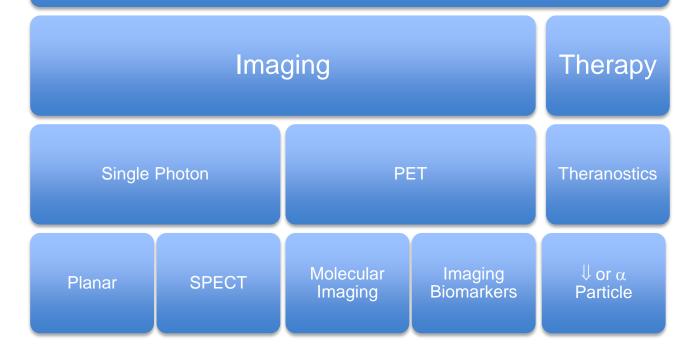
Radioisotopes in Medical Practice: From There to Here

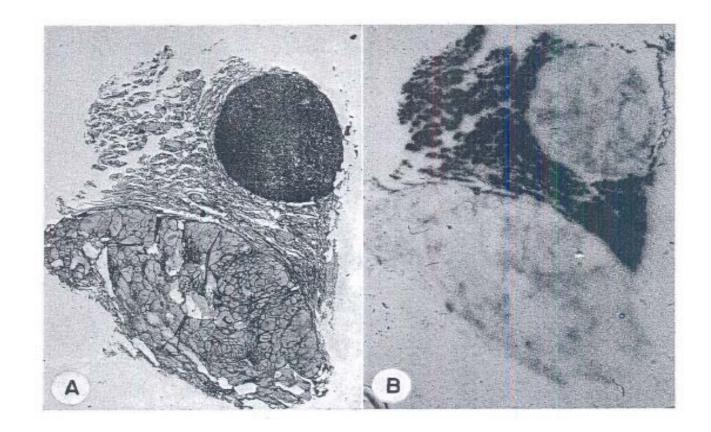
Sandy McEwan, MB BS, FRCPC, FSNMMI Chair, Department of Oncology University of Alberta


Simplistic View of Medical Imaging

- X-rays
- U/S
- MRI

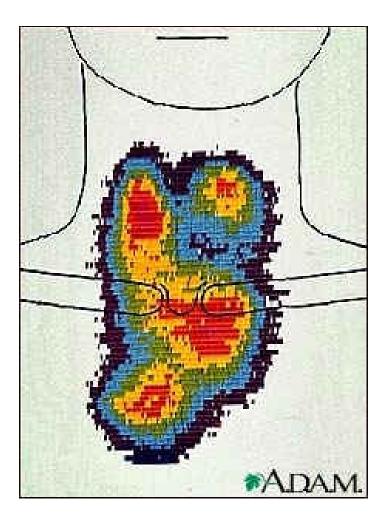
Isotopes

- Images of Structure
- Images of Structure
- Images of Structure
- Images of Function
 - Images of Function
- Biomarkers/Images of Biology


Single Photon Imaging

- Radiopharmaceutical/Radiotracer
 - Radionuclide
 - Tc-99m
 - **I**-131
 - I-123
 - In-111
 - Probe
 - MDP Bone
 - DTPA Kidney/transit
 - MIBI Cardiac perfusion
 - WBC Infection
 - Peptide Neuroendocrine cancers

A study of the histopathology and physiologic function of thyroid tumors, using radioactive iodine and radioautography Dobyns BM and Lennon B. J Clin Endocrinol 1948; 8:732-748


- 1. The degree of function may be related to the degree of cellular differentiation of adenomas, with certain exceptions.
- 2. There are hyperplastic adenomas with cellular hypertrophy which are hyperfunctioning but there are also hyperplastic adenomas which are not functioning.
- 3. Hyperfunctioning adenomas may exist with or without evidence of thyrotoxicosis and probably by their excessive activity suppress otherwise normal thyroid tissue.

Colloid adenoma with relatively little function A - histologic section; B - radioautograph

Dobyns BM and Lennon B. J Clin Endocrinol 1948; 8:732-748

Thyroid Imaging 1976 – Iodine-131: Rectilinear Scanner

Treatment of Thyroid Cancer – 1953 No significant change in 2017

"Principal goal in the treatment of metastatic thyroid cancer is destruction of metastases with radioactive iodine"

- removal of all thyroid tissue
- suppression of iodide production by large doses of thiouracil
- stimulation by TSH

First Tc-99m Generator – Brookhaven National Laboratory

https://upload.wikimedia.org/wikipedia/commons/2/25/First_technetium-99m_generator_-_1958.jpg

BROOKHAVEN NATIONAL LABORATORY

MEMORANDUM

DATE: December 4, 1958

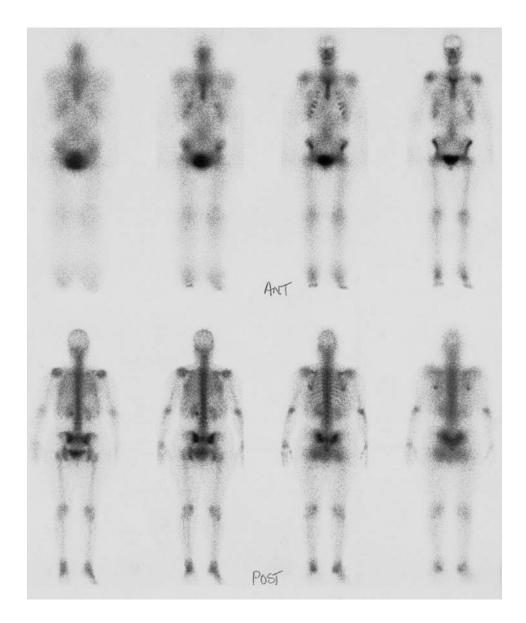
TO:	Addressees Below
FROM:	Daniel M. Schaeffer, Head MUA BNL Patent Office
SUBJECT:	P-701 and P-702 - PREPARATION OF CARRIER-FREE MOLYBDENUM AND OF TECHNETIUM FROM FISSION PRODUCTS

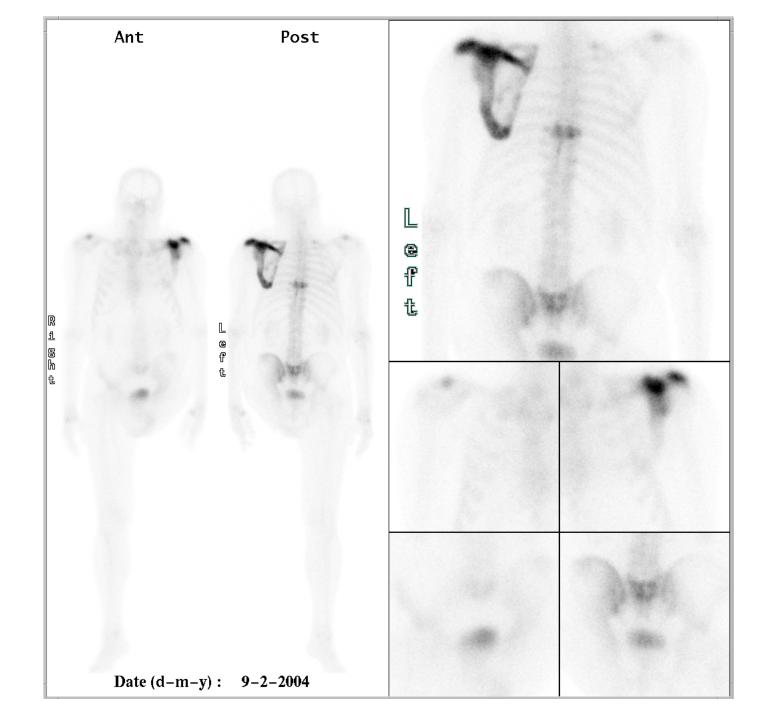
The New York Patent Group has carefully studied the information available relative to the above-identified item. The AEC does not at present desire to prepare a patent application on this item for the following reason:

"The method of producing carrier-free molybdenum-99 from fission products is disclosed in U. S. Patent Application S.N. 732,108, Green, Powell, Samos & Tucker (BNL Pat No. 58-17). It is noted that molybdenum-99 may be separated from its radioactive daughter, technetium-99, by absorption of a solution of molybdenum-99 on alumina and subsequent elution of its daughter with .1 nitric acid. While this method is probably novel, it appears that the product will probably be used mostly for experimental purposes in the laboratory. On this basis, no further patent action is believed warranted."

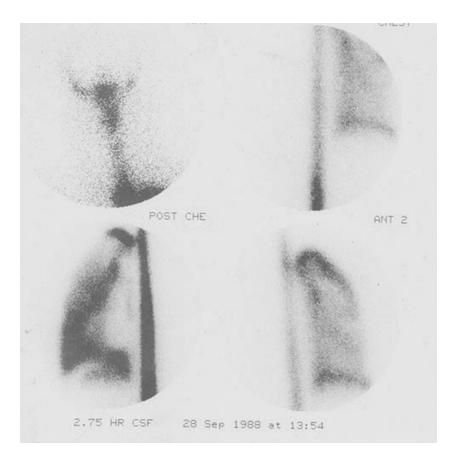
Int J Appl Radiat Isot 33: 793 - 799, 1982

Technetium -99m Generator 2015

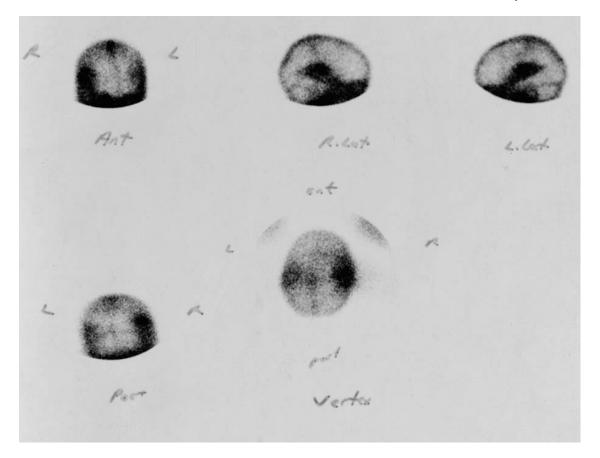


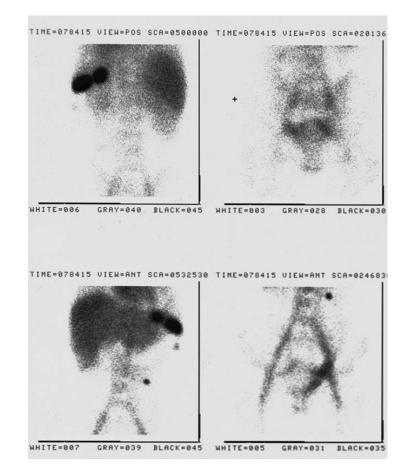

http://www.assignmentpoint.com/science/engineering/generator-hardware-and-accessories.html

Bone Scan 1974 ^{99m}Tc PYP



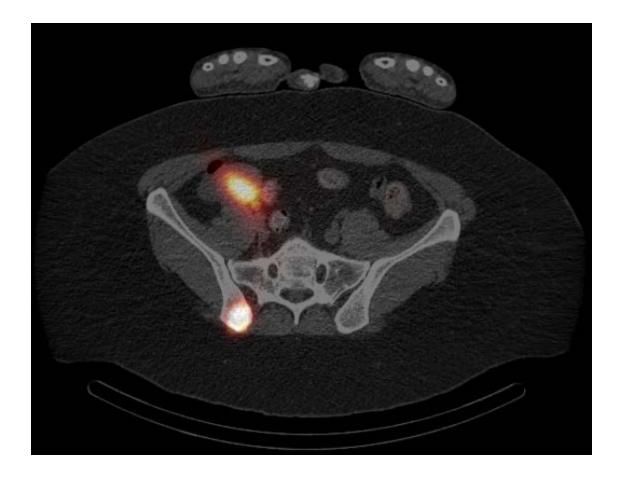
Linear Tomography 1984 MDP



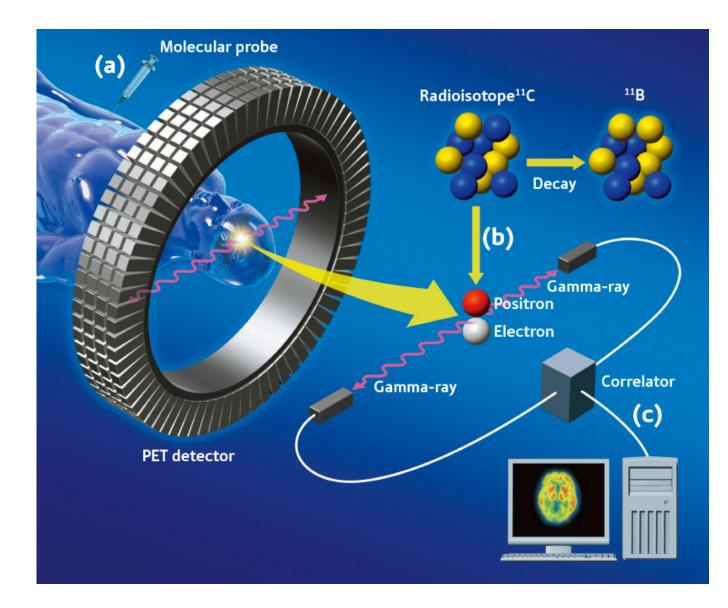

Spinal Pleural Fistula Post Trauma 1989 ^{99m}Tc DTPA

Brain Scan 1988 – ^{99m}TcO₄

Splenunculi Post Trauma 1990 99mTc RBC


Metastatic Mediastinal Carcinoid: ¹¹¹In Octreotide

Metastatic Mediastinal Carcinoid: ¹¹¹In Octreotide SPECT



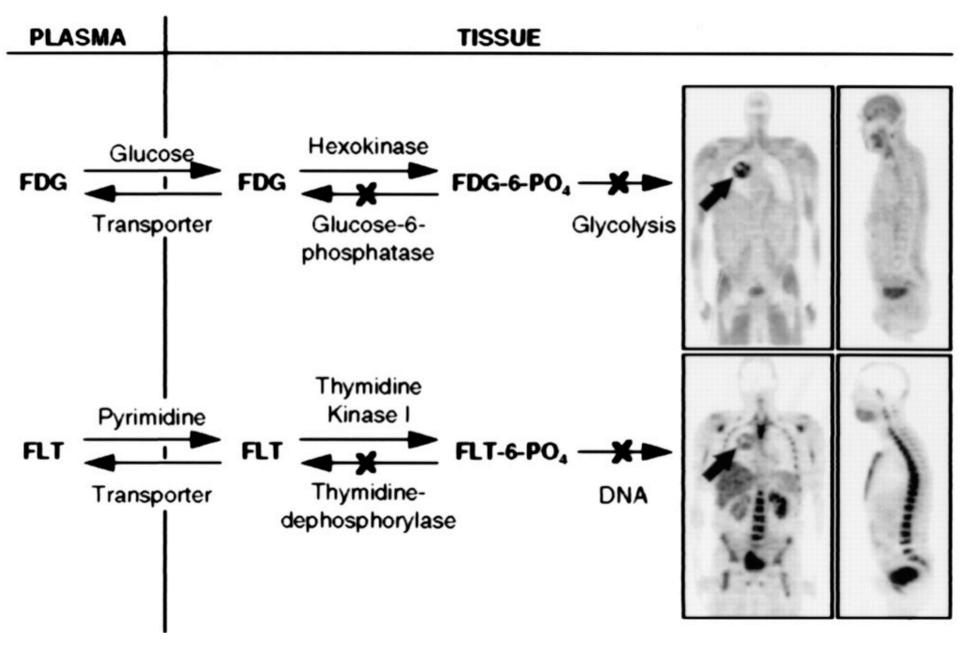
SPECT/CT I-131 Scan Thyroid Metastasis

Characteristics of PET/CT - Molecular Imaging; Imaging Biomarkers

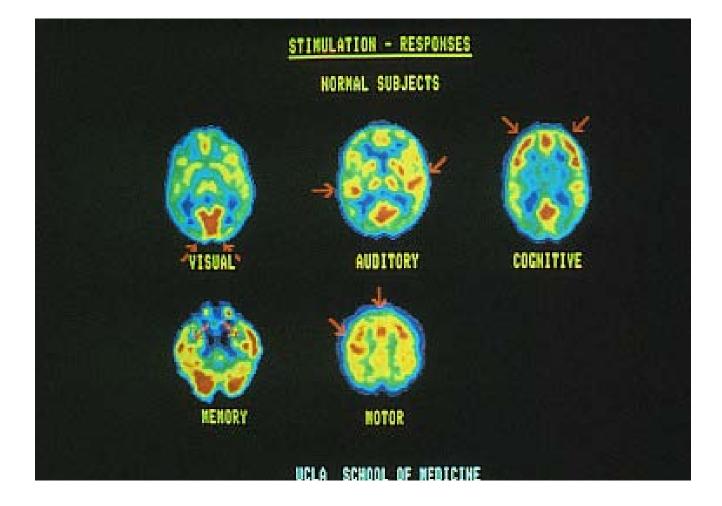
- Assay of biological and functional tumor characteristics
 - -Molecular medicine
- Targeted
 - -To tumor
 - -To biological process or target
 - -To metabolic, biochemical, genomic, proteomic pathway
- Quantitative
 - -Relative, absolute or temporal
- Diagnostic and predictive
 - -Stratifies for treatment
 - -Demonstrates early changes in response to therapy
 - -Predicts treatment response

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/figure1molec.jpg

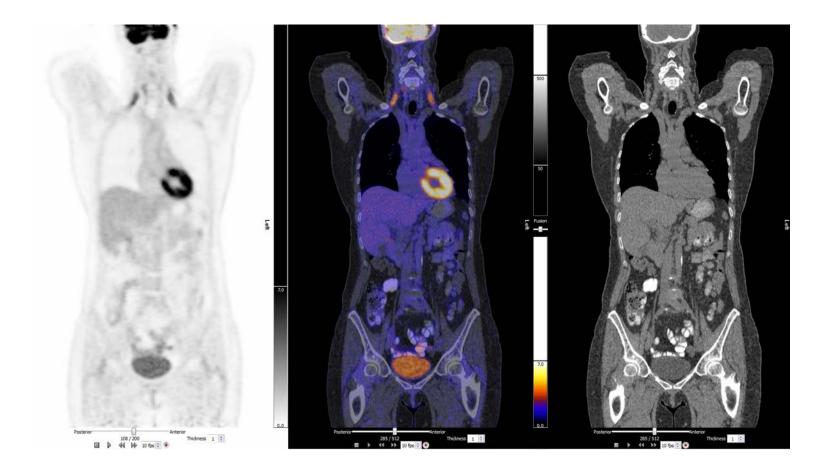
Characteristics of PET/CT - Molecular Imaging; Imaging Biomarkers


- Radiopharmaceutical/Radiotracer
 - Radionuclide
 - F-18
 - C-11
 - Ga-68
 - Rb-82

• FDG


• FAZA

- Probe


- glucose metabolism
- hypoxia
- FLT
- proliferation
- Peptide
- neuroendocrine and prostate cancers
- Carfentanil op
 - opioid recpetors

Anthony F. Shields (Wayne State, Detroit) and John R. Grierson (U. Washington, Seattle) Bernhard M. Dohmen and H-Juergen Machulla (Tuebingen PET Center, Germany)



Coronal Slices of PET FDG Images

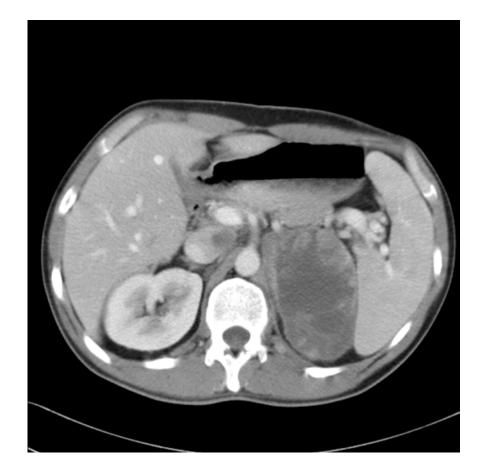
FDG PET Images Taken After Walking Without (A) or With (B) a Stride Assistance System

Shimada H, et al. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2007; 15(3):442-448

FDG Uptake by Lower Extremity Muscles During Walking With or Without a Stride Assistance System

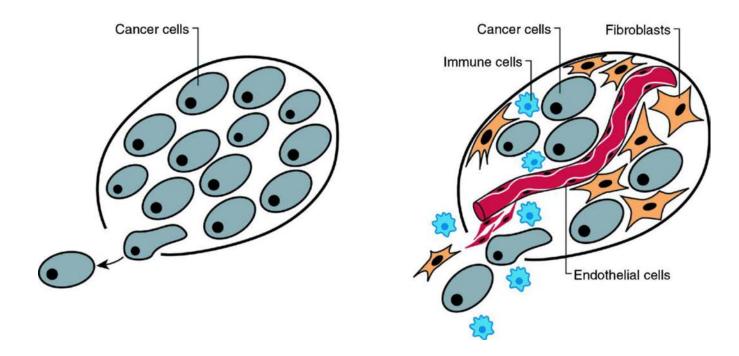
	Without the SAS	With the SAS	Ratio	<i>p</i> Value
	Mean	Mean	with \div without	
Flexor hallucis longu	is 2.08	2.36	1.25	0.43
Tibialis anterior	1.71	2.54	1.74	0.08
Tibialis posterior	1.44	2.92	2.13	0.04
Medial gastrocnemiu	us 1.54	2.91	2.36	0.01
Rectus femoris	0.43	0.41	0.97	0.56

Shimada H, et al. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2007; 15(3):442-448

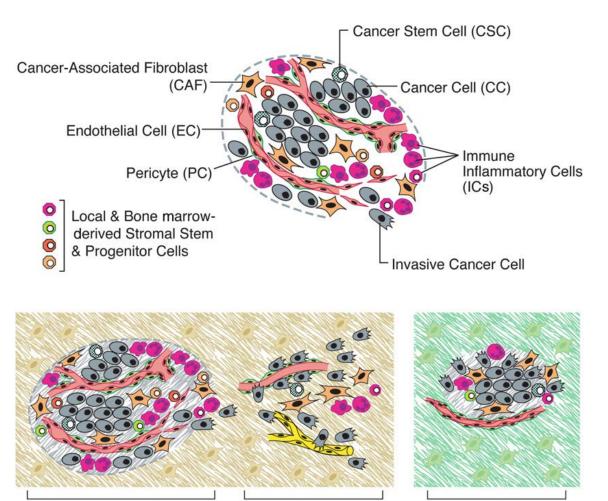


Molecular Profiling of Cancer – the Future of Cancer Medicine: a Primer on Cancer Biology and the Tools Necessary to Bring it to the Clinic

"The goal of personalized cancer medicine is to understand the relevant characteristics underlying a particular individuals disease (both disease and host factors) and then tailor therapy to that individual disease. The right drug, at the right dose, for the right patient at the right time is the goal of personalized medicine."


Assessment of Response

Tumors as Complex Tissues


The Reductionist View

A Heterotypic Cell Biology

Hanahan D and Weinberg RA. Cell 2000; 100:57-70

Tumors as Complex Tissues

Core of Primary Tumor microenvironment

Invasive Tumor microenvironment

Metastatic Tumor microenvironment

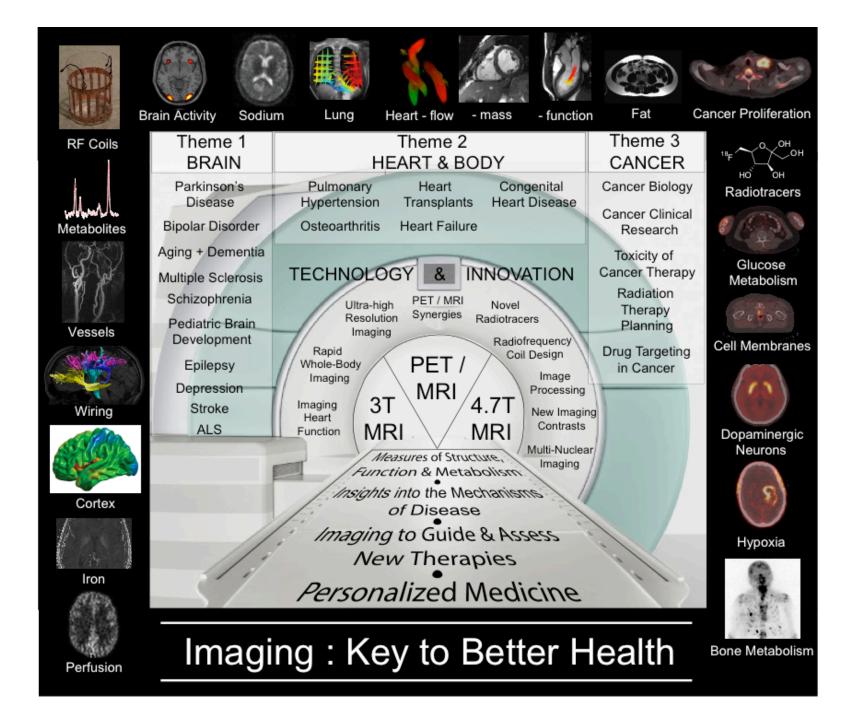
Hanahan D and Weinberg RA. Cell 2011; 144:646 - 674

What is Measurable with Molecular Imaging

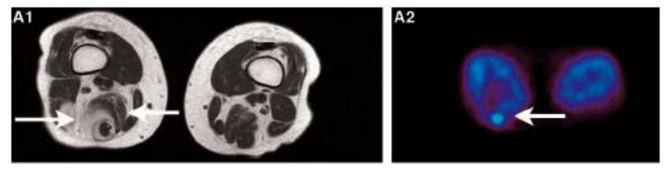
Workman P, et al. JNCI, 2006; 98(9):580-598

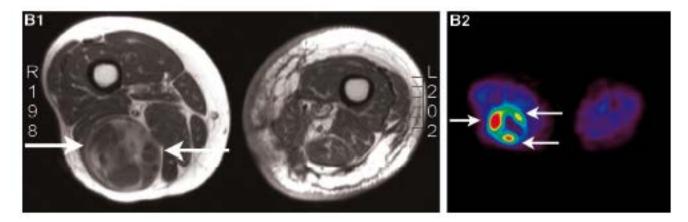
Objectives	Measurable Endpoints
Patient selection	Expression of molecular target (erbB2), Physiologic state (hypoxia)
Concentrations needed for	Pharmacokinetic properties in plasma
activity at the site of action	and/or tissue
	\downarrow
Specific action on the molecular	Target inhibition in tumors and/or
target or pathway	surrogate normal tissue
\downarrow	\downarrow
Induction of the desired	Inhibition of proliferation, invasion,
biologic effect	angiogenesis, induction of apoptosis,
•	differentiation or senescence ↓
Resulting clinical response	Tumor regression, cytostasis
\checkmark	\downarrow
Patient outcome	Disease-free survival, performance
	status, quality of life, overall survival

Molecular Imaging/Imaging Biomarkers in Oncology


Current Paradigm

- Identify the presence or absence of tumor
 - Primary diagnosis and staging
 - Treatment effect
 - Monitoring
 - Recurrence
 - Follow-up and restaging
- Assessing toxicity
- Screening


Future Paradigm


- Current indications
- Biological characterization

 Tumor
 - Individual
- Predicting progression/outcome
- Predicting/assaying Rx response
- Treatment stratification
- Predicting /assaying toxicity
- Personalized medicine

FLT Uptake in Low- and High-Grade Sarcoma

Cobben DCP, et al. Clin Cancer Res, 2004; 10:1685-1690

Mean and Maximal SUV and Tumor/NonTumor Ratio in Japanese Grading System

	Grade 1 (<i>n</i> =7)	Grade 2 (<i>n</i> =5)	Grade 3 (<i>n</i> =8)	Low Grade vs High
Mean SUV	1.0	2.1	2.8	0.011
Maximal SUV	1.3	2.8	3.3	0.014
TNT	2.1	3.4	6.0	0.008

Cobben DCP, et al. Clin Cancer Res, 2004; 10:1685-1690

Imaging with FLT in 2 Patients with NSCLC

Abnormal Distribution

Metabolic Assessment of Gliomas using ¹¹C-Methionine, [¹⁸F]-Fluorodeoxyglucose, and ¹¹C-Choline Positron-Emission Tomography

Metabolic Assessment of Gliomas

- 95 patients with presentation with glioma
 - Brain stem and grade 1 excluded
- Presurgical evaluation with MET, FDG, CHO, contrast enhanced MRI
- Correlation with WHO histological classification

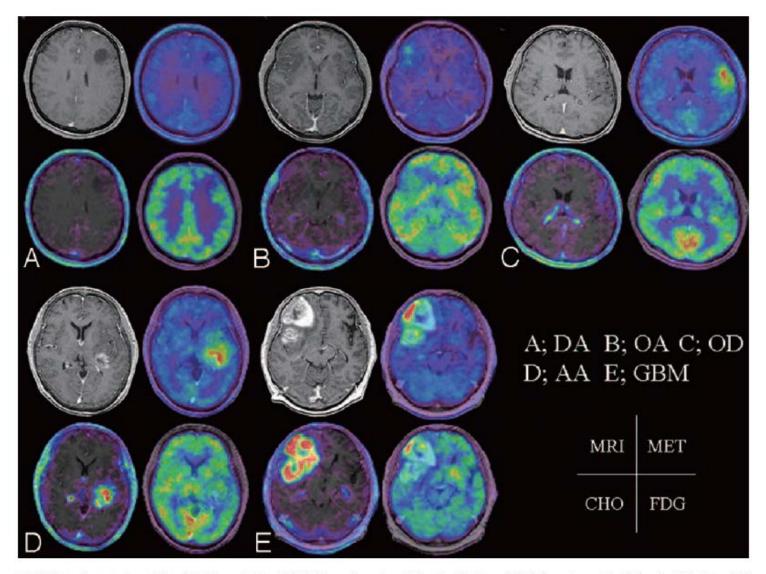
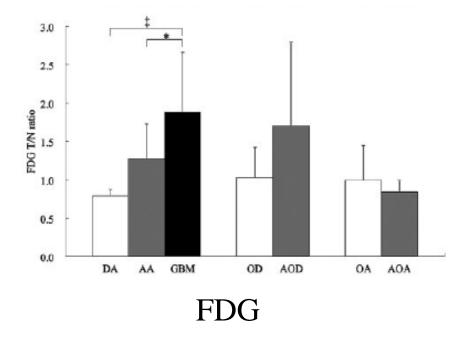
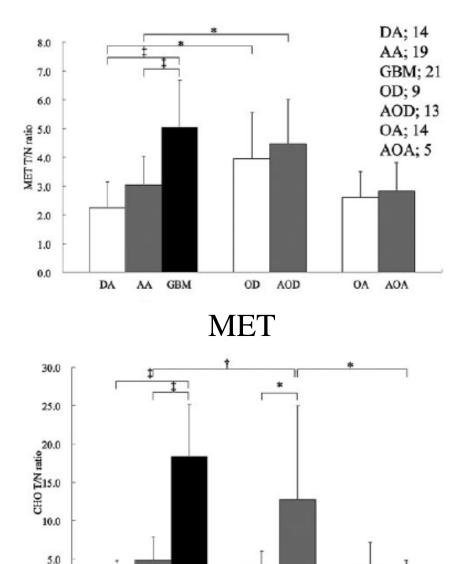




Fig 2. Left top, Contrast-enhanced, T1-weighted image. Right top, MET PET is superimposed on MR imaging. Left bottom, CHO PET is superimposed on MR imaging. Right bottom, FDG PET is superimposed on MR imaging. A, A 32-year-old woman presented with diffuse astrocytoma. MET T/N ratio = 1.72, CHO T/N ratio = 1.38, and FDG T/N ratio = 0.66. B, A 23-year-old woman presented with oligoastrocytoma. MET T/N ratio = 2.76, CHO T/N ratio = 1.82, and FDG T/N ratio = 0.92. C, A 44-year-old man presented with oligodendroglioma. MET T/N ratio = 3.71, CHO T/N ratio = 2.74, and FDG T/N ratio = 1.07. D, A 62-year-old woman presented with anaplastic astrocytoma. MET T/N ratio = 4.26, CHO T/N ratio = 10.17, and FDG T/N ratio = 1.24. E, A 68-year-old man presented with glioblastoma multiforme. MET T/N ratio = 6.85, CHO T/N ratio = 33.38, and FDG T/N ratio = 2.55.

AJNR 29: 1176 - 1182, 2008

Correlation Between Tracer Uptake and Tumour Grade

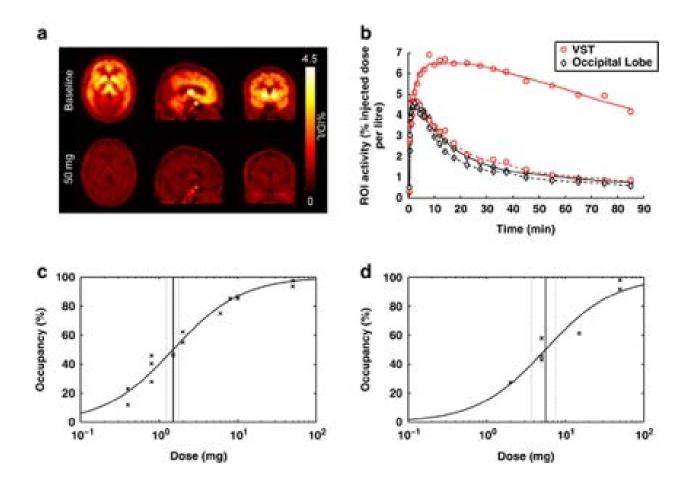
AJNR 29: 1176 - 1182, 2008

CHO

OD

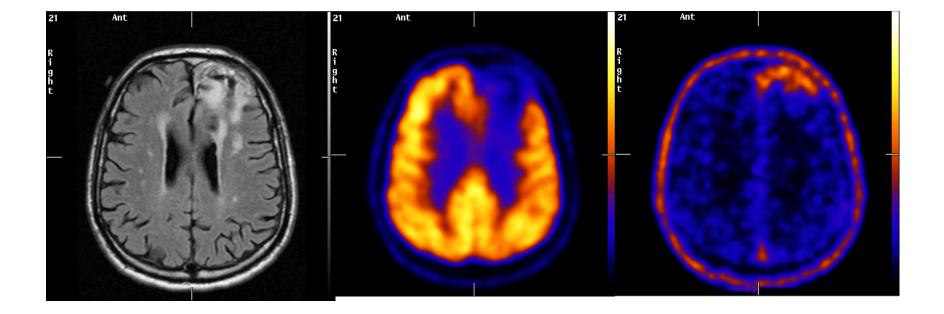
AOD

OA AOA

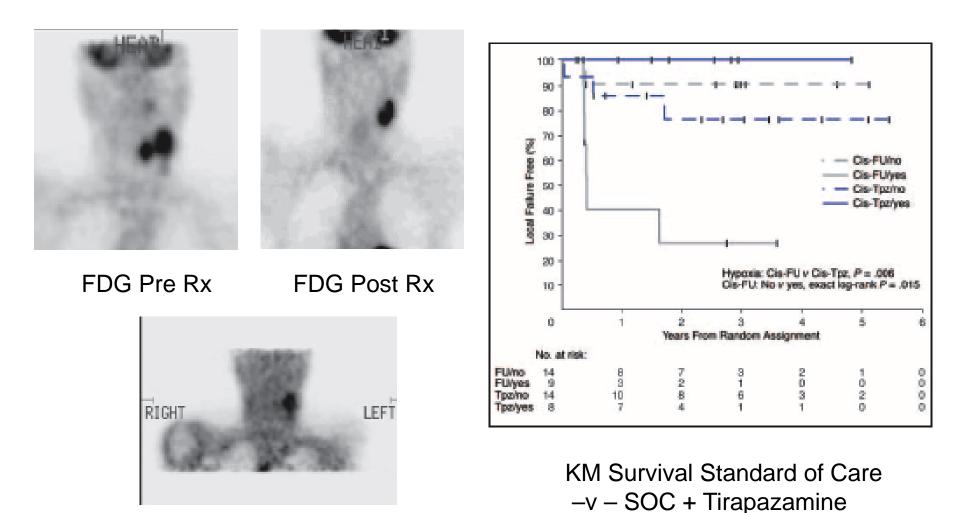

GBM

AA

0.0


DA

¹¹C-Carfentanil Distribution in Brain


Mol Psychiatry. 2011 Aug; 16(8): 826-835.

Hypoxia Imaging in GBM - FAZA

Hypoxia Imaging: Tirapazamine Trial

Rischin D, et al. J Clin Oncol; 2006; 23(13): 2098-2104

FMISO Pre Rx

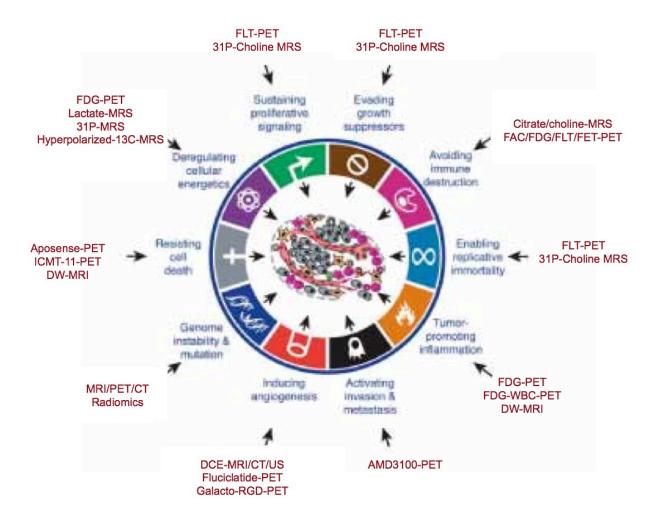
Functional imaging of neuroendocrine tumors with combined PET/CT with ⁶⁸Ga-DOTATATE and ¹⁸F-FDG

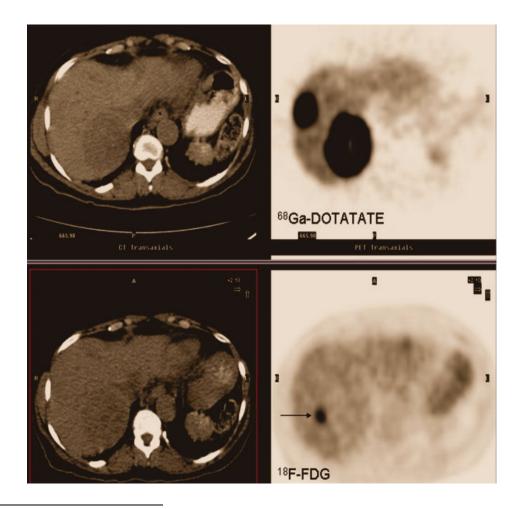
Kayani I, et al. Cancer 2008;112:2447-2455

- 38 patients with prior diagnosis of NETs –34 GEP
 - -4 Unknown primary
- Gold standard: Histology, markers, Progressive imaging
- Ga-68 sensitivity:
- FDG sensitivity: 66%

82%

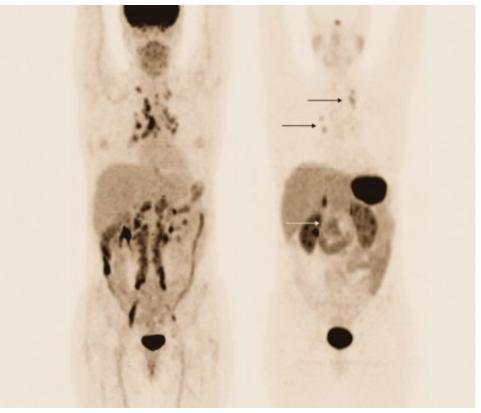
Imaging Biomarkers for Cancer Biology




Figure: Hanahan D and Weinberg R, 2011, Cell, 144:646-674, adapted by Adapted by E Aboagye, R Maxwell and DR Newell

Criteria for Assessing the Prognosis of Neuroendocrine Tumors of the Gastrointestinal Tract

	Meta- stases ndex sy	ndron	Histological Invasion ne	Tumor differentia	Angio- ation	Ki-67 size	Hormonal invasion
Benign	-	-	Well	≤ 1 cm	-	< 2%	-
Benign or Iow grade	-	-	Well	≤ 2 cm	-/+	< 2%	-
Low grade malignant	+	+	Well	> 2 m	+	>2%	+
High grade malignant	+	+	Poorly	Any	+	>30%	-


Klöppel G, et al. Ann NY Acad Sci. 2004; 1014:13-27.

54-year-old Female Patient with Metastatic Carcinoid Tumor (Primary Cecal Carcinoma)

Kayani I, et al. Cancer 2008;112:2447-2455

55--yer-old Female Patient with Metastatic Neuroendocrine Carcinoma with Unknown Primary

FDG

Ga-68

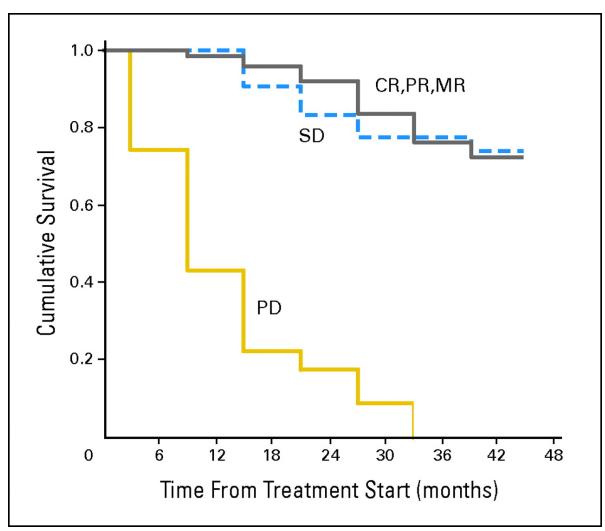
Kayani I, et al. Cancer 2008;112:2447-2455

SUVmax of ⁶⁸Ga-DOTATATE and ¹⁸F-FDG According to Tumor Grade

	⁶⁸ Ga-DOTATATE	¹⁸ F-FDG	Ρ
All NET	16.9 (1.6-50)	4.2 (1.4-16.4)	.005
Ki67 index <u><</u> 2%	29 (3.3-45)	2.9 (1.5-12)	<.001
Ki67 index 3%-20%	15.5 (1.8-50)	10.5 (2.0-13.9)	NS
Ki67 index >20%	4.4 (1.6-8.9)	11.7 (4.1-16.4)	.03

Kayani I, et al. Cancer 2008;112:2447-2455

Radioisotope Therapy (RIT)


Lu-177 DOTATATE Treatment for Patients with Neuroendocrine Tumours

Sandy McEwan, M.B. F.R.C.P.C Chair, Department of Oncology University of Alberta Treatment With the Radiolabeled Somatostatin Analog [¹⁷⁷Lu-DOTA⁰,Tyr³]Octreotate: Toxicity, Efficacy, and Survival

Dik J. Kwekkeboom, et al

JCO, 2008:2124-2130

Lutetium Octreotate Rx Survival in GEPNETS

Kwekkeboom, D. J. et al. J Clin Oncol; 26:2124-2130 2008

Copyright © American Society of Clinical Oncology

Previous PRRT monotherapy studies in NET

Reference	Туре	Patients	Compound	Primary Tumor	Mean Dose (GBq)	Mean Cycles (N)	DCR (%)	PFS (M)	OS (M)
MEDICAL THERAPIES									
Yao 2011 (19)	Р	207	Everolimus	P-NET	10mg	daily	78	11	>28
Raymond (20)	Р	86	Sunitinib	P-NET	37.5 mg	daily	72	11.4	>20
Rinke (22)	Р	42	Octreotide	GE-NET	30 µg	4-weekly	NA	14.3	>75
Martin-Richard 2013 (21)	R	30	Lanreotide	ALL NET	120 mg	4-weekly	89	12.9	NA
		•	-	PRRT		1		·	
Waldherr 2001 (2)	Р	41	90Y-TOC	ALL NET	6/m²	4	85	>26	>24
Imhof 2011 (3)	R	1109	⁹⁰ Y-TOC	ALL NET	3.7/m ² *Cycle	2 (1-10)	39.3	NA	NA
Kwekkeboom 2008 (4)	R	310	¹⁷⁷ LU-TATE	ALL NET	28.7	4	80.3	33	46
Bodei 2011 (9)	Р	51	¹⁷⁷ LU-TATE	ALL NET	25.2-26.4	4-6	82	36	36>
Sansovini 2013 (10)	Р	52	¹⁷⁷ LU-TATE	P-NET (all)			81	29	>30
Ezziddin 2014 (8)	R	68	¹⁷⁷ LU-TATE	P-NET	32	4	85	34	53
Paganeli 2014 (11)	Р	43	¹⁷⁷ LU-TATE	GE-NET	18.4 - 25.7	5	84	36	> 60
Romer 2014 (6)	R	141	¹⁷⁷ LU-TOC	ALL NET	13.5	2	NA	NA	45.5
Present Study	R	56	¹⁷⁷ LU-TOC	ALL NET	13.1	2.1	66.1	17.4	34.2
		24	1 Cycle	ALL NET	6.9	1	29.2	3.8	3.9
		32	> 1 Cycle	ALL NET	18.5	2.6	94	32	35
		24	> 1 Cycle	GEP_NET	19.4	2.7	100	34.5	34.7
		8	> 1 Cycle	Other NET	15.9	2.4	75	11.9	16.2
BL SD - Percept Patients wit	SL SD - Percept Patients with Stable Disease at Baseline								

Radioisotope Therapy (RIT)

The systemic administration of a targeted radionuclide utilizing short range beta (alpha) particle or electron emissions to achieve a clinically important outcome for a patient with primary or metastatic cancer:

- Symptom control; improved quality of life
- Stable disease
- ➤ (Good) partial remission
- Complete remission
- Prolonged response times
 - Increased progression free survival
 - Increased overall survival

Treatment Delivery in RIT

- Current paradigm continues to be governed by:
 - Classical radiobiology
 - Classical dosimetry
 - Fixation on tumor dose
- Emulation of classical external beam radiation oncology principles
- "First dose is best (only) chance of clinical benefit"
- Lack of appropriate clinical trial methodology
- Lack of robust clinical outcomes data

Two Paradigms for RIT

• "Big Bang"

High unit dose Toxicity rescue Single treatment Possibly precludes further treatments High complexity Always inpatient

Paradigm of Physics

"Steady State"

Low unit dose High cumulative dose Multiple treatments Titrate to toxicity Delayed Response Low complexity Usually outpatient

Paradigm of Biology

The Edmonton Protocol

The Edmonton Lu-177 Protocol

Hypothesis: Induction & long-term maintenance therapy with Lu-177 improves outcomes in patients with NETs, and is effective and safe for these patients.

Clinical Protocol: up to 12 cycles in total Induction: 4 cycles of up to 6.11 GBq/cycle every 2.5 – 3.5 months Maintenance: up to 8 cycles of up to 4.07 GBq/cycle every 5.5 – 10 months

Edmonton Protocol

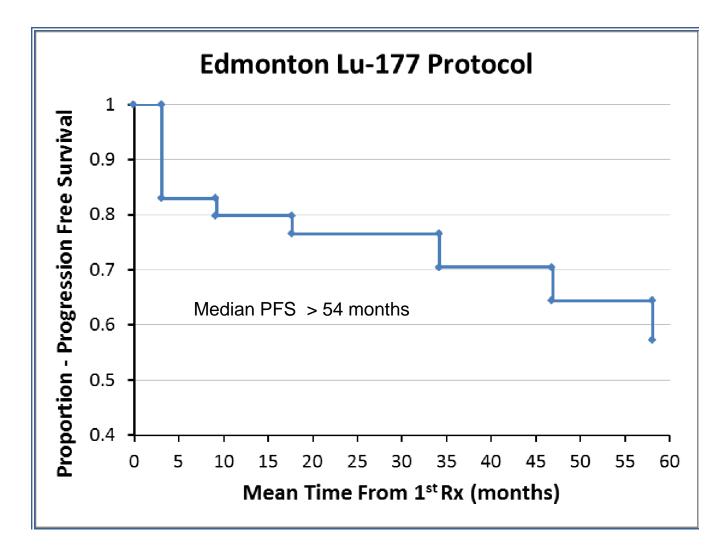
Therapy Number	Year	Frequency	Evaluations
Induction 1 - 4	1	Every 10 - 12 weeks	CT/MRI scans and blood work/urine 4 months after therapy 4.
Maintenance 5 - 6	2	Every 6 months (range 5 – 8 months)	CT/MRI scans and blood work/urine 4 months after therapy 5 & 6.
7 - 8	3	Every 6 months (range 5 – 9 months)	CT/MRI scans and blood work/urine 4 months after therapy 7 & 8.
9 +	4	Every 9 months (range 7 – 12 months)	CT/MRI scans and blood work/urine 4 months after each subsequent therapy.

Distribution of Lu-177 patients at CCI - GEPNETS

Subjects with at least 1 treatment	n = 138
Primary	PNET n=44; GNET n=84, presumptive GNET n=10
Age (yrs) at treatment onset (mean, range)	61.3 (26.5 – 84.4)
Gender (M/F)	74/64

Current Active Patients: March 31, 2016

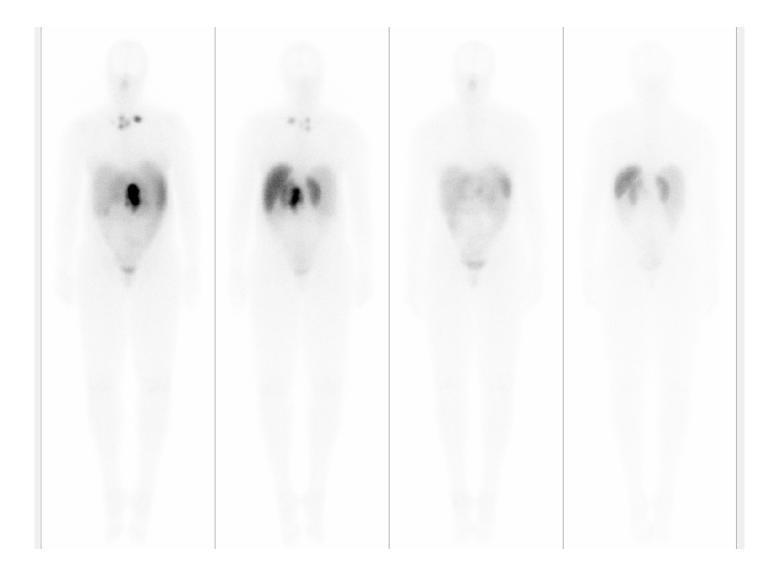
Patients	Number		
Active Therapy	109		
No Longer on therapy	29		
Deceased	13		
Progressive Disease	9		
On Hold - Toxicity	5		
Complete Remission	2		


Cumulative Administered Lu-177 Doses

Total # Lu-177 Doses	Cumulative Lu dose (GBq) (mean ± SD)
1 - 2	5.76 (2.4)
3 - 4	17.90 (3.4)
5 - 6	23.49 (3.9)
7 - 8	31.98 (4.3)
9 - 10	40.25 (2.9)
11 - 12	48.88 (6.0)

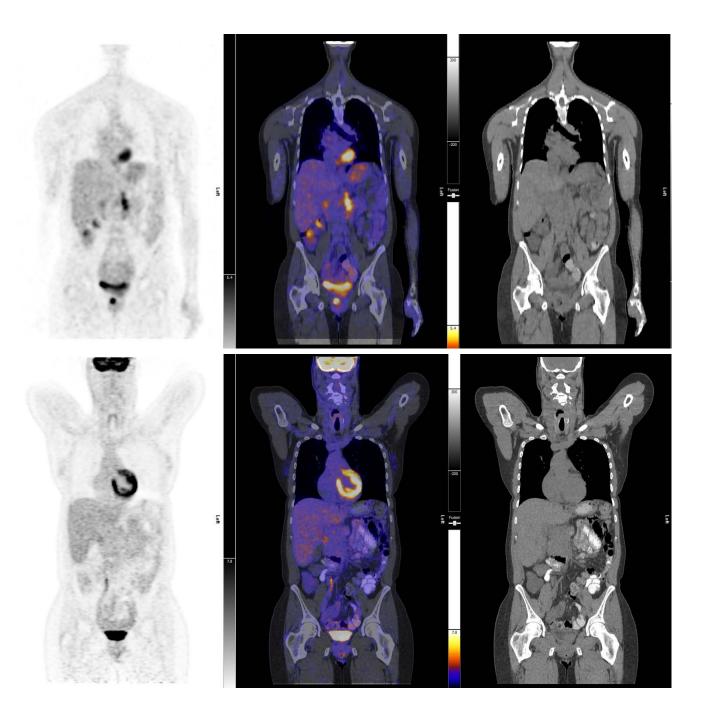
Rx Failures by Primary Site

Site	No Longer on Rx	Deceased	PD	CR	On Hold
PNET	11	5	4	0	2
GNET	15	6	4	2	3
pGNET	3	2	1	0	0


Progression Free Survival

Surgical CR After 6 Cycles

Aug 2014 Nov 2014 Feb 2015 Apr 2015 Apr 2016 •


NM "CR" After 6 Cycles

PET "CR" After 6 Cycles

Jan 2013

Lu-177 Therapy Overview All Diagnoses

- Data support hypothesis that induction and maintenance therapy with Lu-177 improves PFS in patients with GEPNETS.
- This regimen is more effective than literature reported treatment regimens.
- In this cohort, median PFS has not been reached at 54 months.
- GNET response rate > PNET
 - 80% -v- 62%

Edmonton Protocol Toxicity

- Lymphocytes \geq grade 3: n = 10
- Platelets \geq grade 3: n = 1
- White cells \geq grade 3: n = 1
- Renal \geq grade 3: n = 4
- No myelodysplasia or leukemia has been observed

Clinical Outcomes after Steady State RIT (Biological Hypothesis; Edmonton Protocol)

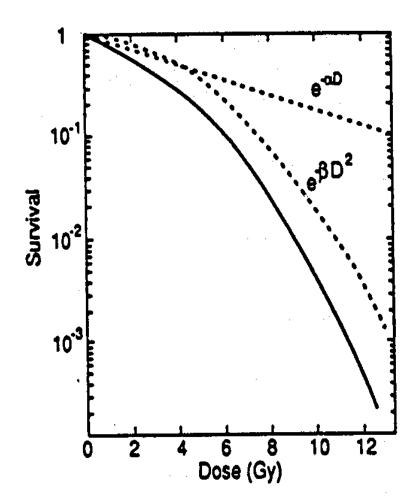
- Stable disease is common
- Palliative responses are the norm
 - There appears to be a cumulative dose benefit
 - Treatments may be sustained for several years
 - There appears to be limited cumulative dose risk
 - Treatments may continue as maintenance
 - Response may be sustained for several years
- Unequivocal progression free survival benefit
- Probable overall survival benefit
- Toxicity is very limited; is acceptable at the doses administered and should not reduce therapy goals of improving long term responses
- ? Implications for combination therapies

How Does it Work

(Biological Hypothesis)

Characteristics of Radioisotope Therapy

Clinical Characteristics

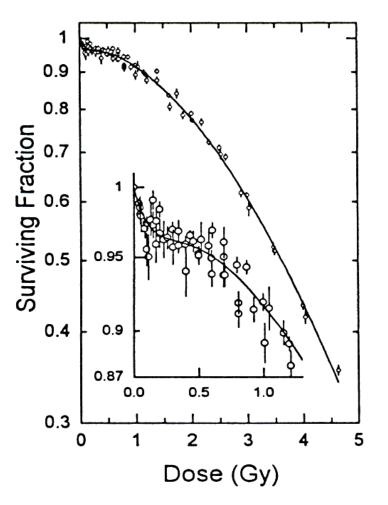

- Systemic administration
- Retreatment
- Low toxicity
- Low complexity
- Adjuvant treatment (?)

Scientific Characteristics

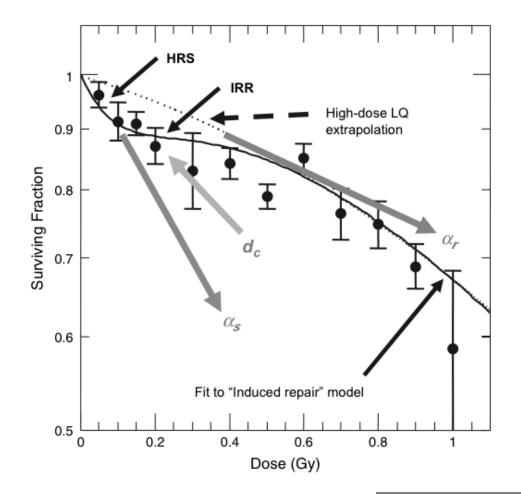
- VLDR/LDR
- Microdosimetry (biology)
- T_p correlates with T_b
- Low proliferation rate (?)
- Ability to image (theragnostic)
- Specific targeting

"Classical" Cell Survival Curves

- Cell killing is well described by shouldered models such as multitarget [MT] or linearquadratic [LQ].
- Cells must be "hit" to be killed, and DNA is the principal "target".



Paradigm Revision: Low dose hypersensitivity-inducible radioresistance (LDH-IRR)


• Most cell types exhibit fine structure in their survival curves at low doses.

Survival curves for HT-29 cells

Ref: Wouters B *et al*. Radiat Res 146:399, 1996.

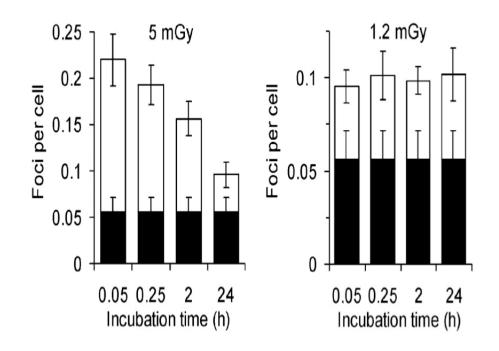
Survival Curves - LDHRS

Int. J. Radiation Oncology Biol. Phys., 70: 1310 - 1318, 2008

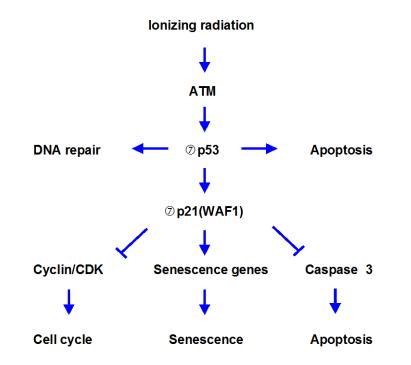
Clinical relevance for LDH in RIT

- If localized dose/dose rate is below the threshold for triggering IRR, cell killing should follow the initial slope of the survival (α_s) rather than α_r estimated from high-dose LQ model
- If so RIT should exert much greater cytotoxicity than would be predicted by conventional LQ models.
- Is RIT effectively "ultra fractionation" which fails to activate IRR

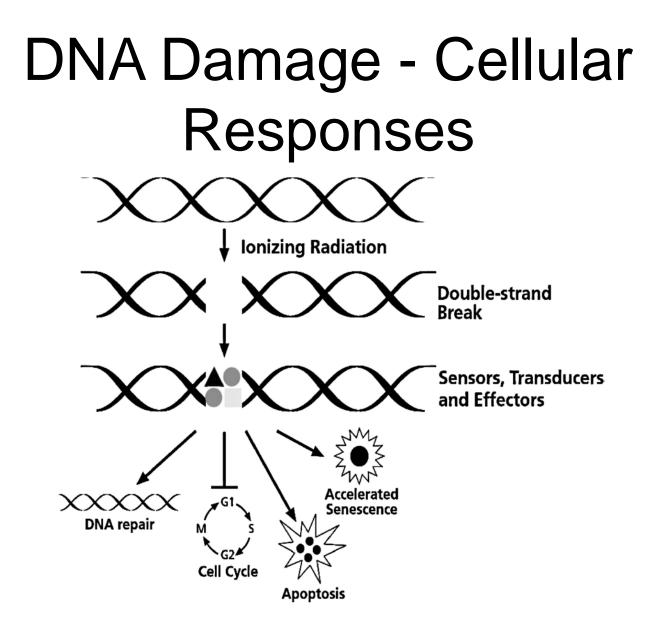
LDR Evades DNA Repair Sensors


- Reduced activation of ATM following LDR
- Reduced activation of downstream target gH2AX
- Increased cell killing after LDR

"Failure to activate ATM-associated repair pathways contributes to the increased lethality of continuous LDR radiation exposures"


Collis SJ, et al. J Biol Chem 2004, Sept 17

Lack of DSB Repair After Very Low Doses


- Rothkamm and Löbrich (2003) observed a decreasing capacity for DSB repair with decreasing dose
- Between 2 Gy and 5 mGy, H2AX foci were extensively repaired.
- Below 1.2 mGy, repair of foci did not occur up to 24 h.

Normal cell responses to ionizing radiation

- p53 also transcriptionally transactivates genes such as *p21^{waf1/cip1}*.
- Different types of normal cells lose their clonogenic potential by several different mechanisms (necrosis, apoptosis, replicative senescence).
- Many human tumor cells have mutant p53 and fail to properly execute these responses ... can this be exploited therapeutically?

Murray and McEwan. Cancer Biother Radiopharm 2007 Feb;22(1):1-23.

To Cure Sometimes To Help Often To Care Always