Canadian Nuclear

File / dossier : 6.01.07 Date: 2022-05-17 Edocs: 6772572

Supplementary Information

Renseignements supplémentaires

Presentation from Gursimer Sandhu

Présentation de **Gursimer Sandhu**

In the Matter of the

À l'égard des

Canadian Nuclear Laboratories (CNL)

Laboratoires Nucléaires Canadiens (LNC)

Application from the CNL to amend its Chalk River Laboratories site licence to authorize the construction of a near surface disposal facility

Demande des LNC visant à modifier le permis du site des Laboratoires de Chalk River pour autoriser la construction d'une installation de gestion des déchets près de la surface

Commission Public Hearing Part 2

Audience publique de la Commission Partie 2

May 30 to June 3, 2022

30 mai au 3 juin 2022

NSDF Intervention

22-H7.89 - Gursimer Sandhu

Who am I?

- ♦ B. Sc., Health Physics and Radiation Science, UOIT
 - ♦ Nuclear Theory Reactor Kinetics, Radiation Detection
 - ♦ Radiological effects of human health Biophysics, Dosimetry
- ♦ Characterization Specialist, CNL, 5 years
 - ♦ Planning, Sampling, Analyzing, Reporting
 - ♦ Interpretation of CNSC Regulations
 - Application of Industry standard techniques
- Professor, Algonquin College, 2 years
 - ♦ Applied Nuclear Science and Radiation Safety
 - ♦ Radiological Waste : Disposal, Storage, and Decommissioning
- ♦ Ottawa Valley Resident, Petawawa, 5 years
 - ♦ Outdoor Activities (Soccer, Beach, Running, Biking)

Topics

- ♦ Health Safety and Security
- ♦ Environmental Impacts of LLW
- ♦ Implications to the future of CNL
- Responsible use of government funding by CNL
- ♦ Responsible disposal of nuclear waste

Health Safety and Security

- ♦ Low Level Waste only
 - ♦ As defined in the NSDF Waste Acceptance Criteria¹
- ♦ Multilayered Geomembrane Design²
 - ♦ Rigorous testing at Queen's University
 - ♦ Intact for a thousand years
- Waste Water Treatment
 - ♦ Proven system
- Institutional controls and supervision
 - ♦ 100s of years

Limits for Leachate Controlled Packaged Waste 400 Bq/g for α emitting radionuclides 10,000 Bq/g for long-lived βY emitting radionuclides ($t_{1/2}$ >Cs-137) 10,000 Bq/g for Cs-137 10,000 Bq/g for Sr-90 10,000,000 Bq/g for H-3

Environmental Impacts of LLW

- ♦ Naturally Occurring Radioactive Materials (NORM)³
 - ♦ Cosmic, Terrestrial, Primordial, Cosmogenic
- NSDF Significant Radionuclides
 - ♦ Radiation Dose
 - ♦ External Co-60 (88.48%), Cs-137 (11.51%), Others (<0.01%)
 - ♦ Ingestion Cs-137 (66.16%), Co-60 (33.13%), Sr-90 (0.34%), H-3 (0.20%), Am-241 (0.07%), Others (0.09%)
 - ♦ Inhalation Co-60 (52.36%), Cs-137 (34.40%), Am-241 (5.70%), Sr-90 (0.34%), H-3 (0.22%), Others (6.99%)

Environmental Impacts of LLW

Implications to the Future of CNL

- ♦ Employment
- ♦ Local Infrastructure
 - ♦ Roads, Internet
- ♦ Economic Boost

Responsible Use of Government Funding

- ♦ In-House Waste Management
 - ♦ Generators Waste Receivers
 - ♦ Operator knowledge
 - ♦ On-site packaging
- Proprietary Knowledge
 - ♦ Business Development
 - ♦ Canadian Research

Responsible Disposal of Nuclear Waste

- ♦ Health
 - ♦ Low Level Waste
- Safety
 - ♦ Facility Design
- ♦ Finance
 - Optimized Business Model

