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EXECUTIVE SUMMARY 

This document presents the results and recommendations from the work conducted under 
CNSC Research Project R612.1 “Application of Bayes method in evaluation of ROP/NOP 
trip setpoint – Phase I”. 

A draft report was presented in a seminar at CNSC offices in Ottawa on 16 February 2016, 
and written comments were invited by 15 March 2016.  I am pleased to note that the 
fundamental components of the report, namely the NOP equations, the two-level Monte Carlo 
simulation and the Bayesian modelling, were accepted with no critical comments. 

RESULTS 

Tasks 4.1 to 4.4 of the project have been completed. 

Task 4.1.  Review of the NOP/ROP  problem - original general description in Ontario Hydro 
documentation and SIMBRASS theory manual to be provided by CNSC. This should be the 
starting point for developing the technical basis for the independent capability. Develop 
observations concerning the original statistical approach and method, shortcomings and 
limitations, and potential options for improvement. 

The original statistical method, referred to herein as the ‘traditional’ method, has been found 
to have two important deficiencies.   

1. The probability distributions used for sampling some of the uncertain quantities 
needed for evaluating the performance of a trip setpoint are not statistically sound. 

2. Even if the distributions used were statistically sound, as a simple Monte Carlo 
solution the traditional method provides only an estimate of the frequency of 
successful trip, and cannot quantify the uncertainty around this estimate. 

Options for improvement comprise using a two-level Monte Carlo algorithm that separates 
frequency from uncertainty, and using sound statistical methods for deriving probability 
distributions.  These improvements are incorporated in the proposed statistical framework 
(Task 4.3). 

Task 4.2.  Starting from a CNSC staff paper describing the NOP "effectiveness" and "risk" 
problems and expected features and needs for the statistical framework, which will be 
finalized in the form of a "software specification" document based on the discussion at the 
start up meeting and feedback from the contractor and industry specialists from OPG and 
Bruce, provide expert opinion on: separation of uncertainties for NOP analysis and 
approaches for propagation of "ignorance" and "variability" candidate statistical 
approaches, other than Bayes method, which should be considered for implementation in the 
independent capability. 

“Ignorance” and “variability” are formulated as E-uncertainty and A-uncertainty.  A-
uncertainty refers to the fact that the detailed state of the reactor when a slow loss of 
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regulation occurs, as defined by quantities such as channel powers, is variable over time and 
so cannot be known in advance.  A-uncertainty about these quantities is described by 
probability distributions.  E-uncertainty refers to the fact that these A-distributions are not 
known.  E-uncertainty is described by probability distributions for parameters of the A-
distributions. 

It is important to separate these uncertainties, with the frequency of successful trip being 
defined through the A-uncertainties, and with uncertainty about this frequency defined by the 
E-uncertainties. 

The principal statistical paradigms for quantifying these uncertainties are considered, with 
only the Bayesian paradigm being found practicable for the problem of evaluating the trip 
setpoint. 

Task 4.3.  Develop a high level technical description of a statistical framework (statistical 
method(s), assumptions and requirements for input data) for verification and confirmation of 
ROP/NOP trip setpoint values which can be used for both "effectiveness" and "risk" 
problems. 

A Bayesian statistical framework is developed based on a two-level Monte Carlo algorithm.   

The high level description defines sound statistical models for A-uncertainty and E-
uncertainty applying to each of the groups of uncertain quantities, such as ripples or 
overpowers.  Alternative models are provided with a view to assessing the sensitivity of 
outputs to each choice of model, and with guidance on identifying the most appropriate 
models.   

The “effectiveness” and “risk” problems are encompassed in a general framework where 
frequencies are defined for the critical power ratio at trip to exceed different critical values, 
and probabilities are computed for these frequencies to reach different thresholds. 

Task 4.4.  Develop: a work plan for implementation of the proposed framework in a computer 
code, and generic criteria for manufacturing benchmark cases and testing. 

A work plan is presented in the form of a “Software Appendix” to this document.  This 
includes detailed specifications of inputs and outputs, as well as the algorithms to apply the 
statistical framework.   

Various suggestions are made for validation and testing of the software, including face 
validity checks, benchmarking, used of reserved data and the creation of a log file.  

RECOMMENDATIONS 

A number of recommendations are made in the event that Phase 2 of this project is 
commissioned, involving the creation of the proposed software. 
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a. In addition to the ability to deliver quality assured scientific software, the team must 
include experts in Bayesian statistics, and particularly in Bayesian computation.   

b. The team should be given some freedom to offer different models within the general 
structure of the statistical framework.  It is in the nature of the NOP problem, and 
particularly in the fact that maximum and minimum operations feature in the 
equations, that the solution may be sensitive to details of the models.  This is one 
reason why alternative models are already prescribed, but it also motivates 
encouraging a degree of innovation on the part of the development team. 

c. The project should be considered as not simply delivering a product to specification 
but also involving a substantial statistical research element, and would require at least 
a six-month timescale. 

d. The team should be able to call upon somebody such as myself, with understanding of 
both Bayesian statistical methods and the evaluation of NOP trip setpoints, to provide 
technical support and/or independent review, and to ensure that the user manual gives 
clear guidance to the CNSC on specifying input values and on interpreting the 
software’s outputs. 

Looking beyond the completion of Phase 2, the software will allow flexibility in the 
specification of code error variances and correlations, which can be used to explore the 
sensitivity of the outputs to changing the currently assumed, possibly simplistic, error 
structures.  If the results are found to be sensitive to such changes, then it will be important to 
develop new research to quantify reliable and well-founded error structures, particularly 
examining spatial correlations.  This would lie outside the scope of Phases 1 and 2 of the 
current project, and so would require a separately funded research project. 
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INTRODUCTION  

PROJECT WORK STATEMENT 

The purpose of this document is to describe the results and findings from the work conducted 
under CNSC Research Project R612.1 “Application of Bayes method in evaluation of 
ROP/NOP trip setpoint – Phase I”.  

 

The schedule of work for this contract specifies the following tasks. 

Task 4.1.  Review of the NOP/ROP1 problem - original general description in Ontario Hydro 
documentation and SIMBRASS theory manual to be provided by CNSC. This should be the 
starting point for developing the technical basis for the independent capability. Develop 
observations concerning the original statistical approach and method, shortcomings and 
limitations, and potential options for improvement. 

Task 4.2.  Starting from a CNSC staff paper describing the NOP "effectiveness" and "risk" 
problems and expected features and needs for the statistical framework, which will be 
finalized in the form of a "software specification" document based on the discussion at the 
start up meeting and feedback from the contractor and industry specialists from OPG and 
Bruce, provide expert opinion on: separation of uncertainties for NOP analysis and 
approaches for propagation of "ignorance" and "variability" candidate statistical approaches, 
other than Bayes method, which should be considered for implementation in the independent 
capability 

Task 4.3.  Develop a high level technical description of a statistical framework (statistical 
method(s), assumptions and requirements for input data) for verification and confirmation of 
ROP/NOP trip setpoint values which can be used for both "effectiveness" and "risk" 
problems. 

Task 4.4.  Develop: a work plan for implementation of the proposed framework in a 
computer code, and generic criteria for manufacturing benchmark cases and testing 

Task 4.5.  Prepare a draft report and present the results in a seminar with CNSC staff and 
invited guests 

Task 4.6.  Finalize the report. 

 

1 ROP stands for “Regional Overpower Protection”.  In this report, “NOP” will be used to 
include ROP. 
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CNSC staff provided the following additional definitions, expectations and clarifications in a 
white paper (as indicated in Task 4.2 description above) which was discussed at the start-up 
meeting and in follow-up discussions: 

a. In the context of this project, the statistical framework (SF) is the computational 
framework for evaluating the frequency of failure of NOP system and is defined by the 
theory, mathematical model, algorithm, and the input information which implements the 
theory and mathematical model.  As such, the statistical framework may include one or 
more computer programs, special models, and all other information needed to apply the 
computational framework, including: 

(1) procedures for treating the input and output information and related uncertainties; 

(2) specification of those portions of the analysis not included in the computer programs 
for which alternative approaches are used; 

(3) all other information needed to specify the computational procedure. 

b. Note:  Typically, the algorithm introduces new approximations, in addition to the 
approximations made in the theory and mathematical model, to either make the 
calculations tractable or to explicitly address issues related to the available input 
information (data), such as the input data uncertainty structure, or specifics of the 
application.  It is therefore important (and expected) to identify and discuss all 
approximations and take them into account in the evaluation of the uncertainty in the 
predictions and extent of validity of the proposed statistical procedure. 

c. In the context of this project, the main output parameter, or The Figure of Merit (FOM), 
is the frequency of failure to meet a postulated (input data) criterion for the minimum 
Critical Power Ratio at trip (CPRtrip).  

d. The FOM should be calculated for two cases: 

1. the case of failure to meet the design criterion which is avoidance of dry-out 
expressed as CPRtrip > 1.0 

2. the case of failure to meet a postulated surrogate for the safety criterion which is 
maintenance of fuel channel integrity expressed as CPRtrip > 1.0 + r (where r is a 
positive quantity less than 0.1 and it is specified in input data) 

e. CNSC staff proposed the use of a Bayesian approach, because the NOP methodology is 
based on a probabilistic model and, by design, Bayesian methods natively consider the 
uncertainty associated with the parameters of a probability model (even if those uncertain 
parameters are believed to be fixed numbers) and are often recommended and used (as 
proven practice) in areas of reliability and probabilistic assessment as the proper way to 
make formal use of subjective information. 
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f. In the context of this project, the Bayesian SF is proposed to be used to estimate 
functional failure distributions for a NOP system with fixed design control variables 
(number of detectors, location of detectors and value of trip setpoint).  Specifically, the 
Bayesian SF should answer the question:  What is the estimated frequency of NOP 
system (functional) failure and the uncertainty around that estimate?  

g. The distributions and quantities that result from the analyses would be the primary fodder 
for a decision making process, but the decision process itself is defined outside the 
Bayesian SF, i.e., the Bayesian SF is used to generate the input data for a decision-
making analysis model.  The decision-making analysis model is outside the objective and 
purpose of this project.  Therefore, the Bayesian SF should be designed independently of 
any considerations about the decision-making analysis model. 

h. In the context of this project, the model, mathematical formulation and algorithm will 
focus primarily on the option which uses the “superposition” approximation and, as such, 
allows the use of the same input data as used in OPG/BP NOP analysis.  A more general 
option, which does not rely on the “superposition” principle and considers the possibility 
of more detailed and accurate input data, in particular the input data related to 
uncertainties in code predictions, should also be formulated. 

i. The proposed Bayesian SF should include the capability to execute sensitivity analyses.  

This document, with its Appendices, comprises the report of Task 4.5.  It describes the 
objective, theory, model, algorithm, and key features of the proposed SF and an 
implementation work plan. 

A draft report was presented in a seminar at CNSC offices in Ottawa on 16 February 2016, 
and written comments were invited by 15 March 2016.  I am pleased to note that the 
fundamental components of the report, namely the NOP equations, the two-level Monte Carlo 
simulation and the Bayesian modelling, were accepted with no critical comments. 

ORGANISATION 

The main document is organised according to the list of tasks, with a section for each of 
Tasks 4.1 to 4.4.  The work carried out and principal conclusions in each task are described.  
These conclusions are supported by detailed analyses and explanations in a Technical 
Appendix (TA).  

A second appendix, the Software Appendix (SA), is a draft of a specification for the proposed 
computer code, intended as a comprehensive briefing for coding the proposed SF. 

A third appendix lists the written comments made by Bruce Power and Ontario Power 
Generation following the 16 February seminar, with detailed dispositions. 
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TASK 4.1: REVIEW OF THE NOP/ROP PROBLEM 

NOP METHODOLOGY 

My review of the NOP/ROP problem inevitably began with reading several documents to 
understand the theory behind the NOP trip setpoint.  Principal sources of information, as 
indicated in the contract work statement and CNSC staff white paper, were: 

• A.L. Wight, Ontario Hydro Report No. 83254, September 1983 
• “SIMBRASS 6.0 Software Theory Manual” (chapters related to design (“traditional”) 

formulation: 3.1 to 3.4 and 3.11), NSS report G0127/RP/012, 2004   
 

Additional sources of information were: 

• M. Levine, P. Sermer, “CANDU Neutron Overpower Protection Systems Analysis 
Methodology Development – Part 1: Background”, AMEC NSS Presentation at the 
startup meeting of Independent Technical Panel Review of OPG/BP Enhanced NOP 
Methodology, September 10, 2008 

• Discussions with CNSC technical staff. 
 

The principal components of the NOP methodology as used by OPG and BP may be outlined 
as follows. 

• A Slow LOR is considered to begin with the establishment of a perturbation in the 
distribution of channel powers across the reactor, leading to a loss of regulation in 
which the reactor bulk power steadily increases. 

• The NOP trip is designed to operate automatically to protect each individual channel 
against the possibility of dry-out, which will occur if the power in any channel 
becomes so high that it exceeds the critical channel power for that channel. 

• A set of flux detectors, embedded in the core and organised into three logic channels, 
monitor flux in various discrete locations and implicitly monitor for an increase in 
bulk power.  Formally, the NOP trip operates if at least one of the flux detector 
readings in each logic channel exceeds the trip setpoint (which is a fixed value, hard-
wired into the reactor management system).   

• The ratio of the critical channel power to the actual channel power for the limiting 
channel (the one for which this ratio is minimal) is called the margin to dry-out.  In a 
Slow LOR, as bulk reactor power increases this ratio also decreases, and dry-out may 
occur if it reaches 1.  

• The ratio of the trip setpoint to the reading of the limiting flux detector (which has the 
highest reading in its logic channel but is the lowest of the three logic channel 
maxima) is called the margin to trip.  In a Slow LOR, as bulk power increases the 
margin to trip reduces, and trip occurs when it reaches 1.  The trip setpoint is low 
enough to avoid dry-out if this happens before the margin to dry-out falls to 1. 
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• In order to choose an appropriate trip setpoint, or to assess whether a proposed trip 
setpoint is effective, the theory must relate the readings of the flux detectors to the 
channel powers.  In doing so, the NOP equations introduce many quantities, but for a 
random future Slow LOR event the values of these quantities will not be known 
precisely.   

Understanding of the NOP theory was important not only for Task 4.1 but also for Tasks 4.2, 
4.3 and 4.4.  In particular, it was necessary to find a formulation that was suitable for the SF 
of Task 4.3.   

The theory in the sources quoted above also needed adapting to address the focus of this 
project as set out in the CNSC staff paper for Task 4.2, which was not on the derivation of a 
trip setpoint (as had been the focus of most of the sources) but on the chances of trip failing 
to prevent the possibility of dry-out, given a proposed trip setpoint value. 

My expression of the NOP theory is given in the TA, section 2.  In studying the NOP theory, 
I identified a possibility, which had not been mentioned explicitly in any of the sources I 
studied, where a perturbation is sufficiently large to pose a risk of dry-out even without any 
subsequent increase in bulk power.  New equations were derived to address this case. 

THE TRADITIONAL APPROACH 

The original, “traditional” approach to choosing a trip setpoint is described in the 
“SIMBRASS 6.0 Software Theory Manual”, primarily in sections 3.2.1 to 3.2.3. 

1. Probability distributions are assigned to all of the uncertain quantities in the NOP 
equations. 

2. A random draw is made from each probability distribution, to produce a value for 
every quantity in the equations. 

3. Using the NOP equations, the required trip setpoint (RTSP) is computed as the trip 
setpoint such that the margin to trip equals the margin to dry-out.  Thus, the RTSP is 
the value such that as bulk reactor power increases during a Slow LOR the trip will 
occur just in time to prevent the risk of dry-out. 

4. Steps 2 and 3 are repeated many times to produce a large Monte Carlo sample of 
RTSP values. 

5. The chosen trip setpoint is a value such that a suitably high proportion (e.g. 98%) of 
the sampled RTSP values exceed that chosen value. 

The focus of the present project is to assess the efficacy of a proposed trip setpoint, and the 
traditional approach might be adapted for this purpose:  the efficacy is given by the 
proportion of sampled RTSP values that are greater than the proposed trip setpoint value.  
This is a Monte Carlo estimate of the probability that the NOP trip will operate to prevent 
dry-out in a random Slow LOR event. 
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If the probability computed in step 5 is sufficiently high, e.g. 95% or 98%, the proposed trip 
setpoint can be viewed as effective2. 

Part of Task 4.1 is to develop observations regarding this method, and to identify 
“shortcomings and limitations, and potential options for improvement”. 

Shortcomings and limitations.  In my judgement, the traditional method suffers from two 
deficiencies. 

A. The way that probability distributions are assigned to some of the uncertain quantities 
in the NOP equations is not statistically sound.  This deficiency is explained in detail 
in the TA, section 4.2.5. 

B. The probability that is calculated in this method is not a suitable basis for judging the 
efficacy of a proposed trip setpoint.  This deficiency is demonstrated in simple terms 
at the end of the section on Task 4.2 below. 

Options for improvement.  Improvements should ideally address both of the above 
shortcomings.  Such options were considered as part of Task 4.2 and are discussed in the 
relevant section below.  The principal finding of Task 4.2 is to propose a Bayesian SF in 
which the Monte Carlo approach of the traditional method is retained but adapted to compute 
more suitable expressions of efficacy, addressing deficiency B.  The Bayesian approach also 
provides statistically sound constructions of the appropriate distributions for all the uncertain 
quantities, addressing deficiency A. 

 

 

  

2 For the purposes of the discussion here, we focus on measuring efficacy in terms of the 
chance that the NOP trip will operate successfully to prevent dry-out.  Other measures of 
efficacy are introduced at the end of the section on Task 4.2. 
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TASK 4.2: STATISTICAL APPROACHES 

TYPES OF UNCERTAINTY 

Part of Task 4.2 is to determine whether, and if so how, in order to assess the efficacy of a 
proposed trip setpoint there should be a separation of uncertainties, so that different types of 
uncertainty are handled separately.   

A distinction is often made between two types of uncertainty, namely aleatory and epistemic 
uncertainties3.  Aleatory uncertainty applies to things that vary randomly, whereas epistemic 
uncertainty applies to something that may have a unique, fixed value but we do not know that 
value.  The distinction can be subtle and is not always well-defined.  However, the following 
example will clarify the distinction that will be important for this project. 

Consider, for instance, the channel power CPi in fuelling channel i at the time when a 
particular perturbation is initiated.  This is uncertain for two reasons.  First, we imagine this 
perturbation being initiated at some random time point, so there is uncertainty about what 
state the reactor will be in at that time.  This is aleatory uncertainty, because we are 
imagining a random future time point and hence the fuelling state is random.  If we knew the 
reactor state (which we can define as including all relevant details such as the fuelling 
history, the disposition of reactor management devices and drift in calibration of the flux 
detectors), then in principle CPi has a unique, fixed value.  We could compute this value 
using the SORO computer code, but this does not give the true value of CPi because no 
computer code is perfect.  Errors in the computation, whether due to rounding error, 
imperfect solution of the systems of differential equations, or imperfect science, mean that 
the computed value will be different from the true value.  This is epistemic uncertainty – 
there is a true value but we do not know it exactly. 

I will refer to uncertainties arising from the random actual fuelling state when a perturbation 
is initiated as A-uncertainties, and uncertainties arising from imperfect evidence as E-
uncertainties.  Most of the quantities in the NOP equations are subject to both A-uncertainty 
and E-uncertainty.  Like CPi, most quantities take different values at different times, 
depending on the reactor state, and so are subject to A-uncertainty.  Given the reactor state, 
these quantities would in principle have unique, fixed values but these true values are 
unknown.  They may be computable or estimable, but there will always be errors in such 
computations or estimations, and so most quantities are subject also to E-uncertainty. 

3 Other terms are frequently used, with the result that there is often confusion about the 
distinction between the two types of uncertainty.  Aleatory uncertainty is sometimes referred 
to as variability or randomness or irreducible uncertainty.  Epistemic uncertainty is 
sometimes called just uncertainty (as opposed to variability or randomness), knowledge 
uncertainty or reducible uncertainty.  My choice of the terms A-uncertainty and E-uncertainty 
are intended to avoid philosophical or linguistic debate, and are defined specifically for the 
NOP context. 
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Another important component of E-uncertainty is that we do not know how often the reactor 
will be in different states in the future.  In general, we can characterise A- and E-uncertainties 
as follows.  A quantity like CPi will vary randomly from time to time, and this variability will 
be expressed in a probability distribution – this is A-uncertainty.  Its A-distribution specifies 
what values of the quantity are possible, and how probable different values are.  But some 
aspects of that probability distribution (the possible values of the quantity and/or the 
probabilities) are uncertain – this is E-uncertainty. 

Associated with the two types of uncertainty are two principal philosophies of statistical 
analysis.  These are discussed in the TA, section 4.2. 

SEPARATION OF UNCERTAINTIES 

For a given proposed trip setpoint, then depending on the reactor state at the time when a 
particular perturbation initiates a Slow LOR, the NOP trip may or may not operate 
successfully (i.e. before the reactor bulk power increases to the point where the power in one 
or more channels reaches its critical channel power and there is a risk of dry-out).  An 
effective proposed trip setpoint will have a high frequency of success. 

One way to evaluate that frequency of success would be to initiate a perturbation at many 
random times and count how often the NOP trip operates successfully.  Of course, that is 
totally impractical, but suppose we had no E-uncertainty.   Then we would know completely 
the probability distributions of all the quantities in the NOP equations.  In principle we could 
now use the NOP equations to derive the probability of success, in the same way as we can 
derive the probability that X + Y > 0 once we know the probability distributions of X and Y.  
In practice, the NOP equations are much more complex than “X + Y > 0”, and the 
mathematical analysis to perform this derivation would be extremely demanding.  A simple 
alternative would be to use the Monte Carlo method – we could sample future values of all 
these quantities and apply the equations to determine whether the trip would operate 
successfully, then evaluate the probability of success by counting the frequency of successes 
in a large number of simulated future reactor states. 

Notice that the frequency of success is defined entirely with respect to the A-uncertainties, 
assuming no E-uncertainty.  Because the quantities are also subject to E-uncertainty, we do 
not know what that frequency of success is – formally, it is also subject to E-uncertainty.  For 
instance, we might wish the trip to operate successfully at least 98% of the time, but we could 
not be sure whether the true frequency of success was 98% or more. 

Assessment of the efficacy of a proposed trip setpoint necessarily involves a separation of 
uncertainties.  We need to assess  

a) how sure we are, with respect to the E-uncertainties, that  
b) the frequency of success, with respect to the A-uncertainties,  

is at least as high as the desired threshold. 

Page 14 of 24 

 



 23/3/16 RSP-0612.1 

The way that “how sure we are” is defined and expressed depends on the statistical approach 
adopted. 

STATISTICAL APPROACHES 

A statistical analysis to quantify “how sure we are” requires three steps. 

1. For each quantity that is subject to A-uncertainty, a suitable model is assumed for its 
A-distribution.  The model will typically have one or more parameters, and by 
assuming a model the E-uncertainty is focused on uncertainty regarding the values of 
the parameters.  For example, the A-distribution of flux detector drift may be assumed 
to be normal with zero mean and variance v.  Then E-uncertainty regarding detector 
drift resides in the parameter v. 

2. The data that comprise the evidence regarding the parameters are modelled.  For 
example, there might be a sample of observations of detector drift, which are 
modelled as independent, also normally distributed with zero mean and variance v.4 

3. The data and the models in step 2 are used to derive statistical inference about the 
parameters.  Then using the models in step 1 and the NOP equations, inference is 
derived to express “how sure we are” about the frequency of success. 

For step 3, there are two principal statistical inference paradigms, known as frequentist and 
Bayesian inference.  They differ quite fundamentally in how they handle epistemic 
uncertainties.5 

Bayesian methods express epistemic uncertainties using probabilities.  Therefore, all the E-
uncertainties will be represented by probability distributions.  Bayesian inference in step 3 
leads to E-distributions for the parameters, and eventually to a probability distribution for the 
frequency of success.  Using this distribution, we can quantify precisely “how sure we are” – 
it is simply the probability that the frequency equals or exceeds the desired threshold. 

Frequentist inference does not allow epistemic uncertainties to have probability distributions.  
The formulation of “how sure we are” is consequently more oblique.  The result of a 
frequentist analysis for the NOP problem will be a confidence interval for the frequency of 
success.  It might for instance state that with 90% confidence the frequency of success lies 
between 94% and 99%.  A confidence interval may usually be adapted to compute a degree 
of confidence that the frequency of success equals or exceeds a given threshold. 

4 The models in steps 1 and 2 are the same here because we are supposing data comprising 
direct observations of the quantity. Although the same model is used, it has different 
purposes. In step 2 its role is to allow us to learn about v from past observations, whereas in 
step 1 it describes a detector drift at some future time. The models in the two steps can be 
quite different, depending on the evidence for the parameters. 
5 These two are the dominant philosophies in Statistics.  The TA, sections 4.2.2 and 4.2.3, 
gives some consideration also to fiducial inference and p-boxes. 
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Confidence is not the same thing as probability.  Differences between the two principal 
inference paradigms are explored in more depth in the TA, section 4.2, but in general either 
form of inference may be used.  In the field of Statistics there are passionate advocates on 
each side – Bayesian statisticians who regard frequentist methods as unsound and frequentist 
statisticians who believe Bayesian methods are unscientific – but there are others who 
consider that either approach may be used in practice, the choice being a matter of taste or 
convenience. 

However, it is my opinion that a frequentist implementation of step 3 in this case would be 
extremely difficult.  It would take a very substantial research programme to develop such a 
solution, with no assurance of eventual success. 

A Bayesian solution will also not be straightforward, but is nevertheless in my judgement 
enormously more practical than a frequentist approach.  A key to this opinion is the 
availability of powerful computational tools.  A Bayesian method can compute E-
distributions for the parameters for each A-uncertainty model separately using Markov chain 
Monte Carlo (MCMC) techniques that are not available to frequentist methods.  These can 
then be propagated through the NOP equations using two-level Monte Carlo, which again 
does not seem possible in the frequentist approach because it does not allow distributions for 
the E-uncertainties. 

The SF developed under Task 4.3 is therefore a Bayesian framework. 

FIGURES OF MERIT 

A draft CNSC staff white paper describing the NOP "effectiveness" and "risk" problems was 
presented at the start-up meeting for this project in Ottawa.  In order to formulate these 
problems, we define the critical power ratio at trip (CPRtrip) to be the value of the margin to 
dry-out at the moment when the NOP trip is triggered by the establishment of a perturbation 
with a subsequent increase in reactor bulk power.  We have hitherto been supposing that the 
required measure of the efficacy of a proposed trip setpoint is the frequency of success, where 
success can now be simply expressed as CPRtrip ≥ 1. 

More generally, we can define 

 Q(C) = FreqA (CPRtrip ≥ C) , 

where FreqA denotes frequency with respect to the A-uncertainties.  The frequency of success 
then becomes Q(1).  For any given threshold T, the Bayesian solution computes 

 P(C, T) = ProbE (Q(C) ≥ T) , 

where ProbE denotes probability with respect to the E-uncertainties.   

An important difference between the “effectiveness” and “risk” problems in the CNSC staff 
paper lies in the treatment of the perturbation.  A finite, discrete set of perturbations are to be 
considered.  In the effectiveness problem, we consider only Slow LOR arising with a 

Page 16 of 24 

 



 23/3/16 RSP-0612.1 

particular perturbation.  If QJ(C) denotes the frequency with which CPRtrip ≥ c when we 
restrict attention to LOR arising with perturbation J, then the appropriate Figure of Merit 
(FoM) for the effectiveness problem is 

 PJ(C, T) = ProbE (QJ(C) ≥ T) , 

computed for each perturbation J. 

In the risk problem, given that a LOR arises with one of the perturbations in the normal 
design set, these perturbations are supposed to occur with A-probabilities pJ, and the FoM 
P(C, T) can now be written 

 P(C, T) = ∑ pJ × PJ(C, T) , 

where the summation is over all possible perturbations. 

THE DEFICIENCIES OF THE TRADITIONAL APPROACH 

The “Traditional” method was described in Task 4.1 above, where two deficiencies, named A 
and B, were identified.  We now return to this topic in the light of the preceding discussion. 

First, note that the traditional method places probability distributions on all uncertainties.  In 
terms of the dominant statistical inference paradigms, this cannot be a frequentist method 
because it is giving probability distributions to epistemic uncertainties.  It is therefore 
implicitly Bayesian.  However, the essence of deficiency A of the traditional method is that 
these distributions are not correctly derived according to Bayesian probability theory. 6 

The traditional method does not make a separation between A- and E-uncertainties.  A single 
Monte Carlo simulation is performed to compute a frequency of success.  If we ignore the 
first deficiency, the second deficiency is that this frequency is the expectation (with respect to 
the E-uncertainties) of Q(1).  It is therefore an estimate of the frequency of success but 
without any expression of “how sure we are” that the true frequency will be above this 
estimate or close to this estimate. 

 
  

6 In the TA, section 4.2.2, the derivations are seen to be at least partly in accordance with 
fiducial inference. 
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TASK 4.3: STATISTICAL FRAMEWORK 

Because of the many different uncertain quantities, the variety of forms of available data and 
the complex structure of some of the quantities, the Statistical Framework is complex.  Full 
details are given in the TA, section 5, and in the SA, section 7. 

STEP 1: A-UNCERTAINTY MODELLING 

Many aspects of the reactor state will vary from time to time, and therefore give rise to A-
uncertainty when a Slow LOR is initiated at a random future time, including the following. 

• The fuelling state, which is a combination of the history of refuelling actions and the 
current disposition of reactor management devices.  A-uncertainty is induced in the 
shape7 of channel powers and of the flux levels at the flux detector locations, both 
before and after a given perturbation is established.  In principle, A-uncertainty also 
affects the critical channel powers for a given perturbation. 

• The total reactor power at the time when the perturbation is initiated (and before any 
subsequent bulk power increase).  The actual channel powers and flux levels are a 
product of their shape and the reactor power, so this contributes further A-uncertainty 
to those quantities. 

• Flux detector drift.  The drift in each flux detector since it was last calibrated 
contributes A-uncertainty to the actual detector readings at the time when the 
perturbation is initiated.  (The drift is assumed to remain constant over subsequent 
increase in bulk power.) 

The SF proposes models for these A-uncertainty distributions.  The fuelling state plays a vital 
role in the computation of CPRtrip by controlling the distribution of channel powers, and so 
the modelling of A-distributions arising from fuelling state is very important.  Accordingly, a 
variety of models is proposed in the SF, and the software will allow different models to be 
used in order to assess sensitivity of the Figures of Merit to modelling assumptions. 

The simplest model is to assume that the fuelling state at a random future time will be the 
same as a randomly selected one of the states for which we have SORO data (see the 
discussion of Step 2 below).  Although this is intrinsically an unrealistic assumption, we have 
data for a relatively large number of fuelling states and it is not unreasonable to suppose that 
these cover the range of possibility reasonably well.   

A second model assumes that the shape of channel powers and flux levels at a future time are 
drawn from a multivariate normal distribution.  Since this may also be unrealistically 
restrictive, a third model assumes that the underlying A-distribution is a mixture of 
multivariate normal distributions. 

7 The more common word here is the distribution of channel powers, but we use the word 
“shape” to avoid confusion with probability distributions. 
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STEP 2: DATA MODELLING 

The principal data consist of outputs from the computer codes SORO, RFSP and TUF. 

SORO outputs are available for a relatively large sample of fuelling states with no 
perturbation.  For each sampled fuelling state, the SORO outputs are estimates of the ripples, 
i.e. the ratios of channel powers for each fuel channel, scaled to sum to the design reactor 
power, divided by reference channel powers.  The data model says that these are equal to the 
true ripples for those fuelling states plus code errors that have a multivariate normal 
distribution.8  The variance matrix is assumed known, based on the known accuracy of the 
SORO code.  Where A-distributions are assumed for the true powers, rather than assuming 
that the only possible fuelling states are those for which we have data, the data are modelled 
as arising from a random sample of fuelling states. 

Two forms of RFSP data may be provided to the software.  The more extensive data 
comprise RFSP estimates of overpowers (channel overpowers and flux overpowers) for each 
of the fuelling states where SORO data are available, combined with each of the possible 
perturbations.  For each given perturbation, we have sets of RFSP overpowers that 
correspond to the sets of SORO ripples.  We assume the same form of data model, but with a 
variance matrix reflecting the known accuracy of the RFSP code. 

The other form of RFSP data is a set of estimated overpowers for each perturbation, 
computed from the time-averaged fuelling state.  The data model assumes again that the 
computed values are equal to the true values plus multivariate normal errors, with variance 
matrix reflecting the known accuracy of RFSP. 

TUF data provide critical channel powers for each fuel channel.  As with the RFSP data, 
these may be provided for each combination of perturbation and sampled fuelling state, or 
else for each perturbation with a time-averaged fuelling state.  The data models are as for 
RFSP data, but with variance matrix appropriate to the known accuracy of TUF. 

STEP 3: INFERENCE 

Step 3 in the Bayesian SF begins with formulating prior distributions for the parameters.  
These are standard weakly informative prior distributions. 

Then the Bayesian statistical paradigm is invoked to combine the data with the prior 
distributions, using the data models, to produce posterior distributions.  These are the E-
distributions for the parameters.  In most cases, the analysis is too complex to derive posterior 
distributions analytically, so the software will employ appropriate forms of MCMC 

8 Strictly, for all three computer codes it is the logarithms of their outputs that are assumed 
equal to the logarithms of the corresponding true values plus multivariate normal errors.  This 
is more natural, statistically, than assuming additive errors on the original scale. 
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computation to derive the E-distributions.  MCMC produces a sample from the posterior 
distribution, rather than a mathematical form for the distribution, but this is perfect for the 
final part of step 3. 

That final part is a Monte Carlo simulation to derive the E-distribution of Q(C) for any 
desired value of C, and thereby to evaluate PJ(C, T) and P(C, T) for the desired value of T.  
This is a two-level simulation, reflecting the separation of A- and E-uncertainties, as follows. 

1.  Repeat for each perturbation J { 

  Set counter pJ(C, T) = 0  

  Repeat M1 times (outer loop) { 

    Randomly sample values of parameters from their E-distributions 

    Set counter q(C)=0  

    Repeat M2 times (inner loop) { 

      Randomly sample values of quantities from their A-distributions 

      Compute CPRtrip 

      Increment q(c) if CPRtrip ≥ C } 

    Set Q(C) = q(C)/M2 

    Increment pJ(C, T) if Q(C) ≥ t } 

  Set PJ(c,t) = pJ(c,t)/M1 } 

2.  Compute weighted average P(C, T) = ∑ J pJ * PJ(C, T) 

The simulation sizes M1 and M2 should be large enough to produce stable Monte Carlo 
estimates.  Notice that in the inner loop the A-distributions are fixed using the values of 
parameters that have been sampled in the outer loop. 
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TASK 4.4: WORKPLAN 

The Software Appendix, SA, contains all the technical material that should be in a 
specification for the software package to implement the SF. 

TESTING AND BENCHMARKING 

Like any major software development, the NOP trip setpoint assessment software must be 
thoroughly tested and quality assured, underpinned by the principles of V&V (verification 
and validation).  Verification is the process of checking that the software is a correct 
implementation of the mathematical and logical structure of the required solution, and is done 
by checking that outputs are correct for given inputs.  Usually, the correct values are only 
known for relatively simple cases, and so verification also relies on checking face validity, 
i.e. ensuring that as the inputs change in particular ways the outputs change as expected. 

For instance: 

• If the quantity of input data (SORO and/or RFSP datasets) is reduced, the overall E-
uncertainty should increase, and hence the E-uncertainty in CPRtrip should increase. 

• If the specified variances of code errors are increased, then again the E-uncertainty in 
CPRtrip should increase. 

• Perturbations that have uniformly smaller effects on channel powers should lead to 
generally higher values of CPRtrip, and in particular should have higher PJ(C, T). 

The validation process is a check on the solution.  Thus, if the software has passed 
verification testing and can therefore be assumed to be a correct implementation of the 
solution, we ask: Is the solution fit for purpose?  To some extent, the above face validity tests 
address this question, because a failure of such a test may not imply that the software has 
implemented the solution wrongly; it may be that the software is a correct implementation but 
the solution is itself so poor that it does not have face validity. 

Another tool for validation is benchmark testing.  Test examples are constructed where the 
correct solution is known, and the software solution is checked to see if it is close enough to 
the correct solution to be fit for purpose.  There is no real data for which true values are 
known, so it is necessary to fabricate “realistic” data. 

For instance: 

• The datasets of SORO, RFSP and TUF data are assumed to be true values for a 
sample of fuelling states.  The software is first run using these data with no E-
uncertainty (e.g. zero code error variances) to obtain the true Q(C) value.  Then new 
data are generated by taking these “true values” (or by creating new sets of true values 
from mixtures of the original data), and then adding random code errors consistent 
with the known accuracies of the codes.  The software is run with several new 
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datasets generated in this way, to check that the outputs are consistent with the true 
Q(C). 

Another useful validation test uses held-back data.  The software is run with a reduced set of 
data, for instance two-thirds of the original number of fuelling state samples, to predict the 
values of the remaining, held-back, data.  This requires the inner loop to be modified so that 
instead of computing CPRtrip it simulates datasets from additional random fuelling states.  
The inner loop normally simulates true vales, but it is now modified to add random code 
errors to simulate computed data.  In this way a sample of computed datasets from their 
predictive distribution is generated, and this is compared with the held-back data. 

RECOMMENDATIONS 

If the CNSC chooses to commission the second phase of this project, to produce the software 
package according to the SF, then I make the following recommendations. 

Two separate kinds of expertise will be needed.  Naturally, the development team must have 
experience in the delivery of quality assured scientific software.  Second, though, they must 
include experts in Bayesian statistics, and particularly in Bayesian computation.  In Canada, 
the necessary expertise is likely to be available in just a few university statistics groups, 
perhaps only in UBC, SFU and McGill.  There may be some value in also advertising outside 
Canada. 

The team should be given some freedom to offer different models within the general structure 
of the SF.  It is in the nature of the NOP problem, and particularly in the fact that maximum 
and minimum operations feature in the equations, that the solution may be sensitive to details 
of the models.  This is one reason why alternative models are already prescribed, but it also 
motivates encouraging a degree of innovation on the part of the development team. 

The project should be considered as not simply delivering a product to specification but also 
involving a substantial statistical research element – towards devising reliable and efficient 
algorithms for the Bayesian computations, towards statistical critique of the models proposed 
in the SF and, where appropriate, towards developing alternative models.  It seems to me that 
it would require at least a six-month timescale. 

Alongside commissioning a team to develop the software in phase 2, the CNSC may find it 
useful to commission me for an additional package of work.  This would include providing 
technical support and/or independent review.  Furthermore, I recommend that a user manual 
is written to accompany the contractors’ technical manual for the software, giving guidance 
to the CNSC on specifying input values and on interpreting the software’s outputs, and this 
might form a part of this additional work package. 

The software will allow flexibility in the specification of code error variances and 
correlations, which can be used to explore the sensitivity of the outputs to changing the 
currently assumed, possibly simplistic, error structures.  If the results are found to be 
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sensitive to such changes (and I judge this to be likely), then it will be important to develop 
new research to quantify reliable and well-founded error structures, particularly examining 
spatial correlations.  This would lie outside the scope of phases 1 and 2 of the current project, 
and so would require a separately funded research project. 
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APPENDICES 

The following Appendices are provided as separate documents. 

APPENDIX A.  TECHNICAL APPENDIX 

Document “R612.1 - Appendix A - Technical.pdf” 

APPENDIX B.  SOFTWARE APPENDIX 

Document “R612.1 - Appendix B - Software.pdf” 

APPENDIX C.  DISPOSITION OF COMMENTS 

Document “R612.1 - Appendix C - Dispositions.docx” 
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EVALUATION OF ROP/NOP TRIP

SETPOINT – PHASE I
Technical Appendix
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March 23, 2016

1 Background

This document provides a variety of technical details to accompany the main
report, “Application of Bayes Method in Evaluation of ROP/NOP Trip Setpoint
– Phase I”, and the Software Appendix (SA) to that report.

2 NOP Methodology

This section introduces notation and develops the principal equations that form
a part of the SA.

2.1 Channel powers, fuelling states, perturbations and loss
of regulation

For the purposes of this work, the status of a CANDU reactor at any time
may be summarised by the power being produced in each of its hundreds of
fuel channels. At time t, we denote the channel power in channel i (where
subscript i ranges from 1 to Ni, the number of channels in the reactor) by CP ti .
The sum of channel powers at time t is the bulk reactor power RP t =

∑
i CP

t
i .

Channel powers and reactor power are measured in kilowatts (kW).
In this work we are specifically concerned with the condition known as slow

loss of regulation (LOR), in which an unplanned perturbation of channel
powers (or ‘flux shape’) occurs and leads to a loss of regulation of the reactor
in which the reactor power then increases steadily.
In order to formulate LOR effects, we will use the following notations.

• CPn(k)i is the channel power in channel i under normal (i.e. unperturbed)
operation with fuelling state k. The term ‘fuelling state’is a shorthand

1
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for not only the status of the reactor as a result of the history of fuelling
operations to the present time, but also the normal management of the
reactor through the regulating devices.

• CP p(J,k)i is the channel power in channel i after perturbation J has arisen
when the reactor was in fuelling state k, but before any subsequent increase
of reactor power.

During LOR, it is assumed that first the perturbation is established with no
change in bulk reactor power, so that∑

i

CP
p(J,k)
i =

∑
i

CP
n(k)
i = RPn(k) , (1)

and then the channel powers increase uniformly. Hence, if at time t there is a
LOR in which perturbation J has arisen when the reactor was in fuelling state
k and regulation loss has led to an increase in reactor power by factor F > 1,
we have

CP ti = F × CP
p(J,k)
i . (2)

2.2 Ripples and channel overpowers

When the reactor is designed and commissioned, the design reactor power
DRP is established, together with reference channel powers CP refi such
that DRP =

∑
i CP

ref
i .

It is usual to refer the channel powers at any time to reference channel powers
through the equations:

CP
n(k)
i = PFn(k) ×Rn(k)i × CP refi , (3)

CP
p(J,k)
i = COP

p(J,k)
i × CPn(k)i , (4)

where the power factor PFn(k) = RPn(k)/DRP relates the reactor power
in fuelling state k to the design reactor power, the Rn(k)i are referred to as the
ripples associated with fuelling state k, and the COP p(J,k)i are referred to as the
channel overpowers associated with perturbation J arising when the reactor
was in fuelling state k. These quantities are dimensionless.

2.3 Critical channel powers and margin to dryout

If the power at any point in the reactor becomes suffi ciently high, there is a risk
of dryout, where a spot occurs on the fuel element sheath that is inadequately
cooled and so can lead to rupture, with potentially unwanted consequences.
For a given perturbation J and fuelling state k, we can identify criti-

cal channel powers CCP p(J,k)i , such that if the power in channel i exceeds
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CCP
p(J,k)
i after perturbation J when the reactor was in fuelling state k then

dryout may occur in that channel.
If at time t there is a LOR in which perturbation J has arisen when the

reactor was in fuelling state k and regulation loss has led to an increase F in
reactor power the ratio

CPRti =
CCP ti
CP ti

=
CCP

p(J,k)
i

F × COP p(J,k)i × CPn(k)i

indicates whether there is a risk of dryout in channel i. If CPRti ≥ 1 then dryout
will not have occurred in this channel, and the margin by which CPRti exceeds
1 gives a safety factor. In fact, setting F = 1, the ratio CCP p(J,k)i /CP

p(J,k)
i

is the margin to dryout in channel i when perturbation J has arisen when
the reactor was in fuelling state k, before any rise in overall reactor power. The
minimum of CPRti over all channels will be referred to as the critical power
ratio

CPRt = min
i
CPRti = min

i

CCP
p(J,k)
i

F × PFn(k) × COP p(J,k)i ×Rn(k)i × CP refi

. (5)

2.4 Flux detectors, calibration and detector drift

In order to monitor for the possibility of LOR, a number of flux detectors are
situated at points in the core to measure the flux (and so effectively the power)
at those points. The detectors are organised into three logic channels, which
are quite different from fuel channels. The detectors in a given logic channel are
located at different points along the length of various fuel channels dispersed
around the core.
The detectors are regularly calibrated, so that they can be sensitive to

changes in reactor power. The calibration depends on the current fuelling state
and reactor power, specifically, every detector is set to read CPPF cal×IRP cal.
The dimensionless channel power peaking factor CPPF cal depends on the
fuelling state and IRP cal is the indicated reactor power, at the time of
calibration. Indicated reactor powers are expressed relative to DRP and are
therefore also dimensionless.
The definition of CPPF cal is

CPPF cal = max
{
CPPFm,MRcal

}
, (6)

where CPPFm is a predefined constant and MRcal is a value based on the
fuelling state1 at, and leading up to, the calibration time.
The detector reading at time t from flux detector d in logic channel L

is denoted by DRtL,d. If at time t there is a LOR in which perturbation J

1The notation here reflects the fact that MRcal is a maximum ripple, over a central region
of the core, in SORO calculations at and/or leading up to the calibration time.
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has arisen when the reactor was in fuelling state k at the last calibration and
regulation loss has led to an increase F in reactor power,

DRtL,d = F ×DDL,d × FOP
p(J,k)
L,d × CPPF cal × IRP cal , (7)

where the dimensionless FOP p(J,k)L,d are referred to as the flux overpowers
associated with perturbation J arising when the reactor was in fuelling state k.
The additional dimensionless factorDDL,d is the detector drift in detector d in
logic channel L at the time of the perturbation, and accounts for detector errors,
errors in physically calibrating the sensors and small changes in conditions over
time since the last calibration.

2.5 The trip setpoint

The flux detectors protect against LOR and dryout through a trip setpoint
TSP that is preset and hard-wired into the reactor control systems. The NOP
protective action will trip if a trip condition is satisfied under which some
detector readings reach TSP .
For the purposes of this project, the trip condition is that at least one de-

tector reading reaches TSP in each of the logic channels. Hence

TSP = min
L
max
d
DRtripL,d , (8)

where

DRtripL,d = F
trip ×DDL,d × FOP p(J,k)L,d × CPPF cal × IRP cal (9)

and F trip is the increase of reactor power at the time when the trip occurs. We
can solve equations (9) and (8) to obtain

F trip =
TSP

minLmaxd

(
DDL,d × FOP p(J,k)L,d

) × 1

CPPF cal × IRP cal . (10)

2.6 Critical power ratio at trip

The reactor will trip successfully, i.e. before dryout can occur, if the margin
to dryout for every channel is at least 1 when F equals F trip. Accordingly we
define the critical power ratio at trip to be

CPRtrip = min
i

CCP
p(J,k)
i

F trip × CP p(J,k)i

.

Substituting (10), we have

CPRtrip = min
i

CCP
p(J,k)
i

PFn(k) × COP p(J,k)i ×Rn(k)i × CP refi

×min
L
max
d

(
DDL,d × FOP p(J,k)L,d

)
× CPPF

cal × IRP cal
TSP

. (11)
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Then the trip operates successfully to avoid dryout if CPRtrip ≥ 1.
Calculation of CPRtrip is a fundamental task in this project.

2.7 Trip during perturbation

It is possible, in practice if the flux shape represents a large perturbation of
channel powers, for equation (10) to give a F trip value less than 1. In this case,
trip will occur before the flux shape has become fully established, and not due
to a subsequent rise in reactor power. If we simply wish to evaluate whether the
trip occurs successfully to prevent dryout, we can first check whether CPRtrip

will still be at least 1 once the flux shape is fully established. The relevant
formula now is

CPRcal = min
i

CCP
p(J,k)
i

CP
p(J,k)
i

. (12)

If F trip < 1 but CPRcal ≥ 1 then the trip will occur before dryout can occur.
If CPRcal < 1, and in general in order to compute CPRtrip, we need to make

an assumption about how the flux shape develops. We introduce a parameter
E to model the development of the flux shape, which varies from E = 0 at the
initiation of the perturbation to E = 1 when the flux shape is fully established.
Now the detector reading at trip for detector d in logic channel L is,

DRtripL,d = DDL,d × (FOP
p(J,k)
L,d )E

trip

× CPPF cal × IRP cal , (13)

where Etrip is the value of E when the trip occurs. Etrip is the solution of
equations (8) and (13), although now it is not possible to solve the equations
explicitly.
The critical power ratio at trip now becomes

CPRtrip = min
i

CCP
p(J,k)
i

PFn(k) × (COP p(J,k)i )Etrip ×Rn(k)i × CP refi

. (14)

Theoretically, the solution of equations (8) and (13) could yield a negative
value for Etrip, but this should not arise because it would mean that a trip
would occur during normal operation of the reactor without any unplanned
perturbation.

2.8 Superposition and the CCP approximation

Two approximations are often used to simplify the NOP computations.
The first approximation concerns the channel powers and flux levels. Al-

though in general the effect of the onset of a particular perturbation can be
complex, and in particular the channel overpowers and flux overpowers will
depend on both the perturbation J and the fuelling state k, a simplifying as-
sumption known as the superposition principle asserts that we can write

COP
p(J,k)
i =S COP

{J}
i , FOP

p(J,k)
L,d =S FOP

{J}
L,d , (15)
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where COP {J}i and FOP {J}L,d do not depend on the fuelling state k. The symbol
‘=S’indicates an equation that holds under the assumption of the superposition
principle. We can also read it as denoting approximate equality. In general,
superposition is believed to be a good approximation.
The second approximation applies to critical channel powers. Although in

principle the critical channel powers also depend on both the perturbation J
and the fuelling state k, in practice the fuelling state has very little influence
and it is generally believed that CCP p(J,k)i can be well approximated by a term
CCP

{J}
i that depends only on J . Thus

CCP
p(J,k)
i ≈ CCP {J}i . (16)

The superscript {J} indicates that these quantities apply under any reactor
conditions when perturbation J has arisen.

2.9 Notes

There are various reasons why the NOP equations given above differ from those
that are found in the source documents I have read.

1. The focus of NOP theory in those sources was on deriving the trip setpoint
TSP , whereas in this project we focus on computing CPRtrip given a
proposed TSP .

2. The NOP equations in those sources have always been formulated in a
way that assumes both the superposition principle and the CCP approxi-
mation. The reason for this is essentially pragmatic. It requires relatively
little computing power to obtain computed values for COP {J}i , FOP {J}L,d

and CCP {J}i , because for each perturbation J only a single run of the
corresponding computer code is required (based on a time-averaged fu-
elling state), whereas to obtain computed values for COP p(J,k)i , FOP p(J,k)L,d

and CCP p(J,k)i requires one run for each combination of perturbation J
and fuelling state k. So the use of these simplifications allows a huge re-
duction in computational requirements, but at the expense of additional
uncertainty. This is represented in effect by replacing (15) with

COP
p(J,k)
i = εi × COP {J}i , FOP

p(J,k)
L,d = ε∗L,d × FOP

{J}
L,d , (17)

where εi and ε∗L,d are random error terms. Although it would be natural
to also replace (16) with

CCP
p(J,k)
i = ε∗∗i CCP

{J}
i , (18)

including another random error term ε∗∗i , the CCP approximation is re-
garded as suffi ciently accurate to ignore this and assume CCP p(J,k)i =
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CCP
{J}
i . In effect the random errors ε∗∗i are assumed to have zero vari-

ances. In this project we allow for the possibility that the more extensive
computations are feasible and hence have developed the NOP equations
in the more general form, although the simplified approach with equations
(17) and (18) will also be an option.

3. To facilitate the Bayesian statistical framework developed for this project,
the notation is a little more complex than is generally the case with the
source documents. One aspect of this is the way that superscripts dis-
tinguish between values at different time points (and so under different
reactor conditions). For instance, n(k) denotes a time when the reactor
is operating normally in fuelling state k, whereas in the same fuelling
state when normal operation is replaced by loss of regulation due to an
unplanned perturbation J (but before any subsequent increase in bulk
power), the time is denoted by p(J, k). The superscript trip could have
been written as t(J, k) and cal as c(k) because these are also defined rel-
ative to the fuelling state k and the perturbation J , but trip and cal are
commonly used in other treatments of NOP.

3 Uncertainty

If we knew the values of all the quantities in equation (11), then we could
evaluate CPRtrip. In particular, we could determine whether it is greater than
or equal to one, and hence whether the trip occurs in time to prevent dryout. But
almost all of these quantities are unknown, and so there is inevitably uncertainty
regarding the performance of the trip. Uncertainty arises from different sources,
and in general the quantities we are concerned with are affected by two types
of uncertainty, A-uncertainty and E-uncertainty.

3.1 A-uncertainty

A-uncertainty arises from the facts that (i) a slow LOR may occur at any time in
the future, and (ii) the reactor conditions vary over time. For a LOR occurring
at some random point in time, the reactor will be in some random state and
so CPRtrip is a random variable. We cannot know whether CPRtrip exceeds
1 for any random occurrence, but we can ask for the probability that it does.
Equivalently, we can imagine reactor operation over a long period of time and
ask for the frequency with which CPRtrip exceeds 1 on average.
The specific question raised by A-uncertainty is determined by the Figures of

Merit (FoM) considered in the main report. For a given perturbation J , we wish
to know the frequency with which CPRtrip ≥ 1, so that the trip will operate
in time, or more generally the frequency QJ(c) with which CPRtrip will exceed
any specified threshold c.
The following quantities depend on the reactor conditions at the time that
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a LOR arises through perturbation J , and so are subject to A-uncertainty:

R
n(k)
i , COP

p(J,k)
i , CCP

p(J,k)
i , FOP

p(J,k)
L,d , PFn(k), IRP cal, CPPF cal, DDL,d .

(19)
For a slow LOR arising in random reactor conditions at a random future time,
each of these quantities will have a probability distribution, its A-distribution.

3.2 E-uncertainty

E-uncertainty arises from the fact that the A-distributions are unknown. If we
could observe the reactor conditions in great detail, continuously over time, for
instance observing exactly the true channel powers in every channel continu-
ously, we could evaluate these A-distributions. In reality, we have only samples
of these quantities, and in most cases the sampled values are not exact, true
values but computed estimates.
The SF adopts a standard statistical modelling approach in which each A-

distribution is assumed to come from a suitable class of probability distributions,
but the particular member of that class, identified by particular values of the
parameters that define the class, is unknown. The SF also adopts a Bayesian
statistical paradigm, see section 4.2, according to which the E-uncertainty re-
garding each A-distribution is expressed in the form of a probability distribution,
its E-distribution, for the parameters. For example, a quantity may be assumed
have a normal (Gaussian) A-distribution. The parameters of the normal class
of distributions are the mean and variance, and so the E-uncertainty for that
quantity would be expressed as an E-distribution for the mean and variance.
The E-distributions are derived wherever possible from the relevant sample

data using Bayesian statistical analysis. For each group of uncertain quantities
in (19), the assumed forms of A-distributions, the relevant data and the Bayesian
analysis to derive E-distributions are discussed in the following section, and set
out in detail in the SA, Section 7.4.

4 Statistical framework

4.1 Notation

The SF includes detailed statistical modelling for the many uncertain quantities
required to compute CPRtrip, which in each case are formulated in terms of the
logarithms of the uncertain quantities. We will denote logarithms by using bold
symbols. Furthermore, many of the models are for groups of quantities that are
related so that they may be correlated, in which case the symbol will represent
a vector.

• Rn(k) =
(
lnR

n(k)
1 , . . . , lnR

n(k)
Ni

)
, where Ni is the number of fuel channels.

• COPp(J,k) =
(
lnCOP

p(J,k)
1 , . . . , lnCOP

p(J,k)
Ni

)
.
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• CCPp(J,k) =
(
lnCCP

p(J,k)
1 , . . . , lnCCP

p(J,k)
Ni

)
.

• FOPp(J,k) =
(
lnFOP

p(J,k)
1,1 , lnFOP

p(J,k)
1,2 , . . . , lnFOP

p(J,k)
1,Nd1

, lnFOP
p(J,k)
2,1 , . . . , lnFOP

p(J,k)
3,Nd3

)
,

where NdL is the number of flux detectors in logic channel L.

• IRPcal = ln IRP cal.

• PFn(k) = lnPFn(k).

• CPPFcal = lnCPPF cal.

• DD = (lnDD1,1, lnDD1,2, . . . , lnDD1,Nd, lnDD2,1. . . . , lnDD3,Nd).

• OPp(J,k) =
(
COPp(J,k),FOPp(J,k)

)
.

The same notation will be used for these quantities at other time points or
reactor conditions, simply by changing the superscripts.
Data are available to inform the E-distributions for many of these quantities.

The data relate to a sample of Ns actual reactor states that we denote with
superscript [s], for s = 1, . . . , Ns. For instance IRP [s] is the value of IRP cal in
the s-th sampled state. Similarly, COP [J,s]i is the channel overpower in channel
i if perturbation J were to arise when the reactor was in the s-th sampled state.

Most of the data are not true values but estimates produced by computer
codes such as SORO, RFSP or TUF. We denote such data using lower case
symbols. For instance r[s]i is the estimated ripple for channel i in the s-th
sampled state. Data comprising logarithms of computed values will be denoted
using the corresponding lower case bold symbols, e.g. r[s] = (ln r[s]1 , . . . , ln r

[s]
Ni).

4.2 Statistical methods

In the field of statistical science, several alternative philosophies or paradigms
have been proposed and there is still debate over the merits of each. The most
fundamental differences between different approaches can be found in the way
that they handle epistemic uncertainties. To illustrate the alternatives, and to
explain the choice of the Bayesian paradigm for the SF, we consider one of the
simplest of all statistical problems. We have a single observation x, which is a
measurement of an underlying true parameterX with measurement error ε. The
error is assumed to be normally distribution with zero mean (the measurement
is unbiased) and with known standard deviation y. In this example, there is
aleatory uncertainty in the measurement error, because we can make many
measurements and ask how often the error lies within specified bounds. The
uncertainty about the true parameter X, however, is epistemic, because X will
only ever have one value.
The link between this example and the SF can be seen if we suppose that x

is a single log-ripple r[s]i = ln r
[s]
i in a particular channel i for a particular data

fuelling state s. Then X represents the true log-ripple R[s]
i = lnR

[s]
i .

2

2Strictly, the code error ε would not be aleatory in this case because it is not possible to
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4.2.1 Frequentist inference

For much of the 20th century, essentially the only recognised statistical par-
adigm was the one we now call frequentist. Only aleatory uncertainty can be
expressed using probabilities within the frequentist paradigm. So it is acceptable
to say that ε has a normal distribution, and further that the probability distri-
bution of x is normal with mean X and standard deviation y. In the frequentist
framework, we cannot make probability statements about X, and therefore fre-
quentist inference is somewhat convoluted. A typical frequentist inference is the
confidence interval, and in this example we could say that [x− 1.96y, x+1.96y]
is a 95% confidence interval for X. It is tempting to think that this means there
is a 95% probability that X lies between x−1.96y and x+1.96y, but this cannot
be the correct interpretation because probability statements about X are not
allowed in the frequentist paradigm. The correct interpretation is that if we
were to obtain a long sequence of measurements x1, x2, . . . and computed the
intervals [x1− 1.96y, x1+1.96y], [x2− 1.96y, x2+1.96y], . . . then X would lie in
95% of those intervals. This is a probability statement about the hypothetical
sequence of future observations (which is allowed because these observations
have aleatory uncertainty), not about X. It is not legitimate to infer that be-
cause 95% of intervals contain X then the probability that the specific interval
[x− 1.96y, x+ 1.96y] contains X is 0.95 because this interval only ever has one
value.
Despite these philosophical concerns, the frequentist approach is still widely

adopted and defended, and its users are happy to take a confidence interval as
making a useful statement about likely values of a parameter (although it is still
not acceptable to infer from this an actual probability distribution for the pa-
rameter). In principle, therefore, frequentist statistical methods might be used
to derive confidence intervals for QJ(C). The reason why this is not proposed
in the SF is a practical one. The derivation of confidence intervals is a com-
plex mathematical task, even for relatively simple statistical problems. Exact
confidence intervals are known for some of the simplest models, and for many
moderately complex problems there exist approximate confidence intervals that
are widely used. But the complexity of the NOP equations and the complexity
and high dimensionality of the available data mean that it would be extremely
diffi cult to derive any frequentist inference. It is in my opinion unlikely that a
suitable frequentist solution would be obtained without some years of research.

4.2.2 Fiducial inference

The fiducial approach has never been more than a curiosity, with a mere handful
of adherents, but it is interesting in the present context. Although some of
the details of fiducial inference are rather obscure, in effect a fiducial analysis

repeat the SORO calculations and get many different answers. Because this has the potential
to cause confusion in discussion of the NOP problem I have chosen to use the terms A-
uncertainty and E-uncertainty with a clear definition in the context of this problem. The
A-uncertainty in the ripple Rn(k)

i = ln r
n(k)
i at a future time when a LOR arises is indeed

aleatory.
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of the example problem would assign a probability distribution, the fiducial
distribution, to X that is normal with mean x and standard deviation y. So the
fiducial distribution inverts the sampling distribution of x (normal with mean
X and standard deviation y) to produce a distribution for X. The operational
meaning of a fiducial distribution is also obscure, and in practice we do not
recommend fiducial inference for the SF because there is no prospect of deriving
a fiducial distribution for QJ(C). However, it provides a useful reference point
for the discussion of the traditional approach to the NOP problem in section
4.2.5.

4.2.3 Imprecise probabilities

An approach that has received some interest in the context of uncertainties in
the predictions of complex computer codes is the P-box. This is based on an
older idea of imprecise probabilities, according to which the epistemic uncer-
tainty around a probability distribution is represented by simply saying that
the distribution could be any one of some set of distributions. The P-box is
a graphical representation of this where the cumulative distribution function is
shown as lying within two bounding curves. The reason why this has proved
to be of interest in the use of computer codes is that in principle if we have
P-boxes for the inputs of the code then we could derive a P-box for the output.
For the NOP problem, if P-boxes were defined for all the A-distributions then
we might be able to derive a P-box for CPRtrip and hence a range of possible
values for QJ(C) (treating it as an imprecise probability). This could be done
in a Monte Carlo sampling algorithm similar to that proposed in the SF.
There are two main reasons why this has not been adopted in the SF. The

first is that the interval of values would not be a very satisfactory way of express-
ing ‘how sure we are’about QJ(C). More importantly, the theory of imprecise
probabilities does not provide any practical way to derive the P-boxes for the
uncertain quantities in the NOP equations, particularly since we have complex,
high-dimensional data. So this is another approach that I believe is not suitable
for the SF.

4.2.4 Bayesian inference

In the Bayesian paradigm, epistemic uncertainties are represented by probabil-
ity distributions, encoding the analyst’s knowledge and beliefs about the cor-
responding parameters. Such a distribution from the available data is derived
using Bayes’ theorem. Formally, this is the posterior distribution and Bayes’
theorem requires a prior distribution that expresses what is known about the pa-
rameter before seeing the data. In the example, the analyst would assign a prior
distribution for X. Supposing that this is a normal distribution with mean zero
and standard deviation z, the posterior distribution of X from Bayes’theorem
is normal with mean z2x/(y2 + z2) and with standard deviation yz/

√
y2 + z2.

The posterior mean can be considered an estimate of X based on the data and
the prior information, and we see that it lies between the prior expectation of
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zero and the observation x. If the measurement x is a good one with small error,
y will be small and the posterior estimate will be close to x, but if the obser-
vation is poor then the prior information becomes significant and the posterior
estimate will be closer to the prior estimate of zero.
The prior distribution is potentially both a strength and a weakness for

Bayesian methods. It is a strength because it allows a Bayesian analysis to
incorporate additional, prior, information to supplement the information in the
data. It is at least potentially a weakness because the validity of the posterior
distribution depends on the prior distribution being reasonable. The Bayesian
paradigm has been gaining ground in the statistical community since it emerged
in the 1950s. Frequentist and Bayesian inference methods are the two dominant
paradigms in statistics today, and although there are fervent advocates of each
who strongly disagree with supporters of other methods, both are generally
regarded as legitimate. One reason for increasing acceptance of Bayesian meth-
ods is that in complex problems they have enormous computation advantages.
Powerful techniques such as Markov chain Monte Carlo (MCMC) allow Bayesian
solutions to be computed for problems which defy solution by frequentist meth-
ods. This is why I have chosen the Bayesian approach for the SF.3

4.2.5 The traditional NOP approach

The traditional approach to deriving a trip setpoint is based on Monte Carlo
sampling from probability distributions for all uncertain quantities. As such,
it cannot be strictly a frequentist method because some of those uncertainties
are epistemic. To consider its validity further, we can consider the example in
which x and X are respectively a computed log-ripple from the SORO code and
the corresponding true value. The standard deviation y is a known value repre-
senting the magnitude of computational errors in SORO-computed log-ripples.
The traditional solution samples the true value X from a normal distribution
with mean x and standard deviation y. As such it clearly agrees with the fidu-
cial distribution for this case, and in general we might consider the traditional
NOP analysis to be based on the principles of fiducial inference, although the
traditional approach suffers from the additional diffi culty that it does not sep-
arate A-uncertainties and E-uncertainties. Even if it could be adapted to a
two-level Monte Carlo computation that correctly made that separation, it is
not clear whether fiducial inference theory would then allow the distributions of
the various NOP quantities to be propagated in such a way to yield a fiducial
distribution for QJ(C).
The Bayesian approach yields a different E-distribution for the ripples. As we

have seen above, the posterior distribution of X would have mean z2x/(y2+z2)
and standard deviation yz/

√
y2 + z2, both of which are less than the values x

and y for the fiducial distribution. This property (which is known as shrinkage)

3 I freely admit that I am one of the ‘fervent advocates’ for Bayesian methods, and this
certainly influenced my willingness to undertake this project. But the decision to take a
Bayesian approach in the SF is indeed driven by the fact that it is straightforward to apply
in this problem, whereas the frequentist and other approaches are not.
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derives from the prior distribution for X in the Bayesian analysis, which has a
prior estimate of zero. However, this prior distribution is quite reasonable for
the log-ripple R[s]

i because if we did not have the SORO computation our best
guess at any log-ripple value would indeed be zero. People do not always find
shrinkage intuitively natural, but they often find the following justification more
persuasive.
The essence of this argument is that if you observe a set of true values with

random errors then the observations should be more variable than the true val-
ues. Formally, if the standard deviation of the true values is a and the standard
deviation of the observation errors is b then the standard deviation of the obser-
vations should be

√
a2 + b2. So consider the set of all SORO data for channel i,

i.e. r[1]i , . . . , r
[Ns]
i . Let yr be the standard deviation of this sample. If we now fol-

low the fiducial/traditional approach and sample the true values R[1]
i , . . . ,R

[Ns]
i

with means r[1]i , . . . , r
[Ns]
i and standard deviations y, then the set of sampled

values would be more variable than the original data, with standard deviation√
y2 + y2r . This is counter-intuitive: the true values R[1]

i , . . . ,R
[Ns]
i are ex-

pected to be less variable than the SORO data, but the traditional approach
makes them more variable. This is the basis for the claim in the main report
that the distributions that are used for sampling in the traditional approach are
not statistically sound.
In the Bayesian analysis, shrinkage means that the variability in the esti-

mated true values is less than that of the SORO estimates. Shrinkage is natural
precisely because the observations are always expected to be more variable than
the underlying true values.4

4.3 Models

The SA, section 7.4, presents detailed statistical analyses for each group of un-
certain quantities: Rn(k),OPp(J,k),CCPp(J,k), IRPcal,PFn(k) and DD. Each
analysis comprises some or all of the following steps.

• A-distribution. The assumed A-distribution for the quantities is pre-
sented, and the uncertain parameters in this distribution are identified.

4A more complete demonstration of how the shrinkage produces the desired effect is as
follows. If the prior standard deviation z is correct, so that the standard deviation of the
true values R[1]

i , . . . ,R
[Ns]
i is z, then the standard deviation of the SORO data will be yr =√

z2 + y2. It follows that if we now simulate the true values by sampling from their posterior
distributions, the standard deviation of the simulated values will be the square root of(

z2

y2 + z2

)2
y2r +

y2z2

y2 + z2
=

(
z2

y2 + z2

)2
(z2 + y2) +

y2z2

y2 + z2
= z2 ,

i.e. z. The shrinkage reduces the spread of estimates by exactly the right amount, so that the
simulated true log-ripples have the right standard deviation, and in particular are less spread
than the data. Although the Bayesian approach is dependent on the prior information being
realistic, which here means specifying the prior variance z correctly, in the SF we can estimate
z from the data so that the good performance of the Bayesian method is assured.
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• Prior distribution. Bayesian analysis requires that information regarding
parameters in addition to that deriving from the data be represented in a
prior distribution.

• Data. The available data relating to these quantities are described, and a
statistical model relating these to the parameters is presented.

Bayesian analysis combines the prior distribution with the data to derive the
posterior distribution of the parameters. This is the required E-distribution.
For several of these groups, two or more alternative analyses are presented

in the SA, and we discuss here the rationales behind the various alternatives.

4.3.1 Models for fuelling state uncertainty

Many aspects of the reactor conditions at a random future time when a per-
turbation arises are uncertain; for convenience we will use the term ‘fuelling
state’to refer to the whole set of such conditions. The random future fuelling
state k creates the A-uncertainty in Rn(k),OPp(J,k) and CCPp(J,k). The A-
distributions for these quantities need to reflect realistic possible values in an
actual future fuelling state. For instance, the A-distribution for ripples should
with a high probability generate ripples that are similar in neighbouring chan-
nels and do not deviate unrealistically far from 1 (or 0 for log-ripples). The
simulation of CPRtrip may be sensitive to the choice of A-distribution, and so
three alternatives are offered in the SF in order to explore that sensitivity and
to identify the most appropriate models.

Model 1
The first model assumes that only the Ns fuelling states for which we have

computed data are possible states in future. Thus, Rn(k) = R[s] for some
s = 1, 2, . . . , Ns, or CCPp(J,k) = CCP[J,s] for some s. The model is clearly a
simplification because in reality future fuelling states will almost certainly never
exactly replicate any previous state, but the rationale for using it is two-fold.
First, for large Ns it is reasonable to suppose that the computed states are
a representative sample of the possible fuelling states, and therefore that this
will yield a good approximation of Q(C). In fact, the computed states tend to
be soon after refuelling, and so may not be fully representative of the range of
possible states, but if any bias is introduced in this way it is thought likely to
lead to conservative computations of Q(C).

The second rationale is that we know that these fuelling states, with the
corresponding values of Rn(k),OPp(J,k) and CCPp(J,k), are at least possible
and CNSC may be interested in performance of the proposed TSP for these
particular fuelling states. By default, the A-distribution in Model 1 assumes
that the Ns observed fuelling states are equally likely in future, so that each
has probability Ns−1, but the software inputs will allow this to be varied. In
particular, it will be possible to restrict the A-distribution to a subset of these
states, or even to give probability 1 to a single state. This will allow the user to
explore the range of QJ(C) values if the future fuelling state were constrained
to be an individual observed state.
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Model 2
The remaining models allowRn(k),OPp(J,k) andCCPp(J,k) to vary smoothly

according to a continuous probability distribution. In Model 2 these distribu-
tions are assumed to be multivariate normal. The rationale in this case is that
the multivariate normal assumption is not unrealistic, and in general normal
distributions allow for statistical analyses that can either be solved analytically
or at least computed simply and effi ciently. The family of multivariate normal
distributions is reasonably flexible, and in general the unknown parameters that
are the focus of the E-uncertainty are the mean vector and variance matrix. In
fact Rn(k) and OPp(J,k) have zero mean vectors because zero is the expected
value for a log-ripple or log-overpower for a random future time point. The
observed fuelling states are assumed to be randomly drawn from the same pop-
ulation, so that for instance the R[s] are assumed to be sampled from the same
multivariate normal distribution as a future Rn(k), and this allows the parame-
ters to be estimated, and E-distributions derived, using Bayesian analysis of the
sample data.
The SA specifies that the contractors should check whether the assumptions

of multivariate normal A-distributions are reasonable. It is possible that Model
2 loses important structural features in the way that ripples, overpowers or
critical channel powers vary in normal operation. Model 1 should retain any such
structure but the assumption of a finite discretisation of the A-distribution is
likely to be too coarse, even with a large Ns, because of the high dimensionality
of the parameter groups. So Model 3 introduces a nonparametric A-distribution.

Model 3
The final model relaxes the assumption of a multivariate normal A-distribution

by allowing the distribution to be an arbitrary mixture of multivariate normal
distributions. Such a distribution is termed nonparametric, meaning that it
allows the true A-distribution to take any form, without restriction. The pa-
rameters are now the number of components in the mixture, the weights for
the components, and the mean vectors and variance matrices for the compo-
nents. This is a much more complex model, and the analysis to compute the
E-distribution of all these parameters will require advanced Bayesian computa-
tional techniques. It is primarily for this reason that I have recommended in
the main report that if Phase 2 of this work is commissioned the contracting
team should include expertise in this kind of computation. Within Canada, I
am aware of three academic groups with the necessary expertise: at UBC (Jim
Zidek, Will Welch and colleagues), SFU (Derek Bingham and colleagues) and
McGill (David Stephens and colleagues).
The SF gives this Model 3 explicitly just for Rn(k) but the contractors

will be expected to develop analogous nonparametric models for OPp(J,k) and
CCPp(J,k) if appropriate. Furthermore, the multivariate normal mixture model
is only one of many possible nonparametric formulations, and it will be open to
the contractors to propose their own preferred alternative.
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4.3.2 Models using approximations

A different kind of alternative model is offered by the use of the superposi-
tion principle and/or the CCP approximation. For any given perturbation J ,
OPp(J,k) depends on the fuelling state k, and the A-uncertainty is modelled us-
ing appropriate versions of Models 1, 2 and 3. However, with the superposition
principle we have equation (17) which expresses OPp(J,k) in terms of overpowers
OP{J} that relate to a time-averaged fuelling state and so are independent of
k, plus a random error term. Similarly, (18) expresses CCPp(J,k) in terms of
critical channel powers CCP{J} that are independent of k, plus another random
error term.

Model 0
We therefore have a Model 0 for these cases. There is no A-distribution

for OP{J} or CCP{J} because these quantities do not vary with time and the
fuelling state. There is, however, E-uncertainty deriving from the fact that the
corresponding data op{J} and ccp{J} are outputs of computer codes. There is
A-uncertainty in the error terms because these will vary with the fuelling state,
but when we use these approximations there are no data with which to estimate
unknown parameters in their A-distributions, so we simply assume multivariate
normal distributions with zero means and known (small) variances. There is
therefore no E-uncertainty regarding the errors.

4.3.3 CPPF models

The discussion hitherto has not identified CPPF cal as an uncertain quantity in
its own right because in principle it may be determined by equation (6) and the
definition of MRcal as a maximum ripple. So its A-distribution is then derived
from that of Rn(k). This is identified in the SF as one of two possible models
for CPPF cal. However, another possible model is prompted by the fact that
the data will include values of MR[s] for the computed datasets. It is therefore
possible to model these and MRcal as being drawn from an A-distribution of
maximum ripples whose parameters can be estimated from these data, so this
is given as a second model for CPPF cal in the SF. In view of the possibility of
the simulated ripples being sensitive to the model assumed for ripples, it may be
that modelling the maximum ripple directly will be more robust that deriving it
from modelling the ripples. The contractors are asked to consider both models
and examine whether one is more credible than the other.

4.4 Variance matrices

The outputs of computer codes SORO, RFSP and TUF are inevitably subject
to computational errors, and it is necessary to specify the accuracies of each set
of computations using a variance matrix. In the SA, section 5.3, optional ways
are offered for the user to specify each variance matrix.
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Exchangeable form
The simplest option corresponds with the way that code uncertainties are

usually specified in NOP computations, for instance in the SIMBRASS code.
The inputs for the exchangeable form comprise a common error variance vc and
a specific error variance vs. If, for instance, the variance matrix relates to the
errors in a set of SORO computations of ripples, SIMBRASS would refer to vc
as the channel common error and to vs as the channel specific error.

The variance matrix is then constructed from these two variance components:
all the diagonal elements of the matrix are set equal to vc + vs, while the off-
diagonal elements are all set to vc. In the example of SORO computation, the
error variance in each channel is vc + vs and the correlation coeffi cient between
each pair of channels is vc/(vc + vs).

Partitioned exchangeable form
When specifying the variance matrix for errors in the RFSP computation of

overpowers, the simple exchangeable form is unlikely to be appropriate because
the output vectors op[J,s] or op{J} are made up of channel overpowers and
flux overpowers. The inputs for the partially exchangeable form comprise five
variance components —common and specific variances vc and vs for the channel
overpowers, common and specific variances wc and ws for the flux overpowers,
and an overall common variance vo.

The variance matrix is constructed from these five components as follows.
For the channel overpowers, the diagonal elements are vo + vc + vs and the off-
diagonal elements are vo+vc. For the flux overpowers, the diagonal elements are
v0+wc+ws and the off-diagonal elements are vo+wc. Finally, all the remaining
off-diagonal elements that define covariances between channel overpowers and
flux overpowers are vo. In current usage, for instance in SIMBRASS, there is no
overall common error variance vo, and this situation can be reproduced simply
by inputting vo = 0.

Spatial form
The exchangeable and partitioned exchangeable forms take no account of the

spatial organisation of the fuel channels in the reactor, but this spatial structure
is certainly a feature of the computing codes and thereby of the errors in those
codes. The inputs to the spatial form are a variance v and a correlation length
`. The spatial form also draws on a distance matrix D whose (i, i′) element di,i′
is the distance between channels i and i′ (and hence the diagonal elements are
all zero).
The variance matrix then has (i, i′) element v exp(−(di,i′/`)2). Each indi-

vidual channel error variance is v and the correlation between errors in two
channels decreases as the distance between them increases.

Partitioned spatial form
For the overpowers, we again adapt the basic form to allow for differences

between channel overpowers and flux overpowers. The inputs to the partitioned
spatial form are three variance components vc, wc and vo, together with a cor-
relation length `.
The variance matrix for channel overpowers then has (i, i′) element (vo +
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vc) exp(−(di,i′/`)2), that for flux overpowers has (i, i′) element (vo+wc) exp(−(di,i′/`)2),
while the remaining off-diagonal elements are vo exp(−(di,i′/`)2).
General form
Finally, it is always open for the user to specify a variance matrix completely

generally. The inputs for the general form comprise all the individual elements
of the matrix.

The options allow the user considerable flexibility to explore sensitivity of
QJ(C) to the assumed variances of code errors (and other quantities), and also to
adapt to improving knowledge. Current practice, as for instance in SIMBRASS,
can be reflected by use of exchangeable forms and current assumed values of
variance components. Retaining exchangeable forms but altering the variance
components allows the user to assess how robust the conclusions are with respect
to the currently assumed error variances. In particular, the software should work
with all code error variance components set to zero (although this is a highly
unrealistic scenario). The spatial forms might be more realistic representations
of the nature of code errors, but there is as yet no recognised quantification
for the spatial structure of the errors. By utilising the spatial forms with a
range of correlation lengths, the user can explore whether these forms would
lead to appreciable changes in QJ(C), and if so this might justify a research
effort to quantify the spatial error structure of the codes. The option to specify
an arbitrary matrix in general form allows the user to define and explore even
more complex error structures and to adapt to any new findings.

4.5 Constraints

The SF must take account of constraints in the definitions of ripples and over-
powers. The equations (1), (3) and (4) imply the following constraints.∑

i

R
n(k)
i CP refi =

∑
i

CP refi = DRP , (20)∑
i

COP
p(J,k)
i R

n(k)
i CP refi =

∑
i

R
n(k)
i CP refi = DRP .

These constraints hold for any fuelling state and any perturbation. They will
also hold for all data (but note that the COP {J}i values will only satisfy the
second condition when combined with the time-averaged ripples). In terms of
logarithms, these are nonlinear constraints, which are not straightforward to
implement in the SF. However, although for instance the first constraint is that
a weighted average (with weights CP refi /DRP ) of the ripples must be 1, I
understand that it is implicit in the physics that the unweighted average should
also always be close to 1. Furthermore, since the ripples do not vary individually
far from 1 the average of the log-ripples should be close to 0. The modelling for
ripples accordingly specifies that the A-distribution of Rn(k) is given by

Rn(k) = a+ SRn(k) ,
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where the scaled log-ripples SRn(k) have a distribution that constrains them to
sum to zero, and a is a constant added to each scaled log-ripple to adjust to the
correct constraint (20), i.e.

a = lnDRP − ln
(∑

i exp(SR
n(k)
i )CP refi

)
.

A similar approach is used in modelling the overpowers.
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APPLICATION OF BAYES METHOD IN EVALUATION OF
ROP/NOP TRIP SETPOINT – PHASE I

Software Appendix

Anthony O’Hagan
Professor A O’Hagan Ltd

March 23, 2016

1 Background

[Task 4.4 of this contract calls for “a work plan for implementation of the proposed framework in a computer
code”. This appendix provides a detailed specification of the work required to implement the Software Frame-
work (SF). It is intended as a possible basis for a tender document for potential bidders for that work. On
the other hand, this appendix will assume familiarity with the language and ideas of Bayesian statistics.
In this background section CNSC should introduce the project and the nature of the tender.]

2 Overview

This section provides a simplified description of the CANDU reactor and the NOP protection system which
is the subject of this project. As such, the description is inevitably inaccurate in a number of details, but it
is intended to be adequate to provide basic understanding of the problem.

2.1 CANDU reactors

Nuclear power generation in Canada is based on the CANDU reactor design. In the reactor core are a
number of fuel channels (typically more than 300), each running the length of the core. The channels are
arranged so that in cross-section they form a circular shape, as shown in the figure below.
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A feature of CANDU reactors is that individual channels can be refuelled without shutting down the
reactor. The power being generated by an individual channel at any time is called its channel power, and
the sum of channel powers for all the channels in the reactor is the bulk reactor power.
When the reactor is designed and commissioned, a design reactor power (DRP ) is established, together

with reference channel powers CP refi (for i = 1, 2, . . . , Ni, where Ni is the number of fuel channels) that
sum to DRP . During actual operation, the current reactor power may differ from DRP , and we refer here
to the ratio of the actual reactor power at time t to DRP as the power factor (PF t). We express the actual
channel power in channel i at time t in the form

PF t ×Rti × CP
ref
i ,

where Rti is the ripple in channel i at time t. Ripples represent deviation of the pattern of channel powers
at any given time from the pattern established in the reference channel powers. One reason for ripples is
the fact that some channels have been refuelled more recently than others, and so more power may be being
generated in some channels, and less in others, than would arise in the reference situation. Therefore the
ripples at time t depend on the reactor state at that time, and in particular on the fuelling history up to that
time. The ripples in some channels will be greater than 1 and in others they will be less than 1, because∑

i

Rti × CP
ref
i = DRP =

∑
i

CP refi .

2.2 NOP protection system

Nuclear reactors have many safety systems installed. In this project we are concerned with the neutron
overpower (NOP) protection system, which is designed to react to a slow loss of regulation (LOR). The
LOR is conceived in a stylised way as comprising a sequence in which, first, something happens to cause
a perturbation of the channel powers (also known as a flux shape), and then the reactor power increases
steadily. The perturbation is described by channel overpowers, such that after the perturbation has occurred
the channel power in channel i becomes

PF t × COP ti ×Rti × CP
ref
i ,

where the channel overpowers COP ti at time t depend primarily on the nature of the event causing the
perturbation, but also on the reactor state before the perturbation.
Through the distortion of the channel powers, and through the subsequent rise in reactor power, the LOR

may cause one or more fuel channels to experience dry-out, which occurs when the power in a channel exceeds
its critical channel power (CCP ). The NOP protection system is designed to prevent that occurring. It
comprises a number of flux detectors which are installed in various locations through the core (i.e. at various
points along a number of different fuel channels) and which monitor the neutron flux continuously at those
points, together with a trip setpoint (TSP ). The flux detectors are wired into a number of logic channels
(typically 3), and if the reading in at least one detector in each logic channel exceeds the TSP the NOP
protection will trip into operation, rapidly reducing power throughout the reactor.
In order to adapt to changing reactor conditions (particularly the ripples) and also to correct for drift in

their responses, the detectors are calibrated regularly. At calibration, all the detectors are set so that they
read a common value which is the product of two terms, the channel power peaking factor CPPF and the
indicated reactor power IRP . The CPPF is the maximum value, over the channels in a central region of the
core (the CPPF region), of the currently estimated ripples (but subject to a fixed minimum value CPPFm).
The IRP is the current estimated reactor power.

2.3 Critical power ratio at trip

During LOR, the detector readings are perturbed by flux overpowers that reflect the nature of the per-
turbation, and they also increase proportionately to the subsequent rise in bulk reactor power. The NOP
protection system will have succeeded in avoiding dry-out if, when the reactor power has risen to the point
where the flux detector readings are high enough to trigger the trip, the channel powers are all still less than
their CCPi values. The critical power ratio at trip, CPRtrip, is the minimum over all fuel channels of the
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ratio of CCPi to the channel power at the time when the trip occurs. If CPRtrip ≥ 1 then the trip operates
successfully. If CPRtrip < 1 then there is the risk of dryout in at least one channel, and even lower values
may lead to core damage.
The TSP is a single number that is hard-wired into the reactor, whereas the channel powers (and therefore

CPRtrip) depend in complex ways on the reactor state and the particular perturbation associated with the
LOR, so in practice the NOP protection may not always trip successfully to prevent dry-out. It is important
to evaluate the performance of the TSP in terms of how often the trip will operate successfully, for each of
a range of specific perturbations that might arise.

2.4 Uncertainties

The value of CPRtrip for any LOR event is uncertain for at least two reasons. First, the reactor state varies
over time, and so the values of the many quantities that are needed to compute CPRtrip are uncertain. This
source of uncertainty is called A-uncertainty (from the term ‘aleatory’). A-uncertainty is characterised in
this problem as uncertainty about the reactor state at a random future time point when the LOR arises.
If we knew the probability distributions, the A-distributions, that describe how all the various quantities

vary over time, then we could in principle calculate the frequency with which CPRtrip ≥ 1. However, we
also have uncertainty about these distributions. For instance we do not know the A-distribution of the ripple
Rti in channel i for a random time t. Uncertainty about the A-distributions is E-uncertainty (from the term
‘epistemic’) and results in uncertainty about the frequency with which CPRtrip ≥ 1.

2.5 Statistical framework

In Phase 1 of this project, a Bayesian statistical framework for this problem has been developed, in which
the E-uncertainty is characterised as posterior distributions, derived from available data, of the uncertain
parameters in the A-distributions. In Phase 2 of the project, this Bayesian framework will be implemented
in software.

3 Tasks

[This section should set out CNSC’s list of Tasks, milestones and deliverables for Phase 2.]

4 Notation

4.1 Subscripts and superscripts

Subscripts on a symbol distinguish between values of the corresponding quantity at different locations in the
reactor.

• Subscript i denotes fuel channel i, and ranges from 1 to Ni.

• Subscript L, d denotes flux detector d in logic channel L, where L ranges from 1 to NL and d from 1
to NdL.

Superscripts distinguish between values of the corresponding quantity in different reactor states.

• Superscript n(k) denotes the reactor operating normally in fuelling state k at a random future instant
before a perturbation.

• Superscript p(J, k) denotes the reactor state after perturbation J has occurred in fuelling state k at a
random future instant without any increase in bulk power, where J ranges from 1 to NJ .

• Superscript {J} denotes the reactor state after perturbation J has occurred in a time-averaged fuelling
state.
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• Superscript [s] denotes the reactor state when computation set s was produced, where s ranges from
1 to Ns.

• Superscript [J, s] denotes the reactor state that would have arisen if perturbation J had occurred when
computation set s was produced.

• Superscript trip denotes the reactor state when the NOP trip is triggered.

• Superscript cal denotes the reactor state when the flux detectors were last calibrated before a pertur-
bation occurs.

For example, Rn(k)i is the ripple in channel i when the reactor is operating normally in fuelling state k,
while FOP {J}L,d is the flux overpower at flux detector d in logic channel L after perturbation J has occurred
in a time-averaged fuelling state.

4.2 Symbol style

Symbols in bold face are the natural logarithms of the same symbols in italic face. For example, Rn(k)
i =

lnR
n(k)
i .
Symbols in lower case are computed estimates of the same symbols in upper case. For example, fop{J}L,d

is a computed estimate of FOP {J}L,d . (Symbols in mixed case are quantities that are not estimated by nuclear
physics computer codes.)

4.3 Vectors

A symbol which has no subscript, when it is also used with a subscript, denotes a vector comprising all
subscripted values of that symbol. For example, Rn(k) = (R

n(k)
1 ,R

n(k)
2 , . . . ,R

n(k)
Ni ).

Where the subscript is usually L, d, the vector is composed with subscript d varying first. For example,
FOP{J} = (FOP

{J}
1,1 ,FOP

{J}
1,2 , . . . ,FOP

{J}
1,Nd1

,FOP
{J}
2,1 , . . . . . . ,FOP

{J}
NL,NdNL

).

4.4 Combined overpowers

A symbol OP with any superscript (and in any style) denotes a vector concatenating the corresponding COP
and FOP vectors, For example, OP{J} = (COP{J},FOP{J}). The number of elements in a combined
overpowers vector is denoted by No = Ni+

∑
LNdL.

5 Input

The tables in this section give the symbols and names for all the quantities that may be required as input
to the software. The third column in each table specifies whether this input is always required or whether it
is required depending on the value of some other input.
The final column, ‘Validation’, specifies any constraints on the inputs that should be checked when

validating the input. In this column, the following notation is used.

• First, if the input is a vector or a matrix, the dimensions are shown followed by a multiplication sign.
For example, “5×”denotes a vector of 5 values, while “(Ni,Ni)×”denotes a matrix of Ni rows and
columns.

• If no dimensions are shown, the input is a scalar.

• This is followed by an indication of the type of values: R denotes real values, I denotes integer values,
and the permitted range is shown with the symbol ∈. For example, “5 × I ∈ [0, 3]”denotes an input
vector of 5 elements that must all be integers in the range 0 to 3.
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• If no permitted range is shown, the input is required only to be non-negative. For example, “R”
denotes a non-negative real-valued scalar.

• Where appropriate, this may be followed by other constraints. For example, “(Ni,Ni)×R, symmetric”
denotes a real symmetric matrix of Ni rows and columns.

5.1 Basic inputs

Symbol Name When required Validation
TSP Trip setpoint Always R
Ni Number of fuel channels Always I
NL Number of logic channels Always I
Nd Number of flux detectors per logic channel Always NL× I
NJ Number of perturbations Always I
Ns Number of observed fuelling states Always I
Nc Number of critical values for CPRtrip Always I
Nt Number of threshold values for Q(C) Always I
C Critical values for CPRtrip Always Nc×R
T Threshold values for Q(C) Always Nt×R ∈ (0, 1)
p Relative frequencies of perturbations Always NJ ×R ∈ [0, 1],

∑
J pJ = 1

DRP Design reactor power Always R

CP ref Reference channel powers Always NI ×R,
∑

i CP
ref
i = DRP

CPPFm Minimum channel power peaking factor Always R
CPm Maximum channel power Always R

Some of these inputs are implicit in the values or constraints of others, and could in principle be omitted
from the inputs. For instance, Ni,Nd,NJ,Ns,Nc andNtmight be omitted and inferred from the dimensions
of other inputs, and DRP might be inferred from the constraint on CP ref . However, including them
explicitly as inputs will allow validation checks on inputs that would otherwise not be available.

5.2 Switches
Symbol Name When required Validation
Mr SRn(k) model number Always I ∈ [1, 3], Mr = 1 if Mop = 1 or Mccp = 1
Mf CPPF cal model number Always I ∈ [0, 1]
Mop SOPp(J,k) model number Always I ∈ [0, 2], Mop 6= 2 if Mr = 1
Mccp CCPp(J,k) model number Always I ∈ [0, 2], Mccp 6= 2 if Mr = 1
Mw Switch for [s] weights Always I ∈ [0, 1]
Sum Output switch for Q(C) summaries Always I ∈ [0, 3]

5.3 Variances

A number of inputs that are required under the different models are variance matrices. Five alternative
input forms are available for such matrices. We introduce the following notation:

• I denotes an identity matrix;

• 1 denotes a unit matrix (all of whose elements are 1).

Dimensions of I and 1 are as required for conformability. In particular, 1 may be a vector.

1. Exchangeable form: For a variance matrix V of dimensions (Ni,Ni), the input comprises vc and vs
(validation: 2×R). The matrix is V = vsI + vc1.
2. Partitioned exchangeable form: For a variance matrix V of dimensions (No,No), the input comprises
vc, vs, wc, ws and v0 (validation: 5×R). The matrix is

V =

(
vsI + (vc + v0)1 v01

v01 wsI + (wc + v0)1

)
,
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where the upper-left partition is of dimensions (Ni,Ni).
3. Spatial form: For a variance matrix V of dimensions (Ni,Ni), the input comprises v and ` (validation:
2 × R). The matrix is V = v exp(−(D11/`)2), where the distance matrix D is an input of dimensions

(No,No), partitioned as D =

(
D11 D12
D21 D22

)
with D11 of dimensions (Ni,Ni), and where the division by

`, the square and the exponential are applied element-wise.
4. Partitioned spatial form: For a variance matrix V of dimensions (No,No), the input comprises
vc, wc, v0 and ` (validation: 4×R). The matrix is

V =

(
(vc + vo) exp(−(D11/`)2) vo exp(−(D12/`)2)
vo exp(−(D21/`)2) (wc + vo) exp(−(D22/`)2)

)
.

5. General form: A variance matrix of dimensions (N,N) may always be input explicitly (validation
(N,N)×R, positive-definite, symmetric).

In addition to two scalar variances V pf and V dd, the following table specifies five variance matrices, the
switch inputs that define their input form, and the possible values of those switches. The validation entry
for the matrix itself is empty, because the validation depends on the input form (and is specified with each
form above).

Symbol Name When required Validation
V pf Bulk power error variance Always R
V dd Detector drift variance Always R
Ssoro Switch for V soro Always I ∈ {1, 3, 5}
V soro SORO error matrix Always
Srfsp Switch for V rfsp Always I ∈ {2, 4, 5}
V rfsp RFSP error matrix Always
Stuf Switch for V tuf Always I ∈ {1, 3, 5}
V tuf TUF error matrix Always
Ssop Switch for Zsop Mop = 0 I ∈ {2, 4, 5}
Zsop Superposition error matrix Mop = 0
Sccp Switch for Zccp Mccp = 0 I ∈ {1, 3, 5}
Zccp CCP approx error matrix Mccp = 0

5.4 Miscellaneous inputs

These inputs are not always required
Symbol Name When required Validation
Hi CPPF region Mf = 0 Ni× I ∈ [0, 1]
D Distance map (*) (No,No)×R, (**)
w [s] weights Mw = 1 Ns×R ∈ [0, 1],

∑
s ws = 1

(*) D is required in case of any of the following: Ssoro = 3, Srfsp = 4, Stuf = 3, Ssop = 4, Sccp = 3.
(**) D must be a valid distance matrix. In particular, it must be symmetric, all diagonal elements must

be zero and for every triplet i, i′, i′′ the triangle inequality di,i′′ ≤ di,i′ + di′,i′′ must hold. This can be
validated by checking that exp(−D) is symmetric and positive definite, with all diagonal elements equal to
1.

5.5 Data

Finally, the computed data inputs are given in the following table. An additional column 5 says how many
instances of each item are required. A value Ns indicates that these data are required for each of the Ns
computed fuelling states, and a value NJ indicates that they are required for each of the NJ perturbations.
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Symbol Name When required Validation Instances
r[s] Ripples Always Ni×R Ns
op[J,s] Overpowers Mop 6= 0 No×R Ns×NJ
op{J} Superposition overpowers Mop = 0 No×R NJ
ccp[J,s] Critical channel powers Mccp 6= 0 Ni×R Ns×NJ
ccp{J} Approx crit channel powers Mccp = 0 Ni×R NJ
IRP [s] Indicated reactor power Always R Ns
MR[s] Maximum CPPF ripple Mf = 1 R Ns
It may be useful for the input Hi to be provided always, rather than just when Mf = 0 as specified in

the previous section. Then it would be possible to add a validation check that MR[s] = maxi(Hii × r[s]i ).

5.6 Input media

[This section should specify any requirements that CNSC has for how inputs should be provided to the software.
Graphical user interface? File-based input to allow batch processing? GUI plus data file? File formats.]

6 Outputs

6.1 Required outputs

The required outputs are

• PJ(Cc, Tt) for J = 1, . . . , NJ , c = 1, . . . , Nc and t = 1, . . . , Nt.

• P (Cc, Tt) for c = 1, . . . , Nc and t = 1, . . . , Nt.

6.2 Optional outputs

If Sum = 1 or 3, then additional outputs should be provided characterising the E-distribution of QJ(Cc).
For each J = 1, . . . , NJ and c = 1, . . . , Nc, this will comprise the median, quartiles and extreme values
of QJ(Cc) obtained in the outer loop from the sampling in the inner loop of the two-level Monte Carlo
algorithm in section 7.2 below. A natural way to display them would be as box-and-whisker plots.
If Sum = 2 or 3, then a separate output file should be created containing all the sampled values of

QJ(Cc) for each J and c.

6.3 Output media

[This section should specify any requirements that CNSC has for how outputs should be provided by the
software. File formats, display formats, output direct to Excel? ]

7 Algorithms

In implementing these algorithms, care should be taken over the distinction between bold and roman symbols.
In many cases, the algorithms require logarithms of input values, for instance TSP is an input but its
logarithm TSP is used in the equations below.

7.1 Critical power ratio at trip

The fundamental equation for the NOP calculation is

CPRtrip = min
i

(
CCP

p(J,k)
i −PFn(k) −COPp(J,k)i −Rn(k)

i −CPrefi
)
− Ftrip ,

where
Ftrip = TSP−min

L
max
d

(
DDL,d + FOP

p(J,k)
L,d

)
−CPPFcal − IRPcal .
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However, if Ftrip < 0, then CPRtrip should instead be computed as

CPRtrip = min
i

[
CCP

p(J,k)
i −PFn(k) −

(
Etrip ×COPp(J,k)i

)
−Rn(k)

i −CPrefi
]
,

where Etrip is the solution to the equation

TSP = min
L
max
d

[
DDL,d +

(
Etrip × FOPp(J,k)L,d

)]
+CPPFcal + IRPcal

7.2 Two-level Monte Carlo

The required outputs P (Cc, Tt) and PJ(Cc, Tt) are computed by a two-level Monte Carlo algorithm.

1. Repeat for J = 1, 2, . . . , NJ {

Set counter p(c, t) = 0 (c = 1, . . . , Nc; t = 1, . . . , Nt)

Repeat M1 times (outer loop) {

Sample parameters from their E-distributions

Set counter q(c) = 0 (c = 1, . . . , Nc)

Repeat M2 times (inner loop) {

Sample uncertain quantities from their A-distributions

Compute CPRtrip

Increment q(c) if CPRtrip ≥ Cc (c = 1, . . . , Nc) }
Set QJ(Cc) = q(c)/M2 (c = 1, . . . , Nc)

Increment p(c, t) if QJ(Cc) ≥ Tt (c = 1, . . . , Nc; t = 1, . . . , Nt) }
Output PJ(Cc, Tt) = p(c, t)/M1 (c = 1, . . . , Nc; t = 1, . . . , Nt) }

2. Output P (Cc, Tt) =
∑

J pJPJ(Cc, Tt) (c = 1, . . . , Nc; t = 1, . . . , Nt)

The simulation sizes M1 and M2 should be large enough to produce stable Monte Carlo estimates of
the probabilities PJ(Cc, Tt) = Pr(QJ(Cc) ≥ Tt), and the contractors should justify the way in which these
values are chosen (either adaptively or as preset values based on test cases). Notice that in the inner loop
the A-distributions are fixed using the values of parameters that have been sampled in the outer loop.
If Sum 6= 0, the algorithm should be adapted to collect all the M1 sampled values of QJ(C) during

the outer loop, so that the median, quartiles, maximum and minimum may be computed and reported if
Sum = 1 or 3, and so that the complete set of sampled values may be output if Sum = 2 or 3.

7.3 Scaled ripples and overpowers

The ripples must satisfy ∑
i

R
n(k)
i × CP refi = DRP

and the channel overpowers must satisfy∑
i

COP
p(J,k)
i ×Rn(k)i × CP refi = DRP .

In the Bayesian modelling, we work with scaled log-ripples and log-overpowers which sum to zero. Thus,
SRn(k) and SOPp(J,k) are respectively scaled log-ripples corresponding to Rn(k) and scaled log-overpowers
corresponding to OPp(J,k). We similarly have scaled quantities SR[s] and SOP[J,s] as the scaled log-ripples
and log-overpowers for computation set s. The computed estimates sr[s] and sop[J,s] are derived by scaling
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the input data. Formally, we introduce the matrix K of dimensions (Ni,Ni) and the matrixM of dimensions
(No,No) defined as

K = I −Ni−11 ,

M =

(
K 0

−Ni−11 I

)
,

and then the scalings are
sr[s] = K.r[s] , sop[J,s] =M.op[J,s] .

The dot here denotes matrix multiplication. In the two-level Monte Carlo algorithm, SRn(k) and SOPp(J,k)

are sampled from their A-distributions, then the sampled values of Rn(k) and OPp(J,k) are computed from

Rn(k) = SRn(k) +
(
DRP− ln(

∑
iSR

n(k)
i CP refi )

)
1 ,

OPp(J,k) = SOPp(J,k) +
(
DRP− ln(

∑
iSCOP

p(J,k)
i R

n(k)
i CP refi )

)
1 .

Notice that these equations require SRn(k)i , R
n(k)
i and SCOP p(J,k)i , which are the exponentials of the sampled

SR
n(k)
i ,R

n(k)
i and SOPp(J,k)i , together with DRP = lnDRP

In the Bayesian modelling, the constraint that the scaled log-ripples and log-channel overpowers must
sum to zero is implemented by variance matrices that imply that condition. In particular, the input variance
matrices V soro and V rfsp apply to the computed log-ripples and log-overpowers, so that the implied variance
matrices for their scaled counterparts are

V soro∗ = K.V soro.K ,

V rfsp∗ =M.V rfsp.MT .

Such matrices are singular, so care should be taken in implementing the Bayesian analyses and in sampling
from the A-distributions.

7.4 Bayesian modelling

The following table sets out all the Bayesian models for the various uncertain quantities needed to compute
CPRtrip.
The first column lists the uncertain quantities and, where appropriate, the alternative models.
In the two-level Monte Carlo algorithm, the parameters are sampled in the inner loop from their A-

distributions as specified in the second column.
Except for CPPFcal with model Mf = 0, PFn(k) and DD, these A-distributions contain unknown

parameters, which are listed in the third column.
Values are assigned to these unknown parameters in the outer loop, by sampling from their E-distributions.

The E-distributions are derived using Bayesian analysis from the prior distribution in column 4 and the data
model in column 5. The E-distribution is the posterior distribution from this analysis.
In some cases the prior distributions and data models are suffi ciently simple for the posterior E-distribution

to be derived analytically, so that there is an explicit E-distribution to sample from. In the remaining cases,
it will be necessary to use Markov chain Monte Carlo (MCMC) methods to generate a random sample from
the posterior E-distribution. Such samples are ready-made for use in the inner loop. In the case of SRn(k)

with model Mr = 3, the computation is likely to require reversible jump MCMC.
The contractors must provide full details of the Bayesian methods used. Where the E-distribution can

be derived analytically, the solution should be shown. Where MCMC methods are used, the contractors
are expected to obtain a suitably effi cient sampling scheme, which should be documented fully. Choices
of burn-in and thinning should be specified, with reasons for the values chosen or the algorithm used to
determine them automatically.
The final column of the table points to numbered notes following the table.
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Model A-distribution Parameters Prior Data Notes
SRn(k)

Mr = 1 SRn(k) = SR[S] ,
Pr(S = s) = ws
(s = 1, . . . , Ns)

SR[s] (s =
1, . . . , Ns)

SR[s] ∼
N(0,Wsoro)
indep

sr[s] ∼ N(SR[s], V soro∗)
indep

(1) (2)

Mr = 2 SRn(k) ∼ N(0,Wsoro) Wsoro Noninformative sr[s] ∼ N(0, V soro∗ +
Wsoro) indep

(3) (4)

Mr = 3 SRn(k) ∼ N(mG, b ×
Wsoro), Pr(G = g) =
ag (g = 1, 2, . . . , Ng)

Ng, ag (g =
1, . . . , Ng,∑

g ag = 1),
b ∈ (0, 1),
mg (g =
1, . . . , Ng),
Wsoro

Ng ∼ Ge(0.25), ag
uniform, b uniform,
mg ∼ N(0, (1 −
b) ×Wsoro) indep,
Wsoro noninforma-
tive

sr[s] ∼ N(SR[s], V soro∗)
indep

(3) (5)

CPPFcal

Mf = 0 CPPFcal =
max(CPPFm,

maxi(Hii × rn(k)i ))

(6)

Mf = 1 CPPFcal =
max(CPPFm,MRn(k)),

MRn(k) ∼ N(mf, vf)

mf, vf Noninformative MR[s] ∼ N(mf, vf)
indep

SOPp(J,k)

Mop = 0 SOPp(J,k) ∼
N(SOP{J}, Zsop)

SOP{J} SOP{J} ∼
N(0,Wsp)

sop{J} ∼
N(SOP{J}, V rfsp∗)

(7)

Mop = 1 SOPp(J,k) = SOP[J,S] SOP[J,s]

(s =
1, . . . , Ns)

SOP[J,s] ∼
N(0,Wrfsp)
indep

sop[J,s] ∼
N(SOP[J,s], V rfsp∗)
indep

(2′) (8)

Mop = 2 SOPp(J,k) ∼
N(0,Wrfsp)

Wrfsp Noninformative sop[J,s] ∼
N(0, V rfsp∗ +Wrfsp)
indep

(3′) (4′)

CCPp(J,k)

Mccp = 0 CCPp(J,k) ∼
N(CCP{J}, Zccp)

CCP{J} CCP{J} ∼
N(mca,Wca)

ccp{J} ∼
N(CCP{J}, V tuf)

(7′)

Mccp = 1 CCPp(J,k) = CCP[J,S] CCP[J,s]

(s =
1, . . . , Ns)

CCP[J,s] ∼
N(mtuf,Wtuf)
indep

ccp[J,s] ∼
N(CCP[J,s], V tuf) indep

(2′′) (8)

Mccp = 2 CCPp(J,k) ∼
N(mtuf,Wtuf)

mtuf,Wtuf Noninformative ccp[J,s] ∼
N(mtuf, V tuf +
Wtuf) indep

(4′′)

IRPcal IRPcal ∼ N(mi, vi) mi, vi Noninformative IRP[s] ∼ N(mi, vi)
indep

PFn(k) PFn(k) ∼
N(IRPcal, V pf)

(9)

DD DD ∼ N(0, V dd× I) (9)

Notes
(1) ws = Ns−1 if Mw = 0.
(2) Wsoro is set equal to the empirical Bayes estimate Wsoro = Ns−1

∑
s sr

[s]sr[s]T − V soro∗.
(2′) Wrfsp is set equal to the empirical Bayes estimate Wrfsp = Ns−1

∑
s sop

[J,s]sop[J,s]T − V rfsp∗.
(2′′) mtuf and Wtuf are set equal to the empirical Bayes estimates mtuf = Ns−1

∑
s ccp

[J,s] and

Wtuf = Ns−1
∑

s

(
ccp[J,s] −mtuf

) (
ccp[J,s] −mtuf

)T − V tuf .
10



(3) The noninformative prior distribution for Wsoro should be constrained so that rows and columns
sum to zero. The posterior E-distribution will then have the same property.
(3′) The noninformative prior distribution for Wrfsp should be constrained so that its first Ni rows and

columns sum to zero. The posterior E-distribution will then have the same property.
(4) The contractors should explore whether the assumption of a multivariate normal distribution for sr[s]

is reasonable. This can be done both by looking at the sr[s]s and by comparing results with Model 3.
(4′) The contractors should explore whether the assumption of a multivariate normal distribution for

sop[J,s] is reasonable for a given J , and should propose a nonparametric Model 3 if it does not seem realistic.
(4′′) The contractors should explore whether the assumption of a multivariate normal distribution for

ccp[J,s] is reasonable for a given J , and should propose a nonparametric Model 3 if it does not seem realistic.
(5) The geometric distribution is designed to give high probability to Ng being small. Alternative values

to 0.25 for the parameter could be considered.
(6) In this model, the A-distribution of CPPFcal is induced by that of SRn(k), with the hypotheti-

cal SORO-computed ripples rn(k) being derived by applying the transformation of section 7.3 to srn(k) ∼
N(SRn(k), V soro∗). No Bayesian analysis or E-distribution is needed. The contractors should consider
whether it is better to model the ripples and derive the CPPF as in this model, or to model CPPF directly
as in model 1.
(7) Wsp is set equal to the empirical Bayes estimate Wsp = NJ−1

∑
J sop

{J}sop{J}T − V rfsp∗. Note
that within the two-level Monte Carlo algorithm, each J is handled separately, and almost all other com-
putations use only the current value of J , and can be done within the J loop. This computation, however,
must be done before the Monte Carlo algorithm begins.
(7′) mca and Wca are set equal to the empirical Bayes estimates mca = Ns−1

∑
J ccp

{J} and Wca =
NJ−1

∑
J

(
ccp{J} −mca

) (
ccp{J} −mca

)
T −V tuf . Note that within the two-level Monte Carlo algorithm,

each J is handled separately, and almost all other computations use only the current value of J , and can
be done within the J loop. These computations, however, must be done before the Monte Carlo algorithm
begins.
(8) In the A-distribution, S takes the same value as in the A-distribution of SRn(k).
(9) There are no uncertain parameters in this A-distribution.

8 Testing

8.1 Face validity

Like any major software development, the NOP trip setpoint assessment software must be thoroughly tested
and quality assured. One important set of tests concern face validity, i.e. ensuring that as the inputs change
in particular ways the outputs change as expected.
The following examples of face validity tests should be implemented, but others may also be proposed.

• If the quantity of input data (SORO and/or RFSP datasets) is reduced, the overall E-uncertainty
should increase, and hence the E-uncertainty in CPRtrip should increase.

• If the specified variances of code errors are increased, then again the E-uncertainty in CPRtrip should
increase.

• If the ccp{J} data are reduced, for instance by 2%, then the E-distribution of CPRtrip should shift
towards lower values, and in particular PJ(C, T ) should decrease.

• Perturbations that have uniformly smaller effects on channel powers should lead to generally higher
values of CPRtrip, and in particular should have higher PJ(C, T ).

8.2 Benchmarking

Another tool for validation is benchmark testing. Test examples are constructed where the correct solution
is known, and the software solution is checked to see if it is close enough to the correct solution to be fit
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for purpose. In this problem there are no real data for which true values are known, so it is necessary to
fabricate “realistic”scenarios.
For instance:

• The datasets of SORO, RFSP and TUF data are assumed to be true values for a sample of fuelling
states. The software is first run in SR,SOP and CCP model 1 and CPPF model 0 using these “true”
values with no E-uncertainty (e.g. zero code error variances) to obtain the true QJ(C) values. Then
new data are generated by taking these “true”values and adding random code errors consistent with
the known accuracies of the codes. The software is run with several new datasets generated in this
way, to check that the outputs are consistent with the true Q(C)s.

• Values of parameters for the multivariate normal A-distributions of SR,SOP and CCP model 2 are
assumed (for instance the posterior means of these parameters from an earlier run of the software).
The software is adapted to fix these values for a single (M1 = 1) pass through the outer loop of the
Monte Carlo algorithm in order to obtain true QJ(C) values. The software is then run with several
random data sets generated according to the corresponding data models, to check that the outputs are
consistent with the true QJ(C)s.

8.3 Reserved data

Another useful validation test uses held-back data. The software is run with a reduced set of data, for instance
two-thirds of the original number of fuelling state samples, to predict the values of the remaining, held-back,
data. This requires the inner loop to be modified so that instead of computing CPRtrip it simulates datasets
from additional random fuelling states. The inner loop normally simulates true vales, but it is now modified
to add random code errors to simulate computed data. In this way a sample of computed datasets from
their predictive distribution is generated, and this is compared with the held-back data.

8.4 Log file

A file containing a log for diagnostic purposes should be created in each run of the software. At least the
following data should be logged.

• Date, time, settings of input switches

• Diagnostics for convergence of MCMC algorithms

• If, at any time in the inner loop of the two-level Monte Carlo algorithm, the value of Ftrip is negative,
so that the second formula for CPRtrip is used in section 7.1, then record the value of J .

• If, at any time in the inner loop of the two-level Monte Carlo algorithm, the value of PFn(k) +
COP

p(J,k)
i +CPrefi exceeds CPm, then record its value and the channel number i. If Mr = 1, then

also record the value of S. Such occurrences may indicate a problem with the SR model, because
normal reactor operation tries to manage the core so that no channel exceeds this value.

9 Tender requirements

[This section should set out formal CNSC requirements for tenders.]
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CNSC research project R612.1: 
“Application of Bayes method in evaluation of ROP/NOP trip setpoint - Phase I” 

Disposition of Comments from Bruce Power and Ontario Power Generation on the Draft Report 
 

Anthony O’Hagan 

March, 2016 

 

I am pleased to note that the fundamental components of the report, namely the NOP equations, the two-level Monte Carlo simulation and the 
Bayesian modelling, have been accepted with no critical comments. 

 

High Level Comments from Ontario Power Generation 
(E-mail, Z. Catovic (OPG) to D. Serghiuta (CNSC), E-DOCS# 4964887, March 18, 2016) 

 

 Comment Disposition 
1 The proposed approach distinguishes between "effectiveness" and "risk" 

problem. The effectiveness problem addresses individual perturbation and 
the risk problem is then considered as a weighted summation over all 
possible perturbations.  A similar approach was taken in EVS-2006.  The 
ITP has noted that this may lead to incorrect results, in particular, when 
there are significant variations among the probabilities for the various 
perturbations.  The ITP report should be reviewed to consider the 
relevance of the finding to the proposed approach. 

The software allows different values to be input for the 
probabilities of different perturbations, so that the 
robustness of the weighted sum can be explored. 
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2 The proposal includes a discussion of Testing & Benchmarking.  More 
details would be helpful in understanding if the benchmarking approach 
will be similar to that applied to the EVS-NOP, to allow for direct 
comparisons. 

The benchmarking is necessarily rather different from 
that applied to EVS.  First, EVS was addressing a 
different question – the choice of a trip setpoint rather 
than the assessment of a given trip setpoint.  Second, 
because the underlying mathematics of EVS was generic 
it was possible to create very simple benchmark tests that 
bore no relation to the NOP problem but were still valid 
tests of that underlying theory.  This is not possible for 
the Bayesian SF, which is tailored very specifically to 
the NOP context. 

3 Appendix A describes a scenario where trip may occur during 
perturbation, i.e., cases where trip may occur before the flux shape 
becomes fully established, and a scaling parameter and a slightly different 
formulation of critical power ratio.  A more detailed review will be 
appropriate to confirm the equation addresses the problem as posed. 

I doubt if it is possible to observe a perturbation 
becoming established at sufficient resolution and with 
sufficient accuracy to verify or refute any proposed 
model for the process. 

4 Appendix A provides a discussion of uncertainty. It appears from the 
discussion that the A-uncertainty for CCP is only associated with fuelling 
state.  While fuelling state is a key parameter defining the neutron physics 
of the reactor, the CCP at any given time also depends on thermal 
hydraulic conditions, which are not dependent on fuelling state, but are 
also subject to A-uncertainty due to random variations in the process 
conditions, i.e., flow, temperature and pressure.  It is not clear if this 
variation is included in the A-uncertainty model. 

Change made.  There was no intention to limit the 
sources of A-uncertainty. 

5 The report introduces the concept of the true value, but it is not clear how 
E-uncertainty is defined with respect to the true value.  In particular, it is 
proposed in the report to sample the E-uncertainty as part of the outer 
loop in a two-level Monte-Carlo simulation.  It is not clear how the 
distribution derived with the proposed technique is related to the true 
value. 

E-uncertainty relates to the true values of parameters in 
assumed models for A-uncertainty.  The statistical 
modelling is specifically designed to derive the E-
distributions as posterior distributions from Bayesian 
analysis of data.  It is these distributions that are sampled 
in the outer loop. 
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High Level Comments from Bruce Power  
(E-mail, O. Nainer (BP) to D. Serghiuta (CNSC), E-DOCS# 4964894, March 16, 2016) 

 

 Comment Disposition 
Page 9 “Bayesian SF” could have been abbreviated further This section is quoting CNSC instructions for this project.  I think 

it is better not to change those by abbreviating further. 
Page 9 Not clear what decision making is here. Could it be what is 

acceptable for a functional failure probability and its 
uncertainty? 

This section is quoting CNSC instructions for this project.  I have 
interpreted the instruction as saying that the SF should provide 
information to support regulatory decision-making, without 
indicating or suggesting any preferred decision. 

Page 10 The NOP analysis used to be called ROP (Regional 
Overpower Protection). This is to make the point that a bulk 
power increase is not necessarily needed to reach the dryout 
condition ie in conditions of high flux tilts dryout can also 
happen. 
 
Again, here and bullet above, bulk power increase is not 
required. NOP protects against local distortions as well. 

Indeed, the question of whether the NOP trip setpoint protects 
against such a situation is considered in section 2.7 of the 
Technical Appendix as the case of “trip during perturbation”. 

Page 11 To me unknown is exaggerated in this context. Not known 
precisely is probably better term. In principle we have enough 
fine granularity on the flux shapes, ripples, etc. 
 

Change made.  Although to a statistician, “unknown” does not 
have the strength implied by the word in common usage, I agree 
that weaker wording would be better in this context.   

Page 11 In my opinion this work could add more value if it would 
attempt to go into areas less explored ie propagate 
uncertainties and general treatment of errors for cases that are 
more realistic ie dynamic transients. 
I understand this was not in the scope provided for this work, 
however multiple arguments have been provided with respect 
to the risks associated to the slow LOR and ultimately 
supporting the current EVS approach.   

Although not practical currently, it is true that explicit dynamic 
transient simulation may be available in the future.  However, this 
would be likely to involve different Bayesian modelling that cannot 
be anticipated at this time. 
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Page 11 Time element is not an issue in the slow LOR. It is assumed 
the transient occurs very slowly. In real life the neutronic 
transient are relatively fast and are over in at about 10 
seconds. 

“Just in time” refers to the trip functioning just before the bulk 
power increase reaches the level where dry-out may occur.  
However fast or slow the bulk power increase occurs in practice, 
this point is well defined. 

Page 11 The traditional methodology was actually building a 
distribution of TSP and the acceptance probability was 
applied to select the lower bound. 

Change made.  The text should distinguish between the traditional 
methodology’s original focus and the focus of this project. 

Page 15 I do have a problem with the approach; I understand that this 
is typical Bayes application and I understood this in the PRA 
application where failure rates are postulated and then 
corrected based on experience. In the NOP case there are 
already uncertainty distributions for most if not all 
uncertainties hence starting the process from assumptions 
seems to be a step backward. 

Where there is knowledge about the error processes, then of course 
the assumptions should match that knowledge.  However, the 
uncertainty distributions that are generally used are not strictly 
known to be correct.  They are based on samples of actual 
measurements, and if those samples are extensive we may apply 
calculations in which for instance an error is normally distributed 
with a given variance, but the distribution is not known to be 
normal and the variance is not known to take that value.  The use of 
the normal distribution with the given variance is an assumption.   
In fact, where the error is modelled as a multiplicative term 1+e, 
where e is given a normal distribution, then this assumption is 
actually known to be false because the normal distribution allows 
the theoretical possibility that 1+e is negative (no matter how small 
the variance), which is unphysical.  The SF instead assumes a 
normal additive error on the log scale, which is theoretically more 
realistic.  With small error variance, the sample data would not be 
able to distinguish between the two uses of the normal distribution. 

Page 15 I would also assume that the solution of the error propagation 
is similar to EVS or come synthetic cases can be constructed. 
Different uncertainties propagations will render different 
results and those would have nothing to do with Bayes 
application. 

It is very difficult to say how the error propagation relates to EVS, 
since in EVS there is no explicit inference about underlying 
parameters. 

Page 16 With this being said, what is the classification of the EVS - B 
or F ? 

EVS is frequentist.  The text here says that to develop a frequentist 
solution would require a substantial research programme, with no 
assurance of success.  EVS was indeed the result of a substantial 
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research programme, and in my opinion was not a success.  It was 
designed to choose a trip setpoint, and to produce a frequentist 
method for assessing the effectiveness of a given trip setpoint 
would be a fresh problem. 

Page 16 CPR at trip is in effect ratio of margin-to-dryout to margin-to-
trip. may worth mentioning. 

I appreciate that this is a standard way to describe the CPR at trip, 
but I find it potentially confusing because it is supposed to hold at 
any time during the bulk power increase and depends on the 
assumption of uniform power increase.  Defining it as the margin 
to dry-out at the moment when the margin to trip has reduced to 1 
seems to me to be more definite and a true reflection of “at trip”. 

Page 18 There are more parameters that vary in time and affect the 
dryout. it may be worth mentioning that the list is not 
comprehensive or perhaps include all A error sources. for 
example reactor inlet hear temperature, reactor outlet header 
pressure. 

Change made.  

Page 19 It may be useful to provide some guidance on data when 
modelling.  
For example in the super position if the errors made ignoring 
the actual initial burnup distribution are reasonably smaller 
than the perturbation itself, then this E-uncertainty could be 
rolled in with the others. 

Yes, this becomes part of the superposition error variance Zsop in 
the Software Appendix (when Mop = 0). 

Page 19 This would be the superposition principle that works for both 
channels and detectors. 

Yes, the word “overpowers” includes both channel overpowers and 
flux overpowers. 

Page 19 weakly informative - how are the prior distribution derived or 
what assumptions are made ? 

I use the term “weakly informative” to indicate that the prior 
distribution is designed to convey only the genuinely available 
prior information and nothing more.  Details of what this means for 
each set of parameters are given in the Software Appendix. 

Page 20 I think from a SF perspective this is fine.  One lesson we 
learned from EVS was that one should consider how the 
parameters sampled from the E-distribution affect CPRattrip 
and this may not be trivial. 

For any given set of parameter values sampled from E-distributions 
in the outer loop, there is a probability distribution for CPRtrip 
generated by A-uncertainty in the inner loop.  Whilst in principle 
one could output all of these M1 x M2 CPRtrip values, this would 
be an enormous amount of data and it is not clear how they could 
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usefully be analysed. 
Page 21 This seems to be the first reference to cppf. if cppf was 

explicit in cprattrip (and would be treated as a constant) then 
this face validity criteria would be evident. 

In the Technical Appendix, CPPF is explicit in the formula for 
CPRtrip.  However, it depends on the fuelling state and is subject to 
measurement error and is therefore not a constant.  The effect of 
increasing the minimum CPPF (which is indeed a constant) on 
CPRtrip is thus not deterministic but stochastic. 

Page 21 This is somewhat intuitive but difficult to put in practice and 
largely arguable. also it depends if the perturbation is 
favourable to detector or not. 

Change made.  Thank you for causing me to look again at this 
bullet point.  On reflection, I find it unsound. 

Page 25 As I pointed in the meeting, there is another condition that is 
met by the SORO CPs. ie ;max(CPi)<CPmax for all ripples. 

This has been implemented in the Software Appendix using the 
new input CPm.  It is not practical to enforce this condition 
because it depends on both ripples and reactor power, but the 
section on creating a log file requires instances where the condition 
is not met during the simulation to be recorded.  This will serve as 
a diagnostic, and may trigger revision of the software. 

Page 26 The wording implies that the two parameters ie DRP and 
CPref are derived together. This is not the case DRP is 
derived from nuclear design and CPref from NOP 
optimizations studies; CPref can be reoptimized   

I take the point but feel that the text is adequate as it stands.  For 
the purpose of this report, it is only necessary that both are fixed 
and known. 

Page 26 I think that jumping from dryout to sheath failure is quite a 
long way. Actually there have been studies discussing that 
operation beyond dryout with a limited high temperature for a 
limited time is acceptable (ie fuel sheath is maintained). 

The text only says that dry-out “may lead” to rupture. 

Page 27 This is margin to dryout. Yes, but it is also CPR. 
Page 28 This is essentially margin to trip. Specifically, it is the margin to trip as computed at the point when 

the perturbation is established but no bulk power increase has yet 
ensued.  The point about margin to trip and margin to dry-out is 
that they change during bulk power increase, and this is something 
that I found confusing in standard treatments of NOP.  That is 
largely why I have tended to prefer other terminology. 

Page 29 I find the introduction of E unnecessary, artificial and 
inconsistent with the rest of the NOP methodology. Let's 

I have introduced this precisely because of the situation that you 
raise in your comments on page 10.  Concerning the change in 
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recall that the assumption we have is a linear power change 
after the perturbation is established, while here the exponent is 
applied during the perturbation effectively changing it. The 
relationship works fine in absence of this factor as the initial 
power level is rather irrelevant. 

channel powers after the perturbation is established, i.e. during 
bulk power increase, the assumption is that if one channel power 
has increased by a factor F then all have increased by the same 
factor.  This is a natural assumption in the context of increasing 
bulk reactor power.  As far as I can see, there is no natural 
assumption for how a perturbation becomes established, nor am I 
aware of any data or studies relating to this.  Indeed, I doubt if such 
studies are practicable.  In the light of this, I have chosen to make a 
convenient assumption.  I doubt if it would be materially different 
from any other plausible assumption in practice.  The software log 
file will record all instances when this formula is invoked. 

Page 51 Similar to the comment in the main body: The calculation of 
CPRtrip may not be straightforward (as the section above 
would seem to suggest)  once the uncertainties are factored in; 
especially if the true value is not used . This in itself can be 
the future source of much disagreement with EVS, hence it 
may deserve some more discussion.  

Within the inner loop of the algorithm true values of all quantities 
are simulated by drawing from their A-distributions.  Given all 
these true values, the computation of CPRtrip simply involves 
applying the formulae.  It is indeed straightforward.  The Bayesian 
algorithm involves none of the contortions required by EVS. 

Page 51 As per my other comment in the app.a the soro cps also reflect 
the compliance activities ie CPSORO<CPmax. 

See my response to your comment on page 25. 

Page 55 I suggest that some thought is put into constructing some 
benchmarks to test against EVS (or synthetic cases based on 
EVS).  

A benchmark should be an accepted correct answer against which a 
software can be tested.  EVS does not provide a benchmark in this 
sense. 
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