group cross-section 
generation, and core-wide calculations, the gradient-free ROM approach is 
sufficient to render adequate reduction which relaxes the need for adjoint solvers.  
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7.0 OVERVIEW OF EXISTING UC TOOLKITS 

Given the importance of UC to the wide engineering and scientific community, our 
development and implementation philosophy will focus on utilizing as much as possible any 
of the existing, i.e., open-source, tools and process algorithms for UC and ROM. A number of 
US and other foreign institutions have already expended considerable resources to develop UC 
toolkits for a number of scientific disciplines, including the DAKOTA toolkit from Sandia 
National Laboratory [DAKOTA Website], the PSUADE toolset from Lawrence Livermore 
National Laboratory [PSUADE, 2011], the RAVEN environment from Idaho National 
Laboratories [Alfonsi, 2014], and the SCALE’s SAMPLER super-sequence from Oak Ridge 
National Laboratory [Williams, 2013], and the SCALE’s CRANE super-sequence from Purdue 
University [Mertyurek, 2014], and the TMC from the Netherlands NRG group [Rochman, 
2014]. These tools contain the basic process algorithms required for any UCF such as sampling 
algorithms, range finding algorithms, filtering techniques, surrogate construction techniques, 
etc. They also contain sophisticated strategies for submitting and distributing the numerous 
jobs in a parallel computing environment, which is one of the pre-requisites of a successful 
UCF, given the large computational overhead required for typical problems.  

An informed development plan should employ select components from these toolkits as a 
starting point for developing the UCF for CANDU reactor analysis application. This section 
provides an overview of these toolkits with our intent being to familiarize the readers with the 
advantages and disadvantages of each toolkit, and the needed developments to render them 
useful for the UCF application to CANDU problems. 

Before listing the various tools in section 7.3, we reiterate a short overview of UC methods 
which are classified into two categories, sampling-based and ROM-based methods, described 
respectively in the next two sections of 7.1 and 7.2.  

7.1 Sampling-based Methods 

Sampling-based methods, as the name implies, involve the execution of the model many 
times by sampling the various sources of uncertainties, often in the form of parameters with 
known priori PDFs. The result is a recorded set of response variations which are 
statistically manipulated to calculate quantities such as the mean, variance, tail 
probabilities. The methods belonging to this category differ in the way the samples are 
selected [Helton, 2006] . Some of the sampling techniques employed include, pure random 
sampling, stratified sampling, Poisson disk sampling, etc. These sampling techniques are 
designed to minimize the number of samples required to calculate the quantity of interest, 
such tail probability.  

While many studies have compared the performance characteristics of the various sampling 
techniques, the initial implementation of the proposed framework is not expected to be 
sensitive to the choice of the sampling method. This is because the size of the uncertainty 
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space in CANDU reactor analysis is large enough to overwhelm any of the existing 
sampling techniques. This follows because it has been reported that when the number of 
uncertain parameters is approximately above 50 (much lower than the size of the CANDU 
uncertainty space), the basic random sampling strategy proves to be the most efficient 
approach for uncertainty characterization [Cousins, 2012, Gerstner, 1998]. Therefore, we 
will not discuss here the specifics of the various sampling techniques and refer the 
interested reader to the literature for more details [Helton, 2006].  

7.2 ROM-based Methods 

ROM-based methods achieve computational efficiency in one of two approaches, either by 
reducing the dimensionality of the uncertainty space, or by building a surrogate model that 
can be used in lieu of the original model. Appendix D provides details on the differences 
between these two approaches.  

7.2.1 Dimensionality Reduction 

DR operates on the assumption that a large part of the uncertainty space is discarded 
completely from the analysis, as it is deemed to be non-influential with respect to 
the quantities of interest. To determine what is non-influential, DR employs 
randomized model executions using both the gradient-free and gradient-based 
ROM techniques discussed in section 4.2.2. The advantage of the DR approach is 
that one can rigorously determine an upper-bound on the errors resulting from the 
reduction.  

7.2.2 Surrogate Model Construction 

The second approach operates on the assumption that model response variations 
can be approximated parametrically by a response surface or polynomial splines 
with a number of undetermined features, such as the coefficients of expansion, or 
splines’ knots placement [Box, 1987]. To determine the unknown features, one 
must execute the model a number of times and use an optimization technique to 
determine the features that minimize the discrepancies between the original model 
and surrogate model predictions. Once the surrogate is constructed, one can apply 
UC algorithms efficiently, because the surrogate form is selected to be 
computationally inexpensive to evaluate. The prominent cost is in the evaluation of 
the surrogate coefficients, since they require the execution of the original model. 
This introduces two challenges. First, one must be able to sample the entire space 
adequately to ensure that the surrogate is representative of the real model, which is 
computationally exhaustive in real applications. Second, it is very difficult to assess 
the quality of the predictions at points not included in the construction of the 
surrogate. To achieve that, many additional model executions would be required, 
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which is typically bypassed given the computational burden. Instead one has to rely 
on expert judgment to determine whether the surrogate predictions are adequate.  

The surrogate construction methods differ primarily in the form of the surrogate 
model employed, and the sampling techniques employed to generate its training 
points. Examples include, polynomial fitting with regular intervals for the training 
points, adaptive stochastic collocation methods, which adapts the intervals based 
on the degree of model response variations (see [DAKOTA Website] for a great 
number of response surfaces implementation and their associated theory). A great 
deal of research goes into the selection of the model forms that render the 
optimization search computationally stable, i.e., not ill-conditioned, especially 
when the number of uncertain parameters is more than a few. 

7.2.3 Sensitivity Analysis 

It is worth mentioning here that sensitivity analysis is closely related to the area of 
surrogate modeling. Appendix A provides an overview of different SA methods. 
When local SA methods are employed to calculate first and/or higher order 
derivatives, one could use the results to construct a polynomial expansion, which 
serves as a surrogate model. When global SA methods are employed however, they 
serve to provide an initial screening of which parameters or parameters interactions 
are important, to be included in a subsequent surrogate model construction exercise.   

7.3 Overview of Open-Source Tools 

This section provides a short overview of existing open-sources tools that are proposed to 
provide an initial starting point for the proposed UCF. This discussion is intended to 
provide an idea about the various UC and ROM process algorithms available in open-
source format. It is however not intended to imply that any of these toolkits can be used 
directly to perform UC for CANDU reactor physics calculations. This is due to two 
reasons. First, all the tools described below focus on propagating parameter uncertainties 
only. This is because parameter uncertainties can be treated in a generic form that treats all 
models as black boxes. Modeling uncertainties however require intimate knowledge of the 
mechanics of the models and basic understanding of the modeling decisions, 
approximations, and assumptions that give rise to these errors. Based on this knowledge, 
the analyst can devise special strategies for propagating modeling errors, examples include 
the proposed UQm and UQm mapping algorithms presented in 2.2. The second reasons is 
that significant level of reduction must be done a priori before propagating uncertainties 
for CANDU reactor physics problems. This follows because the standard black box 
approach employed by most of the tools described below assume that the user can execute 
the model enough number of times to fully characterize uncertainties. This is not possible 
for typical CANDU problems.   
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7.3.1 DAKOTA 

The DAKOTA toolkit is developed by the US Sandia National Laboratory 
researchers as a general-purpose environment for conducting many engineering-
oriented analyses such as uncertainty quantification (UQ), surrogate model 
construction, design optimization, parameter estimations, and sensitivity analysis 
(SA), etc. Given that all these analyses require the ability to execute the model 
repeatedly with variable input parameters, DAKOTA has been developed using an 
object-oriented design which provides a flexible and extensible environment for 
repeated model executions on high performance computing environment. Another 
important feature of DAKOTA is that each of the above engineering analyses can 
be conducted using a wide range of methods, all available in a single toolkit. This 
allows the user to experiment with different methods to assess their relative 
performance for the application of interest. 

The primary handicap of DAKOTA is that none of its UQ and SA methods can be 
used directly for CANDU reactor physics applications; this is due to the high 
dimensionality of the uncertainty space. It is worth mentioning here that the 
DAKOTA code has been initially considered as a toolkit for completing UQ and 
SA analyses for LWR reactors under the US DOE CASL hub initiative, but it was 
soon recognized that the associated computational cost is unrealistically large. 
Instead, ROM techniques have proven to be the right tool for rendering initial 
reduction of dimensionality prior to the application of UQ and SA analyses, see 
[Abdel-Khalik, 2014] for a demonstration of the use of ROM techniques to 
complete UQ and SA analyses using an advanced neutronics solver. This is now 
widely accepted as the most reasonable approach for characterizing uncertainties 
for reactor physics calculations.  

DAKOTA also comes equipped with many surrogate construction techniques 
which can be used, once constructed, to complete UC. These methods are 
inadequate for the present CANDU application because on the one hand, the cost 
associated with the construction of the surrogate model for typical CANDU 
problems is as expensive as the cost of characterizing uncertainties. On the other 
hand, DAKOTA does not provide rigorous upper-bounds on the errors resulting 
from the surrogate model predictions, which introduces an additional source of 
uncertainty that must be captured to render the results of uncertainty propagation 
reliable.  

7.3.2 XSUSA 

The XSUSA methodology represents one of the basic methodologies under the 
DAKOTA toolkit [XSUSA Website]. XSUSA is designed to complete forward-
based UQ only by generating randomized samples for the input parameters based 
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on a prior covariance matrix, and dispatches the random samples to the various 
processors, and finally aggregates the responses from all the model runs to calculate 
statistical quantities such as means and standard deviation, and correlation structure 
between multiple response. Although the method is pretty basic, it has pioneered 
the UQ work based on forward sampling in the nuclear engineering community, 
and has been the basis for the SAMPLER super-sequence used by the US Nuclear 
Regulatory Commission for criticality safety problems [Williams, 2013]. 

The primary handicap for XSUSA is the inability to extract the sensitivities of the 
responses of interest with respect to all input parameters. When applied to small-
scale models with few parameters, analysis of variance type measures, similar to 
Sobol indices [Saltelli, 2000], can be employed to determine key dominant 
parameters. 

7.3.3 GMPSA 

GPMSA is a toolkit developed at the US Los Alamos National Laboratory with 
primary focus on parameter estimation and constructing response surfaces (i.e., 
surrogate model) relating the input parameters and the responses of interest. Unlike 
the other toolkits discussed in this section, GPMSA is the only toolkit capable of 
estimating modeling uncertainties. The approach employed is based on a seminal 
paper by [Kennedy, and O’Hagan, 2001], where modeling errors are represented 
by additional terms in the response surface model with additional parameters that 
are calibrated via fitting against measurements.  

   , ,y f x x       , 

where the f term represents the response surface model and  are its associated 

parameters. The  is an additional term which represents the modeling error, with 

functional form selected by the user. The  are additional set of parameters for 
characterizing the modeling errors. Based on the available experimental value for 

the response y, both  and  parameters are simultaneously calibrated. Once 
determined, the response surface can be used for UQ, and for mapping modeling 
errors to other operating conditions.  

Although GPMSA provides a new capability to characterize modeling errors, its 
methodology is currently being debated by mathematicians and statisticians, and 
continues to receive many updates and improvements by many researchers from 
different scientific backgrounds, see [Oliver, 2014] for an excellent overview on 
the current challenges of the Kennedy/O’Hagan methodology. To practitioners the 
method remains questionable as it continues to rely on extrapolation of the response 
surface predictions and calibration against a limited set of experimental data which 
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may not necessarily capture the wide range of variations over the expected range 
of operation. 

GPMSA allows one to perform dimensionality reduction for the responses of 
interest via projection onto a user-defined active subspace. The advantage of this 
approach is that one can build a surrogate model directly in terms of the reduced 
dimensions. The disadvantage is that the user has to provide the basis for the active 
subspace, rather than letting the toolkit calculate it automatically. For most realistic 
applications, the optimum active subspace is not known a priori. Moreover, with 
the subspace being user-defined, it is difficult to upper-bound the errors resulting 
from the reduction, similar to the situation described earlier with the DAKOTA 
toolkit.   

7.3.4 PSUADE 

PSUADE has been developed by the US Lawrence Livermore National Laboratory 
as an efficient response surface construction toolkit for expensive computational 
models. PSUADE is the only toolkit that has sophisticated ROM techniques used 
directly to reduce the computational cost required for the construction of the 
surrogate models. In particular, it has both gradient-free and gradient-based 
algorithms for rendering reduction at both the response and parameters levels, 
respectively. Its capabilities provide an excellent starting point for a comprehensive 
approach to construct ROM models and capture their associated errors.  

Given its comprehensiveness, the PSUADE toolkit has been selected as the basis 
for the FOQUS framework, developed by the Carbon Capture Simulation Initiative 
[CCSI Website]. CCSI is a US DOE-funded partnership between US national 
laboratories and university to develop modeling and simulation tools that can 
accelerate the commercialization of carbon capture systems. FOQUS represents 
one of the important CCSI products; it is designed as an integrated framework for 
optimization and quantification of uncertainty and sensitivity for the CFD models 
associated with the CCSI project. FOQUS has the capability to develop reduced 
models that can be used as surrogate models to allow studying a wide range of 
carbon capture systems, and to allow rigorous propagation of uncertainties.  

7.3.5 SAMPLER 

SAMPLER is developed by the US Oak Ridge National Laboratory as a super-
sequence capable of propagating nuclear data and fuel composition uncertainties 
throughout any of the codes under the SCALE environment [Williams, 2013]. The 
main UC engine for SAMPLER is the XSUSA methodology. In addition to that, 
SAMPLER provides a comprehensive job launching software and queueing system 
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developed in C++. Because of its versatility and flexibility, it allows one to 
seamlessly implement ROM techniques as done by CRANE. 

The primary deficiencies of SAMPLER is that it is not capable of calculating the 
sensitivity coefficients of model responses with respect to the parameters. This 
makes it difficult to determine dominant sources of uncertainties. Moreover, 
SAMPLER is not capable of generating a surrogate model that can be used in lieu 
of the original SCALE models.  

7.3.6 CRANE 

CRANE leverages the SAMPLER super-sequence to render reduced order 
modeling for the various codes that can be executed via SAMPLER, e.g., KENO, 
NEWT, TSUNAMI, etc. In particular, CRANE provides three functionalities, a) 
dimensionality reduction of the input space (representing the cross-sections and 
number density) and the output space (representing the flux solution); b) 
construction of surrogate model that can be used in lieu of the radiation transport 
code employed; and c) calculations of sensitivity coefficients for all model 
responses. 

With regard to the first functionality, both gradient-free (which requires only the 
forward transport solver) and gradient-based (which requires the adjoint solver) 
ROM techniques are implemented to help reduce the dimensionality of the 
parameter space. For typical cell lattice calculations, the gradient-free approach can 
help reduce the dimensionality of the few-group cross-sections that are typically 
functionalized in terms of large number of core conditions. The gradient-based 
approach helps reduce the dimensionality of the multi-group cross-sections, also 
expected to be very large. 

With regard to the construction of surrogate models, CRANE employs a novel 
physics-based approach which allows the analyst construct upper-bounds on the 
surrogate model predictions, as compared to the original physics model. Recall that 
the state-of-the-art surrogate modeling techniques are essentially function 
approximation techniques which employ a predetermined response surface to 
approximate (via fitting) the behavior of the physics model over the expected range 
of parameter variations. CRANE however employs the physics model to directly 
determine the form of the response surface in a manner that precludes the need for 
fitting. This is possible via the use of exact-to-precision generalized perturbation 
theory, or EPGPT for short.  

EPGPT is an ROM rendition of conventional generalized perturbation theory 
(GPT), which has been receiving continuous developments in the nuclear 
community since the 1940s. GPT is premised on the fact that via the solution of an 
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adjoint function, one can estimate response variations for any general parameter 
variations without having to re-execute the forward model. The primary challenge 
is that this premise is only applicable for small linear variations. When the size of 
the perturbation is large to excite the nonlinear modes of the solution, the 
application of GPT becomes computationally taxing as now higher order adjoint 
functions must be calculated which quickly becomes even more expensive than 
executing the forward model. 

By noticing that radiation transport models are inherently reducible, EPGPT 
employs ROM techniques to recast GPT into a form that is amenable for routine 
execution with both linear and nonlinear variations. The CRANE modules 
represents an automation of the EPGPT methodology in the SCALE code package. 
Appendix E may be consulted for details on the EPGPT theory and recent 
application in CRANE. 

7.3.7 RAVEN 

RAVEN is a software tool developed at the US Idaho National Laboratory (INL). 
Its primary function is to act as the control logic for RELAP-7 thermal-hydraulic 
code, also currently being developed at INL. Although the specific models RAVEN 
employs are not of direct interest to us here, RAVEN has been designed as a multi-
purpose software framework that allows one dispatch the models for a wide range 
of functionalities. For example, it contains comprehensive tools for the processing 
of input/output data streams, and the automated application of dimensionality 
reduction techniques. Its general pluggable design allows one to work easily with 
different solvers/models in order to allow for a seamless experimentation with 
different solvers/models for multi-physics applications. Another advantage of the 
RAVEN tool is that all its process algorithms for UC and ROM are available via 
open-source licenses. Given its versatility and flexibility, RAVEN provides an 
excellent starting point for the proposed UCF. 

7.4 Observations 

Following this review, we would like to summarize the following key points. The 
construction of the UCF will require acquiring or developing basic UC/ROM algorithms, 
customizing the algorithms for CANDU-specific applications, constructing a 
computational environment for the handling of the model-to-model interfaces, the 
dispatching of the jobs on parallel environments, and the manipulation/storage of the data 
streams from the various models.  

After reviewing the available toolkits, it is safe to say that most of the UCF components 
have been demonstrated and are already available in the public domain, leaving the bulk 
of the remaining work to focus on the customization of the algorithms for CANDU-specific 
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applications. For example, both the FOQUS and RAVEN environment contain 
comprehensive job management and launching software, adapted to parallel computing 
environments, which may be directly leveraged for the UCF project. They also both contain 
the basic UC/ROM algorithms that can be easily acquired, and further developed. Efficient 
ways to manipulate and store the voluminous UC data already exist, and have been widely 
practiced inside and outside the nuclear engineering community.    
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8.0 UCF PILOT STUDY 

In support of investigating the UCF feasibility, a pilot study is conducted here to demonstrate 
the standard application of UC algorithms, i.e., UQp and UQm, and provide an initial 
assessment of the relative importance of the various sources of uncertainties. The study will be 
limited to cell lattice and core wide calculations only, focusing on the propagation of 
representative parameter of modeling uncertainty sources.  

The model employed represents a transient simulation of large break loss of coolant accident 
(LBLOCA), based on a recent study conducted by CNSC, which is fully reported in [Serghiuta, 
2014]. The core simulator model for this accident is based on a two-group cross-section nodal 
diffusion theory model of the core employing the NESTLE-C code [NESTLE, 2003]. The BE 
(i.e., reference) cross-sections used in NESTLE-C have been previously generated using a 
CANDU version of the HELIOS code [Casal, 1992]. 

The core analyzed is a standard CANDU core containing 380 channels, each channel consists 
of 12 bundles, with each bundle containing 37 fuel elements. The bundle model configurations 
are shown in Fig.  8.1 and Table 8.1. The layout in Fig.  8.1 is based on a NEWT model of the 
ORNL’s SCALE package [SCALE, 2011]. Our objective is to evaluate the effect of the two-
group cross-section uncertainties on key core attributes, including peak core reactivity, peak 
bundle enthalpy, peak bundle power, and peak bundle energy.  

                   

Fig.  8.1 NEWT Model of ¼ CANDU BUNDLE 

For the propagation of uncertainties, different neutronics codes are employed for the cell lattice 
calculations in order to study the impact of different modeling assumptions such as the use of 
multi-group cross-sections and deterministic transport models. The codes employed are 
depicted in Fig.  8.2. The starting point for the UC analysis is the 238-group cross-sections 
uncertainties, available in the form of a covariance matrix that is pre-generated by the SCALE 
code package. The covariance matrix contains uncertainties for all cross-sections of relevance 
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to CANDU calculations, including fission, absorption and scattering cross-sections for coolant, 
clad, and fuel materials.  

Table 8.1 Lattice Configurations 

 Composition 
Inner Radius 

(cm) 
Outer 

Radius (cm) 
Fuel Natural UO2: 10.39475 g/cc 0.605295  
Gap Void  0.610295 

Cladding Zirc-II: 6.3918 g/cc  0.652183 
Coolant Heavy water 98.39 wt%, 0.80623 g/cc  5.1689 
Pressure 

tube 
Zr-Nb Alloy: 6.5041 g/cc  5.6032 

Calandria 
tube 

Zirc-II: 6.4003 g/cc 6.4478 6.5875 

Moderator Heavy water 99.935 wt%, 1.08579 g/cc
Cuboid 
length: 

14.2875 

NEWT is a 2D deterministic multi-group SN transport solver, and KENO is a 3D Monte Carlo 
model capable of using both continuous and multi-group cross-sections. By comparing the 
predictions of these codes for the few-group cross-sections, it is possible to provide an initial 
assessment of the various sources of modeling and parameter uncertainties. In particular, we 
investigate the impact of two sources of uncertainties, parameters and modeling uncertainties, 
described in the following two subsections. 

 

Fig.  8.2 Codes Layout for UC Pilot Study 
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8.1 Propagation of Cell Lattice Modeling Uncertainties 

Recalling from section 3.3, there are multiple sources of modeling uncertainties in cell 
lattice calculations; we focus here on the uncertainties resulting from the deterministic 
transport solver, and the multi-group cross-sections approximations only. As discussed in 
section 4.0, one must have access to a high fidelity model that can explicitly characterize 
the modeling sources of uncertainties using the UQm approach, which is demonstrated 
below. We employ three different solvers:  

a. 2D NEWT SN multi-group transport solver, denoted by decision variable newt-mg    

b. 3D KENO continuous cross-section Monte Carlo Model, denoted by keno-ce   

c. 3D KENO multi-group Monte Carlo Model, denoted by keno-mg   

The UQm algorithm is applied to the following combinations of decision variables: 

a. newt   vs. keno-mg  : This allows one to quantify the errors resulting from the 

transport solution only, i.e., not taking into account the effect of multi-group cross-
section approximations. The higher fidelity model here is assumed to be the 

keno-mg   since it models the neutron transport using Monte Carlo directly with 

enough number of particle histories to ensure acceptable convergence.  
b. keno-ce   vs. keno-mg  : This allows one to quantify the uncertainties resulting 

from the use of multi-group cross-sections. The higher fidelity model here is 
keno-ce  . 

Each of these applications allows one to generate a bias that measures the errors resulting 
from the respective modeling assumptions. To turn these biases into PDF distributions, one 
must investigate the impact of other control parameters, such as fuel composition, fuel 
temperature, coolant density, reactivity devices insertion, etc. In this pilot study, we focus 
on the impact of fuel composition only. To get representative compositions over the life of 
the fuel in the core, an initial depletion of the cell lattice is completed to an average end-
of-life burnup, taken to be 7.0 GWD/MTU, and the composition is recorded at 11 points 
during depletion.  

The UQm algorithm is implemented as follows: 

1. Initial depletion of CANDU cell lattice (Fig.  8.1) to 7.0 GWD/MTU with burnup step 
of 0.7 GWD/MTU. 

2. DO i = 1, …, K, where K=11 looping over the 11 different compositions. 
3. Set up a steady state CANDU cell lattice model with composition # i 
4. Calculate the two-group cross-sections using the three modeling decisions, 

keno-mg  , keno-ce  , and newt  . This is achieved by running KENO twice, 

(in multi-group and continuous energy modes), and NEWT once. 
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5. Calculate the bias for the following two cases 
- newt   vs. keno-mg    “transport model errors” 

- keno-ce   vs. keno-mg   “multi-group errors” 

6. END DO 
7. Plot the biases for the two cases over the range of compositions. 

The results of this study are shown in Fig.  8.2 and Fig.  8.3 for the two-group cross-sections 
of U235 and U238, respectively. The following notations are used: fast-ab235 denotes the 
fast absorption cross-section of U235, and thermal-f238 denotes the thermal fission cross-
section of U238. In all graphs, the blue graph denotes the discrepancies in the two-group 
cross-sections calculated as follows: 

   
 

newt-mg keno-mg
(blue)

keno-mg
bias

   
 

  



 

which describes the modeling errors resulting from the transport solver. The orange graph 
is: 

   
 

keno-ce keno-mg
(orange)

keno-mg
bias

   
 

  



 

which describes the modeling errors from the multi-group cross-sections approximation. 

Detailed investigation of these results can provide great insight into the sources of 
uncertainties and their relative impact on the quantities of interest. While this is beyond the 
scope of the current study, we make few initial observations to complete the presentation: 

- The modeling errors are in the order of few percent, which is the same order of 
magnitude of the cross-section uncertainties (shown in the next section).  

- The absolute magnitude of modeling errors resulting from the use of multi-group cross-
sections are consistently higher than the errors resulting from the transport solution for 
the thermal cross-sections. This behavior is reversed for the fast cross-sections.  

- The magnitude of the errors for the fast cross-sections are two to three times higher 
than the errors in the thermal cross-sections. 

- Some errors show possible correlations with fuel composition, while others do not.  

These results indicate that to render a comprehensive evaluation of all uncertainty sources, 
one must include the effects of modeling assumptions and approximations, such as the use 
of multi-group cross-sections, and the use of deterministic transport solver. The initial 
results indicate that their magnitude could be in the same ball park as the uncertainties 
resulting from nuclear data.  
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Fig.  8.3 U235 Thermal and Fast Absorption and Fission Cross-sections 

 

 

 

Fig.  8.4 U238 Thermal and Fast Absorption and Fission Cross-sections 
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8.2 Propagation of multi-group cross-section uncertainties 

The second part of the pilot study deals solely with uncertainties resulting from the multi-
group cross-section uncertainties. As discussed in section 3.2, the basic nuclear data 
uncertainties, resulting from differential cross-section measurements and fitting to nuclear 
reaction models, are propagated to a multi-group format which represents the basis for cell 
lattice calculations. Our goal is to propagate the multi-group cross-section uncertainties to 
core attributes of interest, such as peak core reactivity, bundle enthalpy rise, etc. This is 
achieved over two stages as shown in Fig.  8.5. The first stage propagates the multi-group 
cross-sections uncertainties through cell lattice calculations to the few-group cross-
sections, and the second stage further propagates the few-group uncertainties through core-
wide calculations to the core attributes of interest.  

In the first stage, the CRANE super-sequence (cf., section 7.3.6 and Appendix E) is 
employed to propagate the 238 group cross-section uncertainties to the two-group cross-
sections uncertainties using a representative CANDU cell lattice as shown in Fig.  8.1. 
CRANE is based on the SAMPLER super-sequence of SCALE with an imbedded ROM 
capability to reduce the size of the uncertainty space. By proper selection of the size of the 
active subspace, cf. section 4.2, one can render agreement between SAMPLER and 
CRANE results within machine precision. Preliminary verification results on the 
CRANE’s predictions against the SAMPLER code are reported elsewhere [Wang, 2013]. 
The result of CRANE application is the covariance matrix of the two-group cross-sections. 
The two-group cross-sections considered in this pilot study are the transport, fission, and 
absorption cross-sections.  

In the second stage, the two-group cross-section uncertainties are propagated through the 
NESTLE-C code using a sampling-based UQp approach. In this stage, some simplifications 
were introduced to limit the scope of the study. In the full UCF application, the two-group 
cross-sections uncertainties should be functionalized in a similar form to the reference 
cross-sections, i.e., in terms of core conditions such as fuel temperature, coolant density, 
soluble boron content, etc. In this limited-scope study however, we will assume that the 
uncertainties are independent of all core conditions. They are applied as multipliers to the 
NESTLE-C’s cross-sections after they have been interpolated. This implies a single 
multiplier per cross-section type over the wide range of conditions in the core.  

In reality, one must consider the impact of various core conditions on this multiplier. To 
relax this assumption a bit, we consider the fuel depletion impact on the propagated two-
group uncertainties. This is done by repeating the UC study with different two-group 
uncertainties, evaluated using cell lattice calculations at three different fuel compositions. 
The selected compositions represent different burnup points over the life of the fuel bundle 
in the core, which is assumed to accrue an average discharge burnup of 7.0 GWD/MTU. 
The multi-group uncertainties are propagated using three cell lattice models, one 
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representing fresh fuel, i.e., 0.0 GWD/MTU, an intermediate burnup of 4.5 GWD/MTU, 
and discharged fuel at 7.0 GWD/MTU. The two-group uncertainties generated in each case 
are subsequently propagated through NESTLE-C code. This provides an initial estimate 
off the impact of burnup on the propagated uncertainties. Representative results of the two-
group cross-section uncertainties generated with CRANE are shown in Table 8.2, and the 
corresponding NESTLE-C core attributes uncertainties are in Table 8.3. The uncertainties 
are described in relative units of standard deviation divided by the mean value (which is 
the best estimate value used in reference calculations). 

 

Fig.  8.5 Propagation of Multi-group Cross-Sections Uncertainties 

Table 8.2 Two-Group Cross-Section Uncertainties 

Cross-section Zero 
Burnup 
 (%) 

Intermediate  
Burnup 
 (%) 

Discharge 
Burnup 
 (%) 

Burnup (GWD/MTU) at which cross-
sections uncertainties are generated 

0.0 4.5 7.0 

Fast Absorption 0.70 0.64 0.61 
Thermal Absorption 0.51 0.47 0.49 

Nu-Fast Fission 2.64 2.85 2.71 
Nu-Thermal Fission 0.61 0.91 0.99 
Kappa-Fast-Fission 2.32 2.49 2.37 

Kappa-Thermal-Fission 0.55 0.64 0.69 
Fast Transport 0.98 0.98 0.99 

Thermal Transport 1.37 1.46 1.37 
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Table 8.3 Core Attributes Uncertainties 

Response Zero 
Bunrup 

Intermediate 
Bunrup 

Discharge 
Burnup 

Burnup (GWD/MTU) at which cross-
sections uncertainties are generated 

0.0 4.5 7.0 

Peak Core Reactivity (mk)* 0.09 0.52 0.07 
Peak Bundle Energy (%) 3.40 2.73 4.37 
Peak Bundle Power (%) 0.93 1.24 0.82 
Peak Reactor Power (%) 0.93 1.24 0.82 

*Peak Reactivity Reference Value = 3.2 mk 

In Table 8.2, kappa is the energy released per fission. In the two-group macroscopic cross-
section model employed by NESTLE, the product Kappa-Thermal-Fission defines an 
effective value for the kappa times the fission cross-section over the entire inventory of 
nuclides present in the fuel, reflecting the fact that each isotope has a slightly different 
value for fission energy release and significantly different fission cross-section. 

The results in Table 8.3 may be interpreted as follows. The ‘Intermediate Bunrup’ column 
implies that all fuel bundles in the core are assumed to have the same uncertainties (given 
by the ‘Intermediate Bunrup’ column in Table 8.2) that are generated using a cell lattice 
model with an intermediate burnup of 4.5 GWD/MTU. Clearly, this assumption is not valid 
since the fuel bundles in the core have a wide range of bunrups; however by repeating the 
study with three different burnups, one can get a preliminary idea about whether or not the 
burnup dependence is important. 
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9.0 UCF DELIVERABLES/MILESTONES AND SCHEDULE 

The milestones/deliverables and proposed schedule are shown below, to be carried out over 5 
years by 4 junior researchers (e.g., PhD students), 1 senior researcher, and the project director. 

# Milestone/Deliverable FY1 FY2 FY3 FY4 FY5 

       

1 Initial UCF Setup           

1.1 Computational environment specifications           
1.2 Code specifications           
1.3 Buffer codes design for various selected codes           
1.4 Initial bank of CANDU cell lattice and core models           
1.5 Enable parallelization of computational environment           

2 Implementation of UC Algorithms           

2.1 Setup of data server for data storage/manipulation           
2.2 Automation & initial testing of UQp algorithm           
2.3 Automation & initial testing of UQm algorithm           
2.4 Automation & initial testing of ROM algorithms           
2.5 Overall UCF testing with simplified models           

3 ENDF Pointwise Cross-sections Generation           

3.1 Propagation of uncertainties from differential measurements           
3.2 Propagation of uncertainties from nuclear reaction models           
3.3 Propagation of overall uncertainties           
3.4 Verification of propagated uncertainties           

4 Multi-group Cross-section Generation           

4.1 Propagation of continuous cross-sections uncertainties            
4.2 Propagation of uncertainties from assumed flux shaped           
4.3 Propagation of overall uncertainties           
4.4 Identification and ranking of dominant uncertainties           
4.5 Verification of propagated uncertainties           

5 Cell Lattice Calculations           

5.1 Propagation of multi-group cross-sections uncertainties           
5.2 Propagation of uncertainties from multi-group transport solver           
5.3 Propagation of uncertainties from boundary conditions           
5.4 Propagation of overall uncertainties           
5.5 Variance reduction techniques           
5.6 Identification and raking of dominant uncertainties           
5.7 Verification of propagated uncertainties           

6 Downstream Core-Wide Calculations           

6.1 Propagation of few-group cross-sections           
6.2 Propagation of uncertainties from diffusion solver           
6.3 Propagation of overall uncertainties for steady state conditions           
6.4 Propagation of overall uncertainties for transient conditions           
6.5 Identification and ranking of dominant uncertainties           
6.6 Verification of propagated uncertainties           

7 Delivery of the Framework           

7.1 Full UC demonstration from ENDF to core attributes           
7.2 Documentation: programmer and user manuals           
7.3 Beta users testing and feedback           
7.4 Feedback from CNSC and project finalization           
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10.0 APPENDIX A: UC DEFINITIONS 

Whenever one makes a prediction about the behavior of an engineering system, one must 
provide a quantitative measure of his/her own confidence about such prediction, referred to as 
the uncertainty of the prediction. This is because all predictions are based on some approximate 
physics models, i.e., mathematically-driven hypotheses that describe how one believes the 
system behaves under influence of given initial and boundary conditions. All models contain 
errors and/or uncertainties, resulting from simplifying assumptions and lack of full knowledge 
about the behavior of the system. Understanding and quantifying these uncertainties is 
necessary before the model predictions can be used to make decisions about the system design, 
operation, and safety. This is especially relevant when dealing with high consequence systems 
such as nuclear reactors. 

10.1 BASIC DEFINITION OF PROBABILITY 

Let the model response be described by a variable y. The uncertainty in y is described by a 
probability density function (PDF) p(y) such as:  

 
2

1

1 2 ( )
y

y

P y y y p y dy                                                    (A. 1) 

is the probability of y lying between two fixed values 1y  and 2y . Understanding this 

definition is very important as it determines the way in which the uncertainties are 
processed. The term ‘probability’ as used here has two meanings that are fundamentally 
different from one another. The first definition employs the probability to estimate the 
frequency of finding y in a specified interval. The implication here is that y is a stochastic 
variable, i.e., it is expected to attain a wide range of values due to the stochastic nature of 
the physical phenomena. The uncertainty here is a declaration of the fact that the actual 
value for y at a given instant/condition is never known, only the frequency of occurrence 
in a given interval can be estimated. The width of the PDF, as measured in units of standard 
deviation, provides a quantitative measure of the spread of the values that y can attain.  

The associated model that predicts y as a stochastic variable is often referred to as a 
stochastic or probabilistic model. This is as opposed to a deterministic model which 
generates a single value for the response. One can argue that a deterministic model is the 
limit of a probabilistic model when the standard deviation goes to zero, i.e., the PDF 
becomes a delta function.  

The neutron interaction with matter provides an excellent example to this situation (Fig. 
A.1). When a given neutron bombards a specific nucleus, it is not known deterministically 
whether an interaction will occur. However when considering a high flux of neutrons 
impinging on a macroscopic number of nuclei, one can determine the average number of 
interactions to very high accuracy, albeit the process is stochastic in nature. This implies 
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that the spread of the PDF describing the total number of interactions is very small 
compared to the average number of interactions.  

 

Fig. A.1 Cross-sections Aleatory vs. Epistemic Description 

The second definition of probability is concerned with deterministic modeling when the 
true value of the parameter is single-valued but unknown. In this case, the probability as 
defined in Eq. (A.1) provides a quantitative measure of one’s confidence about the true 
value for y lying in the given interval.  

One’s confidence? What does that really mean? To understand the significance of this 
definition of probability, consider a simple example, where a physicist asks two 
experimentalists to determine the value of a given physical parameter, say v of U235. How 
can the physicist assess/use the values returned by the two experimentalists, expected to be 
different? If each experimentalist simply returns a single value for v, more information will 
be needed to determine which value is more credible. To obtain such information, the 
physicist will have to ask each experimentalist how their experiments were conducted. 
Qualitative comparison of the experiments is of course possible, however in most realistic 
situations, a quantitative measure would be desirable especially when the details of the 
experiments overwhelm simple qualitative reasoning. Therefore, some measure of 
confidence should be available. A convenient measure is a numerical value between 0 and 
1, where 0 means no confidence and 1 means absolute confidence. This measure is called 
probability as well. The common terminology sometimes makes it difficult to distinguish 
between the two definitions for probability. More interesting, the same probability can be 
treated in two different manners depending on the outcome of the analysis. For example, 
cross-sections uncertainty can be viewed as aleatory and epistemic. As described earlier, 
the nature of neutrons interaction with matter is purely stochastic implying that the cross-
section is a stochastic variable, however as noted earlier its spread is very small as depicted 
in Fig. A.1. When measuring cross-sections, one is attempting to measure this true 
distribution. Due to imprecise measurements, another distribution is measured, one with a 
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mean value that is far from the true mean value of the true distribution, and a much wider 
standard deviation as compared to the standard deviation (i.e., spread) of the true 
distribution. The spread of the measured distribution is an indication of the measurement 
uncertainty. Because of this, cross-sections are typically treated as epistemic uncertainties 
by cross-section adjustment techniques (i.e., model calibration) which attempt to improve 
knowledge about the true cross-section values using integral experiments measurements, 
such as critical eigenvalue, and flux measurements [Cacuci, 2003], [Kennedy, 2001].  

10.2 UNCERTAINTY CHARACTERIZATION 

To describe the role of uncertainty characterization (UC), one must first describe model 
validation. Model validation refers to all activities conducted to establish, based on a scientific 
basis, the degree to which the model represents the real physical phenomena being simulation 
over the range of expected operating conditions. Notice that the range of applicability is an 
important component of model validation, because no model is perfect enough to capture 
everything for all possible conditions. It is therefore important to recognize that model 
validation only validates a model over a given range of applicability. Naturally, as the model 
becomes more accurate and more comprehensive, its range of applicability increases, which is 
the premise of the various advanced modeling and simulation initiatives currently underway at 
many government laboratories and academic institutions.  

UC’s role in model validation is to provide the scientific quantitative metric by which the 
validation domain, i.e., domain of model applicability, can be mapped. In particular, UC deals 
with the following situation: given a computer model that is intended to simulate the behavior 
of the reactor system, and given a number of small-scale experiments, conducted to support 
the validation of the computer model, how can one answer the following questions? 

(a) What are the key sources of uncertainties in the simulation?  
(b) How can one propagate and prioritize these sources of uncertainties to determine the 

uncertainties of the responses of interest, i.e., model responses used to judge performance 
of the reactor system, and identify the key contributors to their propagated uncertainties? 

(c) How can the biases (discrepancies between measurement and predictions from the small-
scale experiments, denoted by the experimental domain) be scaled to the full-scale reactor 
conditions (denoted by the application domain) expected during normal and off-normal 
operation? And what are their uncertainties? 

To answer these questions, consider a simple example in which one is interested in validating 
a two-group diffusion theory-based model for the calculation of pin-powers during steady state 
conditions. Assume that the maximum pin power in the core is designated as the response of 
interest. To help validate this model, one must construct an experiment to check whether the 
computer model provides adequate prediction of reality. Assume that the reactor employs a 
single fuel enrichment of 3.0 w/o in U235. The small-scale experiment comprises a 3x3 array 
of fuel pins with the same enrichment and geometry details, i.e., fuel to moderator ratio, of the 
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reactor core fuel. The experiment is repeated several times, and the bias between the measured 
and calculated value is calculated “denoted as the experiment bias in Fig. A.2” on the average 
at steady state conditions with a measurement uncertainty “denoted as the measured 
uncertainty in Fig. A.2”. The results of the experiments are typically described using a PDF as 
shown in Fig. A.2.   

 

Fig. A.2 Uncertainty Characterization for Experimental and Application Domain 

Regarding the first UC question, the sources of uncertainties in the simulation originate from 
the numerical iterative strategy employed, the modeling assumptions, and the parameters input 
to the model. Numerical uncertainties originate due to the conversion of the continuous 
mathematical model into discretized equations than can be digitized on a computer. The 
modeling uncertainties originate from the use of diffusion theory and multi-group 
approximations instead of a more accurate representation such as Monte Carlo simulation with 
continuous cross-section representation. Parameter uncertainties originate from the basic 
nuclear data, such as the diffusion coefficient, absorption and fission cross-sections, etc., 
because all cross-sections are measured using differential experiments with their own 
uncertainties. Other sources of uncertainties also include technological parameters such as 
geometry and composition information, all subject to manufacturing tolerances. If this question 
is not answered thoroughly, discrepancies between measurements and predictions may either 
remain unexplained, or more often they are compensated for using model calibration 
techniques, where the model is fitted against measurements.  

Regarding the second question, one must be able to propagate all sources of uncertainties 
throughout the simulation “denoted by calculated uncertainty in Fig. A.2” and following that 
employ a quantitative measure that assigns a numerical value that describes the importance of 
each source of uncertainty. Based on these numerical values, one can order the various sources 
of uncertainties from high to low. This will provide valuable information to the analyst and the 
experimentalists, because they can now refine their analysis/experiments to reduce these key 
sources of uncertainties. In our example, answering this question implies the estimation of 
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maximum pin power uncertainty resulting from the various sources of identified uncertainties. 
The uncertainty can be described using a PDF as shown in Fig. A.2. The mean value represents 
the BE for the response. The standard deviation (std) is used as a measure of the uncertainty 
for the BE value. Clearly, a small std implies high confidence in the BE value, and vice versa, 
a high std implies little confidence therein. In our example the std for the maximum pin power 
is indicated in the figure as by the thick blue line labeled as calculated uncertainty”. 

Regarding the third UC question, can one determine what the bias and its uncertainty should 
be for the reactor conditions during steady state and transient scenarios, referred to as “the 
application”? Will the bias and bias uncertainty simply be the same values determined from 
the small-scale experiments, referred to as “the experimental domain”, or should they be scaled 
somehow? What if the bias uncertainty is found to be higher than the uncertainties propagated 
through the model describing the reactor application? Should one discard the bias information 
or the propagated uncertainties? Typically the calculated uncertainty for the application is 
found to be very large, which would negatively impact the economy of the reactor. To help 
reduce this uncertainty, the experimental biases are used to determine an application bias. This 
is one of the key requirements for a successful validation exercise.   

The challenges facing UC methods may be described as follows: 

- Computational challenges: propagating all sources of uncertainties and prioritizing 
their key sources is a computationally daunting task using complex reactor analysis 
models. To address this challenge, algorithmic development of more efficient 
techniques is needed to help realize the benefits of UC methods. 

- Methodology challenges: scaling the biases between the experimental and application 
domain is extremely difficult in the general case. There currently exists no unified 
theory on how to do that. Highly customized strategies driven by expert judgment are 
employed in the nuclear industry to justify the scaling of biases and the identification 
of the validation domain. Basic research in this area is currently being pursued by many 
researchers from a wide range of scientific backgrounds.   
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11.0 APPENDIX B: SENSITIVITY ANALYSIS 

Sensitivity analysis (SA) is concerned with the following question: how the responses 
variations could be apportioned to the input parameters perturbations [Saltelli, 2000]. The 
results of SA have many important utilities. For example, results could be used to render 
reduction in the parameters space which could be used to construct an ROM model. Also, the 
results could be used to determine the most influential parameters on responses of interest 
which proves useful when designing or altering the design to reach a certain objective. 
Additionally, SA results could be used to propagate parameters uncertainties and identify the 
key parameters contributing to responses uncertainties. Also, SA may be used to perform data 
assimilation (also known as data adjustment of model calibration [Kennedy, 2001]) in order to 
improve model’s predictions. 

SA methods may be classified in two different manners: according to their range of application 
or the algorithmic approach employed (see [Bang, 2012] and the references within). First, 
according to the range of applicability, they may be classified in terms of global and local 
methods. Global methods are concerned with finding an approximate relationship between the 
responses and input parameters that is globally accurate over all possible parameters variations. 
Local methods however only focus on a small region around nominal parameters values. 
Global methods attempt to find all unique features such as maxima and minima, turning points, 
etc. Local methods however calculate local derivatives around some nominal parameters 
values up to an order specified by the user.  

According to algorithmic approaches, SA methods may be classified into forward (sometimes 
denoted sampling) and adjoint (also known as variational) methods. Forward (sampling) 
methods employ the forward model only which allows for non-intrusive implementation; 
whereas adjoint methods require the construction of the adjoint model which represents the 
dual of the forward model. In contrast to forward methods, adjoint methods allow one to 
directly calculate the response variations resulting from parameters perturbations without 
explicitly calculating state (i.e., flux) variations. This however requires intrusive access to the 
model’s equations to allow for the construction of the adjoint model. In general, the forward 
method is more suitable for nonlinear models with few input parameters and many responses, 
while the adjoint method suits linear or quasi-linear models with many input parameters and 
few responses. The reasons are described in the following discussion. 

Global sampling-based methods employ the forward model to randomly sample all input 
parameters from their prior probability density functions (PDF). After each run, responses 
deviations from reference values are recorded and the procedure is repeated with different 
random samples until a reliable estimate of responses PDFs is obtained. This method is 
advantageous because of its simplicity and ability to obtain detailed (i.e., all moments) PDFs 
for all responses. This is primarily important for a general nonlinear model and general input 
parameters PDFs where the responses PDFs are expected to deviate considerably from the 
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Gaussian shape (often employed to describe PDFs when only first and second moments are 
available). The disadvantage is that sensitivity information is more difficult to infer (often 
sought via a response surface or an analysis of variance approach), and the number of model 
executions can be too large to render the approach practical for high dimensional models. 
When the number of input parameters is sufficiently small, one could exhaustively sample the 
input space to identify important sensitivities, especially when the models are highly nonlinear. 
With the number of input parameters numbering is large (i.e., greater than 10), the search 
algorithm becomes computationally prohibitive. Computational scientists have devised 
numerous strategies to limit the number of samples with considerable success [Adams, 2009, 
Ghanem, 1991, Xiu, 2010]. However, the state-of-the-art techniques are still limited to models 
with small number of input parameters, i.e. 10n  , for complex multi-physics models. 

Global variational-based methods employ a rigorous mathematical framework to determine all 
the unique features of the model in the combined phase space formed by the model parameters, 
state dependent variables, and adjoint variables [Cacuci, 2003]. The identified critical points 
are then further analyzed using local sensitivity analysis methods. The framework employs a 
functional analysis approach to forming a Lagrange functional of system response of interest, 
the set of linear or nonlinear equations relating model’s input parameters to system dependent 
variables, and the set of equality and/or inequality constraints used to delimit parameters value. 
The Lagrange functional is then minimized using Kuhn-Tucker necessary conditions to 
identify the model’s critical points. While being genuinely effective in identifying all unique 
features of the model, the computational requirements to solve the minimization problem is 
expensive; thereby limiting its applicability to models with few parameters. Although, the 
software requirements of these methods are extremely taxing since they require intensive code 
modifications for their implementation.  

Alternatively, the local variational methods trade obtaining detailed responses PDFs for 
achieving computational efficiency and obtaining detailed sensitivity information. In their 
most practical implementation, the model is linearized and only first order derivatives of 
responses with respect to input parameters are determined which requires a single adjoint 
model execution per response. With this information only, the responses PDFs are 
approximated as linear combinations of the input parameters PDFs. If the input parameters 
uncertainties are described by Gaussian PDFs, the responses will also have Gaussian PDFs. If 
the model is nonlinear however, responses PDFs are expected to deviate from the Gaussian 
shape. The advantage is that sensitivity information can help identify influential input 
parameters responsible for propagated uncertainties. The disadvantage is that if the model 
deviates considerably from being linear, this approach will poorly approximate the responses 
PDFs, especially towards the tail of the distribution which are typically associated with failure 
events.  

To identify higher order effects, the mathematical framework for variational methods has been 
extended to nonlinear models [Gandini, 1981]. For example, to characterize second order 
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effects, an extra execution of the adjoint model is required for each input parameter in order to 
characterize its second order derivatives which capture its interaction with other parameters 
[Greenspan, 1978]. Clearly, for a high dimensional model, this approach becomes 
computationally prohibitive. Moreover, because the computational cost is proportional to the 
number of responses, unlike forward methods, the adjoint approach becomes less effective for 
models with many responses. 

The ROM algorithms proposed to support the UCF may be viewed as hybrid algorithms that 
combine the benefits of both local and global SA methods while circumventing some of their 
deficiencies. In principle, the ROM techniques provide the means to render simultaneous 
reduction for both the input parameters space and responses space. This is achieved over two 
steps. In the first step, local methods are employed to identify a subspace (denoted by the active 
subspace) that captures the dominant parameters and their cross-interactions in order to 
account for all high orders effects inherent in the original nonlinear model. This is done based 
on a numerical tolerance specified by the user which sets an upper bound on the maximum 
allowed discrepancy between the original and reduced model predictions (see Appendix C for 
how the tolerance is set). This implies that all parameters cross-interactions that are below the 
specified tolerance will be considered non-influential and hence not included in the active 
subspace. In the second step, global methods are used to build a surrogate which restricts the 
samples to the active subspace only, thereby reducing the effective dimensionality of the input 
parameters space, and rendering the construction of the surrogate model computationally 
feasible. 
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12.0 APPENDIX C: RANGE FINDING ALGORITHMS 

Range finding algorithms (RFAs) have been primarily developed in the linear algebra 
community and the machine learning community [Halko, 2011]. They represent the 
cornerstone of the ROM techniques. For the sake of this preliminary introduction, RFAs are 
described here for the simple case of linear operators. The reader is referred to the literature 
for the extension of RFA to nonlinear operators.  

Let m nΑ   be a general matrix operator whose elements cannot be accessed directly, 

however the following operation is possible for a given user-defined vector ip :  

i iw p Α                                                                  (C.1) 

This equation emulates the execution of a model with randomized input parameter 
perturbations for the general nonlinear case. In the gradient-free ROM approach, the wi vectors 
represent the response variations corresponding to different randomized parameter 
perturbations, whereas in the gradient-based ROM approach, the wi vectors represent the 
variations in the gradient, which is used to find an active subspace for the parameters space. 

The objective of RFA is to find an effective range for A defined by a matrix Q such that:   

 T
user I QQ A                                                     (C.2) 

where user  is user-defined; m rQ  ; and r is denoted the effective rank of the matrix A, or 

the size of the effective range of the matrix A. If r is much less than m, the implication is that 
the components of the vector wi are highly correlated, and the associated variations can be 
constrained to a subspace (range of Q) at a small but acceptable loss in accuracy, which can 
be made as small as the numerical precision of the computational model predictions, e.g., 
double precisions. 

It has been shown recently by applied mathematicians that the condition in Eq. C.2 could be 

met with a high probability 1 10 sp    by employing only r s  matrix-vector products of the 

form in Eq. C.1 [Halko, 2011]. This may be achieved as follows: 

1. Let s be a small integer (see discussion below). 
2. Pick s random vectors: 1,...., s   

3. Calculate: i i  Α , 1,...,i s  

4. Let 0t  represent the current estimate of the effective rank of the matrix A 

5. Pick t additional random vectors: 1,...., tp p  

6. Calculate:  i iw p Α , 1,...,i t  

7. Find an orthonormal set such that:    
0 01 1span ,...., span ,....,t t t tw w q q   



89 | 120 
 

8. Let 0

0

( )
1 ... m t t

t tq q  
   Q   

9. Calculate:  T
i iz  I Q Q , 1,...,i s  

10. Let 0 0t t t   

11. If 
1,,.

2
10 maxuser i

i s
z

 
 , go back to step 5. 

12. Let 0r t  

13. With probability 1 10 s , the following statement is true:  T
user I QQ A  

This algorithm is based on the observation that when a matrix is multiplied by random vectors, 
the resulting vectors are expected to be independent with a very high probability. If the matrix 
has a low rank representation that satisfies the condition in Eq. C.2, then one can find this 
subspace with at most r matrix-vector products. The extra s oversamples are employed to 
ensure the condition in Eq. C.2 is met with a high probability.  

This analysis could be extended to nonlinear operators, where now the active subspace is 
captured by sampling the gradient of the responses with respect to the input model parameters. 
One can establish rigorous error bounds similar to Eq. C.2, which upper-bounds the errors 
resulting from discarding all parameter components that are orthogonal to the active subspace. 
Appendix D provides intuitive understanding of how these errors are quantified. For the 
interested reader, we recommend consulting the following references [Bang, 2012], and [Abdo, 
2015]. 
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13.0 APPENDIX D: ROM DEFINITIONS AND APPROACHES 

Reduced order modeling, dimensionality reduction, surrogate modeling, and fitting techniques 
are typical analysis tools that are required by any uncertainty characterization (UC) approach. 
This is because in its most basic form, any UC approach requires repeated model execution to 
help quantify and prioritize the various sources of uncertainties. In most realistic situations, 
repeated model execution is computationally infeasible, especially when the model describes 
in details the behavior of the system, in terms of its various scales and physics feedback. For 
example, a brute force application of basic UC approaches to a nuclear reactor core analysis 
model could easily require one million model executions, which is not practically possible. 
This represents the top challenge for any UC practitioner,  

How to reduce the number of required model runs and/or how to make them affordable? 

13.1 REDUCED ORDER MODELING  

ROM implies any attempt to reduce the complexity (i.e., order) of the analysis models. If 
the complexity is reduced, the number of uncertainty sources could be reduced, which will 
reduce the number of required model runs. Also, when the complexity is reduced, the cost 
of the calculations will decrease which could render repeated model execution to be 
affordable. Examples of ROM approaches include: 

- Simplifying the physics employed to reduce computational cost. 
- Simplifying the physics coupling to reduce the cost of the iterative solvers. 
- Reducing the model dimensions by using coarser mesh and/or time steps. 
- Discarding sources of uncertainties that are expected to be negligible. 
- Employing 1D or 2D models instead of 3D models. 
- Constraining the solution to be a polynomial of given order. 
- Expanding the solution in terms of truncated Fourier expansion. 
- Reducing the effective degrees of freedom of the input parameters. 
- Reducing the effective degrees of freedom of the state solution. 
- Replacing the model with a function (or a model) with undetermined coefficients. 

The result of these applications is a model with reduced complexity that can be used in lieu 
of the original model, hence the common terminology of ‘surrogate’ model, i.e., it can be 
used to replace/represent the original model for the sake of completing UC analysis.  

We will focus here on two ROM approaches, dimensionality reduction (DR) and function 
approximation techniques. Let the original complex model be defined by two equations: 

Constraints:  , 0x                                              (D.1)  

Response:  ,y f x                                                 (D.2) 
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where nx  is a vector representing n input model parameters, and my  are m output 

model responses, and k   the state function. The first equation determines the state for 

the given input parameters and the second equation calculates the responses of interest as 
function of the input parameters and the determined state. In static neutronics calculations, 
the constraint equation is represented by the Boltzmann equation, the input parameters are 
the nuclear cross-sections, the state is the neutron angular flux, and the responses include 
the count rates of a number of detectors placed throughout the core, the core’s critical 
eigenvalue, pin powers, etc.. 

Since the state is an intermediate variable, the Eq. (D.1) and Eq. (D.2) could be compressed 
into a black-box form as follows: 

 y x                                                      (D.3) 

13.2 FUNCTION APPROXIMATION (FITTING) 

Function approximation (or response surface methodology [Box, 1987]) techniques 
attempt to replace the original model in Eq. (D.3) by an approximate function  , referred 
to as surrogate model such that: 

   ,approxy x a                                              (D.4)  

where la  are a set of l undetermined coefficients. The rational here is that the modeler 
has enough experience with the model behavior such that he/she can hypothesize that the 
model’s trend for a range of x values can be well-approximated by a pre-determined 
function  . This approach is referred to as function approximation. The approximate 
function is selected such that it offers a certain level of flexibility, introduced via a set of 
undetermined parameters a, to allow the analyst match or at best minimize the 
discrepancies between the original model and the approximate function predictions at a 
number of pre-selected points in the x domain, referred to as training points or samples. 
Mathematically, the parameters a are defined such that: 

    
1

min ,
M

i i ia
x x a 


                                      (D.5) 

This expression implies the ability to minimize the differences in predictions, i.e., 
discrepancies, at M points in the x domain. Finding values for a that simultaneously 
minimize all the M discrepancies is not generally possible, because each term is likely to 
have a minima at different values of a. To overcome this problem, the M discrepancies are 
combined together into a single function to be minimized. The most common approach 
uses the Euclidean norm defined by: 
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    2

1

min ,
M

i i
a

i

x x a 


                                        (D.6) 

The most notable challenge here is to ensure that the surrogate model thus generated is 
reliable which is only possible if one can constraint the differences between the surrogate 
and original model predictions as follows: 

   ,  for all x x a x S                                       (D.7) 

This expression implies that the errors at any point x in a given domain S can be upper-

bounded by a limit . This is unfortunately not possible with any function approximation 
technique, simply because the assumed function form   does not know how the original 
model behaves at every point in the x domain. In practice, some choice of the function   
could actually result in an unphysical oscillatory behavior while still matching the original 
model predictions at the training points. Therefore, it is reasonable to expect the function 
approximation to be successful only when enough experience with model execution has 
been accumulated to justify the use of a given function approximation, and it is safe to say 
that the experience is what provides credence to the approximation rather than the quality 
of the fit as determined by the minimizer of Eq. (D.6).  

13.3 DIMENSIONALITY REDUCTION 

In dimensionality reduction (DR), one attempts to reduce the effective dimensionality of 
the model interfaces without changing the form of the functions or the constraint equation. 
If described in compressed form as in Eq. (D.3), DR attempts to find reduced variables 

( )DR nx   such that:  

   ( ) ( ) ( ),  and DR DR DRy x x u x                                (D.8) 

where the reduced variables are related to the original variables x by a function u that is to 
be determined by the DR approach.  

Note that both the original input variables and the reduced variables have the same 
dimensionality n, so where does the reduction come from? Instead of throwing around 
some mathematical jargon, we will first give a simple example to explain how the reduction 
is rendered: let x live in a three dimensional space implying that x has three degrees of 
freedom; this is because each of the components can change freely, and not because x has 
three nominal components. Now, what if one places some restrictions on the movement of 
the components, say for example, all components are now constrained to an oblique plane 
that passes through the origin. In this case, although all three components are changing as 
one travels from one point to the next on the plane, the effective degrees of freedom are 
only two. Said differently, although all three components are changing as we move over 
the plane, perfect correlations must exist between these components variations.   



93 | 120 
 

This restriction/correlations can be mathematically described using the concept of 
projection. Let’s start with a one-dimensional projection for simplicity, wherein the three 
components are constrained to a line that passes through the origin. This line may be 
described by a unit vector q. To generate a random point that lives on that line, one can 

simply multiply the unit vector q by a random scalar, i.e.,  DRx q . The superscript (DR) 

implies that the randomly generated points are constrained in some way.  

One may generate a random point using a more complicated two-step approach, where first 
a random point in the three-dimensional space is generated, expected to be outside the line, 
and next x is projected onto the line as depicted in Fig. D.1. This may be described 
mathematically as follows: 

   ( )DR T Tx q q x qq x                                         (D.9) 

The Tq x  is simply the component of x along q, which is a scalar quantity. Multiplying this 

component by the unit vector q converts the scalar component into a vector component. 
The brackets in Eq. (D.9) denote the order of the operations. In the first scenario just 
described, the component of x along q is calculated first, then all the components of the q 

vector are scaled by that component. In this scenario, Tq x  is called the inner product of 

the two vectors q and x, and it produces a single scalar quantity, typically referred to as the 
component (or the scalar component) of x along q.  

 

Fig. D.1 Reduction via Projection 

One can also place the brackets around qqT which implies one has to form qqT first, then 
multiply it by x to produce x(DR). In this scenario, qqT must be a matrix, and is referred to 
as the outer product of the two vectors. Outer products always generate matrices, whereas 
inner products generate scalars. Inner products require that the two vectors have the same 
length, whereas outer products do not require that. The inner product between two vectors 
a and b of same length n is given by: 
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1

n
T

i i
i

a b a b


 
 

whereas the outer product between two vectors a and c of length n and l, respectively is 
given by: 

T
i jij

ac a c       and T n lac   

where  ijZ denotes the element at the intersection of the ith row and jth column of the matrix 

Z.  

Fig. D.2 depicts the difference between inner and outer products (assume that both a and c 
are unit vectors for simplicity, denoted in black). The inner product operation cTx finds the 
scalar component of x along c. The outer product acT applied to x takes the scalar 
component cTx and mounts it onto the vector a with the result being a vector of length cTx 
pointing in the direction of a. Outer products therefore involve two operations, a projection 
operation followed by a rotation operation. When either the vectors a or c are not of unit 
length, an additional scaling operation is also involved. 

 

Fig. D.2 Inner vs. Output Product 

The power of the outer products stems from the fact that any matrix operator can be written 
as a summation of mutually orthogonal outer products, this represents the basic premise of 
singular value decomposition of a general matrix Z given by: 

TZ USV                                                   (D.10) 

where both U and V are orthogonal matrices, and S is a diagonal matrix. This 
decomposition may also be re-written as: 
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1

r
T

i i i
i

s u v


 Z                                                       (D.11) 

where  
1

r

i i
u


 are the columns of the matrix U and  

1

r

i i
v


 are the columns of the matrix V. 

The si are scalars. Because U and V orthonormal, all their columns are unit length and 

orthogonal to each other. Notice that each term of the form T
i iu v  is an outer product which 

when applied to a vector x, identifies the component of x along vi, then rotates it to the 
direction ui. Because of the scalar si, the rotation is also accompanied by dilation of the 
component. Note also that this expression involves a summation of r outer products, 
implying that when the matrix Z multiplies a vector x, only r degrees of freedom of the 
vector x will be projected and rotated by the operator Z. Since x lives in an n dimensional 
space, the implication is that n-r degrees of freedom will be lost upon multiplying x by Z. 
This represents the basic idea of DR.   

Now we show how outer products can be used to constraint the movement of a vector to a 
plane, as described earlier. If one wishes to constraint x movements to a plane, one needs 

two unit vectors that describe the plane, say 1q  and 2q  such that 1 2q q , assume these 

vectors are also unit length for simplicity. Eq. (D.9) now reduces to: 

         ( ) 1
1 1 2 2 1 1 2 2 1 2

2

T
DR T T T T T

T

q
x q q x q q x q q x q q x q q x x

q

 
      

 
QQ    (D.12) 

This expression describes how a general vector x that lives in a 3D space is projected onto 

a plane described by two vectors 1q  and 2q . First, the component of x along 1q  is formed; 

next the component along 2q  is formed; and finally the two components are added back to 

form one vector that lives in the plane. This process is referred to as orthogonal projection. 
Note that this is still an outer product operation but with a zero degree rotation since the 
two vectors forming the outer products are the same. 

The columns of the matrix Q are said to form a basis for the said plane. The number of 
columns of the matrix Q refers to the number of DOFs available for the movements of the 
points x in the plane. This idea can be generalized to an n dimensional space, and a plane 
with rx DOFs. 

( )DR Tx x QQ  and 1 2 .. x

x

n r
rq q q    Q                       (D.13) 

Returning now to Eq. (D.8), one can write: 

( ) Tu x x QQ                                                             (D.14) 

This type of reduction, based on projection operators, is referred to as linear dimensionality 
reduction (LDR), because the relationship between the reduced variables and the original 
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variables is linear. Nonlinear DR techniques are also possible when the relationship 
between the reduced and original variables become nonlinear. We will restrict our 
discussion here to LDR since its payoff is extremely high in neutronics calculations, 
representing the focus of the UCF.  

The objective of LDR is to pick the matrix Q that minimizes the function: 

    2

1

min
M

T
i i

i

x x 



Q

QQ                                        (D.15) 

This expression evaluates the errors in the responses of interest resulting from discarding 
components in the x space. We reiterate here that in this type of reduction, the function   
remains unchanged, implying that the errors result only from the input variables reduction. 
Because of that, it is possible to upper-bound the associated errors.  

To demonstrate that, we employ a simple single-valued function: let  y x   

 
 

  21 1 2 2 3 3
1 1 2 2 3 33

1 1 2 2 3 3

exp
1

a x a x a x
y a x a x a x

a x a x a x

 
   

  
                    (D.16) 

This may be rewritten as:  y z  and Tz a x . This is a function of three variables, 

however one can eyeball that it has only a single DOF such that: 

 2
3

exp
1

z
y z

z
 


 and 1 1 2 2 3 3

Tz a x a x a x a x                          (D.17) 

An LDR here implies finding a direction in the space that can be used to approximate the 
function well. By solving the minimization problem in Eq. (D.15), one can easily find that 
the single needed direction is given by: 

a
q

a
                                                             (D.18) 

This follows because the function only varies along this direction. The division by the norm 
of a is only to ensure that q is a unit vector as defined earlier. Now assume that one does 
not have know the optimum direction q, instead some other approximate direction w is 
assumed. Our job is to decide whether the errors resulting from this reduction can be 
quantified and potentially upper-bounded. The reduction error in this case is given by: 

   f z f z 
 

where T Tz a ww x . Note that when w q z z   . If the difference z z    is sufficiently 

small, one can approximate the above error by: 
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      ....
df

f z f z z z
dz

    
 

Taking the upper limit of both sides using Triangle inequality: 

    df
f z f z z z

dz
   

 

This equation implies that if one can upper-bound the term z z   and the function’s 
derivative is also upper-bounded over the range of domain of interest, the resulting 
reduction error in the estimated function value must also be upper-bounded. Examples of 
functions with upper-bounded derivatives and non-upper-bounded derivatives in Fig. D.3. 

 

Fig. D.3 Bounded vs. Unbounded Variations 

 Finally, estimating z z   implies the need to estimate  T Ta I ww , since one can write:  

   T T T Tz z a I ww x a I ww      A A  

Since the range of x variations is known a priori, as determined by the analysis model, one 
only needs to estimate the norm of the matrix A. In 1983, Dixon [Dixon, 1983] proved a 
theory that allows one to estimate an upper-bound on the norm of any general matrix using 
simple random matrix-vector products.  

1,..,

2
10 max 1 10 s

i
i s

P x






     
  

A A  

This theorem states that if one can calculate s random matrix vector products of the form 
Ax, where x is of unit norm, and randomly selected from Gaussian distribution, the norm 
on the matrix A may be upper-bounded with high probability.  
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14.0 APPENDIX E: CRANE AND EPGPT 

This appendix provides an overview of a new functionality, the exact-to-precision generalized 
perturbation theory (EPGPT) [Wang, 2013] within the SCALE super-sequence CRANE 
[Mertyurek, 2014]. CRANE (Complexity Reduction Algorithms in Nuclear Engineering 
calculations) is a new ‘supper-sequence’ in SAMPLER implemented recently under the 
SCALE [SCALE, 2011]. CRANE recognizes the need for ROM techniques to complete UQ 
and SA analyses for neutronics calculations. EPGPT represents one of the fundamental ROM 
applications, wherein a physics-based surrogate model is constructed to replace the high 
fidelity neutron transport code, e.g. SCALE’s NEWT. Because of its reliance on ROM 
techniques, EPGPT is capable of calculating rigorous upper-bounds on its prediction errors for 
all quantities of interest, which is necessary to render its general use credible. This short 
discussion demonstrates the use of EPGPT to replace the NEWT model for performing standard 
cell lattice calculations.  

14.1 BACKGROUND ON EPGPT  

EPGPT represents a rendition of two fundamental ROM approaches combined together to 
formulate a surrogate model that can be used in lieu of expensive neutron transport 
calculations. Unlike existing GPT methods [Williams, 1986], [Cacuci, 2003], EPGPT 
calculates all higher order variations with efficiency taking advantage of the DR of the flux 
space. EPGPT is designed to achieve two important goals, computational efficiency and 
accuracy. With regard to efficiency, EPGPT employs DR techniques described in Appendix 
D to reduce the number of forward and adjoint model executions required. To achieve 
efficiency, it employs a physics-driven approach to select the surrogate form. Recall from 
Appendix D that the selection of the surrogate form is instrumental in determining the 
reliability of its predictions. EPGPT employs the adjoint functions derived from the solution 
of the adjoint transport equation, both in eigenvalue mode and inhomogeneous mode, to 
construct the surrogate model form.  

This Appendix intends to provide qualitative discussion of EPGPT and its implementation 
into the SCALE code package. This is intended to provide a sense to the reader of the cost 
required to implement it for other neutron transport codes in support of CANDU analysis. 
For quantitative details on the theory and implementation, the reader may consult past 
publications and the references within [Wang, 2013].  

EPGPT requires five major steps, as depicted in the Fig. E.1, which are automated by 
CRANE. The first step involves the execution of the forward transport model few hundred 
times, each with randomized input parameters, i.e., randomized cross-sections and number 
density. The second step employs the flux variations aggregated from the first step to 
identify the so-called pseudo responses for the flux space. Pseudo responses are linear 
combination of the flux values everywhere in the phase space. They can be used to 
reconstruct flux variations for any given input parameter perturbation with quantified 



99 | 120 
 

accuracy. This represents of the core advantage of EPGPT, as it allows one to calculate an 
upper-bound for the flux in all future model executions. The third step employs 
conventional GPT to calculate generalized adjoints, each corresponding to one of the 
pseudo responses. In our experience with reactor calculations, the number of pseudo 
responses is typically in the order of few tens to few hundreds, depending on the goal of 
the analysis. Each adjoint is employed to calculate the first order derivatives of a pseudo 
response with respect to all input model parameters. The fourth step employs ROM 
techniques to identify an active subspace for the parameters using the derivatives 
aggregated from the previous step. The fifth step employs the active subspaces for the 
parameters and responses to construct a number of matrices which form the functional form 
of the surrogate model. With these matrices calculated once, one can may call CRANE-
EPGPT as a separate module with the standard SCALE input file to calculate the flux for 
the user-defined perturbations.  

 

Fig. E.1. CRANE-EPGPT Flowchart 

14.2 Cross Section Perturbation 

To generate the randomized forward runs, one must develop a buffer code to perturb the 
model’s input parameters. For this application, we employed the ClarolPlus code 
developed under the SAMPLER super-sequence. Currently, ClarolPlus is automated to 
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read the specific perturbations employed by SAMPLER to propagate cross-section 
uncertainties based on the 44G covariance library. Since EPGPT requires randomized 
perturbation, ClarolPlus has been modified to read user-defined perturbations. The 
perturbations are defined as follows: 

 ,
,

,

1 x g
x g

x g

f




                                                (E.1)              

where , ,/x g x g   are the relative cross section variations, the subscript x denotes the 

nuclide-reaction type and g denotes the energy group number. 

14.3 Active Subspace Construction 

EPGPT assumes that the flux variations for a general input parameter perturbation may be 
written as follows: 

 
1

r

i i
i

q


 


                                                         (E.2) 

where the r  vectors qi represent a basis for active subspace of the flux, and they are 

calculated based on the randomized forward model executions. In addition, EPGPT 
assumes a general input parameter perturbation may be written as follows: 

    
1

i i

r

i

u


 


                                                          (E.3) 

where the r  vectors ui represent a basis for the active subspace of the input parameter, and 

they are calculated based on the randomized GPT model executions.  

The r  and r  denote the size of the active subspaces, i.e., the number of independent 

vectors used to span their ranges. With the basis defined, one can calculate an upper-error 
bound on the flux given by: 

 PE GPTexact                                                     (E.4) 

where exact  is the exact flux value obtained by running the original transport code, and the 

other value denotes the one calculated by the EPGPT surrogate. If the epsilon value is not 
satisfactory, one needs to execute the code additional number of times, until the desired 
error tolerance is achieved. This error bound can be applied to the entire flux vector or on 
an individual component basis without being affected by the amplitude of the perturbation 
in the prediction step with respect to the range of perturbation used in the active subspace 
construction (see Ref. [Bang, 2012] for the detailed discussion).  
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14.4 Generalized Adjoint Calculations 

If r  is much smaller than m (the dimension of the flux), one can recast GPT in terms of a 

set of r  pseudo responses, implying that the flux does not show appreciable changes over 

the remaining m r  directions. The pseudo responses are defined by: 

 , , for , 1,pseudo iR q i r                               (E.5) 

Note that the evaluation of the generalized adjoints corresponding to the pseudo responses 
requires a straightforward application of conventional GPT [Williams, 1986]. The only 
difference here is that one needs to evaluate r  pseudo adjoints only to represent all 

possible model responses. This is because any model response is a function of the flux 
which is fully described by the pseudo responses as ensured by the error bound described 
earlier. 

The relevance of the pseudo responses must be noted when considering the number of 
responses typically calculated using cell lattice physics models. For example in CANDU 
cell lattice calculations, one must generate the few-group cross-sections in terms of a wide 
range of conditions, such as coolant temperature, fuel temperature, soluble boron content, 
etc., over the entire range of depletion. Brute force application of GPT to this problem 
would result in an extremely high number of adjoints that must be evaluated. This cost can 
be significantly reduced using the concept of pseudo response as implemented in EPGPT. 

14.5 Surrogate for Transport Calculations  

One can rigorously show that the EPGPT surrogate model form is given by [Wang, 2013]: 

   1    Q I C                                           (E.6) 

where the column space of Q represents the active flux subspace, I is the identify matrix, 
r rR  C  and rR   . Each element of C and   is an inner product of the form: 

 *,  P                                                          (E.7) 

where *  represents the generalized adjoint solutions associated with the pseudo 
responses,   represents the basis for the flux active subspace, and P  denotes the 
variations in the neutron transport operators due to a given perturbation. The matrix C and 
vector   in Eq. (E.6) can be rewritten as: 

    
1 1 1

i i i i i

r

i i
i

r r

i

  
  

  

 
       

 
  C P C P C P C                         (E.8) 
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  P P P                       (E.9) 

where 
r r

i R  C  and 
r

i R     denotes  iC P  and  i P , respectively. With these 

matrices   1

r
i i


C  and vectors   1

r
i i

   calculated once, one can call CRANE-EPGPT as a 

separate module with standard SCALE input file to calculate the flux for the given 
conditions of interest as follows: 
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Previous work has demonstrated that EPGPT can be used to evaluate the variations in 
neutron flux and responses of interest due to various perturbations, such as cross sections, 
fuel enrichment, fuel densities, temperatures, etc., in lattice design calculations [Wang, 
2013]. We will not duplicate these results here, but will demonstrate some representative 
results for the sake of a complete discussion. 

14.6 Numerical Results 

A PWR assembly model, a UO2 Gösgen (ARIANE) sample identified as GU1 [Radulescu, 
2010], is selected to demonstrate the new EPGPT capability of CRANE. The modeling 
layout is provided in Fig. E.2 with 3.5 wt% 235U initial enrichment, and the original design 
characteristics are given in Ref. [Radulescu, 2010].  

 

Fig. E.2. GU1 Assembly model layout 

The standard SCALE 56-group cross section library (xn56v7 generated from ENDF/B-
VII.0 64-group neutron library) is employed. The dimension of the angular flux is 
3,929,856 (i.e. angular quadrature SN=6, 56 energy groups and 2924 cells). The flux 
predicted by the CRANE-EPGPT surrogate, using a subspace with r = 60, are compared to 
the exact fluxes predicted by NEWT.  
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We will refer to /
PExact E GPT Exact pp

    as the relative error in the flux. Large number of 

randomized cross-section perturbations, giving rise to 1% change in reactivity, were used 
to calculate to assess the quality of EPGPT surrogate predictions. Specifically, using r = 
60, the upper bounds on the angular flux errors were calculated in several norms as follows: 

1
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The corresponding upper-bound on the critical eigenvalue is found to be 0.037%, or 
approximately 0.4 mk. In practice, one could employ higher r to improve the accuracy. A 
small value is used here to demonstrate that reasonable accuracy can be obtained with very 
small active subspace as compared to the original flux space. 

Fig. E.3 shows the flux spectrums for fuel in four types of pins, the 11 test pins, the 12 N 
test pin, the 13 E test pin, and the 14 S test pin as shown in Fig. 2.  
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Fig. E.3. Flux spectrum for the test pins 

The CRANE-EPGPT tool is planned for release this year to beta users. A working copy has 
been transferred to ORNL for evaluation [Mertyurek, 2015]. We encourage interested parties 
to contact us for obtaining beta version for testing, evaluation, and feedback. Future work will 
primarily focus on improving the user-interface to match the versatility offered by the current 
SCALE sequence. We are currently working on breaking up the various steps into separate 
scripts to allow the users evaluate the separate steps which will help provide insight into the 
mechanics of the various parts of the algorithm.   
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16.0 REVIEW COMMENTS AND DISPOSITIONS 

Industry Comments 
 

Comment Disposition 
The presumption that the analysis 
uncertainties are dominated by the nuclear data 
uncertainties is, we believe, incorrect.  With 
the current nuclear data libraries, modelling 
uncertainties, both with respect to the 
uncertainty in the "control parameters" but 
especially uncertainties introduced by 
modelling choices and methodologies are 
almost certainly more important than the 
uncertainties due to nuclear data. 

This assertion assumes that reactor 
calculations are carefully customized to the 
reactor type of interest in order to maximize 
their predictability against the body of 
experimental data available from reactor 
operation and integral experiments. This 
results in reducing the contribution of 
modeling uncertainties against nuclear data.    
 

The very significant correlations in the 
uncertainties for the multitude of different 
parameters at different conditions required at 
various stages in the calculation of the 
response may be difficult to identify and 
implement.  Because of the presence of highly 
correlated uncertainties, the analysis will need 
to be very carefully controlled to ensure these 
correlations are not lost.  We suspect the data 
manipulation requirements will be very 
expensive (and prone to error). 

The correlations are identified using well-
established algorithms designed to ensure that 
the randomized samples used by the UCF 
preserve the physics of the associated models. 

The objective that using such a UCF should be 
possible as a routine exercise is also 
unrealistic.  The complexity of all the 
components involved will definitely not allow 
this to be a routine process for many years.  
The streamlining and supporting 
documentation of the various processes will 
require several years of learning and 
refinement before this can become routine. 

Past work which demonstrated application and 
the computational efficiency of UCF methods 
to realistic core reactor calculations, including 
LWRs and SFRs. A well planned effort, as 
guided by CANDU and UCF experts, will 
optimize the UCF implementation and its 
supporting documentations to ensure proper 
knowledge transfer and routine execution. 

For a group of researchers already versed in 
the underlying UC methodologies, we expect 
the main obstacles will be the integration of the 
various codes into relatively seamless wholes 
with appropriate access to uncertainty 
information from the upstream codes 
(although there may also be some very real 
problems with the dimensionality reduction 
for realistic core configurations).  This 
coordination of existing codes with added 
access to uncertainty information may be very 

Expert CANDU researchers are expected to be 
involved in the planning and implementation 
stages of the UCF. 
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demanding, especially for a group of 
researchers primarily familiar with UC but 
with limited familiarity with CANDU physics 
(on-line refuelling, zone control, adjuster rods, 
fuel channel ageing effects, various gravity 
effects, etc.). 
P.11:  "Specifically, we will assume that the 
Monte Carlo pointwise cross-section models 
provide perfect representation of the physics of 
neutron transport inside the CANDU core." 
This seems to relate to MCNP or KENO 
continuous-energy calculations.  What about 
the multi-group Monte Carlo simulations 
performed by KENO?  More precisely, how 
are we to assess how well the multi-group 
sensitivity profiles generated by KENO apply 
to MCNP or KENO-CE? 

The uncertainties resulting from the use of 
multi-group cross-sections instead of 
continuous cross-sections must be quantified. 
Section 5.2.2 discusses preliminary analysis to 
determine the impact of the assumed flux 
shape on the lattice cell parameters. Specific 
strategies to assess the modeling errors in the 
sensitivity profiles will be developed as part of 
the UCF implementation.  
 

It seems from the discussion in Section 3.1 that 
the nuclear data uncertainties included in the 
SCALE6 library covariance library include 
uncertainties for the resonance region.  If so, 
how are these resonance uncertainties applied 
to specific self-shielding calculations 
(involving specific isotopic densities and 
geometry) at specific temperatures? 

The reader may consult the SCALE’s 
SAMPLER module for specifics on how the 
uncertainties in self-shielding calculations are 
propagated. 

What about uncertainty in the fission product 
yields?  Is there some method proposed to 
handle this, such as using uncertainty in some 
single or few representative fission products as 
surrogates for the more realistic multitude of 
fission products? 

The standard UQp sampling approach, aided 
by ROM algorithms, is proposed here to 
propagate and prioritize the important 
contributors to this source of uncertainty. 
 

P.14:  If the rank r < dimension n, the 
implication is that not all inputs are 
independent (i.e., they end up being correlated 
by some constraint, for example, imposed by 
the neutron flux solution) and some 
relationship exists between them that would, in 
principle, allow one to write one or more of the 
inputs in terms of the others.  If these 
relationships are non-linear, is the 
transformation to independent variables still 
useful?  If so, does this mean that the original 
covariance matrix was not a good 
representation of the uncertainties in the 
various original parameters? 

Details on the methodology that address these 
questions have been published elsewhere. The 
reader may consult Bang, et. al., 2012.  
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P.20:  Here, the BE value seems to be 
determined as the average response from the 
sampled inputs.  This is somewhat different 
from our usual definition of BE response, 
which corresponds to the response from the BE 
of each input parameter.   

Agree. Correction is made to eliminate 
possible confusion with the standard NE use of 
BE term. 

P.22:  The need for "mapping of uncertainties" 
implies that the different operational 
conditions are not part of the original input 
uncertainties.  Why is that? 

Disagree. The operational conditions 
uncertainties are included in the uncertainty 
analysis. 

P.24, mapping example:  This is not at all 
clear. Step 1:  What is p(y, o)?  Is this the 
uncertainty propagation with the low- or high-
fidelity model?  Or is this the propagation of 
the uncertainty due to the difference between 
the low- and high-fidelity models?  Or is this 
even the propagation of the uncertainty due to 
the difference between the low- and high-
fidelity models at fixed model input 
parameters, i.e., replacing the UQp sampling 
with an o "sampling"? 

p(y, o) is defined on P.24 as the uncertainty in 
y evaluated with the high fidelity model at the 
conditions o. 

Step 2:  I do not understand this step either.  
Presumably the identification of the various 
input uncertainties and their PDFs would have 
been required for Step 1.  What is the "Joint 
PDF"?  I have difficulty visualizing a scatter 
plot depicting the distribution of say the cell a 
at a range 1 of burnups plotted on the y-axis 
versus the distribution of a at a more limited 
set of burnups o on the x-axis.   Is the idea that 
you would have such a scatter plot for each 
combination of o and 1?  Where do the high-
fidelity calculations fit in?  The response 
values plotted on the x-axis? 

This discussion is intended to demonstrate the 
basic principles of mapping uncertainties. 
Specific details on the methodology as applied 
to CANDU analysis is expected to be part of 
the implementation plan for the UCF.   

Would the representation of the mapping 
really require more of a 3D picture, with the x-
axis representing o, the y-axis being the 
response (say, a) and PDF profiles being the 
third dimension?  The mapping would then 
correspond to a parameterization of the PDFs 
as functions of o for extension to the more 
complete set of conditions 1..  It is still not 
clear how the high-fidelity calculations would 
fit in, unless the PDFs are specifically for the 
difference between the responses using the 
low- and high-fidelity models. 

Details on the mapping algorithms, i.e., 
parametric vs. non-parametric approaches, are 
to be included in the UCF implementation 
plan.  
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P.28:  "the basic assumption in most neutronic 
UQ studies is that nuclear reaction model 
parameters represent the main source of 
uncertainty for all downstream calculations."  
This is probably not the case for reactivity 
coefficients calculations, where the 
uncertainty impacts nuclear data are strongly 
correlated between different conditions.  

Disagree. Nuclear reaction models and their 
associated parameters are the starting point for 
all downstream neutronic calculations.  

PP.35-36:  we have considerable skepticism 
about the generality of this Dimensional 
Reduction.  It is true that for a given fuel 
design, the isotopics of the fuel will be strongly 
correlated between burnup points and that 
correlation depends primarily on only a few 
parameters.  Also, the neutron spectrum will be 
strongly correlated with the local fuel burnup 
and a few other parameters such as moderator 
and coolant purity, moderator and coolant 
temperature, coolant density, fuel temperature, 
presence of fission products, local PT creep, 
etc.  However, that still leaves a huge number 
of independent and potentially relevant 
degrees of freedom, particularly if spatial 
dependence of these various parameters is 
taken into account.  A flux-squared or adjoint 
weighting of these various parameters would 
presume that a perturbation formalism 
(linearity) would be applicable and an 
unperturbed flux can be defined for the flux-
squared weighting.  It is unclear how 
Dimensional Reduction can capture all of the 
non-linear effects of self-shielding of multiple 
resonances from multiple nuclides at different 
burnups, without imposing some significant 
constraints on how the isotopics are related at 
different burnups, i.e., without imposing 
significant constraints on the response at 
different operating points.  Does this 
effectively mean that a huge number of 
resonances can be combined into a few 
relevant degrees of freedom independent of the 
numerous other parameters that set the neutron 
flux environment?  Is this realized because the 
nuclear data uncertainty is essentially largely 
irrelevant, i.e., the nuclear data are so good that 
the associated uncertainties are not important 

The reader may consult with the numerous 
publications on ROM’s application to nuclear 
reactor calculations, where similar issues in 
LWR reactor cores were identified and 
addressed by the ROM methodology.   
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to the calculation response or at least to the 
calculated response at different conditions?  If 
so, are you really capturing all of the 
uncertainties or just some approximation to 
them? 
This reduction in complexity for the whole 
range of parameters consistent with reactor 
operation without loss of accuracy does stretch 
credibility.  If Dimensional Reduction were 
truly reliable, the only need for all of our 
sophisticated and detailed models would be to 
use them to find the few hundred relevant 
degrees of freedom and the reduced order 
model.  This is hard to absorb.  If one of the 
responses is the bundle power distribution, it is 
difficult to imagine how you have fewer 
degrees of freedom than you have average 
channel burnups.   It is true that bundle 
burnups are generally strongly correlated 
within a channel but burnups in individual 
channels are not nearly as strongly correlated.  
Are we to give up on channel refuelling times 
as being degrees of freedom and only analyse 
a specific core burnup distribution such as a 
time-average-equivalent burnup distribution? 

Channel refueling times, and other operator-
controlled parameters, are expected to be 
included as part of the analysis when 
determining the overall true dimensionality of 
the core simulator’s model.  

Is such a Dimensional Reduction valid only in 
the neighbourhood of a single operating point 
and to be repeated at multiple operating 
conditions?  How would you determine the 
range (neighbourhood) of the DR 
applicability? 

These specific issues were discussed in earlier 
publications, see for example Abdo, et. al., 
2015, and Bang, et. al., 2012.  

Is this dimensional reduction too ambitious?  
Dimensional reduction applicable to say, 
lattice modelling but not to the whole core? 

The application of ROM methodology to both 
lattice cell and core wide calculations has been 
demonstrated in past work.  

Figure 4.1 and discussion of Figure 4-3:  The 
use of the single phrase "active subspace" to 
denote both the active degrees of freedom in 
the inputs space and their mapped responses in 
the response space is confusing when it comes 
to the discussion of Figure 4-3.  Why do you 
need the gradients to determine the active 
subspace of inputs?  Wouldn't a forward 
sampling also give you that?  Or does the 
model need to be linear for the forward 
sampling to give the active subspace of inputs?  
This is not clear. 

These specific details were discussed in 
previous publications. See for example Bang, 
et. al., 2012, and Khuwaileh, et. al., 2013. 
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Considerable dimensional reduction is already 
done for the full-core CATHENA modelling:  
380 channels are typically represented by 28 
channels (7 channels per core coolant pass).  
For the neutronics modelling, some similar 
dimensional reduction is achieved in the full 
core model by using only bundle burnups to 
discretize the burnup distribution as opposed 
to a burnup distribution based on the diffusion 
model mesh structure or a smooth functional 
form.   The choice of two-energy groups is also 
a form of dimensional reduction.  Does 
dimensional reduction primarily correspond to 
a means of transferring parameter uncertainty 
contributions to modelling uncertainties and 
limiting the range of states represented by the 
model? 

These modes of reduction are mostly based on 
expert intuition of the physics models, which 
renders it difficult to quantify their associated 
errors. Dimensionality reduction however, as 
explained in this study, means identifying the 
states that are produced by the physics models 
due to the specific application set by the 
designer/operator using rigorous mathematical 
techniques that allows proper quantification 
and bounding of reduction errors.  

Section 4.2.2, p.43:  "Generate N samples of 
the parameters according to their expected 
ranges of variations"  Are these samples 
intended to span the entire possible ranges of 
these input parameters or is it sufficient to be 
consistent with their PDFs? 

The notion “expected ranges of variation” is 
employed here to cover a multitude of 
applications. For example, if one is interested 
in propagating uncertainties only, then the 
ranges of variation are consistent with the prior 
uncertainties determined by the prior PDFs. If 
however one is interested in building ROM 
that is applicable for the wide range of reactor 
states then the range of variation would be 
consistent with the expected range for the 
parameters values. 

Section 5.1:  The preparation of the ENDF 
library data is outside any scope of uncertainty 
characterization that would realistically be 
performed by analysts modelling the CANDU 
reactor.  It is unrealistic to consider this as part 
of any feasible UCF for CANDU analysis. 

 

This source of uncertainty needs to be 
performed only once just like the ENDF 
libraries are prepared only once, and hence 
they are not expected to be done routinely by 
CANDU analysts.  

Section 5.2:  With respect to CANDU analysis, 
this section corresponds to uncertainties 
introduced by the NJOY processing of various 
library data to determine, for example, a multi-
group, multi-temperature library for use with 
WIMS-AECL or a continuous-energy, multi-
temperature library for use with MCNP.  A 
similar process is also used to prepare the 
multi-group library for use with KENO to 
support TSUNAMI analysis of CANDU.  This 
is done at infrequent intervals and only a few 

To streamline the UCF, these experts will need 
to be involved during the initial 
implementation to provide guidance on the 
matrix of conditions and the steps required to 
generate the reference multi-group cross-
sections. These same conditions/steps will be 
used to propagate uncertainties using the UCF. 
This process will need to be done at the same 
frequency at which the reference cross-
sections are generated by the cross-section 
experts at CANDU.   
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individuals within the CANDU industry have 
the training and experience required to do this.
Section 5.2.1:  This NJOY processing is also 
the analysis stage where molecular binding 
effects on the thermal scattering kernel and a 
temperature dependence to the nuclear data are 
introduced.  It is unclear to me in what form 
the resonance information is present in the 
multigroup libraries.  However, the 
propagation of resonance data uncertainties at 
different temperatures should be considered 
carefully. 

The details on the inclusion of resonance 
uncertainties are model dependent. For an 
example on how resonance uncertainties are 
included in the SCALE code, consult 
Williams, et. al., 2013. As mentioned earlier, 
the UCF algorithms employ well-established 
sampling methods to ensure that the physics 
correlations are preserved, e.g., evaluations at 
different temperatures.    

Section 5.2.2:  The assumed flux shape will not 
only affect the multi-group cross section 
uncertainties, but also the multi-group cross 
sections themselves.  That is, it could introduce 
a bias and the total variation in the multi-group 
cross sections with different assumed fluxes 
and simultaneous nuclear data variations 
would need to be examined. 

That’s the point made in sections 5.2.1, 5.2.2, 
and 5.2.3. Section 5.2.1 deals with propagating 
parameter uncertainties only, i.e., those 
propagated from the nuclear reaction model 
parameters. Section 5.2.2 deals with the bias 
generated by the assumed flux shape, which is 
treated as a source of modeling uncertainty. 
Section 5.2.3 attempts to estimate both sources 
of uncertainties simultaneously, taking into 
account that their correlation. 

Section 5.2.2:  It is not clear that the same 
multi-group cross section uncertainty will 
apply to the data at different temperatures for 
all isotopes.  It is therefore difficult to see how 
appropriate lattice cell sensitivity profiles can 
be determined at different temperatures and 
then integrated with common-temperature 
multi-group uncertainties to propagate the 
uncertainties to reactivity coefficients.  we 
suppose interpolation of the temperature-
specific uncertainties is available as an option 
to provide an approximate evaluation. 

The details of these algorithms will be 
developed during the initial implementation 
plan of the UCF. 

Section 5.3:  Lattice cell calculations do have 
control parameter uncertainties:  solid material 
dimensions, compositions, and densities, 
including fresh fuel isotopics and other 
material impurities (and, perhaps, power 
density), and ageing effects on fuel channel 
geometry and tube materials.  In fact, one 
would expect some of these control parameter 
uncertainties to be some of the most important 
uncertainties in the neutronic calculations. 

Agree. All these uncertainties are considered 
part of the “control parameters” uncertainties. 
Their inclusion in the analysis is 
straightforward. 
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Section 5.3.1:  Another source of uncertainty 
here will be the fission product yields as the 
fuel is irradiated. 

Fission product yields and delayed neutron 
fractions are considered part of nuclear data for 
which uncertainties are to be propagated. 

Section 5.3.1:  Is the forward SA approach 
combined with the use of sensitivity profiles 
not practical here because of the many points 
to be investigated?  Namely, many values of 
cell burnup, fuel temperature, coolant 
conditions, moderator temperature, heavy 
water purities, poison concentration, etc.   Or 
is the forward SA approach impractical 
because one of the objectives will be to 
identify the main sources of uncertainty?  In 
general, the number of cases to be studied for 
uncertainty quantification does not depend on 
the number of input parameters.  The number 
of input parameters is only of importance if the 
main sources of the uncertainties are to be 
isolated. 

Sensitivity analysis is needed only if one is 
interested in determining the contribution of 
the various sources of uncertainties to the total 
propagated response uncertainties. When the 
number of uncertainty sources become too 
high, the forward SA becomes impractical. 
When sensitivity profiles are combined with 
the forward SA approach however, one can 
reduce the number of required model 
executions using ROM techniques. If however 
one is only interested in estimating total 
response uncertainty without estimating the 
contributions of the various sources, then SA 
need not be performed, and one can rely on the 
standard forward UQp approach. 

At this point in time, WIMS-AECL does not 
provide an adjoint flux solution.  However, 
DRAGON does and would be suitable for this 
task.  The author suggests the use of SCALE's 
NEWT code.  The question would remain as to 
whether or not the somewhat different 
calculational methods used by DRAGON or 
NEWT would produce results with the same 
uncertainties as WIMS-AECL. However, if 
these alternative codes are only used to restrict 
the dimensionality of the parameters to be 
sampled, this difference may be irrelevant. 

The different code is only used to restrict the 
degrees of freedom, however the code which 
is used as part of the standard calculational 
sequence, is the one used to propagate 
uncertainties. Abdo, et. al., 2015 has shown 
that errors resulting from the restriction of 
degrees of freedom can be reliably upper-
bounded with overwhelmingly high 
probability. Therefore, one can use DRAGON 
or any other representative code with adjoint 
capability to reduce the dimensionality of the 
multi-group cross-section space. NEWT is 
proposed given its wide use and the recent 
introduction of the CRANE module which 
automates the process of active subspace 
generation. 

Section 5.3.2:  Various comparisons between 
results from the multi-group WIMS-AECL 
calculations and continuous energy MCNP 
calculations have been made in the past for 
different types of fuel lattices, primarily with 
respect to reaction rates, flux distributions and 
power distributions as opposed to the two-
group cell parameters.  The analysis proposed 
here would also evaluate the spatial 
homogenization approximation and the 
energy-group condensation. 

Agree. The idea is to capture the discrepancies 
in the few-group cross-sections, and obtain a 
prior distribution for their variations that can 
be used in downstream core-wide calculations 
to account not only for cross-section 
uncertainties resulting from differential cross-
section measurements but also from the 
modeling approximations. 
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Between Section 5.3 and Section 5.4:  There is 
a missing section on uncertainty of few-group 
incremental cross sections, typically 
calculated with DRAGON.  These may not be 
present in PWR and BWR calculations but 
they do form an important part of full-core 
CANDU simulations.  They will introduce 
their own sources of uncertainty:  assumed 
moderator conditions, fuel and fuel channel 
geometry modelling, assumed fuel channel 
conditions (including differences in burnup in 
fuel on one side of the device and on the other 
side of the device), aging assumptions (fuel 
channel and device itself), etc.  These 
uncertainties will likely be highly be correlated 
with the lattice few-group cross section 
uncertainties. 

The discussion assumes that the specific 
details of how the incremental cross-sections 
are calculated are considered part of lattice cell 
calculations. If two different codes are 
employed, i.e., one for the reference few-group 
cross-section generation, and another code for 
the incremental values, then one must employ 
the same train of random samples for the cross-
sections and any control parameters that are 
common to the two codes, e.g. absorber rod 
configuration. This is a standard approach in 
any UQ study designed to ensure that the 
physics-introduced correlations between the 
two codes are preserved. 

Section 5.4:  Among the control parameters, 
there is also the need to consider the fuel 
burnup distribution, and various absorber rod 
configurations and LZC fill fractions.  While 
the absorber rod configurations and LZC fill 
fractions may introduce only small 
uncertainties directly, they will indirectly 
introduce the uncertainty contributions from 
the incremental cross sections in different 
situations, correlated with the underlying 
lattice cross section uncertainties.  What about 
the effects of an incompletely specified 
operating history? 

Without availability of reliable prior 
uncertainties on the sources of uncertainties, it 
becomes difficult to assess the quality of the 
propagated uncertainties. To address this, one 
often uses conservative values when operating 
history information is not complete. Another 
approach is to employ sensitivity analysis to 
determine the key control parameters that 
contribute the most to the variability of the 
responses of interest. With this knowledge, 
one can refine ones estimate of the prior 
estimates for the control parameters that 
dominate the uncertainties of the responses of 
interest. This sensitivity analysis can be 
seamlessly done using the proposed UCF’s 
ROM techniques. In regard to the correlations, 
they are preserved by the UCF sampling 
algorithm as discussed earlier.   

Section 5.4.1:  Again, as a result of the online 
refuelling in the CANDU reactor and the 
complicated and varied burnup distributions 
possible in the CANDU core, it is difficult to 
imagine that the number of active degrees of 
freedom can be reduced to the order of 100 or 
so unless one restricts the evaluation to 
specific core configurations such as a time-
average-equivalent core. 
 

Based on the experience with LWRs over 
multiple cycles of operation, the active degrees 
of freedom are consistently found to be in the 
order of 100, despite the large number of fuel 
lattice designs employed (e.g., BWRs) and the 
resulting wide range of isotopic composition at 
discharge. This behavior is a result of the 
careful design of the reactor and the fueling 
strategy, designed to flatten power distribution 
and reduce peaking. These design constraints 
result in reducing the degrees of freedom of the 
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spatial distribution of the flux spectra and 
hence the formation and evolution of isotopic 
concentrations over the life of the fuel in the 
core. This behavior introduces strong 
correlation between the isotopic 
concentrations that persists over the life of the 
fuel in the core, and very insensitive to the 
initial fuel lattice design, because of the short 
mean free path of the neutrons.  

Section 6.4.1:  The WIMS-AECL nuclear data 
library is a binary file.  This will pose a 
problem for the UC of current CANDU 
analyses based on current versions of WIMS-
AECL. 

This was identified as one of the challenges in 
the report, see section 6.2.3 for more details. 

Section 6.4.2:  What is meant by "two folds"?  
A factor of 2 or a factor of 100? 

Yes, it is meant to be two orders of magnitude. 
It was changed in the report to clear confusion.

Figure 8.1:  The CANDU 37-element bundle 
does not have 4-fold symmetry.  For realistic 
calculations, I would hope that this figure does 
not represent the entire lattice model. 

The development of a CANDU lattice model 
is outside the scope of this study. We have 
been provided with a fully detailed model for 
MCNP, but decided to employ a model by Oak 
Ridge and University of Tennessee for NEWT 
(Ref. available upon request) for similar 
scoping analyses. The results could be 
repeated seamlessly using the CRANE module 
in SCALE (currently available to the 
contractor and available upon request), which 
automates the process of ROM and UQp for 
SCALE neutronic models, for a detailed 
CANDU lattice model.   

Table 8.2 (p.77):  What are Kappa-fast-fission 
and Kappa-nu-fission?  From another 
document found on the internet, it seems that 
in a similar notation, kappa represents the 
energy per fission (should be defined here).  

Yes, that’s correct. The definition is included 
in the document following Table 8.2 
 

Table 8.3 (p.78):  The uncertainty in the peak 
reactivity during a LBLOCA purely from 2-
group parameter uncertainties resulting from 
the propagation of nuclear data uncertainties 
listed in this table at 4.5 GWD/MTU is 
difficult to believe. The uncertainty in the peak 
reactivity using uncertainties corresponding to 
mid-burnup fuel is quite different from the 
peak reactivity uncertainty based on 
uncertainties corresponding to fresh fuel or 
near-exit fuel.  Furthermore, a significantly 
larger uncertainty in peak reactivity would be 

The goal of this pilot study is to demonstrate 
the basic mechanics of the UC algorithms, 
highlight the relative importance of modeling 
and parameter uncertainties, and identify the 
possible challenges when applied to CANDU 
reactor analysis. To achieve that within the 
constraints of this study, numerous simplifying 
assumptions were made to limit the scope. 
Detailed analysis of these assumptions is 
therefore not attempted.  
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correlated with a significantly larger 
uncertainty in peak bundle power.  That is not 
the case in this Table.  Also, why are the values 
for the uncertainty in the peak bundle power 
identical to the uncertainties in the peak reactor 
power? 
Secondly, if the results from TSUNAMI are to 
be believed, the nuclear data contribution to 
the uncertainty in the full-core CVR in 
CANDU is only roughly 0.4 mk.  The peak 
reactivity in the LBLOCA is achieved with the 
core only partially voided.  What other 
feedback effects are important here?  From the 
text, it does not seem that this uncertainty also 
includes the uncertainty in the delayed neutron 
fraction.  Even if it did, one would not expect 
the variation in the peak reactivity just due to 
nuclear data uncertainties to be anywhere near 
0.5 mk. 
Was this result determined by repeatedly 
performing the transient simulation or were 
certain reference transient results, such as the 
trip time and coolant conditions as a function 
of time, used in all cases? There are mitigating 
(non-linear) effects in a realistic analysis that 
make this peak reactivity relatively insensitive 
to the nuclear data.  For example, if the nuclear 
data uncertainty results in a higher CVR or a 
smaller delayed neutron fraction, the transient 
will progress  more quickly and result in a 
more rapid shutdown, such that the peak 
reactivity is reached sooner (at a smaller 
degree of voiding).  The result is that, in a 
realistic transient simulation, the relative 
change in the peak reactivity is smaller than 
the relative change in the CVR. 

Not applicable since thermal-hydraulic 
feedback was not considered in this study. 
Neutronic calculations are evaluated at fixed 
thermal-hydraulics conditions. 

The uncertainty in the CVR cannot be 
determined from the uncertainties in the 2-
group parameters at fixed conditions.  The 
uncertainty in the CVR is determined by the 
uncertainty in the change in the 2-group 
parameters due to coolant voiding.  The 
uncertainties in the 2-group parameters are 
highly correlated between the cooled and 
voided states.  This correlation is absolutely 
critical to getting the correct result.  For 

Not applicable since the study does not 
calculate the CVR, it only calculates the core 
eigenvalue during the transient at fixed 
thermal-hydraulics conditions. 
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example, the a priori k-value uncertainties 
from nuclear data uncertainties reported by 
TSUNAMI for the cooled and voided time-
average-equivalent CANDU core are both 
roughly 9.5 mk.  However, the a priori 
uncertainty in CVR from these sources is only 
roughly 0.4 mk.  The result shown in Table 8.3 
leaves considerable doubt about how this 
correlation was taken into account. 
Section 12.0 (p.88):  In the description of the 
Range-Finding Algorithm, some things are not 
clear. First of all, it is not always clear what 
vector space the various vectors correspond to, 
the input parameter vector space or the 
response vector space. 

The discussion here is generic and aims only 
to explain the mechanics of randomization. If 
A represents a forward model, then p would 
represent the parameters, and w the responses 
(or the flux). If A represents the adjoint model, 
then the p represents the responses, and w the 
parameters. Although the discussion in this 
section implies A is a linear matrix operator, 
the analysis has been extended to include 
nonlinear operators. Consult Bang, et. al., 
2012 for more details. 

Secondly, in Step 5, "Pick t additional random 
vectors…"  There is no indication what value t 
would initially have.  (In Step 10, to is 
incremented by t.). The distinction between t 
and to+t seems to be rather loose in Steps 6 to 
8. 

This is one rendition of the algorithm. Many 
other variations are possible. In this example, 
t0 and t are an initial guess for the rank and the 
additional number of code runs added if the 
rank estimate is too low.  

There is no real definition of the phrase "Pick 
s random vectors" or "Pick t additional random 
vectors".  Is the intent to span the whole range 
of input parameters or to sample the input 
parameters over there likely range.  If the input 
parameters are not fully sampled in this range-
finding algorithm, how can you claim that the 
probability of the reduced-order model being 
incorrect by more than  is very small?  This 
may not be a real problem in a linear problem 
such as is described here, but could be much 
more important in a non-linear problem. 
 

The randomization here assumes that each 
parameter is sampled using its prior PDF, or its 
intended range of application, depending on 
the type of the parameter and the application 
of the reduced order model. If one is interested 
in propagating uncertainties of say the multi-
group cross-sections, then the cross-sections 
are sampled from their prior PDFs. If however, 
one is interested in building a reduced order 
model that is representative of any fuel burnup, 
then the number densities for the various 
isotopes must be sampled over their expected 
range during operation. These ranges can be 
determined using a number of representative 
forward runs. This process has been 
demonstrated in recent work, and allows one 
to build an ROM for a general multi-physics 
model in a computationally efficient manner. 
See Bang, et. al., 2012, Khuwaileh, et. al., 
2013, Abdo, et. al., 2015. 
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Canadian Nuclear Laboratories Comments 

 
Comment Disposition 
Regarding the Randomized Algorithm, which 
forms the core of the UCF. The reviewer 
comments: “It is completely reasonable. The 
algorithm he describes in a version of batch 
orthogonal matching pursuit, and it is 
provably convergence with specific 
probability for particular types of matrices. 
This was a very popular topic of research 
starting mid 2000s.” 

Agree. 

When he says “[epsilon_user] can be made as 
small as the numerical precision of the 
computational model”, this is true, but there is 
no free lunch. Asking for better precision will 
increase the dimension “r”, and computer 
requirements will grow accordingly. 

Agree. However for realistic LWR 
calculations, one finds that numerical 
precision of the calculations can be achieved 
with very small rank.  

The algorithm Hany gives in Appendix C 
appears in Halko page 25, “Adaptive 
Randomized Range Finder”. I have no reason 
to doubt the algorithm is correct. 

 

One minor variance: Halko page 25 states a 
failure probability of “1‐m*10^‐s” instead of 
“1‐10^s” given by Hany step 13. It is possible 
that “the Contractor” is correct ‐‐ Halko notes 
the value he gives is a simplistic “pessimistic” 
estimate. In either case, it would be easy to 
take a couple additional samples to get the 
same result. 

Agree. Halko requires an “m” in the failure 
probability expression because the randomized 
vectors employed are assumed to be 
normalized to one. However, in the UCF 
implementation, this assumption is relaxed, 
and all randomized vectors are sampled 
directly from their prior distributions. This 
allows one to get rid of the “m” dependence. 
See Abdo, et. al., 2015 and the references 
within for additional details.  

 


