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1. Summary 

1.1 Background 

This report presents a detailed review of a probabilistic method developed by Candu Energy (CE) 

for assessing the risk of pressure tube – Calandria tube (PT-CT) contact in the reactor core.   

 

 

Figure 1.1: Steps in the probabilistic assessment method developed by Candu Energy [1] 

 

The probabilistic method developed by Candu Energy, referred to as CE-PM [1] in this review 

report, consists of 5 major parts, as shown in Figure 1.1. The first step of benchmarking involves 

the calibration of creep factor and end slope distributions using the gap measurement data 

obtained from past inspection campaigns. The estimation of distributions of other variables, such 

as the geometry of fuel channels, spacer locations and measurement error are subsequently 

discussed.  A simulation method is presented for estimating the probability distribution of the 

time and location of PT-CT contacts, which is based on the CDEPTH code. The blister 

assessment model predicts the probability of blister cracking in contact locations. The last part 

compares the calculated failure frequency with the acceptance criterion specified in the CSA 

Standard [2]. Many important details of the benchmarking method are revealed in [3]. 

It must be stressed that the CNSC staff considers the “contact leading to blister formation” as the 

ultimate failure state. 

(5) Comparison with CSA Acceptance criterion 

(4) Blister assessment - numerical integration 

(3) MC Simlations  for contact assessment 

(2) Derivation of other input distributions 

(1) Benchmark - creep ratio and end slopes 
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A key premise of this review is that since a probabilistic assessment criterion can be represented 

by a function of random variables, the proposed solution approach must be consistent with basic 

principles of probabilistic functional analysis. With this goal in mind, this review carries out an 

in-depth evaluation of: (1) the conceptual accuracy of probabilistic formulation, (2) the relevance 

and impact of the modeling assumptions, (3) mathematical accuracy and consistency of the 

proposed estimation method, and (4) validity of the interpretation of final results. All together 

this review poses 33 points of clarification in Sections 4 to 6 of this report. A gist of these points 

is summarized in the following. 

1.2 Review of benchmarking analysis 

A probabilistic assessment criterion can be technically defined by a function, 𝑔(𝐗), that can 

represent the gap prediction model based on a computer code like CDEPT. Here X denotes a 

vector of input random variables, such as the creep factor and end slopes. Therefore, the review 

begins with a concise overview of basic concepts of the probabilistic functional analysis and 

discusses possible approaches to statistical estimation of the distribution parameters (see Section 

3). This discussion is essential to provide a context to the technical analysis of the benchmarking 

method presented in the CE-PM report. This discussion also provides necessary background to 

questions and points of clarification raised throughout this report. 

The benchmarking step of the CE-PM report is rephrased in a clear and precise mathematical 

language in Section 4, which allows one to evaluate the implications of modeling assumptions 

made in the development of CE-PM. For example, an assumption that the PT-CT gap and the 

primary variables influencing the gap (namely, the creep factor and end slopes) follow the 

normal distribution is a cornerstone of CE-PM. But, the empirical evidence provided to 

substantiate this assumption is rather weak and questionable.  

Given that a large amount of gap measurement data is available from past inspections of several 

fuel channels, it is anticipated that the assumption of normality of the gap can be verified, at least 

in an empirical manner.  

An important assumption of CE-PM is that the creep ratio has negligible influence on the gap in 

the end spans of the fuel channel, and the end slope on the gap in internal spans. Results 

presented in Figures 27 and 28 do not seem to support this assumption. 
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For instance, Figure 27 shows the sensitivity of the creep ratio to the PT-CT gap in the channel 

P08. As seen by the width of the bounds, the gap in the end spans seems to be fairly sensitive to 

the creep ratio. In fact, the order of this sensitivity is similar to that of the sensitivity of end 

slopes as shown by Figure 28. Similarly, comparing the results for the two internal spans 

(excluding the central span), the following observation can be made. The sensitivity of the end 

slope to gap is higher than that of the creep ratio, which appear to contradict the assumption of 

the CE-PM report..  

At the outset of a probabilistic assessment, the form of the performance function, 𝑔(𝐗), such as 

being a linear versus nonlinear function, must be carefully examined, since this will govern the 

subsequent analysis. It is rather strange that the CE-PM report does not discuss at all the 

dependence of the PT-CT gap on the basic variables in a deterministic sense. For example, in the 

absence of any randomness, how does the gap varies with end slopes and the creep factor? If the 

dependence indeed is linear or approximately linear, as implied by the modeling assumptions of 

the CE-PM report [1] and a supporting reference paper [3], then the statistical estimation would 

become a much more manageable task. On the other hand, if the PT-CT gap turns out to be a 

highly non-linear function of the creep factor and end slopes, the basic tenet of CE-PM would 

become questionable.  

This review also shows that if the assumptions of the CE-PM report are indeed valid, then the 

gap model can be calibrated in a direct manner using a standard estimation method like the 

maximum likelihood method. Apparently, there is no need for an iterative Monte Carlo method 

for model calibration, as proposed by the CE-PM report. If, however, the main assumptions of 

the CE-PM report, namely, PT-CT gap follows a normal distribution, is not valid, the model 

calibration problem must be revisited.  

1.3 Review of reliability analysis 

In the context of PT-CT contact assessment, the next important issue tackled in the review is 

about the modeling of the risk/reliability analysis problem and the use of a correct reliability 

measure. The overall purpose of a probabilistic assessment is to quantify the risk associated with 

the operation of a component or system and ensure that mitigating actions are in place in case 

that the risk exceeds the acceptance standard. A fundamental question then arises as to what is 

the relevant reliability metric that should be adopted in the PT-CT contact and blister formation 
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problem. Is the failure frequency as defined and calculated in CE-PM a relevant measure of 

reliability? The answer to this question depends on the type of reliability analysis to which the 

PT failure problem belongs. 

In the scientific literature, the reliability analysis problem is classified into two broad categories: 

non-repairable and repairable equipment (or system or component) reliability problems [4]. A 

detailed explanation of the “repairable” vs. “non-repairable” component reliability problem is 

given in Chapter 5 of this report. 

In the non-repairable or “first-failure” problem, the mission reliability or probability of failure 

over an evaluation period (or inspection interval) is a relevant metric of reliability, whereas the 

failure rate (or failure frequency) is a relevant risk metric in the repairable system problem [4]. 

Every probability assessment must begin with identifying the type of problem, repairable or non-

repairable, that it intends to address in the probabilistic assessment. In the CE-PM report, the 

failure frequency is adopted as a reliability measure without any justification and discussion of 

this sort. 

Since the conceptual distinction between the repairable and non-repairable reliability problems 

cannot be described in a few paragraphs, Section 5 of this report presents an exposition of key 

concepts of the time dependent reliability theory with simple illustrative examples. Based on this 

discussion, the importance of using a correct measure can be better understood.   

The CSA Standard [2] describes several limit states of the performance of the fuel channel, such 

as critical flaw sizes, minimum fracture toughness and PT-CT contact. However, the Standard 

does not provide any guidance about the classification of such problems as repairable or non-

repairable failures. The Standard also omits the relation and relevance of the chosen risk measure, 

i.e., failure frequency, to the reliability with respect to postulated failure modes. 

How to classify a risk/reliability assessment problem related to the fuel channel performance into 

a repairable or non-repairable category is discussed in detail in Section 5.4. This discussion is 

somewhat generic and applicable to probabilistic assessment of any reactor system. 

The CE-PM report estimates the PT lifetime distribution, i.e., the distribution of the time of 

blister formation for each pressure tube in the reactor core. Since the simulation stops after the 

“first” failure of a PT, and it does not consider any repair or replacement followed by a failure in 
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the simulation, it is concluded that the PT failure has NOT been analyzed as a repairable 

reliability problem. Since CE-PM implicitly analyzed the PT-CT contact as a non-repairable 

reliability problem, the probability of failure over an appropriate evaluation period is a 

meaningful reliability measure.  

A fundamental problem with the definition of the failure frequency in a non-repairable problem 

is that its long term value approaches zero as the operating life increases to a large value as 

shown in Section 5.2. Even for an aging system where an increase in failure frequency is 

normally expected, the failure frequency in a non-repairable problem will exhibit a non-

monotonic trend, which is an incorrect solution. 

In essence, the reliability measure adopted in a probabilistic assessment must be commensurate 

with the type of performance limit state (serviceability or ultimate), nature of failure mode (self-

announced or latent), rate of progression of limit states and the maintainability of the system. For 

the sake of conceptual and procedural accuracy of the probabilistic assessment, it is 

recommended that the CE-PM report include a section that describes the nature of limit states 

analyzed in the contact assessment and accordingly justify the chosen reliability measure. 

1.4 Closing remarks 

In addition to the review of statistical estimation and reliability analysis methods,  this report also 

reviews (see In Section 6,) several issues related to sample size used in simulations, 

convergence, error bounds, sensitivity analysis and the spacer movement model used in the CE-

PM report.  

An overall conclusion of this review is that the proposed PT - CT contact assessment method is 

based on several modeling assumptions which are rather weakly supported by the evidence 

presented in the report. The questions and points of clarification raised in the review can be 

adequately addressed by CE, since the Candu industry has developed robust models and 

computer codes and gathered a substantial amount of data from fuel channel inspections. The use 

of existing information and database can strengthen the technical foundation of the PT-CT 

contact assessment by better justifying the modelling assumptions used in the CE-PM report. 
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In closing, a considerable emphasis is placed in this review on the conceptual accuracy of the 

problem formulation and the use of a correct reliability metric (i.e., failure rate versus failure 

probability) in a probabilistic assessment with a definite purpose. The purpose of this in-depth 

discussion is to pave the way for correct applications of the reliability theory to the risk-informed 

decision making in the nuclear industry. 
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2. Introduction 

2.1 Background 

The Candu Energy (CE) has developed a probabilistic method for assessing the impact of PT-CT 

contact in a CANDU reactor core [1]. This methodology, referred to as CE-PM here onwards, is 

basically a probabilistic version of a deterministic computer code C-DEPTH. The computer code 

C-DEPTH uses the finite element method (FEM) to model the sag of fuel channel assembly and 

calculate the gap between the pressure tube and calandaria tube at any given time in effective full 

power hours (EFPH).  

Followed by a PT-CT contact, blister formation and blister cracking are considered as “non-

performance” conditions or limit states of the pressure tube.  

It must be stressed that the CNSC staff considers the “contact leading to blister formation (i.e., 

Heq > BFT)” as the ultimate failure state.  

With respect to the limit states of blister formation and cracking, the CE-PM report predicts the 

expected number of pressure tube failures over an evaluation period. If the predicted failure 

frequency turns out to be in compliance with the acceptance criterion given in CSA Standard 

N285.8 [2], it is concluded that the reactor core is fit for service in the evaluation period. 

Obviously, the prediction of time of PT-CT contact is an important first step of the analysis.  

The probabilistic version of PT-CT contact assessment is based on randomizing several input 

variables of  the C-DEPTH code. Some input parameters can be directly measured through the 

gauging of fuel channels, such as dimensions of pressure tube and the location of spacers. Using 

the inspection data from several fuel channels, suitable probability distributions can be assigned 

to these variables. However, there are a few latent variables in the problem, such as the creep 

factor, which cannot be measured through inspection. Note that a latent variable means a variable 

that is not amenable to a direct measurement. Therefore, an indirect approach is adopted in the 

CE-PM report to estimate the distribution parameters of latent variables using a sample of 

measured PT-CT gap (i.e., model output itself).  

The process of estimating distribution parameters of random variables contained in a model (or a 

computer code) using a random sample of model output is known as “model calibration” in the 
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statistical literature. Some of the commonly used calibration methods in the literature are based 

on the Gaussian process model and the Bayesian updating methods [5].  

The CE-PM report does not utilize a standard calibration method; rather it develops its own 

simulation-based method and refers to it as the “Benchmarking”. The benchmarking is based on 

several key assumptions. It is therefore important to evaluate whether or not the rationale and 

assumptions of the CE-PM approach  (1) capture the essence of the problem, and (2) follow 

them consistently throughout the analysis. If the assumptions of the proposed approach are 

contradictory, they would challenge the foundation of the entire calibration method and the 

validity of numerical results of the subsequent probabilistic assessment.  

2.1.1 Summary of PT-CT Assessment Approach 

The CE-PM report aims to predict the distribution of PT-CT gap at a given axial location and a 

time in the service life, which is done in two parts: 

1. Model calibration or Benchmarking: Use the available gap measurement data to calibrate 

some unknown parameters of the creep and sag model used in C-DEPTH.  

2. Model prediction: Using values derived in step 1, predict the PT failure frequency over 

the evaluation period of the risk assessment. 

In the CE-PM report, the prediction of PT-CT contacts is based on the Monte Carlo simulation 

method, which requires information about the probability distributions of all input random 

variables. Here one difficulty that arises is that some input variables cannot be measured directly 

during an inspection.  

Probability distributions of variables like the PT wall thickness and diameter can be easily 

estimated from abundantly available fuel channel gauging data. In contrast, the reactor specific 

data for the end slopes of fuel channels and the creep rate cannot be obtained through inspection 

of fuel channels. To circumvent this limitation, the CE-PM developed a procedure to estimate the 

distributions of end slopes and the creep factor using the PT-CT gap data available from past 

inspection campaigns. This step is referred to as “statistical calibration of the model”. 

There is another parallel module that consists of the deuterium ingress and blister cracking 

models, which predicts the probability of blister formation and blister cracking at contact 

locations.  
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In the model prediction stage, simulations are carried out to predict contact locations, and blister 

formation/cracking following the contact. The probability distribution of the time to failure is 

finally converted into the frequency of pressure tube failures.  

2.2 Objectives of the Review 

The overall objective of this report is to examine the technical basis and assumptions of the PT-

CT contact assessment presented in the CE-PM report [1].  An abbreviated form of this 

methodology was published in [3].  

Specific objectives of the review are to: 

1. Evaluate the conceptual accuracy of the simulation-based statistical estimation method 

adopted by CE-PM.  

2. Assess the rationale of the model calibration (or benchmarking) method proposed by CE-

PM in comparison to well established principles of probabilistic functional analysis.  

3. Evaluate the conceptual accuracy of time dependent reliability predictions of CE-PM 

report.  

4. Evaluate the methods used for analyzing sensitivity, convergence, and error bounds.  

2.3 Scope of the Review 

The scope of this technical review includes the evaluation of the assumptions and technical 

details of the PT-CT assessment methodology presented in the CE-PM report. The assessment 

method is divided into 5 major parts, as shown in Figure 1 of the CE-PM report, and reproduced 

below.  

 

Figure 2.1: Flowchart of the probabilistic assessment of CE-PM report [1] 

 

(5) Comparison with CSA Acceptance criterion 

(4) Blister assessment - numerical integration 

(3) MC Simlations  for contact assessment 

(2) Derivation of other input distributions 

(1) Benchmark - creep ratio and end slopes 
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The PT-CT contact assessment utilizes a large body of knowledge that already exists in the 

CANDU industry about the fuel channel deformation, creep equation, reactor operation and 

inspection methods. Naturally, this review cannot cover all those broad aspects and established 

models that are already in use. Therefore, the attention is focussed evaluating the probabilistic 

formulation of the PT-CT contact problem as well as details of statistical estimation and 

computational methods.  

 This review presents an in-depth evaluation of technical details of Parts 1-3, the benchmarking 

to the Monte Carlo simulation method. The blister cracking assessment given in Part 4 is 

cursorily examined, since the blister cracking is not yet accepted by CNSC as a permissible 

performance criterion. The last Part 5 simply states the acceptable failure frequency criteria 

given in the CSA Standard [2], which are considered beyond the scope of this review.  

The items that are not addressed in this review are the deuterium ingress model, creep equation, 

CDEPTH code, and the estimation of inspection measurement error.  

The deuterium ingress model is a regression equation that correlates deuterium ingress to 

temperature and fluence. This equation is derived using the available inspection data in a 

straightforward manner. Furthermore, the use of a regression-based ingress model is an 

established practice in the industry. The CE-PM report does not provide any data that would 

allow one to review the calculations. 

The creep equation and CDEPTH code are not the part of this review for an obvious reason that 

they are well established models with a long history of use by the industry. The review of 

statistical estimation of the inspection measurement error is not possible, because the CE-PM 

report does not provide any relevant data and description of the estimation method.  

In a philosophical sense, this technical review is not about checking the “numerical values” of 

the input parameters and calculations, rather it is about evaluating: (1) the conceptual accuracy of 

probabilistic formulation, (2) mathematical accuracy and consistency of the estimation method, 

and (3) interpretation and relevance of the final results.  

2.4 Organization 

The review of the technical basis for PT-CT contact assessment is organized in four major 

sections. Since the model calibration method is the backbone of CE-PM, this review presents a 
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detailed examination of the fundamental basis of the calibration method. Section 3 presents 

essential features of the probabilistic analysis of a function of random variables and basic 

approaches for statistical estimation. Section 4 analyzes the statistical model calibration problem 

or “Benchmarking” presented in the CE-PM report. Section 5 presents an overview of the 

concepts of time-dependent reliability analysis and their relation to PT-CT contact assessment 

problem. The PT failure problem in CE-PM appears to be treated as a non-repairable reliability 

problem. The appropriate reliability metric for this class of problems is the probability of failure 

over an evaluation period (e.g., an inspection interval), not the failure frequency as defined in the 

CE-PM report. Section 6 evaluates the issues related to selection of the sample size in 

simulations, convergence and sensitivity analyses, and spacer movement model. Each of 

Sections 4 – 6 concludes with a list of questions and points of clarification which can be 

followed through by CNSC experts.  
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3. Probabilistic Analysis and Estimation: Basic Background 

3.1 Introduction 

This section presents basic concepts of the probabilistic analysis of a function of random 

variables, and discusses possible approaches to statistical estimation of the distribution 

parameters. This discussion is essential to provide a context to the technical analysis of 

benchmarking model presented in the CE-PM report. This discussion will also provide necessary 

background to questions and points of clarification raised in the next Section of this report (see 

Section 4.7).  

The basic idea discussed in this Section is that a probabilistic assessment criterion can be 

technically defined by a function of random variables. For example, a function, 𝑔(𝐗), can be 

used to define the performance requirement in terms of a vector of basic random variables (or 

inputs) X. The function, 𝑔(𝐗), is also referred to as the “performance function” or the “limit state 

function”.   

The basic aim of the probabilistic analysis is to determine the distribution of the performance 

function, 𝐹𝐺(𝑢; 𝛼𝐺 , 𝛽𝐺), which is subsequently used in the reliability prediction. Note that 

𝐹𝐺(… ) is the cumulative distribution function (CDF) of 𝑔(𝐗), and 𝛼𝐺 and 𝛽𝐺  are distribution 

parameters. 

If the assessment involves a time dependent degradation phenomenon, then the probabilistic 

analysis should also provide a conceptual discussion about the modeling of the degradation 

process.  For example, should the irradiation creep be modelled as a stochastic process (e.g. a 

cumulative process) or as a growth curve with covariates. The final model should of course be 

justified based on the mechanistic knowledge of the degradation process.  

The statistical estimation means the estimation of the distribution parameters, 𝛼𝐺 and 𝛽𝐺  using 

the available data. The maximum likelihood method is a standard method of the estimation. 

Other useful approaches are the probability paper plot method and the method of moments. If 

there is interest in updating the parameters as new data become available, the Bayesian 

framework has to be adopted for the estimation purposes.  



19 

 

3.2 A Function of Random Variables 

For the sake of brevity of discussion, consider a scalar function of two random variables, 

𝑔(𝑋1, 𝑋2). In other words, the vector X has two variables, 𝑋1 and 𝑋2. The cumulative 

distribution function of a random variable, 𝑋𝑖, is denoted as 𝐹𝑋𝑖
(𝑥), and the probability density 

function is denoted as 𝑓𝑋𝑖
(𝑥). The distribution parameters of 𝑋𝑖 are denoted as (𝛼𝑖 , 𝛽𝑖). The 

mean and standard deviations of 𝑋𝑖 are denoted as 𝜇𝑖 and 𝜎𝑖. 𝑋1 and 𝑋2 are referred to as basic 

variables. 

The distribution of the performance function depends on distributions of the underlying basic 

random variables 𝑋1 and 𝑋2. The derivation of statistical moments and the distribution of the 

performance function are studied in the following sub-Sections.  

3.2.1 Statistical Moments: Nonlinear Function 

The expected value of the function can be calculated in general using the following bivariate 

integral: 

 𝐸[𝑔(𝑋1, 𝑋2)] = ∫ ∫ 𝑔(𝑥1, 𝑥2)𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 (3.1) 

Note that 𝑓(𝑥1, 𝑥2) is the bivariate PDF of basic variables. If the function involves n  basic 

variables, evaluation of the expected value would require solution of an n-dimensional 

multivariate integral, which is a computationally challenging task especially when n > 4. To 

overcome this difficulty, the Taylor series approximation of the function is often used.  

A Taylor series expansion of the function, 𝑔(𝑋1, 𝑋2), can be written about the mean values of 𝑋1 

and 𝑋2 in the following manner 

 
𝑔(𝑋1, 𝑋2) = 𝑔(𝜇1, 𝜇2) + ∑ (𝑋𝑖 − 𝜇𝑖) (

𝜕𝑔(𝑋𝑖,𝑋𝑗)

𝜕𝑋𝑖
)2

𝑖=1 𝑋1=𝜇1,
𝑋2=𝜇2

+

1

2
∑ ∑ (𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)2

𝑗=1
2
𝑖=1  (

𝜕2𝑔(𝑋𝑖,𝑋𝑗)

𝜕𝑋𝑖𝜕𝑋𝑗
 )

𝑋1=𝜇1
𝑋2=𝜇2

+ ⋯   

(3.2) 

The first order approximation of the mean of the function can be given as 

 𝜇𝐺 ≈ 𝑔(𝜇1, 𝜇2) (3.3) 

This approximation is useful for mildly nonlinear functions.  
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The variance can be approximated as 

 

𝜎𝐺
2 ≈ ∑ 𝑐𝑖

2𝜎𝑖
2

2

𝑖=1

+ ∑   

𝑖≠𝑗

∑ 𝑐𝑖𝑐𝑗𝐸[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] (3.4) 

Note that 𝐸[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] is the covariance between 𝑋1 and 𝑋2 and 

 
ci =

µ
@g(X1; X2)

@Xi

¶

X1=¹1;X2=¹2

     (for 𝑖 = 1, 2) (3.5) 

It should be noted that the first order approximation of the variance requires the derivatives of 

the function. 

3.2.2 Statistical Moments: Linear Function 

A linear bivariate function can be written in a standard form as  

 𝑔(𝑋1, 𝑋2) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 (3.6) 

Considering 𝑋1 and 𝑋2 as independent random variables, the mean and variance of the function 

can be evaluated exactly as  

 𝜇𝐺 = 𝑏0 + 𝑏1𝜇1 + 𝑏2𝜇2   and  𝜎𝐺
2 = 𝑏1

2𝜎1
2 + 𝑏2

2𝜎2
2 (3.7) 

In summary, statistical moments of a linear function of n random variables can be exactly 

evaluated. 

3.2.3 Probability Distribution: Nonlinear Function 

In case that 𝑔(𝑋1, 𝑋2) is a nonlinear function of general form (an explicit or implicit function), 

then its distribution is difficult to derive analytically. The Monte Carlo simulation method is the 

easiest way of estimating the distribution of a general function.  

In the simulation method, a random sample of 𝑔(𝑋1, 𝑋2) is simulated from known distributions 

of 𝑋1 and 𝑋2. The simulated sample is then fitted by a suitable distribution based on a standard 

method like maximum likelihood method or probability paper plot method.  

The simulation method can be numerically intensive, if a single evaluation of the function 

requires a complex computer program with significant CPU time. In such a situation, simulation 

of 1000 to 10,000 simulations would take an inordinate amount of time.  

If the function is simple and exxplicit, then an analytical form of the distribution can be derived.  
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3.2.4 Probability Distribution: Linear Function 

In case of a linear function of independent basic variables given by Eq.(3.7), the probability 

distribution can be computed from the following convolution integral 

 
𝐹𝐺(𝑢) = ∫ 𝐹𝑋1

(
𝑢 − 𝑏0 − 𝑏2𝑥2

𝑏1
) 𝑓𝑋2

(𝑥2)𝑑𝑥2       (3.8) 

Note that the integration limits depend on the range of validity of basic variables.  

In case of n random variables, this approach will become quite tedious, as one will have to 

evaluate nested multivariate integrals. 

3.2.5 Special Case: A Linear Function of Gaussian Random Variables  

A linear function of Gaussian (or normal) random variables can be analyzed exactly. It means 

that statistical moments as well as the probability distribution can be exactly derived.  

The mean and standard deviation of the performance function can be obtained from Eq.(3.7). 

The probability distribution of the function will also be a Gaussian distribution with the mean 𝜇𝐺 

and standard deviation 𝜎𝐺, and the density function given as 

 
𝑓𝐺(𝑥) =

1

𝜎𝐺√2𝜋
exp (−

𝑥 − 𝜇𝐺
2

2𝜎𝐺
2 ) (3.9) 

 

A linear function of normally distributed random variables will always follow the normal 

distribution. This implies that if a function consisting of normally distributed random variables 

follows the normal distribution, then the performance function must be linear. 
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3.3 Statistical Estimation  

Here we discuss methods for estimating the distribution type and parameters of the distribution 

of 𝑔(𝑋1, 𝑋2). This problem can be approached in different ways, depending on the availability of 

data.  

3.3.1 Data for basic variables are available 

If random samples of 𝑋1 and 𝑋2 are available, then their distributions can be directly estimated 

using any standard methods, such as, probability paper plot, method of moments, and maximum 

likelihood method.  

After the estimation of the distributions 𝐹𝑋1
(𝑥1;  𝛼1, 𝛽1) and 𝐹𝑋2

(𝑥2;  𝛼2, 𝛽2), the Monte Carlo 

simulation method can be used to simulate a random sample of the performance function. 

Simulation is the most direct method of estimating the distribution of the function of any general 

nature, such as a nonlinear, time dependent and implicit function. The simulated sample of the 

performance function can be subsequently fitted by any suitable method, such as the probability 

paper plot or the maximum likelihood method. 

In case of a linear function of non-normal random variables, the distribution can be obtained by 

calculating the convolution integral given in Eq. (3.8). This method would work for a bivariate 

case.  

In the special case of a linear function of Gaussian random variables (Section 3.2.5), the problem 

becomes quite simple. In this case, the performance function will follow the normal distribution 

with the mean and variance calculated using Eq.(3.7).  

3.3.2 Data for the function are available 

In this case, a random sample of values of the performance function, 𝑔1, 𝑔2, ⋯ , 𝑔𝑛, is available 

through a direct inspection method. The estimation of the distribution, 𝐹𝐺(𝑢), is quite straight 

forward using any of the standard estimation methods (probability paper plot, method of 

moments or maximum likelihood).  

3.3.3 Data for function available but distributions of basic variables are unknown 

This is a rather interesting problem in which a random sample of the function, 𝑔1, 𝑔2, ⋯ , 𝑔𝑛, is 

available, but distributions of underlying basic variables (𝑋1 and 𝑋2) are not known since they 

are not directly observable, i.e., 𝑋1 and 𝑋2 are latent variables.  
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If a random variable is not amenable to direct measurement, it is referred to as “latent” variable.  

In this case, it is obvious that the estimation of distribution parameters of the basic variables has 

to be done in some indirect manner, except in a few special cases, such as a linear function of 

Gaussian variables. 

Technically, the distribution, 𝐹𝐺(𝑢), has to be written as a function of parameters (𝛼𝑖 , 𝛽𝑖), 𝑖 =

1, 2, of the basic variables. Then the maximum likelihood method can be used for estimation. 

The other alternative is to use the method of moments to calculate the distribution parameters.  

In the literature, the estimation of parameters of the basic variables using a random sample of the 

function is known as statistical model calibration. Since the statistical calibration problem is not 

easy to solve in a general setting, various approximations have been developed in the literature 

[5].  

The Bayesian method also provides an elegant approach to the calibration problem. In this 

approach, we can start with suitable prior distributions for the parameters (𝛼𝑖 , 𝛽𝑖), and update 

them using the random sample of performance function. 

3.4 Closing Remarks 

An assessment criterion can be mathematically represented as a performance function of random 

variables. The nature (linear versus nonlinear) of the performance function must be carefully 

examined, since this will govern the derivation of the distribution as well as estimation of the 

distribution parameter.  

The probabilistic analysis and estimation of a linear function of normally distributed variables is 

the simplest problem, and therefore widely used in engineering applications.  

A linear performance function consisting of normally distributed random variables will always 

follow the normal distribution. This implies that if a function consisting of normally distributed 

random variables follows the normal distribution, then the performance function must be linear. 

In closing, a probabilistic model adopted for the risk assessment must be consistent with basic 

principles of probabilistic analysis of a function of random variables.  
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4. Review of the Model Calibration (Benchmarking)  

4.1 Basic Problem 

The CE-PM report [1] describes the statistical estimation of parameters of the PT-CT gap 

prediction model in such colloquial terms that it becomes difficult to evaluate the precise 

mathematical basis of this approach. An additional reference, [3], is quite useful in understanding 

the assumptions and details of the benchmarking method. In this Section, the CE-PM approach is 

rephrased in a more precise mathematical language, and implications of the assumptions and 

approximations are investigated in a systematic manner. Finally, points of clarification related to 

CE-PM are summarized at the end of this Chapter.   

The PT-CT gap in an i
th

 fuel channel at a 𝑘𝑡ℎ axial location, 𝑎𝑖𝑘, and time, t, in the service life 

can be written as a general function of random variables:  

 𝑌𝑖(𝑎𝑖𝑘, 𝑡) = 𝑔(𝑋1, 𝑋2, ⋯ , 𝑋𝑛, 𝑎𝑖𝑘, 𝑡) (4.1) 

where 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 are basic random variables that affect the PT-CT gap, as summarized in 

Table 6.1 of CE-PM. For example, PT and CT dimensions, flux fluctuations, axial load, spacer 

location accuracy, creep factor and end slopes are some of the variables that influence the PT-CT 

gap. This function in essence represents the C-DEPTH code used in CE-PM.  

If computation of the function (i.e. running of C-DEPTH code) is a time consuming task, then 

computer codes are typically approximated by an appropriate response surface, fitted by 

polynomial or spline functions. Another approach is to replace the computer code by a surrogate 

function. These topics are rich areas of research in uncertainty analysis in engineering and 

science. The dimensional reduction method [6], and the Gaussian process model [5] provide 

efficient means to solve this class of problems. The CE-PM report did not seem to explore any 

such formal methods.  

In case of a fuel channel with tight fitting spacers, the CE-PM report concludes that only two 

variables are most influential, namely, 𝑋1= creep factor, and 𝑋2 = end slopes. Furthermore, CE-

PM assumes that 𝑋1 and 𝑋2 are independent random variables, which are also invariant with time 

and axial location.  
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The probability distribution of gap in an i
th

 fuel channel at an axial location, 𝑎𝑖𝑘, depends on the 

distributions of 𝑋1 and 𝑋2 and the form of the function, 𝑌𝑖(𝑎𝑖𝑘, 𝑡),  (nonlinear or linear). 

Based on available inspection data, the end slope (𝑋2) is modelled as a normal random variable. 

However, the distribution parameters for a specific reactor have to be determined from the 

reactor specific data.   

The creep factor is basically an adjustment factor applied to the creep equation to account for a 

departure in the creep of a channel from the nominal estimate provided by the standard creep 

model. The creep factor in the CE-PM report is assumed to be invariant with respect to time and 

axial location within a pressure tube. Being an adjustment factor, the creep factor distribution has 

to be derived from the reactor specific information. The creep factor is also assumed to follow 

the normal (or Gaussian) distribution.  

In summary, the PT-CT gap prediction problem is modelled as a function of time and location 

invariant random variables, which results in a considerable simplification of the analysis.   

The location invariance means that the probability distribution of a random variable does not 

change with axial location along the length of the pressure. For example, a constant creep factor 

is applied to every axial location. Similarly, the time invariance means that the distribution does 

not change with the time, i.e., service life of the pressure tube. An example is a constant creep 

factor used over the entire service life of the pressure tube.  

The CE-PM report assumes that the PT-CT gap follows the Gaussian (or normal) distribution. 

This assumption is the corner stone of the statistical estimation method presented in CE-PM. 

This issue will be examined later in this Chapter. 

The basic problem of calibration tackled in the CE-PM report is that given a set of gap 

measurements, 𝑦𝑖(𝑎𝑖𝑗 , 𝑡𝑘), how one should estimate parameters of 𝑋1 and 𝑋2. Note that the data 

are collected from a sample of inspected fuel channels, 𝑖 = 1, 𝑛, at different locations 𝑎𝑖𝑗, j = 1, 

m, and possibly at different points in time (𝑡𝑘), k = 1, l, in the service life of the reactor. This step 

in the CE-PM report is called a “Benchmarking” step.  

In essence, the basic variables 𝑋1 (creep factor) and 𝑋2 (end slope) are used to model variability 

at the reactor level. It is conceptualized that each pressure tube takes a set of random values 

(𝑥1, 𝑥2) from the population distribution 𝑋1 and 𝑋2, and then proceeds along the creep curve as 
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calculated by the C-DEPTH code for the rest of its service life (or evaluation period). In other 

words, there is no temporal uncertainty considered in the evolution of fuel channel deformation 

process over time. 

The CE-PM report describes an iterative Monte Carlo simulation method for benchmarking 

purposes. Since the description is devoid of accurate mathematical functional equations and 

relationships, it is hard to interpret and evaluate various steps of this method. 

After the model is calibrated, CE-PM predicts the probability distribution of PT-CT gap at any 

future time using the creep evolution law built in the C-DEPTH computer code. The creep law as 

such is taken as a deterministic law, modified to a channel specific condition by the creep factor 

and end slopes. This step is referred to as the prediction step. The prediction is based on the 

standard Monte Carlo simulation method. 

4.2 Summary of Probabilistic Analysis Problem 

In the case of fuel channels with tight fitting spacers, the PT-CT gap in an i
th

 pressure tube at a 

𝑘𝑡ℎ location, 𝑎𝑖𝑘, and time, t, in the service life is modelled as a function of only two random 

variables 

 𝑌𝑖(𝑎𝑖𝑘, 𝑡) = 𝑔(𝑋1, 𝑋2, 𝑎𝑖𝑘, 𝑡) (4.2) 

where 𝑋1 and 𝑋2 are the creep factor and the end slope, respectively.  

The gap measurement tool introduces some noise (or random error 𝑊𝑀), such that the measured 

gap, 𝑌𝑀𝑖(𝑎𝑖𝑘, 𝑡), randomly deviates from the actual gap. The measurement error is assumed to be 

additive as shown below:  

 𝑌𝑀𝑖(𝑎𝑖𝑘, 𝑡) = 𝑌𝑖(𝑎𝑖𝑘, 𝑡)  + 𝑊𝑀 = 𝑔(𝑋1, 𝑋2, 𝑎𝑖𝑘 , 𝑡) + 𝑊𝑀 (4.3) 

The measurement error has a mean zero and a standard deviation of 𝜎𝑀. 

The statistical estimation problem in the CE-PM report is formulated based on some assumptions, 

which are collectively presented in the following list:  

1. The creep factor (𝑋1) and end slope (𝑋2) are modelled as normally distributed and 

independent random variables [3]. 

2. The PT-CT gap is also assumed to follow the normal distribution.  
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3. The PT-CT gap in internal spans is largely affected by the creep factor (𝑋1), but the end 

slope (𝑋2) has negligible influence. 

4. The PT-CT gap in end spans is largely controlled by the end slope (𝑋2), but the effect of 

creep factor is negligible.  

5. The creep factor is treated as a time invariant random variable and it is also constant for 

all axial locations in a pressure tube.  

6. The end slopes are also modelled as the time and location invariant random variables. 

The model calibration means the estimation of the four unknown distribution parameters, namely, 

𝑋1(𝜇1, 𝜎1) and 𝑋2(𝜇2, 𝜎2) given a sample of measured gap values (𝑦𝑀1, 𝑦𝑀2, ⋯ , 𝑦𝑀𝑛). 

The CE-PM report presents its own “non-conventional” method for model calibration without 

explaining why a standard estimation method, such as maximum likelihood, is not applicable to 

this problem.   

4.3 Review of the Simplex Method 

The Simplex method, as described in Section 5.1 of [1], is proposed as a method of estimating 

variability in the creep rate and end slope as a part of model calibration. 

Given gap measurement data, the simplex method calculates values of the creep factor (𝑋1 = 𝑥1) 

and end slope (𝑋2 = 𝑥2) by minimizing the square of the error between measured and calculated 

gap profiles. In this way, given a sample of n measured gap profiles, corresponding samples of 

creep rates, 𝑥11, 𝑥12, ⋯ , 𝑥1𝑛, and end slopes, 𝑥21, 𝑥22, ⋯ , 𝑥2𝑛 , can be calculated. These 

calculated samples can then be fitted by any suitable method like probability paper plot.  

Although the Simplex method is conceptually attractive, it is fraught with practical difficulties as 

discussed below. 

If the model given by Eq.(4.2) is not a perfect representation of the real deformation of a fuel 

channel, which is expected to be the case, then it will not be possible to find values of the creep 

factor and end slope that would match precisely the calculated and observed gap profiles. The 

CE-PM report also states that it is hard to achieve a close match between the measured and 

calculated gap profiles.  

The measured gap value is already contaminated by the measurement error of a random 

magnitude, as shown by Eq.(4.3). Thus, the creep factor and end slope calculated using this gap 
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value will also be contaminated by the measurement error. The magnitude of measurement error 

in the creep factor and end slope cannot be directly quantified.  

The consideration of the movement of loose spacers in simplex method is not discussed in clear 

terms.  

Because of the above two factors, the Simplex method cannot provide reliable estimates of 

distributions of creep factor and end slope. The CE-PM report does acknowledge limitations of 

the Simplex method and does not use this method in the final calibration of the PT-CT gap 

model.  

4.4 Evaluation of the Probabilistic Model of the CE-PM Report 

Based on available gap measurement data, CE-PM assumes that the PT-CT gap follows the 

Gaussian (or normal) distribution (Assumption 2 on page 26). This assumption has a profound 

implication in the statistical estimation method developed in the CE-PM report.  

Since the PT-CT gap with tight fitting spacers is modelled as a function of two independent 

normal random variables (creep factor and end slope), and the function (i.e., PT-CT gap) itself 

follows the normal distribution, then the function must be linear or almost linear. The reason is 

that the distribution of a function of normal random variables will be normal, only if the function 

is linear, as discussed in Section 3.2.5.  

Therefore, the relationship of the PT-CT gap with the basic variables (creep factor and end slope) 

must be examined as a part of the model validation exercise. If the PT-CT gap turns out to be a 

highly non-linear function of 𝑋1 and/or 𝑋2, then the basic tenet of CE-PM would become 

questionable. 

The gap prediction model under the assumptions of CE-PM can be represented as  

 𝑌𝑖(𝑎𝑖𝑘, 𝑡) = 𝑏0(𝑎𝑖𝑘, 𝑡) + 𝑏1(𝑎𝑖𝑘 , 𝑡)𝑋1 + 𝑏2(𝑎𝑖𝑘, 𝑡) 𝑋2  (4.4) 

Since the basic variables, 𝑋1 and 𝑋2 are time and location invariant, the model coefficients, 

𝑏𝑗(𝑎𝑖𝑘, 𝑡), j = 0 – 2,  must include the dependence on time and location. The reason is that there 

is no other place in the model but these coefficients to incorporate this dependence.  

The model coefficients are like influence functions, which can be determined by running the C-

DEPTH code for different values of time and location.  
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The assumptions 3 and 4 (on page 27), further simplify the PT-CT gap function into a univariate 

function. In a fuel channel with 4 fixed spacers (e.g. Bruce B, unit 8), there are two end spans (1 

and 5), and three internal spans (2, 3 and 4).  

For the internal spans according to CE-PM report, the effect of end slopes (𝑋2) can be ignored, 

such that the PT-CT gap can be modelled as a function of the creep factor only: 

 𝑌𝐼𝑁𝑇𝑖(𝑎𝑖𝑘, 𝑡) ≈ 𝑏01(𝑎𝑖𝑘, 𝑡) + 𝑏11(𝑎𝑖𝑘, 𝑡)𝑋1  (4.5) 

Using Eq.(4.3), the measured gap can be written as 

 𝑌𝐼𝑁𝑇𝑖
𝑀 (𝑎𝑖𝑘, 𝑡) ≈ 𝑏01(𝑎𝑖𝑘, 𝑡) + 𝑏11(𝑎𝑖𝑘 , 𝑡)𝑋1 + 𝑊𝑀      (4.6) 

In the end spans according to the CE-PM report, the effect of creep factor (𝑋1) can be ignored, 

such that the measured gap can be modelled as 

 𝑌𝐸𝑁𝐷𝑖
𝑀 (𝑎𝑖𝑘, 𝑡) ≈ 𝑏02(𝑎𝑖𝑘, 𝑡) + 𝑏12(𝑎𝑖𝑘, 𝑡)𝑋2 + 𝑊𝑀   (4.7) 

Since the PT-CT gap model is reduced to a linear model as a function of a single normally 

distributed random variable, the statistical estimation can be done in a fairly simple and direct 

manner. In this case, standard statistical methods like the maximum likelihood method can be 

used for the estimation of unknown distribution parameters.  

Note that the mean and variance of the measurement error (𝑊𝑀) are estimated through a data 

normalization procedure described in the CE-PM report. Although the normalization procedure 

may be a standard practice in the industry, the data and estimation procedure should conform to 

the requirements of the statistical method. For example, the estimation of mean and variance of a 

random variable is typically based on a sample of independent values. The data used to estimate 

measurement error must meet this requirement.  

4.5 Remarks: Fuel Channels with Loose Spacers  

The overall deformation of a fuel channel and hence the PT-CT gap profile is strongly dependent 

on the location of spacers. In case of channels with loose spacers, the dependence of gap on the 

creep factor and end slopes will be complicated by locations of loose spacers, which tend to 

move over the service life of the channel. For example, after a SLAR maintenance campaign if 

spacers were placed into a new configuration, the future gap profile in the subsequent period 

could change significantly. Even after SLAR, there remains a possibility of further spacer 
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movement. In summary, the gap profile would become strongly dependent on the SLAR history 

of a channel. The CE-PM report does not provide a clear explanation about the calibration of the 

creep factor and end slopes in fuel channels with loose spacers. 

4.6 Closing Remarks 

It is rather strange that the CE-PM report does not discuss at all the dependence of the PT-CT 

gap on the basic variables in a deterministic sense. For example, in the absence of any 

randomness, how does the gap vary with end slopes?  How does the gap vary with the creep 

factor? If the dependence is indeed linear or approximately linear, as implied by the modeling 

assumptions of the CE-PM report, then the statistical estimation would become quite a 

manageable task. 

Thus, the relationship between the PT-CT gap and basic variables (creep factor, end slope, and 

spacer locations) must be examined at the outset of any probabilistic assessment model. If the 

PT-CT gap turns out to be a highly non-linear function of 𝑋1 and/or 𝑋2, then the basic tenet of 

CE-PM would become questionable. 

If the assumptions of the CE-PM report are indeed valid, then this Section of the review shows 

that the gap model can be calibrated in a direct manner using a standard estimation method. 

Apparently, there is no need for an iterative Monte Carlo method for model calibration as 

proposed by the CE-PM report. If, however, the main assumption of the CE-PM report, namely, 

PT-CT gap follows a normal distribution, is not valid, the model calibration problem must be 

revisited.  

4.7 Points of Clarification 

In a probabilistic assessment, a suitable performance criterion can be represented as a function of 

random variables. The nature (linear versus nonlinear) of the performance function should be 

carefully examined, since this will govern the derivation of the distribution and its parameters. 

The essence of this review is that a probabilistic model adopted for the assessment must be 

consistent with basic principles of the analysis of a function of random variables. Based on the 

discussion presented in this Chapter, CE analysts are requested to clarify the following points. 
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4.1 It is clear from the previous discussion that the most significant assumption or assertion of 

the CE-PM report is that the PT-CT gap follows the normal distribution. The only evidence 

provided in support of this assumption is a histogram presented in Figure 7 of [1]. Can you 

elaborate more about the source of the data plotted in this Figure? For instance, which 

channels and spans the data come from, and what is the EFPH that the data correspond to? 

Since the minimum gap varies with time, data for different spans and EFPH values should 

not be pooled without the consideration of potential heterogeneity in the data. For example, 

the minimum gap data from different locations and time points cannot be pooled, since 

they do not come from the same population.  

4.2 Since the Candu industry has gathered a substantial amount of gap measurement data from 

past fuel channel inspections, the assumption of the normality of the gap distribution 

should be easy to verify. The CE analyst is recommended to compile actual gap 

measurement data from different fuel channels and evaluate the probability distribution of 

gap data by a standard statistical method, e.g., K-S test, Chi-Square test and the probability 

paper plot. The normality of gap distribution should be evaluated at different axial 

locations and time points at which the data were collected.  

4.3 The cumulative distribution function in Figure 8 of [1] is plotted on a linear scale, which 

makes it difficult to evaluate the goodness of fit in the tail regions of the distribution. The 

data must be plotted on the normal probability paper to verify the assumption of normality.  

4.4 The CE-PM report proposes that PT-CT gap in fuel channels is primarily influenced by 

two normal random variables, the creep factor and the end slope. It is further assumed that 

the PT-CT gap also follows the normal distribution. This assumption has a profound 

implication in the statistical estimation method developed in the CE-PM report. An 

immediate implication of these assumptions is that the PT-CT gap must be a linear (or 

almost linear) function of the creep factor and end slope. The reason is that the distribution 

of a function of normal random variables will be normal, only if the function is linear, as 

discussed in Section 3.2.5. The PT-CT gap being a linear function of creep factor and end 

slope must be verified using the computer model C-DEPTH to provide a mechanistic basis 

to the modeling assumptions.  

4.4.1 CE-PM assumes that PT-CT gap in internal spans is a univariate function of the creep 

factor, since the effect of end slope is negligible. It should be easy to verify this 

proposition. For a typical fuel channel, for a given time (e.g., 150,000 EFPH) and 

location (centre of an internal span), the PT-CT gap should be plotted as a function of 

the creep factor. This plot should be almost linear, in order to be consistent with the 

assumptions of CE-PM report. This relationship should be explored for other EFPH 

values, just to make sure that the linear relationship is valid for a wide ranging time and 

locations. The CEI analyst is requested to provide such an example for some typical fuel 

channel.  
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4.4.2 The analysis of the previous step (4.4) should be repeated to explore the relationship 

between PT-CT gap in end spans and the end slope. To make it clear, for a given time 

(e.g., 150,000 EFPH) and location (centre of an end span), the PT-CT gap should be 

plotted as a function of the end slope. This plot should be almost linear, in order to be 

consistent with the assumptions of CE-PM report.  

4.5 If the PT-CT gap indeed turns out to be linear with respect to the creep factor and end 

slopes, then the statistical estimation can be based on much stronger footing by using well 

established statistical methods like the maximum likelihood method. The iterative Monte 

Carlo method uses long heuristic arguments to justify a fitting criterion, which seems to be 

unnecessary, and perhaps an unreliable criterion.  The CE analyst is requested to compare 

the results of statistical estimation obtained from standards methods (MoM or MLM) 

versus the proposed iterative Monte Carlo method. 

4.6 If the PT-CT gap does NOT turn out to be a linear function of the creep factor and end 

slope, then the basic tenet of the CE-PM report cannot be considered valid in a 

fundamental sense. The CE-PM assumptions of normality of gap data can then be 

considered purely incidental, and the results of the analysis will become questionable. 

After the PT-CT contact, the spread of the contact is possibly a non-linear function. Is this 

aspect included in the analysis? 

4.7 The limitation of the Simplex method (see Section 4.3) suggests that a single creep factor 

cannot match the observed gap profile with a high degree of accuracy. Does it not mean 

that the use of a constant creep factor for all 5 spans of the pressure tube is an inappropriate 

choice?  

4.8 Equation (5.1) of the CE-PM report, (𝜎𝑏𝑒𝑛𝑐ℎ)2 = (𝜎𝑐𝑟𝑒𝑒𝑝)
2

+ (𝜎𝑚𝑒𝑠)2, does not seem to 

be correct. This equation is valid only if the PT-CT gap is a simple sum of the creep factor 

and the measurement error of the form: 𝑔𝑎𝑝 = 𝑐𝑟𝑒𝑒𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑚𝑒𝑠 𝑒𝑟𝑟𝑜𝑟. This relation 

is not true, as it ignores various multiplying factors as shown by Eq.(4.6). The CE analyst 

must clarify this issue. 

4.9 There are several minor issues related to intriguing and unsubstantiated statements 

scattered throughout the CE-PM report. Some examples are given below:  

4.9.1 The Central Limit Theorem is cited as a justification for Equation 5.1 of the CE-PM 

report. Why and how?  

4.9.2 A statement above Figure 7: “the fact that a population is normally distributed is a 

characteristic of the population….”.  In what sense normality becomes a characteristic? 

4.10 There is a subtle point about the independence of the gap data that is seemingly ignored 

throughout the CE-PM report. The reason to raise this point is that when the gap data are 

pooled in the distribution fitting and parameter estimation, all data points must be 

independent. Let’s clarify this further. In a given fuel channel, can the minimum gap 
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values in the internal spans be considered independent of each other? The gap inspection of 

a single fuel channel will provide three minimum gap values from the three internal spans. 

It is not clear as to how these values are treated in statistical estimation. These three values 

are not truly independent values, since they are related to a single creep factor. This issue 

of independence requires a thorough discussion in the CE-PM report. The reason is that the 

use of correlated values in statistical estimation will produce biased estimates.  

4.11 The standard deviation of measurement error is purported to be 0.25 mm for fixed spacers. 

The CE analysts must provide a better documentation about the estimation of this 

important quantity. The reason is also related to the previous point (4.10) of independence. 

If the measurement error analysis is based on pooling of correlated data, then the resulting 

estimate will be biased. The role of measurement error is quite important in a subtle sense. 

The variability of gap data is decomposed between the model variability and measurement 

error. By attributing more variability to measurement error, the model variability can be 

effectively reduced. A reduction in the model variability will also reduce variability in the 

prediction stage, i.e., for predicting the probability of contact.  

4.12 The gap prediction model for fuel channels with loose spacers is not clearly described. As 

discussed in Section 4.5, the PT-CT gap profile would be strongly dependent on the history 

of spacer movements. Therefore, the following questions need to be addressed:  

4.12.1 The gap profile would become a function of the history of spacer movement. In 

this case, will the gap profile follow a normal distribution? Even if the gap follows a 

particular distribution, isn’t it true that the distribution parameters will become a 

function of spacer movement history? 

4.12.2 Since the gap profile would change after movements of spacers, how will the 

distribution of the creep factor change with spacer movements?  Similarly, the effect of 

end slopes will also depend on spacer movements. The CE-PM report must provide a 

clear explanation about the model calibration and reliability prediction for fuel channels 

with loose spacers. 

4.13 The blister cracking model presented in Section 6.2 is a logistic regression equation as a 

function of the blister depth and the stress. Although the estimation of regression model is 

a straightforward exercise, its application to the calculation of probability of cracking 

described in Section 6.3 is not clear. The CE analyst should elaborate on the rationale of 

the convolution method of calculation. The steps of the method should be described in a 

technical manner along with appropriate equations. Since the CNSC does not accept the 

blister cracking as an acceptable state of performance, this topic may as well be removed 

from the assessment methodology.  

4.14 A basic assumption of the CE-PM report is that the creep ratio has negligible influence on 

the gap in the end spans, and hence the end span gap data only need to be used in the 

calibration of the end slope distribution. Figure 27 of the CE-PM report is useful to 
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evaluate this assumption. Figure 27 shows the sensitivity of the creep ratio to the PT-CT 

gap in the channel P08. As seen by the width of the bounds, the gap in the end spans seems 

to be fairly sensitive to the creep ratio. In fact, the order of this sensitivity is similar to that 

of the sensitivity of end slopes as shown by Figure 28. 

Results presented in Figures 27 and 28 appear to contradict the basic premise of statistical 

analysis given in the CE-PM report. Please clarify this issue by providing additional 

examples. 

4.15 Similarly, the CE-PM report assumes that the effect of end slopes on the gap in internal 

spans can be ignored. Comparing the results given in Figures 27 and 28 for the two internal 

spans (excluding the central span), the following observation can be made. The sensitivity 

of the creep ratio to gap is of lower order than that of the end slope. Since the end slope 

does seem to have a measurable influence on the gap in these spans, why should this be 

ignored from the analysis? Please clarify this issue. 
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5. Prediction of the PT Failure Frequency  

5.1 Background  

The overall goal of CE-PM is to estimate the PT failure frequency in the reactor core and 

compare it with the acceptance limit specified in the CSA Standard N285.8 [2]. For example, an 

acceptable PT failure frequency, as per CSA Standard, for the Bruce-8 reactor core is 4.13 × 10
-3

 

failures per year.  

In the CE-PM report, the pressure tube limit state is defined as a combination of two events, 

namely, PT-CT contact and blister formation followed by blister cracking. A blister is expected 

to form at that contact location where the equivalent hydrogen concentration (Heq) exceeds a 

threshold, known as the blister formation threshold (BFT). Thus, blister formation can be 

considered as the first limit state, which is followed by the second limit state of blister cracking. 

Here, the term “failure” signifies that a pressure tube has reached one of these two limit states.  

It must be stressed that the CNSC staff considers the “contact leading to blister formation (i.e., 

Heq > BFT)” as the ultimate failure state. 

Section 7 of the CE-PM report describes a hybrid method for calculating the PT failure 

frequency in the reactor core. The probability of PT-CT contact is estimated by the Monte Carlo 

simulation method, whereas Heq is predicted by an empirical regression model. The probability 

of blister cracking is calculated by a numerical integration method. The hybrid approach leads to 

the cumulative distribution of time to failure of each pressure tube, which is then converted into 

the failure frequency. The failure frequency is defined as the average or expected number of PT 

failures per year ( 8000 EFPH). Failure frequencies of all PTs in the reactor core are added to 

calculate an overall failure frequency for the entire reactor core.  

Presumably the purpose of a probabilistic assessment is to demonstrate that risk associated with 

the operation of a component or system is less than a minimum acceptable value as specified by 

a code or standard. A first fundamental question then arises as to what is the relevant reliability 

metric that should be adopted in the PT failure problem. Is the failure frequency as defined and 

calculated in CE-PM a relevant measure of reliability? The answer to this question depends on 

the type of reliability analysis to which the PT failure problem belongs.  
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In the reliability literature, the reliability analysis problem is classified into two broad categories: 

non-repairable and repairable equipment (or system or component) reliability problems [4]. 

In the non-repairable or “first-failure” problem, the mission reliability and probability of failure  

are relevant metrics of reliability, whereas the failure rate (or failure frequency) is a relevant risk 

metric in the repairable system problem [4]. Every reliability analysis must begin with 

identifying the type of problem, repairable or non-repairable, that it intends to address in the 

probabilistic assessment.  

In the CE-PM report, failure frequency is adopted as a reliability measure without any 

justification and discussion about the type of the PT failure problem it analyzes. This point must 

be addressed, at least at a conceptual level, to make the technical basis document a sound piece 

of work.  

In essence, the reliability measure reported in a probabilistic assessment must be commensurate 

with the type of limit state (serviceability or ultimate), nature of failure mode (self-announced or 

latent), rate of progression of limit states and the maintainability of the system. The failure rate 

and failure probability serve as a meaningful reliability measure depending on the definition of 

the reliability analysis. This issue is explored in depth in Section 5.4. 

The conceptual distinction between the repairable and non-repairable reliability problems cannot 

be described in a few paragraphs. Therefore, this Section presents key concepts of the time 

dependent reliability theory with simple illustrative examples. Based on this discussion, the 

importance of using a correct measure can be better understood.   

It is recognized that in this Chapter a considerable emphasis is placed on using a correct 

reliability metric (i.e., failure rate versus failure probability) in a probabilistic assessment. The 

reason for this in-depth discussion is to pave the way for correct applications of the reliability 

theory to the risk-informed decision making in the nuclear industry.  
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5.2 Reliability of a non-repairable component  

5.2.1 Basic Concepts 

  

 

 

 

 

 

Figure 5.1: Concept of reliability of non-repairable components 

 

The non-repairable problem means that if the component fails during the operational period (or 

mission), there is no opportunity to repair and restore the component. In other words, the first 

occurrence of component failure amounts to the failure of the mission. An example of this type 

of problem is a failure of an aircraft engine during a flight resulting in ending engine’s life and 

perhaps ending the flight itself. 

 Figure 5.1 illustrates the concept of reliability of non-repairable components. Since the 

component A survives the mission duration (t), it is called a reliable mission. In contrast, 

component B fails during the mission causing a mission failure.  

The mission means that operating interval in which a reliable operation of component (or system 

or equipment) is sought. In case of a nuclear reactor, this “mission” can be a time interval 

between two maintenance outages, or a future inspection interval.  

It is in the context of non-repairable problems that the classical definition of reliability was put 

forward as the probability of a system functioning within specified limits for a specified time 

under postulated conditions. The risk is defined as the expected consequence of a failure, which 

is a product of the probability of failure with its consequence.  

The mission reliability and mission probability of failure are quantified using the lifetime 

distribution of the component in relation to the mission duration.  

Mission Time (t) 

Failed mission 

Reliable mission Component A 

mission 

Component B 

mission 
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5.2.2 Lifetime Distribution 

The lifetime distribution describes in probability the ability of a component to survive to a 

certain age. The lifetime distribution is a regular probability distribution, like gamma, Weibull or 

exponential, which provides the best-fit to available lifetime (or time to failure) data. The 

lifetime is denoted as 𝑋, which has the probability density, 𝑓𝑋(𝑥), and distribution, 𝐹𝑋(𝑥). The 

component reliability at any age 𝑥 is given by the reliability function, 𝑅𝑋(𝑥) = 1 − 𝐹𝑋(𝑥). The 

likelihood of failure of a component at any age 𝑋 = 𝑥1 is reflected by the hazard rate, ℎ(𝑥1), 

which is given as: 

 
ℎ𝑋(𝑥1) =

𝑓𝑋(𝑥1)

1 − 𝐹𝑋(𝑥1)
=

𝑓𝑋(𝑥1)

𝑅𝑋(𝑥1)
 (5.1) 

The denominator in the above equation comes from the condition that the component of age 𝑥1 

has survived the time interval, (0, 𝑥1).  

The probability that the component lifetime (X) will be in a range: 𝑥1 ≤ 𝑋 < 𝑥2 is given as  

 𝑝12 = 𝐹𝑋(𝑥2) − 𝐹𝑋(𝑥1) (5.2) 

This probability also implies that in a group of n components, 𝑝12is a fraction of components 

which will fail on average during the time interval (𝑥2 − 𝑥1).  

5.2.3 Failure Frequency 

In a group of n components, the number of failures in a time interval, (𝑥1, 𝑥2), 𝑥1 < 𝑥2, is 

denoted as 𝑁(𝑥1, 𝑥2). It is a random variable with an expected (or average) value of  

 𝐸[𝑁(𝑥1, 𝑥2)] = 𝑛(𝐹𝑋(𝑥2) − 𝐹𝑋(𝑥1)) = 𝑛 𝑝12 (5.3) 

In the CE-PM report, failure frequency is calculated for a one year interval at age 𝑡, which is 

essentially the following quantity: 

 𝐸[𝑁(𝑡, 𝑡 + 1)] = 𝑛(𝐹𝑋(𝑡 + 1) − 𝐹𝑋(𝑡)) (5.4) 

A more precise definition of the expected number of failures per unit time at an age 𝑡 can be 

given  as  

 𝑑

𝑑𝑡
𝐸[𝑁(𝑡)] = 𝜃(𝑡) = 𝑛 lim

𝑑𝑡→0

(𝐹𝑋(𝑡 + 𝑑𝑡) − 𝐹𝑋(𝑡))

𝑑𝑡
= 𝑛 𝑓𝑋(𝑡) (5.5) 
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Thus, the failure frequency in a non-repairable problem is equivalent to the probability density 

scaled by the original number of components in the reactor core. In the long term, this failure 

frequency will approach to zero since 𝑓𝑋(𝑥) → 0 as time 𝑥 → ∞. In other words, over the long 

term operation of the reactor, the failure frequency is expected to diminish, which must not be 

confused with an increase in reliability.  

It is important to note that neither the expected number of failures nor the failure frequency is a 

measure of reliability of a component in the time interval, (𝑥1, 𝑥2). This issue is explained in the 

next Section. 

5.2.4 Mission Reliability  

The reliability of a component in the time interval (𝑥1, 𝑥2) essentially means the fraction of 

components of age 𝑥1 that would survive an operational interval (𝑥2 − 𝑥1). The mission 

reliability is technically defined as the following conditional probability: 

 
𝑅𝑋(𝑥1, 𝑥2) = 𝑃[𝑋 > 𝑥2|𝑋 > 𝑥1] =

1 − 𝐹𝑋(𝑥2)

1 − 𝐹𝑋(𝑥1)
=

𝑅𝑋(𝑥2)

𝑅𝑋(𝑥1)
 (5.6) 

Thus, the mission reliability is a ratio of the reliability at the end of the mission date to the 

reliability at the starting date of the mission.  

A complement of the mission reliability is the mission probability of failure given as  

 
𝑃𝑓(𝑥1, 𝑥2) = 1 − 𝑅𝑋(𝑥1, 𝑥2) =

𝐹𝑋(𝑥2) − 𝐹𝑋(𝑥1)

1 − 𝐹𝑋(𝑥1)
=

𝑝12

𝑅𝑋(𝑥1)
 (5.7) 

It is very important to recognize that the mission probability of failure (𝑃𝑓(𝑥1, 𝑥2)) of a 

component in the operational interval of (𝑥2 − 𝑥1) in general is NOT equal to the fraction (𝑝12) 

of components that will have life time in the rage: 𝑥1 ≤ 𝑋 < 𝑥2. The difference, as shown by 

Equations (5.2) and (5.7), lies in the conditioning argument used in the calculation of the mission 

probability of failure.  

The CE-PM report uses 𝑝12 as a reliability measure, whereas 𝑃𝑓(𝑥1, 𝑥2) is a measure of 

reliability as per the mathematical theory of reliability.  

Only in a special case of 𝐹𝑋(𝑥1) ≈ 0, the mission probability of failure and probability of 

lifetime being in that interval are approximately equal in a numerical sense, i.e.,  𝑃𝑓(𝑥1, 𝑥2) ≈
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𝑝12. Although this can happen in early life of a highly reliable component, this approximation 

can be quite erroneous in the mid to late life of the component.  

5.2.5 Illustration 

The distinction between the concepts related to failure frequency and failure probability can be 

further clarified by a simple example.  

  
(a)       (b)  

Figure 5.2(a): Lifetime distribution, and (b) the hazard function: Non-repairable component  

 

Consider that the lifetime distribution of a component has a mean life of 40 years and a COV of 

0.25, and it follows some distribution, 𝑓𝑋(𝑥), as shown in Figure 5.2(a). The hazard rate of this 

distribution is also plotted in Figure 5.2(b).  

  

(a)       (b) 

Figure 5.3: The fraction of components having lifetime (a) between 10 and 20 years, and (b) 

between 60 and 70 years. 
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The fraction of components with lifetime between 10 and 20 years is calculated as 0.021 (or 

2.1%), which is the shaded area in Figure 5.3 (a). The fraction of components with lifetime 

between 60 and 70 years is also the same as 0.021, as shown in Figure 5.3 (b). Thus, the 

expected number of failures observed in the age interval 10 – 20 and 60 – 70 is the same, 2.1%.  

Does it mean that the reliability of a 10 year and 60 year old component is also the same? The 

answer is clearly NO.  

For this very reason, the expected number of failure and the failure frequency are not a correct 

risk metric for non-repairable equipment. The correct metrics is the probability of failure over 

the evaluation period, which in this case is 10 years. The probability of failure of a 10-year 

mission starting at age 10 is 0.02, which is calculated using Eq. (5.7). The failure probability 

increases to 0.94, if the mission were to start at age 60. The hazard rate at age 10 is 0.0004, and 

at age 60 it is 0.23 (see Figure 5.2 b), which also illustrates an increasing likelihood of failure 

with aging. This example shows that the failure probability correctly reflects an adverse effect of 

aging on reliability, whereas the failure frequency in a non-repairable problem is not indicative 

of reliability in an absolute sense.  

So what is the use of the information about the failure frequency or the expected number of 

failures in a given time interval? This quantity is indicative of the average number of future 

replacements in a given time interval, which is useful in planning and budgeting of a 

maintenance or replacement project. For example, if we start with a fleet of 1000 components 

with lifetime distribution shown in Figure 5.2, on average 21 components will need to be 

replaced in the interval 10 – 20 and 60 – 70 year.  
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5.3 Reliability of a repairable component  

 

Figure 5.4: The service life of a repairable component with recurring failures 

 

The concept of the failure rate or frequency, i.e., the expected number of failures per unit time, is 

meaningful as a reliability measure for repairable components only.  

A portion of service life of a repairable component is shown in Figure 5.4. Here, 𝑆1 is the 

occurrence of first failure, after which the failed component is replaced (almost immediately) by 

an identical new component. This model assumes that the component failure is immediately 

detected, such as a fuse blowing up in a household.  If the repair time followed by a failure is 

quite long (and a random variable), then the resulting problem must be modelled as an 

“alternating renewal process”. This model, due to added complexity, is beyond the scope of the 

current discussion.  

In an operational time interval, (0, 𝑡), failures occur randomly at times 𝑆2, 𝑆3, ⋯and the time 

between failures, 𝑋1, 𝑋2, ⋯, are component lifetimes, which are independent and identically 

distributed random variables with distribution 𝐹𝑋(𝑥).  

In a technical sense, the theory of stochastic renewal process is needed to model the reliability of 

a repairable system [7].  

In a repairable system, the attention is focussed on the number of failures, 𝑁(𝑡), which is also a 

random variable. Since the distribution of 𝑁(𝑡) is not easy to obtain, except in a few special 

cases, the reliability analysis focuses on the expected number of failures, 𝐸[𝑁(𝑡)].  
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5.3.1 Failure Rate 

The failure rate is defined as the expected number of failures per unit time in a repairable system. 

The failure rate, 𝜂(𝑡), at time t can be calculated from the following recursive, integral equation 

written in terms of the distribution of the time between failures (X) as  

 
𝜂(𝑡) = 𝑓𝑋(𝑡) + ∫ 𝜂(𝑡 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥

𝑡

0

 (5.8) 

Here 𝑓𝑋(𝑡) denotes the probability density of the lifetime (𝑋) at time t.  

If a failure is detected only by inspection and testing, like in stand-by safety systems, the renewal 

equation will have to be modified to account for the inspection interval and the time of detection. 

The failure rate has a steady state value, which is asymptotically equal to the reciprocal of the 

mean time between failures (𝜇𝑋) [4]: 

 𝜂(𝑡) →  
1

𝜇𝑋
          as  𝑡 → ∞ (5.9) 

It is interesting to note that in case of non-repairable components the failure rate approaches zero 

as the time approaches to infinity, as discussed below Eq. (5.5), whereas the same quantity 

approaches to a finite limit in case of a repairable system as shown by Eq. (5.9).  

As seen from equations (5.5) and (5.8), the failure rate (𝜂(𝑡)) in a repairable system and that in a 

non-repairable system are different quantities, i.e., 𝜂(𝑡) ≠ 𝜃(𝑡). 

5.3.2 Homogeneous Poisson Process (HPP) Model 

The HPP model is the most widely used model of recurring events in the nuclear industry as well 

as other areas of engineering and science. In the HPP model, the time between failure (X) is an 

exponential random variable and the distribution of the number of failures, 𝑁(𝑡), follows the 

Poisson distribution given as  

 
𝑃[𝑁(𝑡) = 𝑘] =

(𝜆𝑡)𝑘𝑒−𝜆𝑡

𝑘!
 (5.10) 

The expected number of failures is given as 𝐸[𝑁(𝑡)] = 𝜆𝑡, and the failure rate is a constant, i.e.,  

 𝜂(𝑡) = 𝜆  (5.11) 
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Since the exponential distribution cannot model the aging effect, the HPP model also lacks this 

ability. Note that the aging effect means the hazard rate is increasing with the age of the 

component. The HPP model basically describes random occurrences of failures without any time 

trend. 

The reliability in a time interval (0, 𝑡), i.e., probability of no failure, can be calculated from Eq. 

(5.10) with 𝑘 = 0 as 𝑒−𝜆𝑡, and probability of failure as, 𝑃𝑓(𝑡) = 1 − 𝑒−𝜆𝑡. In case of highly 

reliable equipment, 𝜆 tends to be so small that the probability of failure can be approximated as 

𝑃𝑓(𝑡) ≈ 𝜆𝑡. For this reason, the failure rate can be used as a reliability measure of repairable 

equipment. 

In PSA, the homogeneous Poisson process is used to model initiating events that can lead to core 

damage. Given the occurrence of an initiating event, the probability of core damage, 𝑝𝑑, is 

calculated from a suitable fault tree analysis. From the decomposition property of HPP, the core 

damage also becomes an HPP with rate 𝜆 𝑝𝑑. Since core damage is a singular event which will 

mark the end of life of a reactor, there is no point in talking about recurring core damages. 

Nevertheless, the Poisson process model allows us to calculate the probability of (first) core 

damage as 𝑒
−𝜆𝑡𝑝𝑑, which is approximately, 𝑃𝑓𝑑(𝑡) ≈ 𝜆𝑝𝑑𝑡. Thus, the annual core damage 

frequency, 𝜆𝑝𝑑 with t=1, becomes synonymous with the annual core damage probability.  

In practice such subtle distinctions between repairable and non-repairable problems are 

regrettably glossed over resulting in frequent uses of incorrect terminology. In case of the HPP 

model with 𝜆 ≪ 1, this abuse of terminology can be forgiven. However, the misuse/abuse of 

terminology has now spread over to cases where the HPP model is inapplicable.  

It appears that the use of failure frequency as a reliability metric in risk assessments of nuclear 

systems has crept over from the PSA literature where terms like core damage frequency and 

frequency of initiating events are routinely used.  

5.3.3 An Example 

In this Section, the key differences between repairable and non-repairable equipment reliability 

problems are further illustrated by a simple example.  

Consider that the lifetime (X) of a component is modelled as a gamma distributed random 

variable with the shape and scale parameters of 𝛼 = 2 and 𝜆 = 0.04, respectively. This particular 
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distribution is chosen, since all relevant quantities can be derived in analytical forms. The mean 

lifetime is 50 years and the coefficient of variation (COV) of the lifetime is 0.70.  

Other properties of this gamma lifetime distributions are given below: 

 Probability density function: 𝑓𝑋(𝑡) = 𝜆2𝑡 𝑒−𝜆𝑡 

Cumulative distribution function:𝐹𝑋(𝑡) = 1 − (1 + 𝜆𝑡)𝑒−𝜆𝑡  

Hazard rate: ℎ𝑋(𝑡) =
𝜆2𝑡

(1+𝜆𝑡)
 

Reliability function: 𝑅𝑋(𝑡) = 1 − 𝐹𝑋(𝑡) = (1 + 𝜆𝑡)𝑒−𝜆𝑡   

(5.12) 

  

(a)        (b) 

Figure 5.5: (a) Lifetime distribution and the hazard rate, and (b) reliability function of the 

gamma distribution 

 

First consider a non-repairable equipment reliability problem. The gamma lifetime distribution 

and hazard rate are plotted in Figure 5.5 (a). The hazard rate at age 50 is 0.026, and reliability at 

age 50 is 0.4 (Figure 5.5 (b)). It means that 60% of a fleet of such equipment is not expected to 

survive up to age of 50 years. 
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Figure 5.6: Difference between annual probability of failure and failure frequency: Non-

repairable problem 

 

In case of a single non-repairable component, the failure frequency is calculated using Eq. (5.4) 

with 𝑛 = 1, whereas the annual probability of failure is calculated using Eq. (5.7) with 𝑥2 =

𝑥1 + 1. As shown by Figure 5.6, the annual probability of failure in an age interval 50 – 51 year 

is 0.026, which is more than twice the failure frequency (0.011) in this interval. 

Although Figure 5.6 shows that both measures are approximately equal up to an age of 10 years, 

this numerical proximity cannot serve as a basis to justify the use of incorrect terminology and 

formulas in any reliability assessment.  

 

Figure 5.7: Failure rate with gamma distributed time between failures: Repairable problem 
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The failure rate for the gamma distributed time between failures can be analytically derived as [7] 

 𝜂(𝑡) =
𝜆

2
(1 − 𝑒−2𝜆𝑡)    (5.13) 

The failure rate versus time relation plotted in Figure 5.7 is rather interesting. The failure rate 

first increases and reaches to a constant steady state value equal to (𝜆/2 ) as a result of beneficial 

effect of replacement. 

 

 

Figure 5.8: Comparison of failure rate of repairable equipment with the hazard rate of a non-

repairable equipment 

 

The comparison of failure rate and hazard rate shown in Figure 5.8 is really interesting, as it 

shows an important qualitative difference between these two quantities. The hazard rate 

increases over time indicating that the non-repairable equipment becomes increasingly 

vulnerable to failure. In contrast, the failure rate reaches a constant steady state value implying 

that in the long term the process of failures and renewals reaches to a stationary equilibrium.  
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Figure 5.9: Comparison of the failure rate of repairable and non-repairable equipment: 

Example of the gamma distribution  

 

Lastly, Figure 5.9 compares the failure calculated in repairable and non-repairable problems 

assuming the same gamma lifetime distribution. It is remarkable to see a completely different 

behaviour of the failure rate in these two cases. If the failure rate of a repairable system is 

calculated using the formula for non-repairable problem, and vice versa, it would lead to grossly 

incorrect results.  

5.4 Reliability Analysis and Limit States of the Pressure Tube: A discussion 

5.4.1 Background  

As discussed previously, the failure frequency is an appropriate measure of reliability of 

repairable systems only. The mission (interval) probability of failure is a valid measure of 

reliability of non-repairable systems.  

The CSA Standard [2] describes several limits states of the performance of the fuel channel, such 

as critical flaw sizes, minimum fracture toughness and PT-CT contact. However, the Standard 

does not provide any guidance about the classification of such limit states into repairable or non-

repairable failures. The Standard also omits the relation and relevance of the chosen reliability 

measure, i.e., failure frequency, to the reliability with respect to postulated failure modes. 

Therefore, it is important to understand the nature of limit states of pressure tube performance, 

classify them correctly into repairable and/or non-repairable reliability problems and then 

quantify the applicable reliability measure.  
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It is also important to discuss the relation among types of limit states, types of failure modes, 

progression of limit states and maintainability in defining a reliability problem. 

A limit state means that state (or condition) of the system which divides the system performance 

into acceptable and non-acceptable domains. For example, the blister formation threshold is a 

limit state of deuterium ingress at a point of PT-CT contact. Here, Heq < BFT means acceptable 

performance, and Heq > BFT means an unacceptable condition.  

In structural reliability theory, limit states are broadly classified into two groups depending on 

the severity of the consequence of a failure. They are, namely, serviceability limit states and 

ultimate limit states. A serviceability limit state indicates a significant departure in the structure’s 

condition from the original design state. Nevertheless, this departure from the design state has 

benign consequences, i.e., it does not compromise the system safety and functionality. The 

serviceability limit state is like an alarm which prompts the engineer to initiate mitigating actions.  

In contrast, the ultimate limit state means a failure that would severely impair the system safety 

and functionality with potentially severe consequences. For example, excessive deflection of a 

floor slab is classified as a serviceability limit state, whereas the formation of a plastic 

mechanism leading to collapse is an ultimate limit state of the floor slab. In summary, the 

classification of a failure mode into serviceability or ultimate limit state largely depends on the 

severity of the consequences of the system failure.  

In some reactor components, serviceability and ultimate limit states might be a set of closely 

connected events, such as the progression of a serviceability limit state over time into an ultimate 

limit state.  This situation must be carefully modeled in the reliability analysis. For example, in 

case of flow accelerated corrosion of a feeder bend, wall thickness loss up to a certain limit can 

be considered as a serviceability limit state. At the same time, the wall thinning can ultimately 

cause a feeder failure. Thus, the rate of progression from a serviceability to an ultimate limit state 

is a critical issue in the reliability analysis. 

In the context of reliability analysis, failure modes are of two types: (1) self-announced failure, 

and (2) latent failure. The self-announced failure means that the occurrence of a failure is (almost) 

immediately detected by the operator/user of the equipment. For example, the loss of electric 

supply to a household is noticed by the occupants. A plane falling from the sky is another 

extreme example of this type of failure mode.  
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The latent failure, as the name implies, means the occurrence of a system failure is not detectable 

until a detailed inspection is carried out. In case of a safety system, the occurrence of a failure 

can be latent due to the standby nature of the operation. Some degradation failures may belong to 

this category, since entering into a degradation state does not interrupt the function of a 

component to a degree that it becomes immediately noticeable. For example, the exact time at 

which the engine oil in a car reaches to a degraded state is not known. Therefore, the driver is 

advised to inspect the condition of oil periodically.  

The maintainability refers to the degree to which a system is amenable to repair (or replace) after 

a failure, such that its operation can be restored to a safe and functional state. The maintainability 

is typically achieved by design, i.e., by building those features in the system layout that provide 

access to the system and allow modular repair work in a safe and efficient manner. It should be 

stressed that maintainability by itself does not determine the type of system reliability analysis to 

be repairable or non-repairable. In the repairable system reliability analysis, it is assumed that an 

opportunity to repair exists right after a failure. For example, an aircraft engine is designed to 

have high maintainability. A failure to start the engine on the ground is repairable, whereas a 

run-time engine failure in the air is non-repairable. 

5.4.2 Repairable versus Non-Repairable Reliability Problems 

How do we know that a limit state is repairable or non-repairable? In practice, this classification 

is not a cut -and –dry situation, rather it depends on several factors discussed in the previous 

Section. Based on this discussion, some general guiding principles for the classification can be 

constructed as follows. 

A prime consideration in the reliability analysis is the consequence of failure, i.e., risk, which is 

implicitly embodied in classification of limit states. The type of limit state is therefore a 

dominating consideration. 

A self-announced, serviceability limit state can be modelled as the repairable problem provided 

that the system is maintainable.  

It is most appropriate to model an ultimate limit state as a non-repairable reliability problem.  

A latent failure mode is typically in the realm of a non-repairable reliability problem. However, 

this problem can be converted into the repairable type by introducing inspections. An inspection 
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program can be designed to detect and remove latent failures. In this case however, the system 

availability and failure frequency become a function of the inspection interval. Analysis of these 

parameters requires more complex stochastic process models. Since the equipment condition is 

not known without an inspection, the probability of failure over the inspection interval is a 

meaningful reliability measure, at least for safety critical systems. A sufficiently low probability 

of failure would ensure the operator and the regulator that an unreasonable number of failures 

will not be discovered at the time of next inspection.  

A latent, serviceability limit state of static nature can be modelled as a repairable problem. 

However, if this limit state can rapidly evolve into an ultimate limit state (self-announced or 

latent), then it is prudent to model this as a non-repairable problem.  

In conclusion, the reader must be reminded that the classification of a reliability problem is very 

much dependent on the operational considerations. A failure to start an aircraft engine on the 

ground is repairable, whereas a run-time engine failure in the air is a non-repairable problem. 

Therefore, a probabilistic assessment must identify the class of reliability problems it is intended 

to address.  

5.4.3 Limit States of Pressure Tubes 

The condition of a fuel channel is not directly visible to the operator. Only the inspection and 

gauging tools provide data about the state of deformation of the fuel channel. For example, 

pressure tube elongation, diametral creep and a contact with the calandria tube are detected by 

inspection tooling. There are different types of degradation related limit states of PT failure, as 

given in the CSA Standard [2].  

In the context of the CE-PM report, the limit state of PT-CT contact leading to blister formation 

must be clearly identified. Is it a serviceability limit state or an ultimate limit state? The 

classification would depend upon the consequence of failure. Blister formation by itself may be a 

benign event. However, if the blister growth rapidly leads into the pressure tube cracking and 

rupture, then it should be considered as an ultimate limit state.  

The limit state of blister formation is certainly a latent failure mode, since its occurrence can 

only be detected by an inspection. Is it a repairable or non-repairable failure mode? In principle, 

a contact can be mitigated by the SLAR tooling after the detection of a contact. In this sense, the 

PT-CT contact is a repairable failure. However, since the failure mode is latent and only 
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detectable during an inspection, the PT—CT contact cannot entirely be treated as a repairable 

problem. Another issue is that the likelihood of spacer movements in post-SLAR life cannot be 

completely eliminated. Thus, if this mode were to be treated as a repairable problem, the 

calculation of the failure rate must account for the frequency and scope of the fuel channel 

inspection program. Otherwise, it is prudent to evaluate the probability of PT-CT contact and 

blister formation over the inspection interval of the pressure tube.  

The frequency and scope of fuel channel inspections play an important role in classifying the 

reliability problem in the following manner. A relation between the inspection interval and the 

rate at which a blister can grow to the size that leads into cracking and rupture (or leakage) is a 

deciding factor. 

Suppose ALL fuel channels in a reactor are inspected at a 2 year interval. A knowledge base 

exists to allow us to say with high confidence that a blister is unlikely to cause a PT rupture 

within two years of its formation. Then, this mode can be treated as a repairable problem. The 

failure frequency calculated considering 2 year inspection interval would be a suitable measure 

of reliability.  

If the current knowledge base suggests that the blister formation is likely to cause a PT rupture 

(or loss of integrity) in less than 2 years, then this problem should certainly be treated as a non-

repairable reliability problem. In this case, the probability of failure in a 2 year interval is a 

suitable measure of reliability.  

Another consideration is the sample size for pressure tube inspections. If the sample size is much 

smaller than the population size, then some tubes may not be inspected for a long time. In such 

uninspected tubes, a PT—CT contact and blisters can remain undetected for a long time. For 

such channels, an annualized measure of reliability (i.e., failure frequency) is rather meaningless.  

In summary, the reliability measure calculated in a probabilistic assessment must be 

commensurate with the type of limit state (serviceability or ultimate), nature of failure mode 

(self-announced or latent), rate of progression of limit states and the maintainability of the 

system. The failure rate and failure probability serve as a meaningful reliability measure 

depending on the context of the reliability analysis.  
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5.5 Closing Remarks 

The CE-PM report describes a simulation based method to predict the expected number of PT 

failures in one reactor year intervals (8000 EFPH assumed as one reactor year) over the 

operating life of the reactor. The predicted failure frequency is then compared with the 

acceptance limit specified in the Table C.1 of the CSA Standard N285.8 [2]. Since this analysis 

lies in the field of time dependent reliability analysis, the analysis method and the reliability 

measure chosen in CE-PM must be consistent with basic principles of the reliability analysis. 

This aspect is thoroughly examined in this Chapter of the review, and reliability concepts related 

to non-repairable and repairable equipment are explained in detail.  

The failure frequency defined as the expected number of failures per unit time is not a universal 

measure of reliability.  It is a meaningful measure in the reliability analysis of repairable systems. 

Using the failure frequency as a reliability measure of a non-repairable system is conceptually 

inaccurate.  

The CE-PM report estimates the PT lifetime distribution, i.e., the distribution of the time of 

blister formation (and blister cracking) for each pressure tube in the reactor core. Since CE-PM 

stops after the “first” failure of a PT, and it does not consider any repair or replacement followed 

by a failure in the simulation, it is concluded that PT failure has NOT been analyzed as a 

repairable reliability problem.  Since CE-PM has implicitly analyzed a non-repairable reliability 

problem, the probability of failure over a suitable evaluation period is a meaningful reliability 

measure. This measure must be correctly calculated and reported in the probabilistic assessment.  

For the sake of conceptual and procedural accuracy of the probabilistic assessment, it is 

recommended that the CE-PM report include a section that describes the nature of PT limit states 

evaluated in the assessment and accordingly justify the chosen reliability measure. 

 

5.6 Points of Clarifications 

5.1 The CE-PM report should replace all colloquial terms by correct technical terms. For 

example, integrated probability should be replaced by the cumulative probability. The 

aggregate frequency is in essence the system failure frequency.  

5.2 Based on the discussion presented in this Chapter (Sections 5.2 and 5.3), it is 

recommended that the CE-PM authors clearly state the type of limit state, the type of 
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failure mode (latent or self-announced), rate of progression of the failure mode, and 

maintainability of the pressure tube with respect to the failure modes considered in the 

probabilistic assessment. Then, the CE-PM report must state whether they consider the 

problem as a repairable or non-repairable reliability analysis with due explanation.  

5.3 The PT failure problem (i.e., blister formation/cracking) in the CE-PM report is implicitly 

analyzed as a non-repairable equipment reliability problem. This conclusion is based on 

the following facts: (1) the failure frequency calculated in the CE-PM report uses the 

formula that is applicable to a non-repairable problem, as shown in Section 5.2. (2) The 

CE-PM simulation method also stops after the first failure of a PT, and it does not consider 

any repair or replacement followed by a failure in the simulation, as required in a 

repairable problem (see Section 5.3). (3) The failure frequency for a repairable system is 

calculated using an integral equation or using analytical formulae in some special cases 

(e.g., the HPP model or gamma process). This approach is not used in the CE-PM report. 

Thus, it is concluded that the CE-PM report does not analyze the blister formation as a 

repairable reliability analysis problem. Therefore, it is recommended that CE-PM calculate 

and report the probability of PT failure over the inspection interval.  

5.4 In Section 7, paragraph 5, CE-PM provides an incorrect response to a concern raised about 

the calculated failure frequency. If the PT failure problem belongs to a non-repairable 

equipment category, the expected number of failures in the reactor would diminish over 

time, since the PT population would shrink due to failures accumulating over time. It is not 

a question of “engineering approximation”, rather it is a reality of the problem. For this 

very reason, failure frequency adopted by CE-PM is not indicative of reliability, as 

discussed throughout this Section. The meaning of the statement that “such a case is of no 

engineering interest since it is a long way beyond the acceptance criterion” is debatable. 

The reason is that the failure frequency and failure probability begin to differ way before 

the end of life, as shown by examples presented in this Chapter.  
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6. Other Issues and Points of Clarification 

6.1 Introduction  

This chapter summarizes the comments and points of clarification related to remaining topics, 

such as the simulation sample size, convergence, sensitivity analysis and spacer movement 

models. Since these points are fairly concise and specific to the CE-PM report, they are 

discussed in a point-wise form in the following section.  

6.2 Points of Clarification 

6.1 The CE analyst should provide a more quantitative and statistical rationale for justifying 

the number of simulations used in the analysis, which is typically 1000 simulations.  

The number of simulations required in the Monte Carlo method depends on the desired 

relative accuracy of the estimate as well as the order of the probability that is being 

estimated.  

Suppose in the estimation of a probability, 𝑝, a relative error of 𝑣𝑥 is considered acceptable, 

then the number of simulations required, 𝑁𝑠𝑖𝑚, can be estimated as  

 𝑁𝑠𝑖𝑚 ≈
1

𝑣𝑋
2 𝑝

    (6.1) 

If a 10% relative error is tolerable, i.e., 𝑣𝑋 = 0.1, then the required number of simulations 

would be roughly 100/𝑝. The CE analyst should state the tolerable statistical error (𝑣𝑥) in 

the analysis and accordingly show that the chosen number of simulations are adequate in the 

estimation. 

6.2 In order to estimate the probability of an order of 10−3 with 10% relative accuracy, 

approximately 105 simulations are required. Since an interest in the probabilistic 

assessment is in finding the time at which the CSA acceptance criterion is violated, which 

is in the order of 4.13 × 10−3, the simulation sample size must be adequate to estimate this 

probability.   

It is therefore puzzling to read the following statement on page 61: “1000 simulations are 

justified on the basis that at risk channels have frequency of the order of 10−1. If a channel 

already has failure frequency of the order of 10−1, it means the reactor is way out in the 

unacceptable domain, a situation that is not of interest in the analysis. What is of interest is 

the time at which the reactor violates an acceptance criterion, so that inspection and 

maintenance can be planned. The CE analyst is requested to address this issue. 

6.3 On page 62 in Appendix B, a statement like “1000 simulations are more conservative is the 

error bounds are taken into account……”, and “….since the lower bound is used to 
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calculate the aggregate frequency, the assessment is more conservative”, are difficult to 

understand. Such statements do not have a quantitative basis, and terms like the lower 

bound is not defined explicitly.  

The CE analysts is requested to define the meaning of the lower bound and provide 

mathematical formulae used in the calculation. 

6.4 A statement before Table 7 (page 2) that “Using 1000 simulations leads to the error bounds 

… 2000 EFPH wider (2σ) ...” is not clear. Let’s examine this in a bit more detail. The 

mean and standard deviation of the time to contact (𝑇) for P08 is estimated as 𝜇𝑇 = 

338,170 EFPH and 𝜎𝑇 = 41,229 EFPH. The standard deviation of the estimated mean is 

given as 𝜎𝑇/√𝑁𝑠𝑖𝑚. For 𝑁𝑠𝑖𝑚 = 1000, this turns out to be 1304 hours. In essence, the CE-

PM report is providing error bounds on the average time to contact (𝜇𝑇), which has a little 

value in the reliability analysis. The prediction limits on the time to contact (T) are 

meaningful in the reliability analysis. Therefore, the CE-PM analyst is requested to plot the 

mean and prediction limits of the time to PT-CT contact.  

6.5 According to Table 7 of the CE-PM, the lognormal distribution was fitted to the time to 

contact data. It also makes a reference to “censored” data. Which statistical estimation 

method was used to estimate the parameters of the lognormal distribution?  

6.6 The lognormal distribution is not considered ideal for modeling the lifetime distribution. 

The reason is that its hazard rate first increases and then decreases with time. Since the 

probability of PT-CT contact should increase with time in a monotonic manner, the 

lognormal distribution may not be an ideal choice. Did the CE analyst try to fit any other 

alternate distributions, such as the Weibull distribution?  

6.7 In Figure 18, what is the definition of 5% CL and how is it calculated? Since the 

probability of contact changes with time, the 5% CL should also reflect this change. Isn’t 

it? Please provide mathematical formulae used to calculate this quantity. 

6.8 Appendix E presents the estimation of the spacer movement model based on Gentilly-2 

data. Figure 21 shows the Weibull cumulative distribution of the absolute ratio. This 

should be plotted on the Weibull probability paper.  

6.9 Appendix F describes the Bruce spacer movement model. On page 76, it is stated that the 

Weibull distribution is suitable to model asymmetric data. This is not fully accurate, since 

the lognormal distribution is the most appropriate to model long tail data.  

6.10 With reference to Figure 23, the data and the Weibull distribution must be plotted on the 

Weibull probability paper in order to show the goodness of fit. Plotting data and 

cumulative distribution on an arithmetic scale is rather meaningless.  

6.11 Figure 23 (page 77) shows a discontinuity in the cumulative distribution of the 

displacement ratio. Does it not mean that the positive and negative spacer movement 
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belong to separate statistical population? Isn’t it more appropriate to fit separate 

distributions to the positive and negative movements?   

6.12 In Figure 24, a comparison of cumulative distribution of simulated and observed 

movements is somewhat meaningless, as it does not show the goodness of fit in the tail 

regions. It is suggested to make this plot on a log scale. This comment also applies to 

Figure 25. 

6.13 Appendix G illustrates the importance of different input parameters on PT-CT contact 

assessment. With reference to Figure 27, please provide definitions of the lower and upper 

bounds. Figure 27 shows the effect of variation of the creep ratio on the PT-CT gap. What 

is the effect of creep ratio on the time of PT-CT contact? This comment also applies to 

Figure 28. 

6.14 The sensitivity analysis presented in Appendix G is merely a qualitative analysis of an 

informal nature. In a formal sense, the purpose of the sensitivity analysis is to show the 

effect of an input parameter, a random variable (e.g., creep ratio), on the variability of the 

output.  

A formal method used in the probabilistic analysis is called the global sensitivity analysis 

[6], which quantifies the percentage contribution of a random variable to the variance of 

the output. For example, it is more meaningful to know the contribution of the creep ratio 

of the variance of PT-CT gap or the time of PT-CT contact. This analysis would provide a 

rationale for collecting additional inspection data for accurate modeling of variables with 

high sensitivity to the result.  

The CE analysis is suggested to consider such a formal sensitivity analysis.  

6.15 An important aspect of the risk assessment is also to understand the extent of variability in 

the system under investigation. In this particular case, the PT-CT contact is the main 

initiator of an undesirable event, namely, blister formation. So what is the range of mean 

time to contact across the fuel channel population of a reactor core? Similarly, what is the 

range of standard deviation of the time contact in the reactor core? This information may 

be useful to show how wide spread is the effect of the degradation mechanism in the 

reactor core. Since the simulation results are already available for all the fuel channels, this 

information can be easily extracted and displayed.  
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