



#### **Speaker Series**

# Decommissioning and legacy remediation in the UK – Progress and Challenges

Mark Foy – Chief Nuclear Inspector

21 November 2018



#### **Overview**

- The UK nuclear waste management and decommissioning challenge – a National Overview
- 2. UK Regulatory Framework and Approach
- 3. UK Spent Fuel & Higher Activity Waste Strategy
- Low Level Waste Management Improved use of Waste Hierarchy
- Case Studies:
  - Sellafield
  - Bradwell Care & Maintenance
  - Berkeley
  - Sizewell B Dry Store
  - New Build



# **A National Overview**



#### **Sellafield**



Sellafield, image copyright of Sellafield Limited

- Large, complex fuel cycle site operations are critical to other parts of the nuclear sector
- Large inventory of radioactive materials
- Ageing and degrading facilities
- Clean-up will take decades but there has been recent progress
- New facilities needed to support remediation and for safe longterm waste storage
- Change of mission and organisational transformation



# **Shutdown Magnox Power Stations**

Berkeley, copyright Magnox Ltd



Trawsfynydd, copyright Magnox Ltd

- 26 reactors on 11 sites
- Built 1956 -1971
- Gas cooled natural uranium fuel with graphite cores
- All ceased operation and most are defuelled



#### PWR Power Station – Sizewell B



Sizewell B, Copyright of EDF Energy

- Operational since 1995
- Owned by EDF Energy
- Output 1.2 Gw
- Spent fuel is stored on site in a purpose built dry store – US Holtec Design
- 60 year and 80 year lifetime extension ambitions



Sizewell B Control Room, Copyright of EDF Energy



#### **Research Sites**



Harwell, Copyright Magnox Ltd



Dounreay, Copyright Dounreay Site Restoration Limited



CONSORT, copyright Imperial College London



Winfrith, Copyright Magnox Ltd

- Dounreay
- Harwell
- Winfrith
- Imperial College CONSORT
- All in decommissioning



#### **Low Level Waste Treatment and Disposal**







- Dedicated engineered disposal facilities at LLW Repository and Dounreay
- Conventional landfill disposal
- Metal treatment
- Incineration
- Trans-Frontier Shipments (eg for metal smelting)



# UK Regulatory Framework and approach



# **UK Regulatory Bodies**


#### Protection of People & the Environment











Safety, security, safeguards and inland transport: Single UK- wide regulator



There are no licensed nuclear sites in Northern Ireland





# **ONR** legal responsibilities

- ONR regulates nuclear safety, civil nuclear security, transport and conventional health and safety
- Office for Nuclear Regulation
- With respect to handling, treatment and storage of nuclear matter upon the licensed site
- Conditions of the site licence
- Environment Agencies regulate protection of people and the environment from the use of radioactive substances and disposal of radioactive wastes
  - grant permits or authorisations for the discharge and disposal of radioactive wastes (including VLLW)











# **UK Regulatory Philosophy**

- Site operators are responsible for safety and environmental protection
  - Regulation is non-prescriptive and goal setting
  - Risks should be reduced so far as is reasonably practicable
  - Adequate Arrangements
- Delivering clarity of regulatory expectations
  - Graded approach
  - Open and transparent guidance
  - Routine and targeted stakeholder engagement 'Early Engagement'



#### Relevant Conditions of site licence

- Nuclear matter is stored in accordance with adequate arrangements.
- All operations that may affect safety need a safety case to demonstrate safety & identify limits and conditions of operation.
- Adequate arrangements for minimising the rate of production and total quantity of radioactive waste accumulated.
- The licensee is to ensure that radioactive waste is at all times adequately controlled or contained.
- The licensee is to have adequate decommissioning programmes, divided up into stages.



# **ONR** legal responsibilities

- ONR regulates nuclear safety, civil nuclear security, transport and conventional health and safety
- Office for Nuclear Regulation
- With respect to handling, treatment and storage of nuclear matter upon the licensed site
- Conditions of the site licence
- The Environment Agencies regulate protection of people and the environment from the use of radioactive substances and disposal of radioactive wastes
  - grant permits or authorisations for the discharge and disposal of radioactive wastes (including VLLW)











# **Spent Fuel and Higher Activity Waste Policy**



# **Spent Fuel Policy**





THORP Receipt and Storage, images copyright of Sellafield Ltd

- Spent fuel is not considered to be a waste while the option of reprocessing remains open
- Present assumptions are:
  - Magnox fuel reprocessing at Sellafield to end in 2020
  - Oxide fuel reprocessing at Sellafield to end in 2018
  - PWR and future reactors Government policy is not to reprocess but to interim store pending geological disposal



#### **HAW Policy**



Demonstration of HAW conditioning, copyright NDA



High Level Waste Canisters at Sellafield, copyright Sellafield Limited

- HAW = Intermediate Level Waste and High Level Waste
- Safe interim storage followed by Geological Disposal - policy in England since 2006:
- Welsh policy is Safe interim storage followed by Geological Disposal (2015)
- Scottish policy is for long-term management in near-surface facilities near to the nuclear site where it is produced (2011)



# **HAW Future Disposal**

#### **Government policy** is for:

- long-term management of higher activity radioactive waste (HAW) via geological disposal
- GDF to require a nuclear site licence
- No intent for ONR to regulate disposal of LLW or VLLW

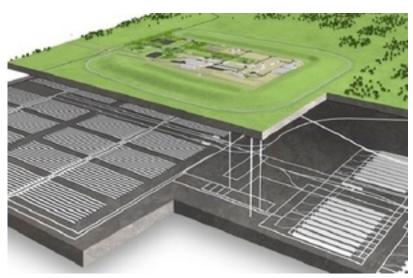



Image source - the Nuclear Decommissioning Authority



#### **HAW Future Disposal**





# Low Level Waste – Waste Hierarchy



#### **Low Level Waste Policy**



Drummed LLW at Dounreay, copyright of



- LLW is defined as waste with radioactive content not exceeding 4GBq/te of alpha, or 12GBq/te of beta/gamma
- Current policy was established in 2007
- The Waste Hierarchy is embedded in UK legislation
- Policy is implemented through:
  - Strategies for each LLW producing sector
  - National Nuclear LLW Programme



# LLW – Effective application of waste hierarchy

Recognised Joint Convention 'Good Practice

One of only 6 countries

Diversion of wastes from LLWR FY 2017-18

Landfill

Combustion

Metallic treatment

LLWR

Extends lifetime of LLWR by 100 years

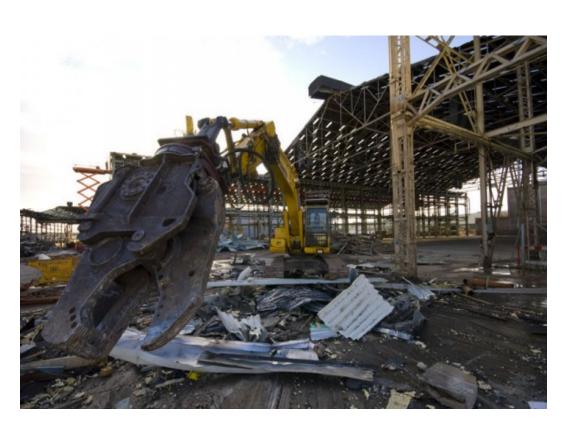




# Berkeley Boilers enroute to Sweden





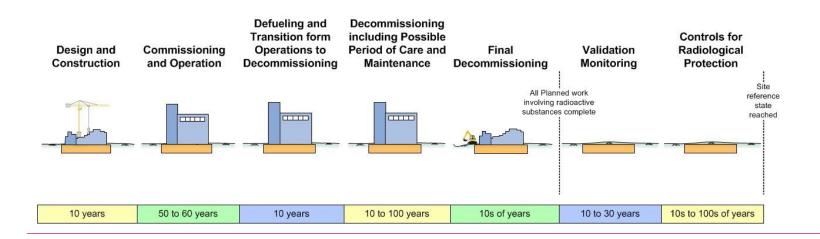

# Decommissioning strategies in the UK:

**Prompt versus Deferred** 



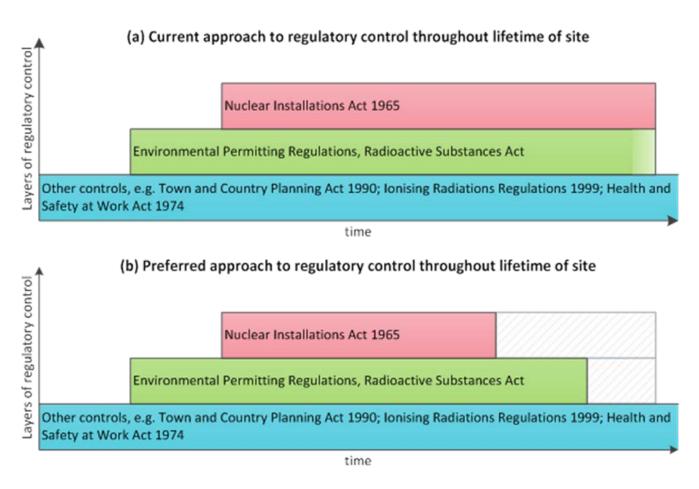
#### **UK Strategy**






- As soon as reasonably practicable, taking into account all relevant factors
- A safe, progressive and systematic reduction of hazards
- NDA owns the UK's civil public sector nuclear liabilities and is obliged to refresh its strategy every 5 years with full consultation




# Guidance on the Requirements for Release from Regulation (GRR)

- GRR has a dual role: it defines the standard for radioactive waste management and final site clearance – both now (during the period of regulation) and in the future (after all regulatory controls have been removed)
- GRR is about identifying optimised solutions for waste management & the clean up of nuclear sites





#### **Proportionate Regulatory Controls**





# **Case Studies**



#### Hazard & Risk reduction at Sellafield

- Legacy ponds & silos LP&S (legacy spent fuel, liquids, sludges)
- Plutonium management facilities (plutonium oxide powder)
- Nuclear fuel reprocessing and storage (spent fuel, highly active liquor)



Intermediate level waste inside a legacy silo

Degraded plutonium storage cans









Irradiated fuel and sludge in a legacy pond



### Sellafield – ONR's TOP Priority

Following stagnation in Sellafield's remediation, ONR instigated a new strategy to enable acceleration & progress.

#### **Key principles** are:

- Fostering alignment and co-operation between key stakeholders;
- Prioritisation agreeing and communicating priorities with key stakeholders
- Removal of Barriers /unnecessary Bureaucracy;
- Avoidance of Distractions and Diversions;
- Encouraging incentives aligned with Sellafield's main mission;
- Application of fit-for-purpose solutions;
- Balance of risks and risk appetite





#### Hazard & Risk reduction at Sellafield



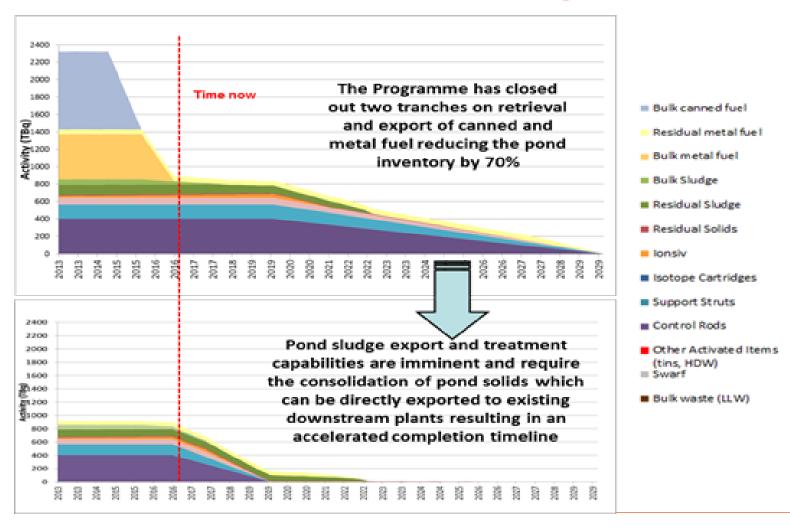
Pile Fuel Cladding Silo



Magnox Swarf Storage Silo

- Pile Fuel Cladding silo (PFCS)
- Pile Fuel Storage Pond (PFSP)
- Magnox Swarf Storage Silo (MSSS)
- First Generation Magnox Storage Ponds (FGMSP)




# **Example: Pile Fuel Storage Pond**







# **Example: Pile Fuel Storage Pond**





#### **Example: Cutting holes in the Pile Fuel Cladding Silo**

Revised, simplified solution introduced - A necessary step to retrieve the waste involved accepting (controlled) heightened short-term risk (major structural changes
to a vulnerable building with a large, flammable radioactive waste inventory).

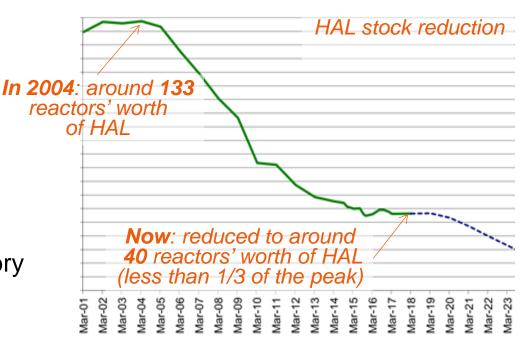
#### We:

- assessed SL's proposals, inspected their arrangements and preparatory work, secured improvements in emergency preparedness
- granted permission when satisfied that all reasonable steps had been taken to control the risks
- are regulating construction of new facilities to secure their timely availability for safe storage of waste



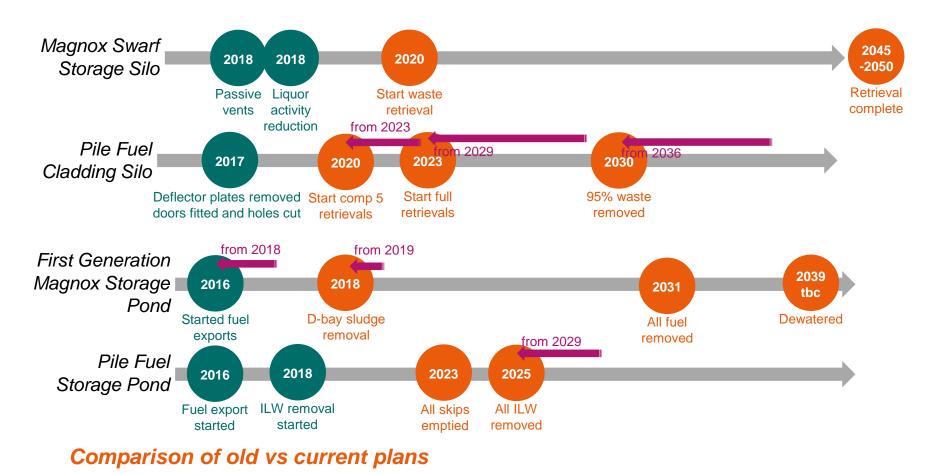







#### Example: Evaporation & "highly active liquor" stocks

- Highly active liquor (HAL) is a by-product of spent fuel reprocessing and must be concentrated (evaporation)
- Evaporation produces HAL; extremely hazardous, stored on site before being turned into glass for safer longer-term storage (vitrification)


Regulation focused on **control of hazard**:

- new evaporative capacity (Evaporator D) to support continued reprocessing
- Securing better control measures on HAL stocks to enable sustainable reduction in the stored inventory





#### Enabling progress in legacy ponds & silos

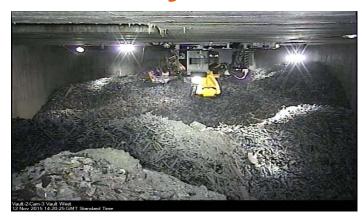




### **Summary**

- Sellafield will continue as ONR's top priority;
- Following a period of stagnation in SL's remediation, ONR's new strategy stimulated hazard and risk reduction with notable achievements
- Timely retrieval of hazardous legacy waste into modern facilities is essential. Undue delays increase risk and reduce options for intervention
- Remediating the legacy hazards at Sellafield are long-term projects, necessitating intrusive intervention and inevitable (controlled) increases in short-term risks
- Our regulatory strategy for Sellafield is dynamic, goal setting and continues to be effective achieving; accelerated safe remediation, securing compliant operational safety and robust emergency response capability




#### **Bradwell Care & Maintenance**



- Reactor buildings Clad for 'Safestore'
- For 70-year period of Care & Maintenance to commence 2018
- Safety benefits are from radioactive decay



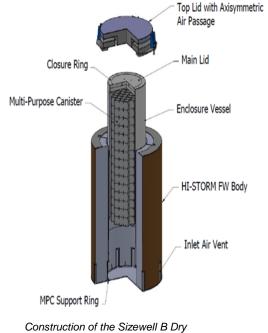
# Retrieval of Fuel Element Debris at Berkeley



Beginning of FED removal



After 88 Te of FED removed


- Mixed FED/ILW contained in 3 underground vaults
- Retrieve-Process-Store pending a GDF
- Vault 1 270 Te FED
- Vault 2 350 Te FED retrieval commenced June 2016
- Vault 3 1400 sludge cans



### Sizewell B Dry Store







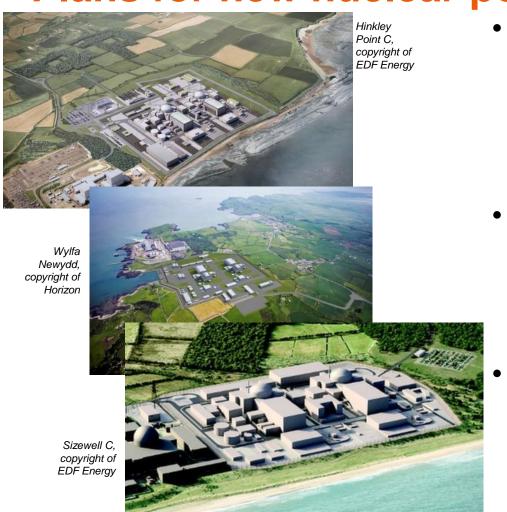
Fuel Store, Copyright of EDF Energy

- Spent fuel is presently wet stored in the station pond
- Construction of a dedicated building for dry storage of spent fuel on site started in 2014
- Active commissioning took place in February 2017
- Spent fuel will be held in an inert atmosphere within metal casks
- Spent fuel may be stored on site for many decades after station closure, pending disposal to a Geological **Disposal Facility**



#### **Generic Design Assessment**






Hinkley Point C site, copyright of EDF Energy

- ABWR, AP1000, EPR & HPR1000
- GDA has included regulatory assessment of:
  - How spent fuel and radioactive wastes will evolve over the envisaged storage period;
  - Data and records management;
  - Disposability of spent fuel and Higher Activity Wastes;
  - Implications for the national disposal strategy, and;
  - Adequacy of the provided storage capacities.



#### Plans for new nuclear power stations



- UK Government identified candidate sites for new nuclear power stations in England, Hinkley Point C, Sizewell C, EDF Energy and Wales, Wylfa Newydd, Horizon
- The Energy Act 2008 requires operators to cover all liabilities; management of spent fuel, radioactive wastes and decommissioning
- Funded Decommissioning
   Programmes are independently scrutinised and approved by the Secretary of State