BONDED PRE-STRESSED CONCRETE SLABS OPEN-AIR BLAST TESTING

(Final Report – March 31, 2017)

Prepared by:

Stone Security Engineering, PC Oregon Ballistic Laboratories, LLC Stone-OBL, LLC

TABLE OF CONTENTS

2Stone-OBL Blast Testing Site22.1 Site Layout22.2 Reaction Structure43Test Specimens53.1 Post-Tensioned Strand Stress Level53.2 Mild Steel Reinforcement Level and Slab Construction63.3 Supporting Steel Frame Construction and Panel Installation74Open-Air Blast Testing Procedure124.1 Instrumentation and Test Documentation124.2 Explosives and Test Matrix194.3 Pre-Stressed Concrete Slab Response Limits205Test 1 (Panel 5A)235.2 Test 2 (Panel 1A)255.3 Test 3 (Panel 2C)285.4 Test 4a (Panel 6C)315.5 Test 4b (Panel 6C)32
2.2 Reaction Structure43 Test Specimens53.1 Post-Tensioned Strand Stress Level53.2 Mild Steel Reinforcement Level and Slab Construction.63.3 Supporting Steel Frame Construction and Panel Installation.74 Open-Air Blast Testing Procedure.124.1 Instrumentation and Test Documentation.124.2 Explosives and Test Matrix.194.3 Pre-Stressed Concrete Slab Response Limits.205 Test Results.225.1 Test 1 (Panel 5A).235.2 Test 2 (Panel 1A).255.3 Test 3 (Panel 2C).285.4 Test 4a (Panel 6C).31
3Test Specimens53.1Post-Tensioned Strand Stress Level53.2Mild Steel Reinforcement Level and Slab Construction.63.3Supporting Steel Frame Construction and Panel Installation.74Open-Air Blast Testing Procedure.124.1Instrumentation and Test Documentation.124.2Explosives and Test Matrix.194.3Pre-Stressed Concrete Slab Response Limits.205Test Results.225.1Test 1 (Panel 5A).235.2Test 2 (Panel 1A).255.3Test 3 (Panel 2C).285.4Test 4a (Panel 6C).31
3.1 Post-Tensioned Strand Stress Level.53.2 Mild Steel Reinforcement Level and Slab Construction63.3 Supporting Steel Frame Construction and Panel Installation74 Open-Air Blast Testing Procedure124.1 Instrumentation and Test Documentation124.2 Explosives and Test Matrix194.3 Pre-Stressed Concrete Slab Response Limits205 Test Results225.1 Test 1 (Panel 5A)235.2 Test 2 (Panel 1A)255.3 Test 3 (Panel 2C)285.4 Test 4a (Panel 6C)31
3.2 Mild Steel Reinforcement Level and Slab Construction
3.3 Supporting Steel Frame Construction and Panel Installation.74 Open-Air Blast Testing Procedure.124.1 Instrumentation and Test Documentation.124.2 Explosives and Test Matrix.194.3 Pre-Stressed Concrete Slab Response Limits.205 Test Results.225.1 Test 1 (Panel 5A).235.2 Test 2 (Panel 1A).255.3 Test 3 (Panel 2C).285.4 Test 4a (Panel 6C).31
4Open-Air Blast Testing Procedure124.1Instrumentation and Test Documentation124.2Explosives and Test Matrix194.3Pre-Stressed Concrete Slab Response Limits205Test Results205Test 1 (Panel 5A)235.2Test 2 (Panel 1A)255.3Test 3 (Panel 2C)285.4Test 4a (Panel 6C)31
4.1 Instrumentation and Test Documentation124.2 Explosives and Test Matrix194.3 Pre-Stressed Concrete Slab Response Limits205 Test Results225.1 Test 1 (Panel 5A)235.2 Test 2 (Panel 1A)255.3 Test 3 (Panel 2C)285.4 Test 4a (Panel 6C)31
4.2 Explosives and Test Matrix194.3 Pre-Stressed Concrete Slab Response Limits205 Test Results225.1 Test 1 (Panel 5A)235.2 Test 2 (Panel 1A)255.3 Test 3 (Panel 2C)285.4 Test 4a (Panel 6C)31
4.3 Pre-Stressed Concrete Slab Response Limits 20 5 Test Results 22 5.1 Test 1 (Panel 5A) 23 5.2 Test 2 (Panel 1A) 25 5.3 Test 3 (Panel 2C) 28 5.4 Test 4a (Panel 6C) 31
5 Test Results 22 5.1 Test 1 (Panel 5A) 23 5.2 Test 2 (Panel 1A) 25 5.3 Test 3 (Panel 2C) 28 5.4 Test 4a (Panel 6C) 31
5.1 Test 1 (Panel 5A) 23 5.2 Test 2 (Panel 1A) 25 5.3 Test 3 (Panel 2C) 28 5.4 Test 4a (Panel 6C) 31
5.2 Test 2 (Panel 1A)
5.3 Test 3 (Panel 2C)
5.4 Test 4a (Panel 6C)
5.5 Test Ab (Panel 6C) 32
5.5 Test 40 (1 ale 10C)
5.6 Test 5 (Panel 7B)
5.7 Test 6 (Panel 3B)
5.8 Test 7 (Panel 4D)
5.9 Test 8 (Panel 8D)40
6 Conclusions
Appendix A. Calculations and Drawings
Appendix B. VSL Stressing Protocols, Data, and Certification
Appendix C. Slab Inspection and Concrete Results
Appendix D. Instrumentation Cambration Certification

LIST OF FIGURES AND TABLES

Figure 2-1: Site Location	
Figure 2-2: Site Layout	3
Figure 2-4: Reaction Structure	4
Table 3-1: Test Specimen Summary	5
Figure 3-1: Slab Observed During Inspection Site Visit	5
Table 3-2: Concrete Crushing Test Summary	
Figure 3-2: Sketches of Simple Supports Used in Test 1 and Test 2	7
Figure 3-3: Steel Pedestals Used in Test 1 and Test 2	7
Figure 3-4: Lifting of Slab with Crane for Installation onto the Test Fixture (Framing Set-Up 1)	8
Figure 3-5: Installed Panel within Framing Set-Up 1	
Figure 3-6: Steel Framing Set-Up 2 Layout (Isometric View)	9
Figure 3-7: Steel Framing Set-Up 2 Layout (Section View)	
Figure 3-8: Steel Framing Set-Up 2 Pedestal (Isometric View)	
Figure 3-9: Lifting of Slab with Crane for Installation onto the Test Fixture (Framing Set-Up 2)	
Figure 3-10: Installed Panel within the Stiffer Framing Set-Up 2	
Figure 4-1: Examples of Strain Gauge Attachment to Rebar	
Figure 4-2: Standard Strain Gauge Locations	
Table 4-1: Standard Strain Gauge Location Schedule	
Table 4-2: Strain Gauges with Open or Short Circuits	
Table 4-3: Data Channels for Strain Gauges and Displacement Sensors	
Figure 4-3: Pre-Test Laser Locations on Interior Slab Face	
Figure 4-4: Displacement and Pressure Sensor Locations for Test 1 and Test 2	
Figure 4-5: Displacement and Pressure Sensor Locations for Test 3 through Test 8	
Figure 4-6: Reflected Pressure Sensor Locations for Test 3 through Test 8	
Table 4-4: Test Matrix	
Table 4-5: Flexural Response Limits for Pre-Stressed Concrete Slabs	
Table 4-6: Damage Levels	
Table 5-1: Test Results Summary	
Figure 5-1: Pre-Test Photos of Test 1	
Figure 5-2: Front Face Slab Scabbing in Test 1	
Figure 5-3: Back Face Slab Cracking in Test 1 (at Bottom Center)	
Figure 5-4: Through-Thickness Slab Cracking in Test 1 (at Bottom Left)	
Figure 5-5: Steel Frame Damage in Test 1 (at Upper Left and Upper Right Corners)	
Figure 5-6: Pre-Test Photos of Frame Modifications for Test 2	
Figure 5-7: Pre-Test Photos of Test 2	
Figure 5-8: Front Face Slab Scabbing in Test 2	
Figure 5-9: Back Face Slab Cracking in Test 2 (Overall and Along Left Edge)	
Figure 5-10: Through-Thickness Slab Cracking in Test 2	
Figure 5-10: Through Three Damage in Test 2 (Along Upper Edge)	
Figure 5-12: Pre-Test Photos of Test 3	
Figure 5-12: Post-Test Photos of Test 3	
Figure 5-14: Highlighted Cracking Pattern on Back Face in Test 3	
Figure 5-14: The second second for the second secon	
Figure 5-16: Disengagement of Concrete Layers in Test 3	
Figure 5-10. Disengagement of Concrete Layers in Test 5 Figure 5-17: Pre-Test Photos of Test 4a	
Figure 5-17. Pre-Test Photos of Test 4a	
Figure 5-18: Fost-fest Flotos of fest 4a	
Figure 5-20: Highlighted Cracking Pattern on Back Face in Test 4b	
Figure 5-20. Figurighted Clacking Pattern on Back Pace in Test 45	
1 igure 5-21. Through-Threehees Clacking along Slue Euge III 168140	

Figure 5-22:	Pre-Test Photos of Test 5	
Figure 5-23:	Front Face Slab Scabbing in Test 5	35
Figure 5-24:	Highlighted Cracking Pattern on Back Face in Test 5	35
Figure 5-25:	Through-Thickness Cracking along Side Edge in Test 5	35
Figure 5-26:	Pre-Test Photos of Test 6	
Figure 5-27:	Front Face Slab Scabbing in Test 6	37
Figure 5-28:	Cracking Pattern on Back Face in Test 6	
Figure 5-29:	Through-Thickness Cracking along Side Edge in Test 6	37
Figure 5-30:	Pre-Test Photos of Test 7	
Figure 5-31:	Post-Test Photos of Test 7	
Figure 5-32:	Through-Thickness Cracking along Side Edge in Test 7	
Figure 5-33:	Pre-Test Photos of Test 8	40
Figure 5-34:	Front Face Slab Scabbing in Test 8	41
Figure 5-35:	Cracking Pattern on Back Face in Test 8	41
-	Through-Thickness Cracking along Side Edge in Test 8	

EXECUTIVE SUMMARY

This report provides the background, test set-up information, and results for the open-air blast testing of eight simply supported, two-way, precast pre-stressed/post-tensioned (PT) concrete slabs with varying conventional reinforcement and pre-stressing/PT levels.

The PT slabs in the main portion of the testing program sustained support rotations ranging from 0.4 degree to 3.0 degrees. The corresponding damage level for these tests would roughly range from Superficial Damage to Heavy Damage as defined in CSA S850-12 or ASCE 59-11. However, from the extent of concrete disengagement observed in Test 3, it would appear a 3.0-degree rotation is approaching the PT slab's upper limit state for non-hazardous damage (i.e., near a transition from Heavy to Hazardous Damage).

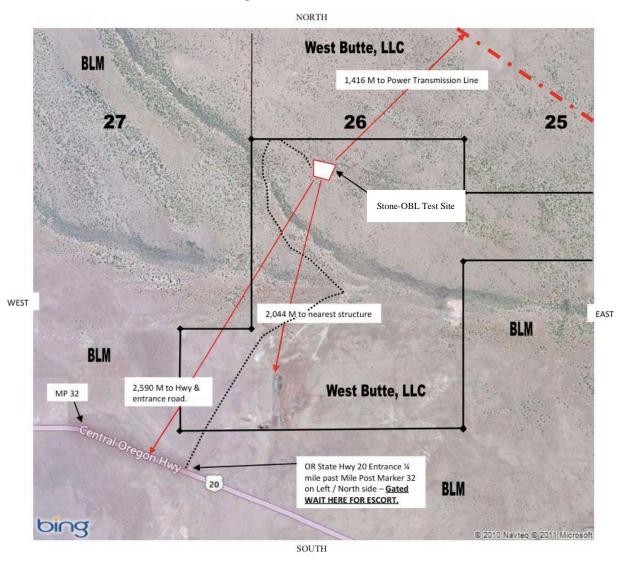
The test results seem to indicate that the actual response limits would fall between the currently published limits for pre-stressed concrete (lower bound) and conventionally reinforced concrete (upper bound) elements. Moreover, comparing the results for tests on slabs subjected to a similar blast threat, it appears that the increase of pre-stressing level from 725 psi (5 MPa) to 1450 psi (10 MPa) may only have a marginal effect on slab flexural response to blast loading. Additional testing and/or detailed analysis that can account for concrete disengagement, as well as shear and/or concrete-crushing controlled behavior (e.g., finite element modeling), should be performed to justify any modification to the currently published response limits and further examine the effects of pre-stressing/post-tensioning in blast applications.

1 INTRODUCTION

Considering the properties of pre-stressing steel and the level of compression in concrete, pre-stressed concrete members should respond with lower deflections under blast loading than similarly-sized, conventionally reinforced members. However, the available acceptance criteria for pre-stressed concrete in typical structures, provided in Canadian standard CSA S850-12, "Design and Assessment of Buildings Subjected to Blast Loads," and American standard ASCE 59-11, "Blast Protection of Buildings," as well as in the PCI's Blast-Resistant Design Manual (First Edition), are significantly more stringent than for conventionally reinforced concrete. The technical basis for the difference is unclear.

Therefore, given the number of existing pre-stressed concrete containment structures and new builds of similar construction anticipated in Canada, the U.S., and worldwide, there is a need to define design provisions for pre-stressed concrete elements with all specificities of nuclear structures (e.g., reinforcement ratio and detailing, pre-stressing level), which could potentially use more relaxed acceptance criteria than for typical structures, if warranted. This information would be beneficial for vendors, designers, regulators, and standards development organizations worldwide. This project originated as a joint effort of three different standards committees: Joint ASME Section III Division 2 – ACI 359, ACI 349, and ACI 370.

Toward that objective, sponsors from industry, regulatory agencies, and standards developing organizations (SDOs) who have a direct interest in nuclear structures have committed funds to sponsor this research project to test pre-stressed concrete slabs under blast loading. The main sponsors are the Canadian Nuclear Safety Commission (Client), Daewoo Institute of Construction Technology, EDF/SEPTEN, Swiss Federal Nuclear Safety Inspectorate (ENSI), Institute for Radiological Protection and Nuclear Safety (IRSN), Radiation and Nuclear Safety Authority (STUK), and ASME.


ASME ST-LLC tasked Stone Security Engineering (Stone) to perform a series of blast tests on simply supported, two-way pre-stressed concrete slabs to achieve a range of responses based on the research proposal from the Special Working Group of Modernization reporting to the Joint ACI-ASME Committee on Concrete Components for Nuclear Service (BPV III).

The eight slab specimens were 10-5/8 inches (270 mm) \times 16 feet (4880 mm) \times 16 feet (4880 mm) in dimensions. Two layers of conventional flexural reinforcement and local shear reinforcement around lifting points were included in each slab. Pre-stressing in the concrete was introduced using post-tensioned (PT) tendons. The parameters that varied were the pressure loading, conventional reinforcement ratio, and level of pre-stressing.

This report provides the background for the open-air blast testing of the precast, pre-stressed slabs, and summarizes results for a total of nine blast tests performed on the eight slabs. An overview of the testing facility is provided in Section 2. A description of the test specimen and supporting steel frame construction is provided in Section 3. The open-air testing procedure, including instrumentation, explosive material and quantities used, and documentation recorded, and relevant pre-stressed concrete slab response limits are discussed in Section 4. Results are presented in Section 5. Some conclusions are noted in Section 6. Slab specimen calculations and drawings, relevant certifications, and pre-test and post-test documentation information are provided as appendices.

2 STONE-OBL BLAST TESTING SITE

The full testing program was carried out using the reinforced concrete test fixture on the Stone-OBL blast testing site. The blast testing site is located in Deschutes County, Oregon approximately 30 miles east of Bend, Oregon. The property area is approximately four acres. The site, shown in Figure 2-1, is located approximately 4600 feet (1400 m) from the nearest utility, 6700 feet (2000 m) from the nearest structure, and approximately 8500 feet (2600 m) from the nearest public roadway.

Figure 2-1: Site Location

2.1 Site Layout

The blast testing site is accessed from the northwest corner of the property via a private access road. Construction areas were provided along this road, as shown in Figure 2-2, for each test slab specimen for a total of eight mud mats. The test specimens were assembled and cured on-site. In-process mud mat construction is shown in Figure 2-3.

Figure 2-2: Site Layout

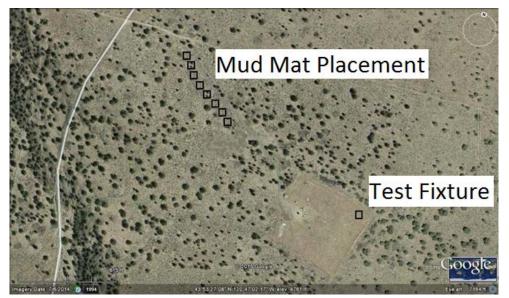


Figure 2-3: Mud Mat Construction

The Stone-OBL test fixture is located in the northeast corner of the site, as shown in Figure 2-2. Testing instrumentation and equipment were located and isolated behind the test fixture in belowground storage.

2.2 Reaction Structure

The reaction structure, as depicted in Figure 2-4, has maximum exterior dimensions of 25 feet (7620 mm) wide \times 19 feet (5790 mm) tall \times 14 feet (4270 mm) deep. The instrumentation chamber has interior clear dimensions of 15 feet (4570 mm) \times 15 feet (4570 mm) \times 12 feet (3660 mm). An embedded steel plate is present around the fixture opening, which includes 1-inch (25mm) diameter coil inserts spaced 12 inches (305 mm) on center. The reaction structure is constructed of 2-ft (610mm) thick heavily reinforced concrete walls, with equally thick roof and floor slabs, positioned on a shallow thick foundation above the bedrock. Concrete blocks were secured above and behind the structure during testing for horizontal stability.

Figure 2-4: Reaction Structure

The access opening on the side of the reaction structure was generally covered during testing with concrete blocks to limit overpressure and debris from entering the area behind the test panel.

3 TEST SPECIMENS

A total of eight concrete panels (four distinctive designs as shown in Table 3-1) were cast with different levels of mild steel reinforcement and applied compressive force due to tensioned strands commonly used in nuclear containment structures, and as agreed upon by the Client and project sponsors. The panel dimensions were 10-5/8 inches $(270 \text{ mm}) \times 16$ feet $(4880 \text{ mm}) \times 16$ feet (4880 mm). The targeted minimum concrete compressive strength was 6000 psi (41.4 MPa). The panels were cast at the testing site and posttensioned after the concrete achieved sufficient concrete strength. Figure 3-1 shows a representative slab during construction as observed at the inspection site visit. Appendix A summarizes the initial reinforcement calculations and provides drawings for the test slab specimens.

Slab Design Type	Panel Number	Stress Level	Mild Steel Reinforcement Level
A	1, 5	725 psi (5 MPa)	5.9 lb/ft ³ (95 kg/m ³)
В	3, 7	725 psi (5 MPa)	13.7 lb/ft ³ (220 kg/m ³)
C	2, 6	1450 psi (10 MPa)	5.9 lb/ft ³ (95 kg/m ³)
D	4, 8	1450 psi (10 MPa)	13.7 lb/ft ³ (220 kg/m ³)

Table 3-1: Test Specimen Summary

Figure 3-1: Slab Observed During Inspection Site Visit

3.1 Post-Tensioned Strand Stress Level

Slabs were post-tensioned using the VSL 6-4 strand Post-Tensioning System. Strands were placed in 72/21 flat ducts measuring 1.378 inches (35 mm) high \times 3.386 inches (86 mm) wide. The ducts, which have a capacity of four strands each, were centered in the thickness of the slabs in one direction and staggered in the other direction to minimize the eccentricity of the applied force.

Slabs were post-tensioned with 0.6-inch, Grade 270 strands (15mm, Grade 1860) complying with ASTM A416. Lower level stress strands were pulled to approximately 60% of f_{pu} to reach the overall target stress level and provide a relatively uniform amount of post-tensioning throughout the slab; higher level stress strands were pulled to 85% of f_{pu} . Each lower level stress strand was pulled 35.0 kips (156 kN); each higher level stress strand was pulled 49.6 kips (220 kN). VSL confirmed that their systems have been validated beyond these target values and have been tested up to 95% of f_{pu} .

The length of the post-tensioned strands was 16 feet (4880 mm). Anticipated anchorage seating was $\frac{1}{4}$ -inch (6.4 mm). With a strand seating loss, the anticipated force in the lower level stress strand was approximately 26.5 kips (118 kN); the anticipated force in the higher level stress strand was approximately 41 kips (182 kN). Related calculations are provided in Appendix A.

Slab designs A and B were stressed to approximately 725 psi (5 MPa). These panels had 14 ducts (56 strands) in both directions. Slab designs C and D were stressed to approximately 1450 psi (10 MPa). These panels had 18 ducts (72 strands) in both directions.

VSL stressing protocols, field pull data, and VSL certification of the final product for compliance with the design requirements are included in Appendix B.

3.2 Mild Steel Reinforcement Level and Slab Construction

Two levels of mild steel reinforcement were provided in the test specimens. Slab design A and C contained approximately $5.9 \text{ lb/ft}^3 (95 \text{ kg/m}^3)$ of reinforcement. Slab designs B and D contained approximately 13.7 lb/ft³ (220 kg/m³) of reinforcement. There were two mats of rebar in each panel, one top and bottom. Each mat contained the same number of bars going in both directions. No batch testing was performed on the mild steel reinforcement.

For Slab designs A and C, each mat contained #4 (1/2-inch or 12.7mm) reinforcement at 6 inches (152 mm) on center. For Slab designs B and D, each mat contained #5 (5/8-inch or 15.9mm) reinforcement at 4 inches (102 mm) on center.

Six-inch octagonal shaped spiral reinforcement was designated by the supplier as adequate bursting stress reinforcement for all the slabs. U-bars with the same size as the reinforcement used in the mats were added at 6 inches (152 mm) on center around the perimeter of each slab and were placed as close as possible to the edges. U-bars were placed between the trumpets at the same spacing as the mild steel reinforcement. Additional shear reinforcement (i.e., five 5-ft long #4 rebar) at each lifting loop point was added to account for stress concentrations.

Slab construction was closely supervised and inspected prior to pouring the concrete. Average concrete compressive strengths at 28 days and estimated tensile strengths are given in Table 3-2. Appendix A provides tensile strength calculations. Appendix C summarizes the field inspections for the slabs and provides more detailed concrete crushing data.

Panel	Compressive	Estimated Tensile
Number	Strength at 28 Days	Strength
1A	7830 psi (54.0 MPa)	1170 psi (8.1 MPa)
2C	7620 psi (52.5 MPa)	1140 psi (7.9 MPa)
3B	6980 psi (48.1 MPa)	1050 psi (7.2 MPa)
4D	8990 psi (62.0 MPa)	1350 psi (9.3 MPa)
5A	9430 psi (65.0 MPa)	1410 psi (9.8 MPa)
6C	7520 psi (51.8 MPa)	1130 psi (7.8 MPa)
7B	8290 psi (57.2 MPa)	1240 psi (8.6 MPa)
8D	7370 psi (50.8 MPa)	1110 psi (7.6 MPa)

Table 3-2: Concrete Crushing Test Summary

3.3 Supporting Steel Frame Construction and Panel Installation

Supporting steel framing was fabricated and installed to hold the concrete slab during testing and to mimic simply supported boundary conditions. Two general steel framing set-ups were used throughout the testing program—one for the first two tests (trial portion) and one for all subsequent tests (main portion).

Framing Set-Up 1: Test 1 and Test 2

For Test 1 and Test 2, the test panel was generally held in place between a pair of 1 1/2-inch (38mm) diameter steel roller bars on all four sides—one welded to an HSS $12 \times 6 \times 1/2$ perimeter frame, and the other welded to the embedded plate within the reaction structure. The roller bar on the embedded plate was positioned such that the center of the roller bar was offset 2.5 inches (64 mm) from the 15 foot (4570 mm) \times 15 foot (4570 mm) opening within the reaction structure. The perimeter frame was tied directly to the reaction structure with 1-inch (25mm) diameter steel coil rods spaced 12 inches (305 mm) apart, which compressed these elements together. Five-inch (127mm) wide flat clamp plate frames were introduced to each side of the panel such that the steel roller bars did not make direct contact with the concrete panel face. Sketches of these primary steel framing elements are shown in Figure 3-2. The steel pedestals, examples of which are shown in Figure 3-3, were intended to provide ample clearance for the threaded rods and the post-tensioned duct ends protruding from the bottom edge of the panel. A ¹/₄-inch (6.4mm) gap was maintained between the top of the pedestals and the base edge of the test slab. Guiding plates were also provided along the vertical panel edges.

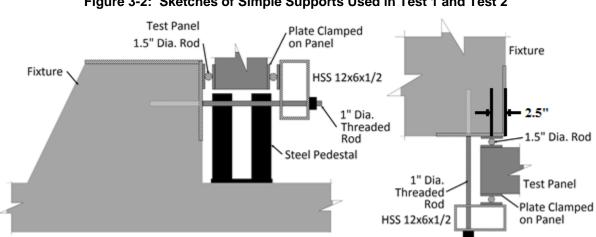


Figure 3-3: Steel Pedestals Used in Test 1 and Test 2

Figure 3-4 shows a panel from the first two tests being lifted into position by a crane. The final installed slab and framing set-up for Test 1 and Test 2 is illustrated in Figure 3-5. Some modifications were made to the steel frame between the end of Test 1 and onset of Test 2. These changes are described in Section 5.2.

Figure 3-4: Lifting of Slab with Crane for Installation onto the Test Fixture (Framing Set-Up 1)

Figure 3-5: Installed Panel within Framing Set-Up 1

Framing Set-Up 2: Test 3 through Test 8

Following Test 2, a stiffer steel framing system was incorporated for the main portion of the testing program. In the updated configuration, the slab was generally held in place between a pair of 3-inch (76mm) diameter steel roller bars on all four sides—one welded to an HSS $12 \times 6 \times 5/8$ perimeter frame, and the other welded to the embedded plate within the reaction structure. The roller bar on the embedded plate was positioned such that the center of the roller bar was offset 2.5 inches (64 mm) from the 15 foot (4570 mm) × 15 foot (4570 mm) opening within the reaction structure. The perimeter frame was stiffened with HSS $3 \times 3 \times 3/8$ L-sections spaced 12 inches (305 mm) apart, which were in turn bolted to $\frac{1}{2}$ -inch (13mm) thick plate assemblies protruding from the reaction structure. The perimeter frame was also tied directly to the reaction structure with 1-inch (25mm) diameter steel coil rods spaced 12 inches (305 mm) apart. A series of $\frac{1}{2}$ -inch (13mm) thick clamp plates were also provided between the test slab and roller bars. Sketches of the primary steel framing elements used for the stiffer steel framing system are shown in Figure 3-6 and Figure 3-7.

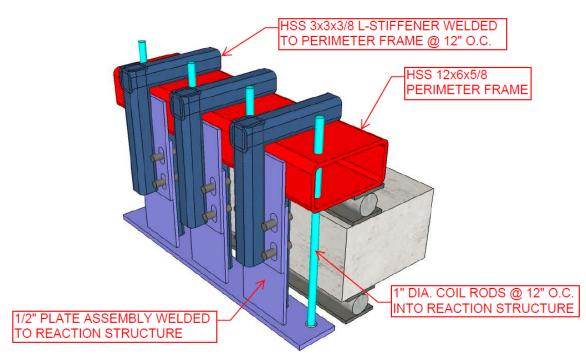


Figure 3-6: Steel Framing Set-Up 2 Layout (Isometric View)

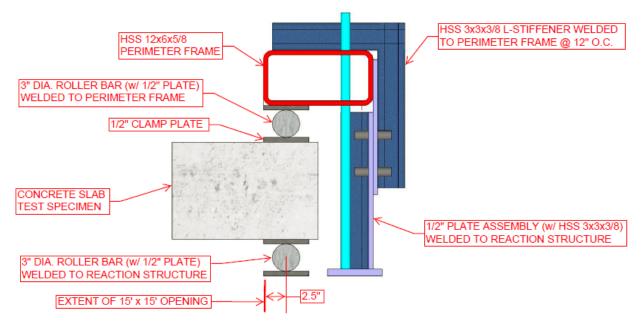


Figure 3-7: Steel Framing Set-Up 2 Layout (Section View)

Prior to testing, the test slab within Framing Set-Up 2 rested on six pedestals, each comprised of two HSS $8\times6\times1/2$ members filled with grout and capped with a $\frac{1}{2}$ -inch (13mm) thick cover plate welded to the HSS members. The test slab was allowed to bear directly on the short HSS $4\times3\times3/8$ sections that were located on top of the cover plate. A bolted $\frac{1}{2}$ -inch (13mm) thick bracket assembly was used to connect each pedestal with the stiffened perimeter frame. A sketch of the primary pedestal elements used within Framing Set-Up 2 is shown in Figure 3-8.

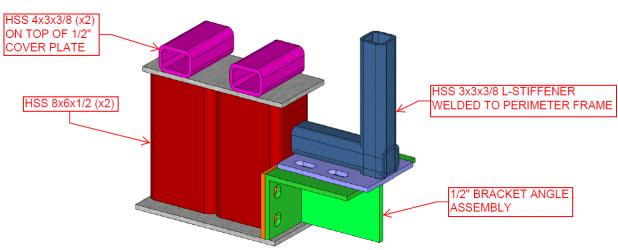


Figure 3-8: Steel Framing Set-Up 2 Pedestal (Isometric View)

Figure 3-9 shows a panel using the stiffer steel framing system being lifted into position by a crane. The final installed slab and set-up for Test 3 through Test 8 is illustrated in Figure 3-10.

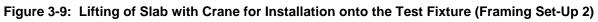
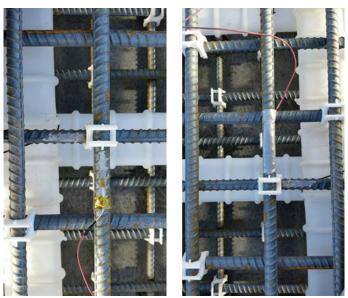


Figure 3-10: Installed Panel within the Stiffer Framing Set-Up 2

4 OPEN-AIR BLAST TESTING PROCEDURE

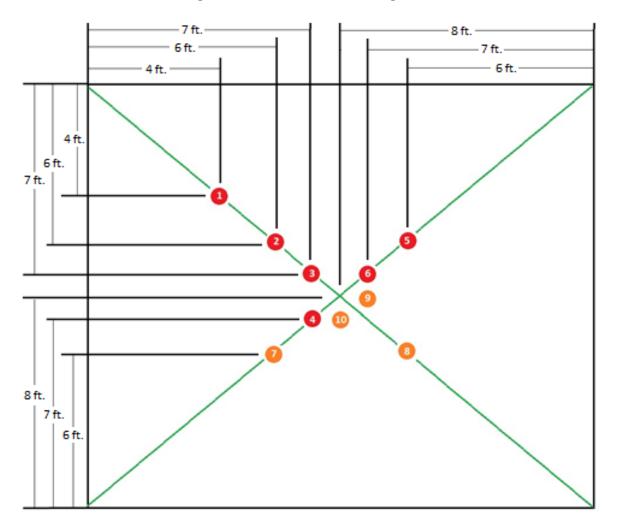
This section summarizes the instrumentation used to record testing information, the explosives materials and quantities used to generate the blast wave that loaded the slab specimens, and the program test matrix. Summaries of the pre-test and post-test documentation used and recorded, as well as the applicable response limits for pre-stressed concrete slabs, are also discussed in the following subsections.

4.1 Instrumentation and Test Documentation


The electronic instrumentation was set to trigger upon explosive detonation and consisted of several different types of sensors to document the PT slab response to the blast load:

- Strain gauges inside the test panel
- Laser displacement sensors behind the test panel
- A high-speed video camera behind the test panel
- Real-time video cameras behind the test panel and at a far distance in front of the test panel
- Reflected and free-field pressure sensors within set locations as described below

All instrumentation calibrations are documented in Appendix D. In addition to the above instrumentation and recordings, still photography was used for pre-test and post-test documentation of the specimens and framing assemblies.


Strain Gauges

The strain gauges were mounted on the front and back mild steel rebar reinforcement within the test specimens to measure strain-time histories. The typical strain gauge in use is an Omega Model KFH-6-350-C1-11L1M2R. These were pre-wired and affixed onto the rebar. These met in a multi-pin connector on each sample, allowing each of the samples to plug in so that all of the bridge completion electronics was common throughout the testing. Examples of strain gauge attachment to rebar are shown in Figure 4-1.

Figure 4-1: Examples of Strain Gauge Attachment to Rebar

The strain gauge locations were laid out by the Client during the on-site slab construction inspection and were based on the diagonals (representing the plastic yield line formation) of the test samples. Strain gauges were placed on the rebar on both the front and back rebar mats inside the test specimens. The standard locations are shown in Figure 4-2.

Actual locations varied according to the rebar layout. Locations that would duplicate a reading on an already monitored rebar were moved to the nearest available location. In the case of Slab designs A and C, the gauges were moved 6 inches (152 mm) from the yield lines. For Slab designs B and D, the gauges were moved 4 inches (102 mm) from the yield lines. A layout based on the rebar count (starting from a zero datum point at the upper left corner of the slab specimen) for the four slab designs, as provided in Table 4-1, notes the bars that the sensors were mounted on. Most locations had two strain gauges mounted in it, one on the horizontal rebar and another on the vertical rebar. Each location corresponds to a channel on the data acquisition system.

Red locations are recorded on both the front and back rebar mats. Orange locations are recorded only on the back rebar mat.

The standard strain gauge layout schedule in Table 4-1 applies for all test slabs, except for Panel 1 and Panel 2, which were under construction prior to the on-site inspection and already had some of the strain gauges mounted. These samples have three strain gauges located on the centers of the 8th, 16th, and 24th bars in both the vertical and horizontal directions on the front rebar of the sample, while the remaining locations of strain gauges on the back face rebar for these two slabs match the standard layout.

Slab Designs A and C					
Rebar Location	X-bar	Y-bar			
1	9	9			
2	13	13			
3	15	15			
4	17	14			
5	21	12			
6	14	18			
7	12	21			
8	18	19			
9	20	16			
10	16	20			

 Table 4-1: Standard Strain Gauge Location Schedule

Slab Designs B and D					
Rebar Location	X-bar	Y-bar			
1	13	13			
2	19	19			
3	22	22			
4	28	21			
5	32	16			
6	23	26			
7	18	31			
8	23	26			
9	28	24			
10	24	28			

The strain gauges were tested to determine their continuity. Table 4-2 summarizes the gauges among the eight panels that were determined to have an open or short circuit and, therefore, did not report strain information during testing. Position information on these strain gauges is provided in Table 4-3.

Panel No.	Designation	Panel No.	Designation	Panel No.	Designation
1.0	6-SG-3-F-V		13-SG-1-R-H		1-SG-1-F-H
1A	29-SG-9-R-H		14-SG-1-R-V	6C	15-SG-2-R-H
20	1-SG-1-F-H		15-SG-2-R-H	70	1-SG-1-F-H
2C	6-SG-3-F-V		16-SG-2-R-V	7B	15-SG-2-R-H
	1-SG-1-F-H		18-SG-3-R-V		1-SG-1-F-H
3B	11-SG-6-F-H		19-SG-4-R-H	8D	13-SG-1-R-H
	12-SG-6-F-V		21-SG-5-R-H		19-SG-4-R-H
	1-SG-1-F-H	5A	22-SG-5-R-V		
	9-SG-5-F-H		23-SG-6-R-H		
	10-SG-5-F-V		24-SG-6-R-V		
4D	15-SG-2-R-H		26-SG-7-R-V		
	20-SG-4-R-V		27-SG-8-R-H		
	21-SG-5-R-H		28-SG-8-R-V		
	23-SG-6-R-H		29-SG-9-R-H		
			30-SG-10-R-V		

 Table 4-2:
 Strain Gauges with Open or Short Circuits

Channel	Instrument	Location	Rebar	Orientation	Sensor
			Layer		Designation
1*	Strain Gauge	1	Front	Horizontal	1-SG-1-F-H
2*	Strain Gauge	1	Front	Vertical	2-SG-1-F-V
3*	Strain Gauge	2	Front	Horizontal	3-SG-2-F-H
4**	Strain Gauge	2	Front	Vertical	4-SG-2-F-V
5**	Strain Gauge	3	Front	Horizontal	5-SG-3-F-H
6**	Strain Gauge	3	Front	Vertical	6-SG-3-F-V
7***	Strain Gauge	4	Front	Horizontal	7-SG-4-F-H
8***	Strain Gauge	4	Front	Vertical	8-SG-4-F-V
9***	Strain Gauge	5	Front	Horizontal	9-SG-5-F-H
10***	Strain Gauge	5	Front	Vertical	10-SG-5-F-V
11***	Strain Gauge	6	Front	Horizontal	11-SG-6-F-H
12***	Strain Gauge	6	Front	Vertical	12-SG-6-F-V
13	Strain Gauge	1	Rear	Horizontal	13-SG-1-R-H
14	Strain Gauge	1	Rear	Vertical	14-SG-1-R-V
15	Strain Gauge	2	Rear	Horizontal	15-SG-2-R-H
16	Strain Gauge	2	Rear	Vertical	16-SG-2-R-V
17	Strain Gauge	3	Rear	Horizontal	17-SG-3-R-H
18	Strain Gauge	3	Rear	Vertical	18-SG-3-R-V
19	Strain Gauge	4	Rear	Horizontal	19-SG-4-R-H
20	Strain Gauge	4	Rear	Vertical	20-SG-4-R-V
21	Strain Gauge	5	Rear	Horizontal	21-SG-5-R-H
22	Strain Gauge	5	Rear	Vertical	22-SG-5-R-V
23	Strain Gauge	6	Rear	Horizontal	23-SG-6-R-H
24	Strain Gauge	6	Rear	Vertical	24-SG-6-R-V
25	Strain Gauge	7	Rear	Horizontal	25-SG-7-R-H
26	Strain Gauge	7	Rear	Vertical	26-SG-7-R-V
27	Strain Gauge	8	Rear	Horizontal	27-SG-8-R-H
28	Strain Gauge	8	Rear	Vertical	28-SG-8-R-V
29	Strain Gauge	9	Rear	Horizontal	29-SG-9-R-H
30	Strain Gauge	10	Rear	Vertical	30-SG-10-R-V
31	Laser Displacement	2" Left of Center	N/A	N/A	31-LD-C-1
32	Laser Displacement	2" Right of Center	N/A	N/A	32-LD-C-2

 Table 4-3: Data Channels for Strain Gauges and Displacement Sensors

Notes: (*) – For Panel 1 and Panel 2, strain gauges for these channels located on horizontal rebar. (**) – For Panel 1 and Panel 2, strain gauges for these channels located on vertical rebar. (***) – For Panel 1 and Panel 2, strain gauges for these channels do not exist.

Laser Displacement Sensors

The laser displacement sensors to measure deflection-time histories were Keyence Model IL-2000 laser sensors. These were mounted in a protective box on the back wall of the target fixture, and independently measured the encroachment of the back face of the test sample. Each of the laser sensors monitored a different location to average out any localized events, such as cracking or fragmenting. The laser sensors were positioned to read displacement within the central grid area, 4 inches (102 mm) apart on either side of the vertical panel centerline, as depicted in Figure 4-3.

For Test 1, both sensors were set to measure displacement 13.5 inches (343 mm) below the horizontal panel centerline. For Test 2, Sensor 32 was moved up to 2.3 inches (57 mm) below the horizontal panel centerline. For the remaining tests, Sensor 31 and Sensor 32 were staggered approximately 2 inches (51 mm) vertically relative to one another, and generally located within 4 inches (102 mm) of the horizontal panel centerline. See Appendix E for specific test information.

The strain gauges and laser displacement sensors were both fed into a DTS TDAS G-5 data acquisition system with a vehicle docking station. The data channels for the laser displacement sensors are shown at the bottom of Table 4-3.

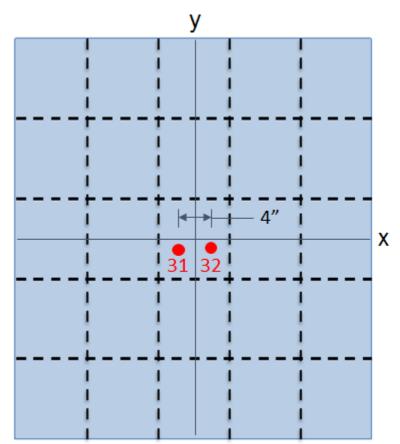


Figure 4-3: Pre-Test Laser Locations on Interior Slab Face

High-Speed & Real-Time Video Cameras

The cameras placed within the test fixture were generally used to watch a central area of the back face to monitor crack propagation. The high-speed cameras used, including a Vision Research Phantom 7.1 black and white camera, record at 10,000 frames per second. Following Test 2, a real-time GoPro camera was introduced in a side position, in addition to other real-time cameras along the rear wall of the test fixture focused on a central area of the test panel. The relative positions of the cameras used within the reaction structure for Test 1 and Test 2 are shown in Figure 4-4. The interior camera positions for the remaining tests are shown in Figure 4-5. An exterior real-time camera was used for all tests to record the detonation event.

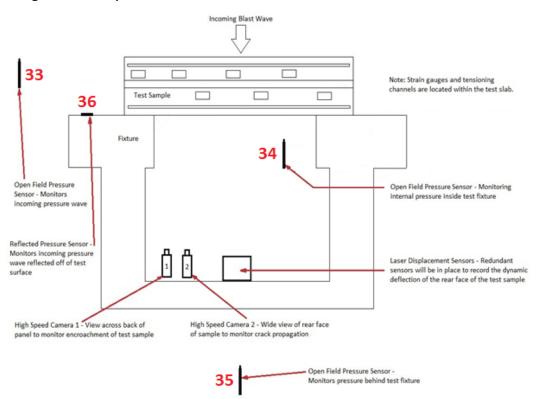


Figure 4-4: Displacement and Pressure Sensor Locations for Test 1 and Test 2

Note: Pressure gauges 33, 34, and 35 were moved to positions with radial distances of 53 feet (16.2 m), 43 feet (13.3 m), and 40 feet (12.3 m), respectively, from the charge center for Test 2, irrespective of position with respect to the front panel face.

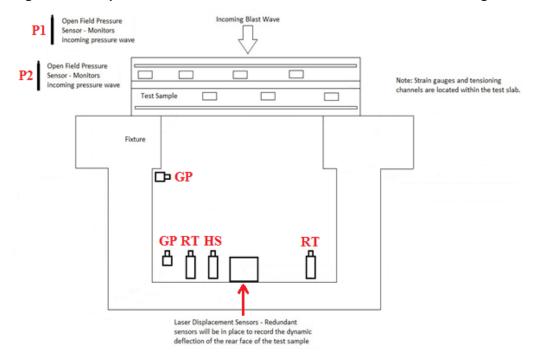


Figure 4-5: Displacement and Pressure Sensor Locations for Test 3 through Test 8

Pressure Sensors

Most of the pressure sensors used to gather pressure-time histories for Test 1 and Test 2 were PCB Model 137A22 Open Field Blast Probes, commonly referred to as pencil probes. These probes monitored the free-field (or "side-on") pressure of an incoming pressure wave, and for Test 1 were placed approximately 30 feet (9.1 m) away from the charge center, centered inside the fixture to monitor potential pressure increases within the test fixture, and 5 feet (1.5 m) behind the test fixture to monitor the remaining pressure behind the fixture as the wave moves over it. The final pressure sensor used was a PCB Model 113B24, mounted on the test fixture at the panel mid-height, to monitor the reflected pressure affecting the test sample. The locations of these sensors are shown in Figure 4-4, with modified locations for the free-field gauges for Test 2. The data acquisition system used was an HBM Genesis Gen 7T system with a four channel IEPE card that can capture one million points per second.

Additional reflected pressure gauges were used in the remaining tests to measure the pressure and impulse profile acting along the test specimen surface area. The positions of these gauges (P3 through P7) are shown in Figure 4-6. Two free-field pencil probes (P1 and P2), which were positioned to the side of the test specimen as shown in Figure 4-5, were typically located between 45 feet (13.7 m) and 55 feet (16.8 m) from the center of the explosive charge.

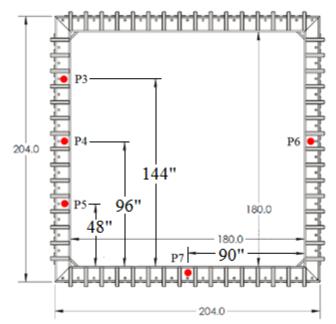


Figure 4-6: Reflected Pressure Sensor Locations for Test 3 through Test 8

4.2 Explosives and Test Matrix

The explosive used for the testing of the panels was ANFO (i.e., ammonium nitrate/fuel oil), a widely used bulk industrial explosive mixture. ANFO consists of 94% porous prilled ammonium nitrate (AN), which acts as the oxidizing agent and absorbent for the fuel, and 6% number 2 fuel oil (FO). The density of ANFO is approximately 57 lb/ft³ (0.92 g/mL).

A singular lot of ANFO, manufactured by Dyno Nobel Co. – Salt Lake City, was procured by OBL from a distributor in Oregon. All tests were conducted using this same lot.

For Test 1 and Test 2, all ANFO material, originally in 50-lb (23 kg) bags, was poured and packed into a single container (i.e., a larger bag) per blast test. The container dimensions were kept as close to a 1 to 1 ratio as possible. The base of the container was elevated above the ground (approximately even with the base of the test panel) with use of light wood supports to minimize the extent of cratering (depth and diameter), and positioned such that the center of the container was 30 feet (9.1 m) in front of the test specimen. The charge size used for each of these tests, which was specified by the Client, is provided in the test matrix in Table 4-4.

For Test 3 through Test 8, stacked ANFO bags were placed on a wood table 4 feet (1.2 m) off the ground, such that the center of the ANFO mass was 45 feet (13.7 m) in front of the test specimen and located approximately 5.5 feet (1.7 m) off the ground. A blast mat (i.e., steel plate) was located beneath the charge mass to reduce cratering effects for select tests. The charge size used for each of these tests was specified by the Client following the prior test in the current program. The chosen charge sizes are provided in the test matrix in Table 4-4.

Two pentolite boosters weighing 1 lb (0.45 kg) each were used to detonate the ANFO material. Each pentolite booster was detonated by an electric, 0-second delay blasting cap. The pentolite boosters were positioned near the center of the ANFO material for detonation. An electric blasting machine was used to trigger and set off the electric caps.

Test	Panel	Explosive	ANFO
Number	Number	Standoff	Weight
1	5A	30 feet (9.1 m)	1300 lb (580 kg)
2	1A	30 feet (9.1 m)	1300 lb (590 kg)
3	2C	45 feet (13.7 m)	2300 lb (1040 kg)
4a	6C	45 feet (13.7 m)	1700 lb (770 kg)
4b	6C	45 feet (13.7 m)	2000 lb (910 kg)
5	7B	45 feet (13.7 m)	2300 lb (1040 kg)
6	3B	45 feet (13.7 m)	2000 lb (910 kg)
7	4D	45 feet (13.7 m)	2000 lb (910 kg)
8	8D	45 feet (13.7 m)	2300 lb (1040 kg)

Table 4-4: Test Matrix

4.3 Pre-Stressed Concrete Slab Response Limits

Flexural response limits for pre-stressed concrete slabs as defined in CSA S850-12 and ASCE 59-11 are provided in Table 4-5. These limits, which are derived from limits within PDC-TR 06-08 from the U.S. Army Corps of Engineers Protective Design Center for use in Single Degree of Freedom (SDOF) analyses, depend on the reinforcement index of the pre-stressed element, ω_p . Three ranges of reinforcement index, which is a function of the pre-stressed reinforcement ratio, the stress in the pre-stressing steel at the design load, and the concrete compressive strength, are provided in Table 4-5. The upper range ($\omega_p > 0.30$) denotes an over-reinforced member that could fail catastrophically due to concrete crushing prior to yielding of the pre-stressing steel. All slabs in this testing program were within or near this upper range. Meanwhile, the lower range ($\omega_p < 0.15$) denotes a shear limited condition. The given response limits for this lower range would only apply if adequate stirrups or shear ties are provided; otherwise, the middle range limits (0.15 < $\omega_p < 0.30$) would control. The damage levels noted in Table 4-5 are defined in Table 4-6 as per PDC-TR 06-08. Calculations for support rotation and reinforcement index are provided in Appendix A.

	Superficial Damage		Superficial Damage Moderate Damage		Heavy	Damage
Reinforcement	Ductility, μ	Support	Ductility, μ	Support	Ductility, μ	Support
Index, ω _p		Rotation, θ		Rotation, θ		Rotation, θ
ω _p > 0.30	0.7		0.8		0.9	
$0.15 < \omega_p < 0.30$	0.8		0.25/ω _p	1°	0.29/ω _p	1.5°
$\omega_{p} < 0.15^{*}$	1.0			1°		2°

Table 4-5: Flexural Response Limits for Pre-Stressed Concrete Slabs

Note: (*) – *These limits only apply if adequate shear reinforcement is provided; otherwise, values in row above would apply.*

Damage Level	Description
Superficial	Component has no visible permanent damage.
Damage	
Moderate	Component has some permanent deflection. It is generally repairable, if
Damage	necessary, although replacement may be more economical and aesthetic.
Heavy Damage	Component has not failed, but it has significant permanent deflections
	causing it to be unrepairable.
Hazardous	Component has failed, and debris velocities range from insignificant to
Failure	very significant.

Table 4-6: Damage Levels

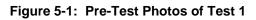
The flexural response limits given in Table 4-5 for pre-stressed concrete slabs are generally lower than those for conventionally reinforced concrete slabs, where the Moderate Damage and Heavy Damage thresholds would be at minimum 2 degrees and 5 degrees, respectively, as per any of the referenced guidelines, even without shear reinforcement. The responses of the PT slabs tested in this program are classified in Section 5 according to both maximum deflection/support rotation and the descriptions provided in Table 4-6, generally as pertaining to the back face of the slab and through-thickness damage. Comparisons of the test results to the theoretical response limits for pre-stressed and conventionally reinforced concrete slabs are made in Section 6.

5 TEST RESULTS

This section discusses the results of the testing program. Table 5-1 provides an overall summary of these tests. Appendix E can be consulted for detailed gauge information for each test.

Test Number	Panel Number	Maximum Deflection	Permanent Deflection	Test Rotation	ANFO Weight	Response Notes
1	5A	N/A	2.7 in	> 2.0	1300 lb*	Significant front face
-	34		(68 mm)	degrees	(590 kg)	scabbing. Concrete crushing
				ucgrees	(330 Kg)	along panel edges. Through-
						thickness cracking. Frame
						damage sustained.
2	1A	5.8 in	4.6 in	4.4	1300 lb*	Significant front face
2	IA	(148 mm)	(117 mm)			scabbing. Concrete crushing
		(140 11111)	(11/1111)	degrees	(590 kg)	
						along panel edges. Through-
						thickness cracking. Frame
	20	47:0	2.0 in	2.0	2300 lb**	damage sustained.
3	2C	4.7 in	3.9 in	3.0		Significant front face
		(120 mm)	(100 mm)	degrees	(1040 kg)	scabbing. Through-thickness
						cracking: up to ½-inch (13
						mm) above and below PT
						strands disengaged.
4a	6C	0.6 in	0 in	0.4	1700 lb**	Superficial slab damage to
		(16 mm)	(0 mm)	degrees	(770 kg)	both faces.
4b	6C	4.3 in	3.5 in	2.7	2000 lb**	Front face scabbing along
		(109 mm)	(90 mm)	degrees	(910 kg)	yield lines. Concrete
						crushing along panel edges.
						Through-thickness cracking.
5	7B	3.5 in	2.2 in	2.2	2300 lb**	Front face scabbing along
		(88 mm)	(57 mm)	degrees	(1040 kg)	yield lines. Concrete
						crushing along panel edges.
						Through-thickness cracking.
6	3B	1.2 in	0.5 in	0.8	2000 lb**	Front face scabbing along
		(31 mm)	(13 mm)	degrees	(910 kg)	yield lines. Moderate slab
						damage. Through-thickness
						cracking.
7	4D	0.8 in	0.1 in	0.5	2000 lb**	Isolated front face scabbing.
		(21 mm)	(2.5 mm)	degrees	(910 kg)	Moderate slab damage.
						Through-thickness cracking.
8	8D	3.3 in	2.0 in	2.1	2300 lb**	Significant front face
		(85 mm)	(50 mm)	degrees	(1040 kg)	scabbing. Through-thickness
						cracking: up to ½-inch (13
						mm) along all the corner
						regions disengaged.

Table 5-1:	Test Resu	ults Summary
------------	-----------	--------------


Notes: (*) – Charge at a standoff of 30 feet (9.1 m).

(**) – Charge at a standoff of 45 feet (13.7 m).

5.1 Test 1 (Panel 5A)

General Description

Panel 5 was constructed per Slab design A as described in Section 3, consisting of 725 psi (5 MPa) prestressing with 5.9 lb/ft³ (95 kg/m³) mild steel reinforcement. The frame design shown in Figure 3-5 was used. Figure 5-1 shows representative pre-test photos of the front and back sides of the panel. Four pressure gauges were placed, as indicated in Figure 4-3. The panel was subjected to an explosion of 1300 pounds (590 kg) of ANFO at a standoff of 30 feet (9.1 m).

Post-Test Documentation

The blast load resulted in significant front face scabbing of the 3/4-inch (19mm) thick concrete cover with a recognizable pattern of cracking, as shown in Figure 5-2. On the back face, the test panel showed prominent cracking/crushing along the vertical supports and the bottom horizontal support. Horizontal cracks up to 1/4-inch (6mm) thick occurred near, but below the panel mid-height. Lighter cracking was visible over a wide region in the center of the panel. Back face panel damage is shown in Figure 5-3. Cracking through the thickness of the slab was also observed, as shown in Figure 5-4.

Figure 5-2: Front Face Slab Scabbing in Test 1

Figure 5-3: Back Face Slab Cracking in Test 1 (at Bottom Center)

Figure 5-4: Through-Thickness Slab Cracking in Test 1 (at Bottom Left)

Maximum panel deflection was not recorded due to an instrumentation malfunction. These issues were remedied for Test 2 as described in Section 5.2.

The maximum inbound permanent deflection recorded was 2.7 inches (68 mm) at a position 13.5 inches (343 mm) below the slab mid-height. This permanent deflection indicates that a support rotation of no less than 2.0 degrees occurred during testing. No rebound deflection was noted post-test. Individual gauge outputs of strain are provided on pages E-3 through E-6 of Appendix E.

Damage to the steel frame was observed after testing completed, particularly along the welds at the upper corners, as shown in Figure 5-5. Significant deformation of the steel pedestals was also visible.

Figure 5-5: Steel Frame Damage in Test 1 (at Upper Left and Upper Right Corners)

The slab sustained significant permanent deflections, including concrete crushing along the edges that was deemed unrepairable, but with no back face debris. The overall slab response for Test 1 most nearly corresponds to Heavy Damage, as defined in CSA S850-12 or ASCE 59-11.

5.2 Test 2 (Panel 1A)

General Description

Panel 1 was constructed identically to Panel 5 used in Test 1. The frame design shown in Figure 3-5 was used with the following modifications. First, the welds at the corners were repaired, and steel hat sections were added at all four corners. Steel spacers were also introduced at the upper corners. Finally, the steel pedestals were stiffened and filled with sand for Test 2. Some of these frame modifications are shown in Figure 5-6.



Figure 5-6: Pre-Test Photos of Frame Modifications for Test 2

Redundancies in the set-up and operation of the instrumentation were made prior to Test 2. These mainly included improved lighting/power for the test fixture and instrumentation, as well as improved wiring for the data acquisition system. A manual displacement reader was also used.

Figure 5-7 shows representative pre-test photos of the front and back sides of the panel. Free-field pressure gauges were moved to three locations ranging between 40 feet (12.3 m) and 53 feet (16.2 m) from the charge center. Due to limited test data collected in Test 1, the Test 2 panel was also subjected to an explosion of 1300 pounds (590 kg) of ANFO at a standoff of 30 feet (9.1 m).

Figure 5-7: Pre-Test Photos of Test 2

Post-Test Documentation

The blast load again resulted in significant front face scabbing of the 3/4-inch (19mm) thick concrete cover with a recognizable pattern of cracking, as shown in Figure 5-8. On the back face, the test panel showed prominent cracking/crushing along the vertical supports. Horizontal cracks up to 1/4-inch (6mm) thick occurred near, but below the panel mid-height. Lighter cracking was visible over a wide region in the center of the panel. Back face panel damage is shown in Figure 5-9. Cracking through the thickness of the slab was also observed, as shown in Figure 5-10.

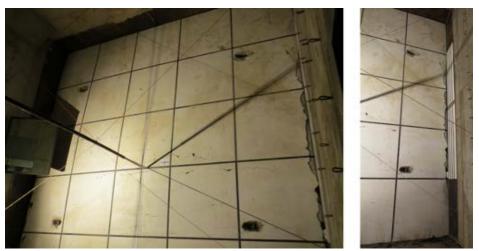


Figure 5-9: Back Face Slab Cracking in Test 2 (Overall and Along Left Edge)

Figure 5-10: Through-Thickness Slab Cracking in Test 2

The maximum deflection recorded with the laser sensors was 5.8 inches (148 mm) a few inches above a horizontal crack located 18 inches (457 mm) below the slab mid-height. This maximum deflection indicates that a support rotation of approximately 4.4 degrees occurred during testing. A maximum inbound permanent deflection of 4.6 inches (117 mm) was observed, while no rebound deflection was noted posttest. Individual gauge outputs and traces of strain and displacement are provided on pages E-13 through E-17 of Appendix E.

Damage to the steel frame was observed after testing completed, particularly along the welds at the upper corners, as shown in Figure 5-11. Visible, but less prominent damage occurred at the weld at the bottom left corner of the frame.

Figure 5-11: Steel Frame Damage in Test 2 (Along Upper Edge)

The slab sustained significant permanent deflections, including concrete crushing along the edges that was deemed unrepairable, but with no back face debris. Similar to Test 1, the overall slab response for Test 2 most nearly corresponds to Heavy Damage, as defined in CSA S850-12 or ASCE 59-11.

5.3 Test 3 (Panel 2C)

General Description

Panel 2 was constructed per Slab design C as described in Section 3, consisting of 1450 psi (10 MPa) prestressing with 5.9 lb/ft³ (95 kg/m³) mild steel reinforcement. The stiffened frame design shown in Figure 3-10 was used to support the panel. Figure 5-12 shows representative pre-test photos of the front and back sides of the panel. Five reflected pressure gauges were placed, as indicated in Figure 4-6, with two freefield pressure gauges placed to the side. The panel was subjected to an explosion of 2300 pounds (1040 kg) of ANFO at a standoff of 45 feet (13.7 m).

Post-Test Documentation

The blast load resulted in significant front face scabbing of the 3/4-inch (19mm) thick concrete cover, as shown in Figure 5-13. On the back face, the test panel showed light cracking over the entire surface. The most pronounced cracking occurred near the middle of the slab (0.05-inch or 1.3mm wide) and along the bottom horizontal support (0.1-inch or 2.5mm wide), as highlighted in Figure 5-14. No damage was observed to the stiffened steel frame.

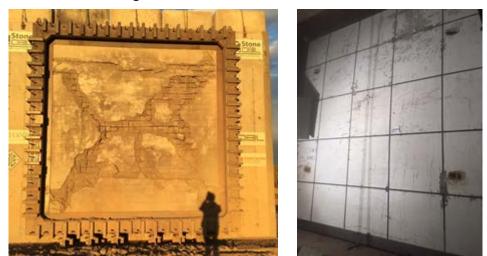


Figure 5-13: Post-Test Photos of Test 3

Figure 5-14: Highlighted Cracking Pattern on Back Face in Test 3

Peak pressure recorded ranged from 380 to 750 psi. Positive phase impulse recorded ranged from 400 to 670 psi-ms. The maximum deflection recorded with the laser sensors was 4.7 inches (120 mm) near the center of the slab. This maximum deflection indicates that a support rotation of approximately 3.0 degrees occurred during testing. The permanent set near the slab center point was approximately 3.9 inches (100 mm). Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-23 through E-28 of Appendix E.

Upon removal of the panel from the test fixture, cracking through the slab thickness was observed along the edges, as shown in Figure 5-15. Moreover, disengagement of the concrete layers above and below the PT strands was recorded, as shown in Figure 5-16. This disengagement generally ranged from 3/8-inch (9.5 mm) to $\frac{1}{2}$ -inch (13 mm).

Figure 5-15: Through-Thickness Cracking along Top and Side Edges in Test 3

Figure 5-16: Disengagement of Concrete Layers in Test 3

The slab sustained significant permanent deflections with concrete disengagement at the PT tendons that was deemed unrepairable, but no back face debris. The overall slab response for Test 3 most nearly corresponds to Heavy Damage, as defined in CSA S850-12 or ASCE 59-11, though the level of disengagement observed through the slab thickness would indicate the likely onset of Hazardous Damage with even a small increase in blast load.

5.4 Test 4a (Panel 6C)

General Description

Panel 6 was constructed and framed identically to Panel 2 used in Test 3. Figure 5-17 shows representative pre-test photos of the front and back sides of the panel. Five reflected pressure gauges were placed, as indicated in Figure 4-6, with two free-field pressure gauges placed to the side. The panel was subjected to an explosion of 1700 pounds (770 kg) of ANFO at a standoff of 45 feet (13.7 m).

Figure 5-17: Pre-Test Photos of Test 4a

Post-Test Documentation

The blast load resulted in only minor damage to the front and back faces, as shown in Figure 5-18. No crushing or scabbing of concrete along the exterior surface was noticed. The interior surface of the concrete slab had minor hairline cracks from the edges that extend to hairline cracks along mid-span region. No through-thickness cracking of concrete nor damage to the steel frame was observed.

Peak pressures recorded ranged from 240 to 430 psi. Peak impulse recorded was approximately 470 psims. The maximum deflection recorded with the laser sensors was approximately 0.6 inch (16 mm), which translates to a 0.4-degree support rotation. No permanent set near the slab center point was observed. Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-33 through E-39 of Appendix E.

The slab sustained no significant permanent deflections. The overall slab response for Test 4a most nearly corresponds to Superficial Damage, as defined in CSA S850-12 or ASCE 59-11.

5.5 Test 4b (Panel 6C)

General Description

Due to the small displacements achieved in Test 4a, Panel 6 was subjected to a second test shot—an explosion of 2000 pounds (910 kg) of ANFO at a standoff of 45 feet (13.7 m). Refer to Figure 5-18 for representative pre-test photos of the front and back sides of the panel.

Post-Test Documentation

The blast load resulted in heavy scabbing of the 3/4-inch (19mm) thick concrete cover on the front face of the panel, as shown in Figure 5-19. On the back face, cracking was observed along most of the slab surface, generally ranging from hairlines to cracks with widths of approximately 0.08 inches (2 mm). Major cracking, spalling, and bowing was noted along the left panel edge (when viewed from the interior), as shown in Figure 5-20. Cracks were also observed across the slab thickness, but to a lesser extent than the cracking and disengagement that was observed throughout the cross-section in Test 3. This through-thickness cracking is shown in Figure 5-21. No damage was observed to the stiffened steel frame.

Figure 5-20: Highlighted Cracking Pattern on Back Face in Test 4b

Figure 5-21: Through-Thickness Cracking along Side Edge in Test 4b

Peak pressures recorded ranged from 340 to 550 psi. Peak impulse recorded was 570 psi-ms. The maximum deflection recorded with the laser sensors was 4.3 inches (109 mm), which translates to a 2.7-degree support rotation. The permanent set near the slab center point was approximately 3.5 inches (90 mm). Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-44 through E-50 of Appendix E.

The slab sustained significant permanent deflections, including concrete crushing along the edges that was deemed unrepairable, but with no back face debris. The overall slab response for Test 4b most nearly corresponds to Heavy Damage, as defined in CSA S850-12 or ASCE 59-11.

5.6 Test 5 (Panel 7B)

General Description

Panel 7 was constructed per Slab design B as described in Section 3, consisting of 725 psi (5 MPa) prestressing with 13.7 lb/ft³ (220 kg/m³) mild steel reinforcement. The stiffened frame design shown in Figure 3-10 was used to support the panel. Figure 5-22 shows representative pre-test photos of the front and back sides of the panel. Five reflected pressure gauges were placed, as indicated in Figure 4-6, with two freefield pressure gauges placed to the side. The panel was subjected to an explosion of 2300 pounds (1040 kg) of ANFO at a standoff of 45 feet (13.7 m).

Post-Test Documentation

The blast load resulted in horizontal, vertical, and diagonal cracks on the front face of the panel, along with some scabbing of the 3/4-inch (19mm) thick concrete cover, as shown in Figure 5-23. On the back face, cracking was observed along most of the slab surface, generally ranging from hairlines to cracks with widths of approximately 0.03 inch (0.8 mm). Significant cracking, spalling, and/or bowing was noted along the left and right panel edges, as shown in Figure 5-24. Cracks were also observed across the slab thickness, which were not chained between all end caps as in Test 3. This through-thickness cracking is shown in Figure 5-25. No damage was observed to the stiffened steel frame.

Figure 5-23: Front Face Slab Scabbing in Test 5

Figure 5-24: Highlighted Cracking Pattern on Back Face in Test 5

Figure 5-25: Through-Thickness Cracking along Side Edge in Test 5

Peak pressures recorded ranged from 470 to 750 psi. Positive phase impulse recorded ranged from 430 to 760 psi-ms. The maximum deflection recorded with the laser sensors was 3.5 inches (88 mm), which translates to a 2.2-degree support rotation. The permanent set near the slab center point was 2.2 inches (57 mm). Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-55 through E-61 of Appendix E.

The slab sustained significant permanent deflections, including concrete crushing along the edges that was deemed unrepairable, but with no back face debris. The overall slab response for Test 5 most nearly corresponds to Heavy Damage, as defined in CSA S850-12 or ASCE 59-11.

5.7 Test 6 (Panel 3B)

General Description

Panel 3 was constructed and framed identically to Panel 7 used in Test 5. Figure 5-26 shows representative pre-test photos of the front and back sides of the panel. Five reflected pressure gauges were placed, as indicated in Figure 4-6, with two free-field pressure gauges placed to the side. The panel was subjected to an explosion of 2000 pounds (910 kg) of ANFO at a standoff of 45 feet (13.7 m).

Figure 5-26: Pre-Test Photos of Test 6

Post-Test Documentation

The blast load resulted in horizontal, vertical, and diagonal cracks on the front face of the panel, along with some concrete crushing/scabbing similar to that seen in Test 5. This front face damage is shown in Figure 5-27. On the back face, cracking was observed along most of the slab surface. Cracks were mostly hairlines in a yield line pattern similar to previous tests. The main cracks were a central horizontal vertical crack with a width of approximately 0.03 inch (0.8 mm), as well as more significant cracking up to 0.1 inch (2.5 mm) that was noted along the left and right panel edges. However, no crushing of the concrete was seen along the panel edges. This back face damage is shown in Figure 5-28. Some cracking was also observed across the slab thickness in a similar pattern but to a lesser extent than in Test 5. This through-thickness cracking is shown in Figure 5-29. No damage was observed to the stiffened steel frame.

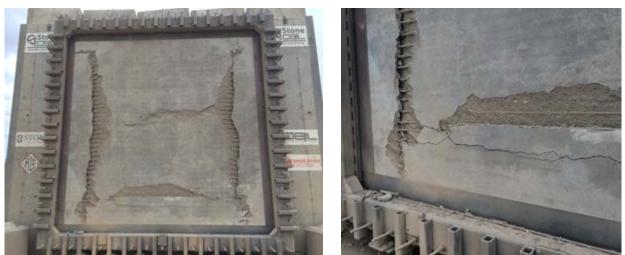


Figure 5-27: Front Face Slab Scabbing in Test 6

Figure 5-28: Cracking Pattern on Back Face in Test 6

Figure 5-29: Through-Thickness Cracking along Side Edge in Test 6

Peak pressures recorded along the vertical edges generally ranged from about 320 to 570 psi. Peak impulse recorded along these edges was 550 psi-ms. The maximum deflection recorded with the laser sensors was 1.2 inches (31 mm), which translates to a 0.8-degree support rotation. The permanent set near the slab center point was approximately 0.5 inch (13 mm). Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-66 through E-72 of Appendix E.

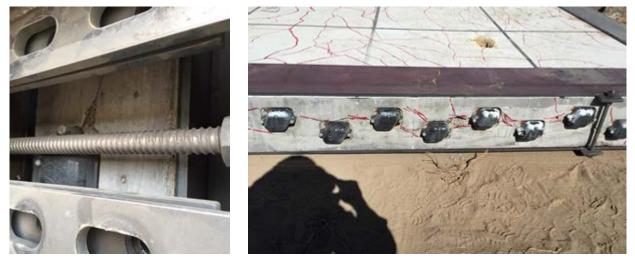
The slab sustained permanent deflections, but without concrete crushing along the edges or concrete disengagement at the PT tendons. The overall slab response for Test 6 most nearly corresponds to Moderate Damage, as defined in CSA S850-12 or ASCE 59-11.

5.8 Test 7 (Panel 4D)

General Description

Panel 4 was constructed per Slab design D as described in Section 3, consisting of 1450 psi (10 MPa) prestressing with 13.7 lb/ft³ (220 kg/m³) mild steel reinforcement. The stiffened frame design shown in Figure 3-10 was used to support the panel. Figure 5-30 shows representative pre-test photos of the front and back sides of the panel. Five reflected pressure gauges were placed, as indicated in Figure 4-6, with two freefield pressure gauges placed to the side. The panel was subjected to an explosion of 2000 pounds (910 kg) of ANFO at a standoff of 45 feet (13.7 m).

Figure 5-30: Pre-Test Photos of Test 7


Post-Test Documentation

Lesser cracks and concrete scabbing/crushing were observed on the front face of the panel in comparison with the previously tested slab designs exposed to the blast load from the same charge size and standoff. This front face damage is shown in Figure 5-31. On the back face, hairline cracking was observed on the slab surface. Cracks were mostly hairlines in a yield line pattern similar to previous tests. The main crack was a central horizontal crack pattern with a width of approximately 0.016 inch (0.41 mm), as shown in Figure 5-31. No crushing of the concrete was seen along the panel edges. Some cracking was also observed across the slab thickness, as shown in Figure 5-32. No damage was observed to the stiffened steel frame.

Figure 5-31: Post-Test Photos of Test 7

Figure 5-32: Through-Thickness Cracking along Side Edge in Test 7

Peak pressures recorded ranged from about 370 to 430 psi. Peak impulse recorded was 490 psi-ms. The maximum deflection recorded with the laser sensors was 0.8 inch (21 mm), which translates to a 0.5-degree support rotation. A small permanent set of roughly 0.1 inch (2.5 mm) was sustained near the slab center point. Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-77 through E-83 of Appendix E.

The slab sustained permanent deflections, but without concrete crushing along the edges or concrete disengagement at the PT tendons. The overall slab response for Test 7 most nearly corresponds to Moderate Damage, as defined in CSA S850-12 or ASCE 59-11.

5.9 Test 8 (Panel 8D)

General Description

Panel 8 was constructed and framed identically to Panel 4 used in Test 7. Figure 5-33 shows representative pre-test photos of the front and back sides of the panel. Five reflected pressure gauges were placed, as indicated in Figure 4-6, with two free-field pressure gauges placed to the side. The panel was subjected to an explosion of 2300 pounds (1040 kg) of ANFO at a standoff of 45 feet (13.7 m).

Figure 5-33: Pre-Test Photos of Test 8

Post-Test Documentation

The blast load resulted in horizontal, vertical, and diagonal cracks on the front face of the panel, along with a concrete crushing/scabbing pattern similar to previous tests. This front face damage is shown in Figure 5-34. On the back face, cracking was observed along most of the slab surface, as shown in Figure 5-35. Cracks were mostly hairlines in a yield line pattern similar to previous tests. The main cracks on the interior face were central horizontal and vertical cracks with a width range of approximately 0.016 to 0.2 inch (0.41 to 0.5 mm). More significant cracking up to 0.1 inch (2.5 mm) and some minor spalling were noted along all edges of the panel. Heavier cracking was also observed across the slab thickness, as shown in Figure 5-36, which was in a similar pattern to previous tests. Moreover, disengagement of the concrete up to ½-inch (13 mm) along all the corner regions of the slab was recorded. No damage was observed to the stiffened steel frame.

Figure 5-34: Front Face Slab Scabbing in Test 8

Figure 5-35: Cracking Pattern on Back Face in Test 8

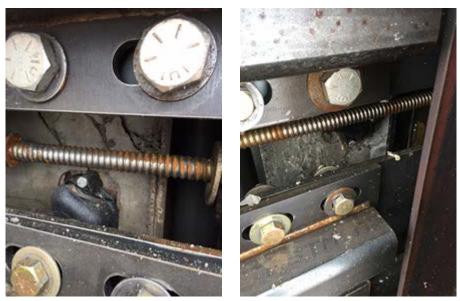


Figure 5-36: Through-Thickness Cracking along Side Edge in Test 8

Peak pressures recorded ranged from about 400 to 1100 psi. Peak impulse recorded was near 500 psi-ms. The maximum deflection recorded with the laser sensors was 3.3 inches (85 mm), which translates to a 2.1-degree support rotation. The permanent set near the slab center point was 2.0 inches (50 mm). Individual gauge outputs and traces of strain, displacement, and pressure are provided on pages E-88 through E-94 of Appendix E.

The slab sustained significant permanent deflections with concrete disengagement at the PT tendons that was deemed unrepairable, but no back face debris. The overall slab response for Test 8 most nearly corresponds to Heavy Damage, as defined in CSA S850-12 or ASCE 59-11.

6 CONCLUSIONS

The PT slabs in the main portion of the testing program achieved support rotations ranging from 0.4 degree (Test 4a, Slab Type C) to 3.0 degrees (Test 3, Slab Type C). The corresponding damage level for these tests would roughly range from Superficial Damage to Heavy Damage as defined in CSA S850-12 or ASCE 59-11. However, from the extent of concrete disengagement observed on the Type C slab following Test 3, it would appear a 3.0-degree rotation is approaching the PT slab's upper limit state for non-hazardous damage (i.e., near a transition from Heavy to Hazardous Damage). Other tests sustaining support rotations exceeding 2.0 degrees exhibited lesser, but observable through-cracking and/or concrete disengagement.

Comparing the results for Test 6 and Test 7 (each subject to a 2000-lb ANFO charge) and Test 5 and Test 8 (each subject to a 2300-lb ANFO charge), it appears that the increase of pre-stressing level from 725 psi (5 MPa) to 1450 psi (10 MPa) may only have a marginal effect on slab response for the slabs with the higher level of conventional reinforcement (i.e., Slab Types B and D).

Front face scabbing and through-thickness cracking were generally more pronounced for slabs with a lower concrete tensile strength. However, charge weight size (i.e., applied load) heavily influenced the overall response mechanisms.

The currently published CSA and ASCE response limits for PT slabs provide a 1-degree upper limit for Moderate Damage and a 2-degree upper limit for Heavy Damage for slabs with a low reinforcement index (i.e., $\omega_p < 0.15$) provided adequate shear reinforcement is included. The slabs in this testing program have relatively high reinforcement indices (i.e., ω_p near or above 0.30). These would usually be governed by ductility with a limit deflection for Heavy Damage below 1.0 inch (25 mm), which corresponds to a support rotation below 0.6 degree. In Test 4a (Slab Type A), the test panel sustained only Superficial Damage with a maximum displacement of 0.6 inch (16 mm), which corresponds to a support rotation of 0.4 degree. In Test 6 (Slab Type B) and Test 7 (Slab Type D), the test panels sustained Moderate Damage without concrete edge crushing or disengagement. The maximum support rotation for these two tests was 0.8 degree. Therefore, from the test results, it seems that the actual flexural response limits would fall between the currently published limits for pre-stressed concrete (i.e., upper limit for Moderate Damage of $\mu = 0.8$; upper limit for Heavy Damage of $\theta = 2$ degrees; upper limit for Heavy Damage of $\theta = 5$ degrees) elements.

However, the designer should be cautious about using higher response limits due to potential brittle responses associated with PT concrete, wherein catastrophic concrete crushing or shear-controlled behavior could occur prior to PT tendon yielding. In any case, adequate supplemental steel (e.g., shear or bursting reinforcement) should be provided within PT slabs (particularly when the slabs are over-reinforced) in addition to PT tendons and conventional steel reinforcement that are designed exclusively for meeting flexural response demands. Additional testing and/or detailed analysis that can account for concrete disengagement, as well as shear and/or concrete-crushing controlled responses (e.g., finite element modeling), should be performed to justify any modification to the currently published response limits and further examine the effects of pre-stressing/post-tensioning in blast applications.

APPENDIX A. CALCULATIONS AND DRAWINGS

Stress Level Calculations

Slabs were post-tensioned using the VSL 6-4 strand Post-Tensioning System. Strands were placed in 72/21 flat ducts measuring 1.378 inches (35 mm) high \times 3.386 inches (86 mm) wide. Four strands were located within each duct. The ducts were centered in the thickness of the slabs in one direction and staggered in the other direction to minimize the eccentricity of the applied force.

Slabs were post-tensioned with 0.6-inch, Grade 270 strands (15mm, Grade 1860) complying with ASTM A416. Lower level stress strands were pulled to approximately 60% of f_{pu} ; higher level stress strands were pulled to 85% of f_{pu} . Each lower level stress strand was pulled 35.0 kips (156 kN); each higher level stress strand was pulled 49.6 kips (220 kN).

$$\begin{split} P_i(lower stress) &= 0.6 f_{pu} A_{ps} \\ P_i(lower stress) &= 0.6(270 ksi)(0.217 in^2) = 35.0 \ kips \\ P_i(higher stress) &= 0.85 f_{pu} A_{ps} \\ P_i(higher stress) &= 0.85(270 ksi)(0.217 in^2) = 49.6 \ kips \end{split}$$

The length of the pre-stressed strands was 16 feet (4880 mm). Anticipated anchorage seating was ¹/₄-inch (6.4 mm). With a strand seating loss, the anticipated force in the lower level stress strand was approximately 26.5 kips (118 kN); the anticipated force in the higher level stress strand was approximately 41 kips (182 kN).

The area of concrete in each direction is $A_c = 2040 \text{ in}^2 (33,430 \text{ cm}^2)$.

Lower Level Stress

Slabs A and B were stressed to approximately 725 psi (5 MPa). These panels had 14 ducts in both directions. Each panel cross section had 56 strands.

$$P_e = (\# of \ strands)P_0 = (56)(26.5 \ kips) = 1484 \ kips$$

Compression stress in concrete:

$$f'_c = \frac{P_e}{A_c} = \frac{1484kips}{2040in^2} = 726 \ psi$$

Higher Level Stress

Slabs C and D were stressed to approximately 1450 psi (10 MPa). These panels had 18 ducts in both directions. Each panel cross section had 72 strands.

$$P_e = (\# of strands)P_0 = (72)(41 kips) = 2952 kips$$

Compression stress in concrete:

$$f'_c = \frac{P_e}{A_c} = \frac{2952kips}{2040in^2} = 1446 \ psi$$

Stress Checks

ACI 318-14 limits concrete compressive stress to the following values: $0.45f'_c$ for pre-stress plus sustained load, and $0.60f'_c$ for pre-stress plus total load.

When in a horizontal position, supported at its ends, the panel will see stresses due to a self-weight dead load moment.

$$M_d = wl^2 / 8 = 2125 \frac{lb}{ft} \times (16 ft)^2 / 8 = 68,000 ft - lb$$
$$S_b = S_t = \frac{bh^2}{6} = \frac{(192in)(10.625in)^2}{6} = 3612.5 in^3$$

Stresses in top of slab (at mid-span, higher stress level):

$$f_t = \frac{P}{A} + \frac{M}{s} = (1446 \ psi) + (68,000 \ ft - lb) \times \left(\frac{12in}{ft}\right) / 3612.5 \ in^3 = 1672 \ psi \ (compression)$$

Stresses in bottom of slab (at mid-span, higher stress level):

$$f_b = \frac{P}{A} - \frac{M}{S} = (1446 \text{ } psi) - (68,000 \text{ } ft - lb) \times \left(\frac{12in}{ft}\right) / 3612.5 \text{ } in^3 = 1220 \text{ } psi \text{ (compression)}$$

These values do not exceed a value of $0.45f'_c$ (2700 psi).

Support Rotation Calculations

Support rotation and ductility ratio are commonly used blast design metrics for comparing component response to allowance criteria. Support rotation is defined as the angle formed by the component deflection and the original unloaded component, assuming a straight-line deflection shape. Therefore, the calculated support rotation is not necessarily the actual rotation angle of the component at its support. For a component that achieves a maximum deflection at its mid-span, support rotation would be defined as:

$$\theta = tan^{-1}[x_{max}/(L/2)].$$

As an example, for Test 8, the maximum deflection near the slab center point was 3.3 inches (85 mm). Therefore, for a span of 180 inches (4570 mm), the support rotation was calculated as:

$$\theta = tan^{-1}[3.3 in / 90 in] = 2.1^{\circ}.$$

For cases where the maximum deflection occurs away from the slab center (e.g., Test 1 and Test 2), the maximum deflection would be divided by a value less than 90 inches (2290 mm) in determining its support rotation.

For ductility limits, the maximum deflection is compared to the SDOF elastic deflection of the slab. For Slab Types A and C, the elastic deflection is approximately 0.8 inch (20 mm) for all cases. For Slab Types B and D, the elastic deflection is approximately 1.0 inch (25 mm) for all cases. Therefore, a ductility limit of $\mu = 0.7$ (Superficial Damage upper limit) would translate to a maximum deflection of approximately 0.56 inch (14 mm) or 0.70 inch (18 mm) depending on the slab type. Analogous Heavy Damage limits ($\mu = 0.9$) would be approximately 0.72 inch (18 mm) or 0.90 inch (23 mm) depending on the slab type. These Heavy Damage limit deflections correspond to support rotations of 0.5 degree and 0.6 degree, respectively.

Reinforcement Index Calculations

The reinforcement index of a pre-stressed concrete component is defined as:

$$\omega_p = A_{ps} / bd_p \times f_{ps} / f'_c,$$

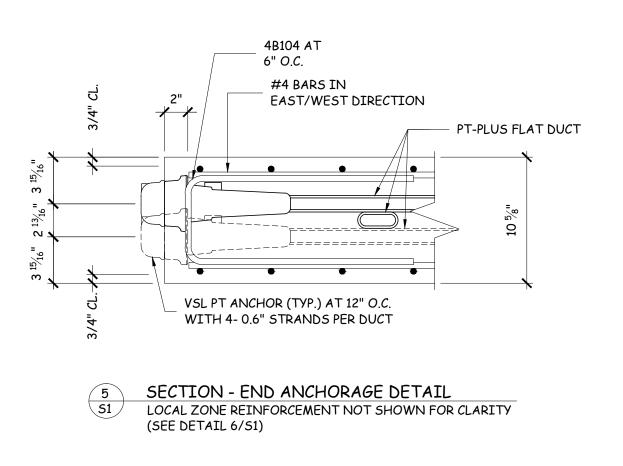
where A_{ps} is the area of pre-stressed reinforcement in the tension zone, b is the pre-stressed reinforcement spacing, d_p is the depth to center of the pre-stressing steel, f'_c is the concrete compressive strength, and f_{ps} is the calculated stress in the pre-stressing steel at the design load.

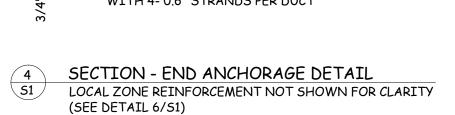
As an example, for Panel 5A, the area of pre-stressed reinforcement was 0.868 in² (560 mm²) spaced at 12 inches (305 mm) on center, roughly centered to the slab thickness. The estimated stress in the pre-stressing steel at the design load was calculated as 199 ksi (1370 MPa) using equations within Section 20.3.2 of ACI 318-14. Therefore, the reinforcement index was calculated as:

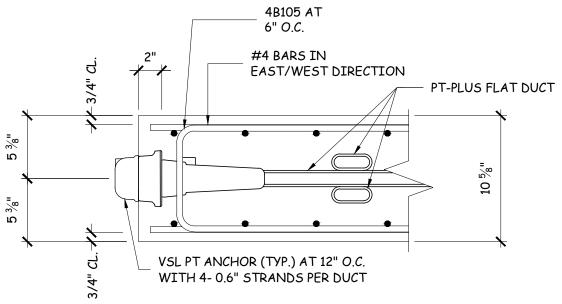
 $\omega_p = 0.868 in^2 / 12 in / 5.31 in \times 199 ksi / 9.43 ksi = 0.29.$

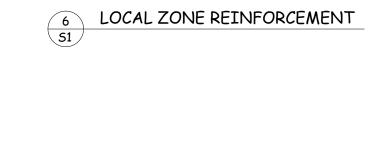
Reinforcement index values for all test slabs are summarized below.

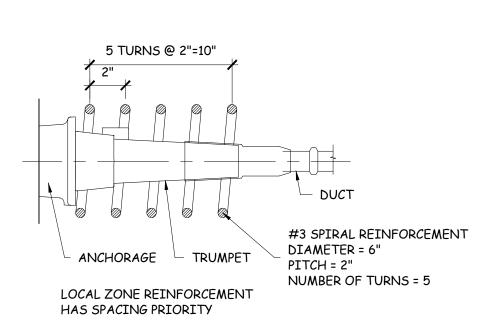
Test	Panel	Reinforcement		
Numbe	r Number	Index, ω _p		
1	5A	0.29		
2	1A	0.32		
3	2C	0.38		
4a	6C	0.38		
4b	6C	0.38		
5	7B	0.29		
6	3B	0.33		
7	4D	0.33		
8	8D	0.36		


Table A-1: Slab Reinforcement Index Summary

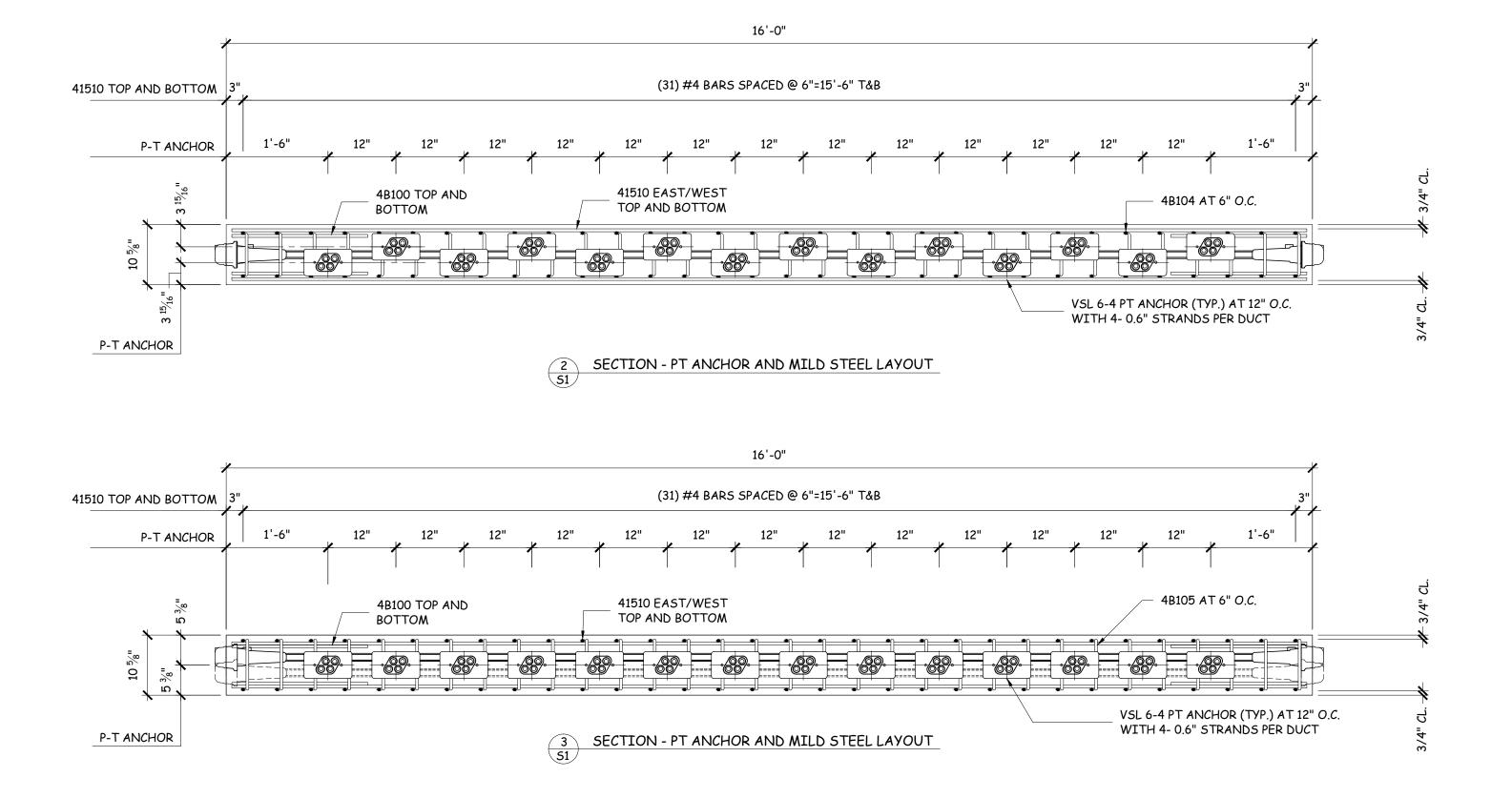

Tensile Strength Calculations


Concrete tensile strength values provided in Table 3-2 were calculated as 15% of the corresponding average concrete compressive strength values at 28 days attained from crushing tests.

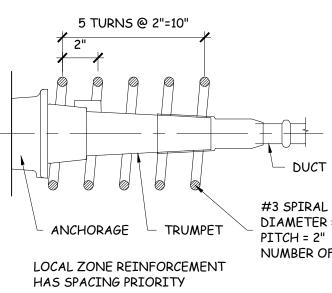

As an example, for Panel 1A, the average compressive strength at 28 days was determined to be 7830 psi (54.0 MPa) from testing. Therefore, the concrete tensile strength was estimated as:


 $f'_t = 0.15 f'_c = 0.15 \times 7830 \, psi \, (54.0 \, MPa) = 1170 \, psi \, (8.1 \, MPa).$

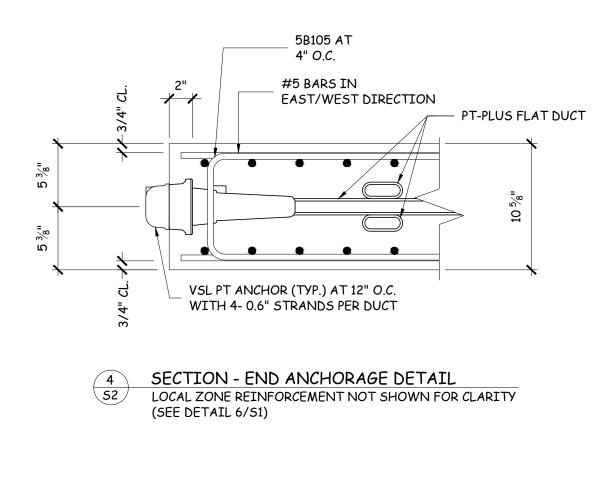


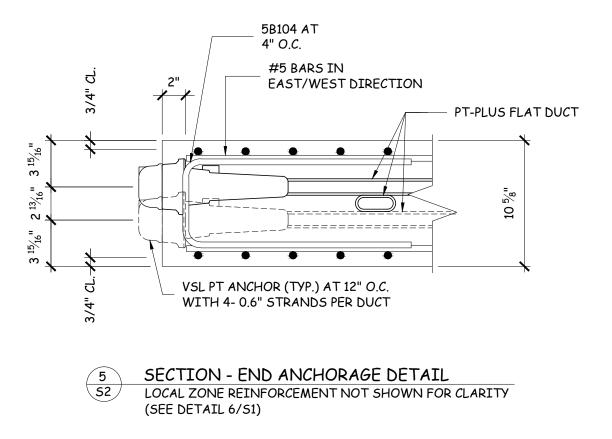


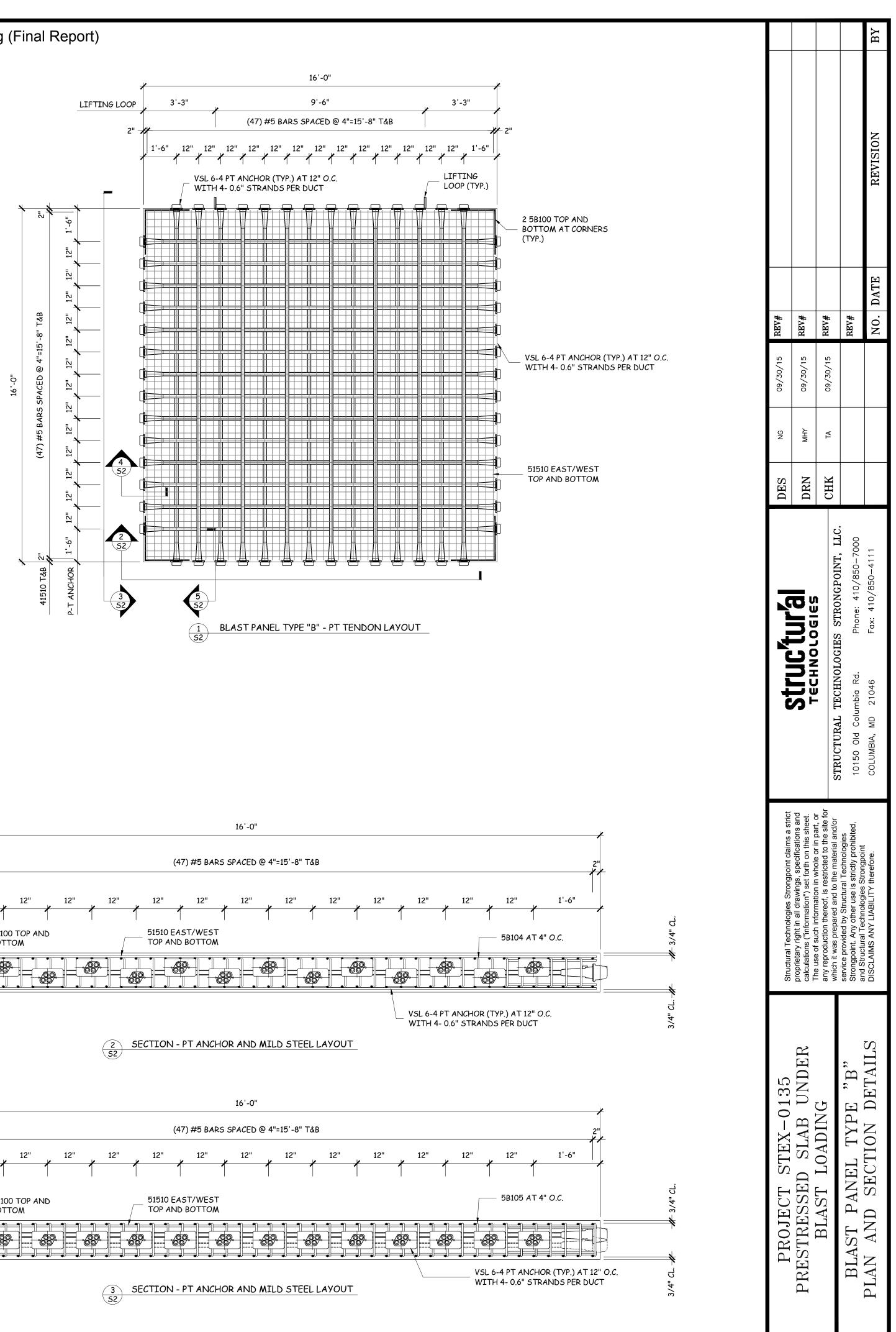
Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

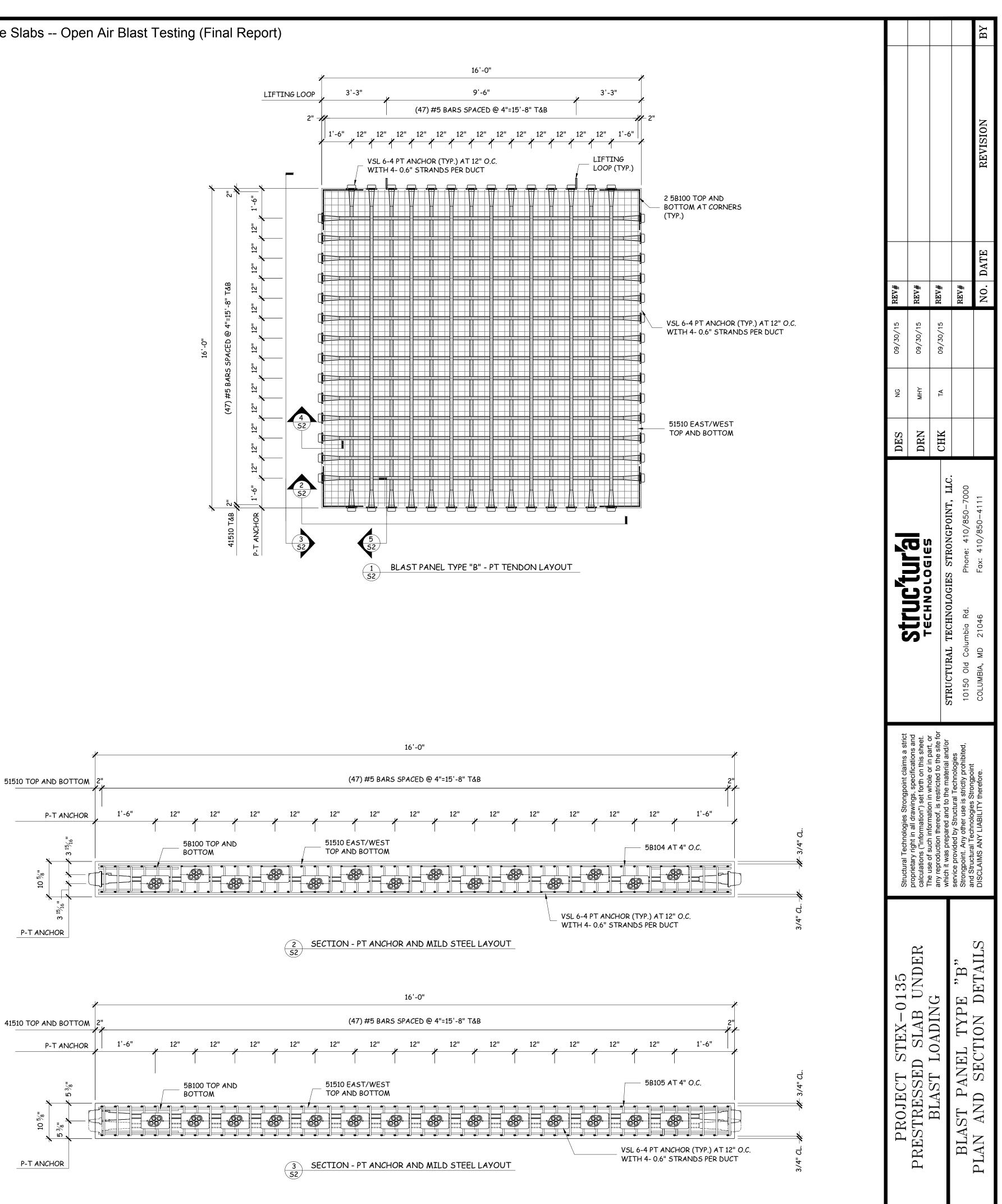


	DESCRIPTION								
41510	#4	15'-10"	A615	128					
4B100	-1 -1	2'-0"	A615	8					
#4	2'-0"			0					
4B104	<i>a</i> : ^"	le: 0"	A615	64					
#4	1'-9"	1'-9" 7 1/2"		0+					
4B105	1'-9"	1'-9"	A615	64					
#4	1-9] -9 9"							

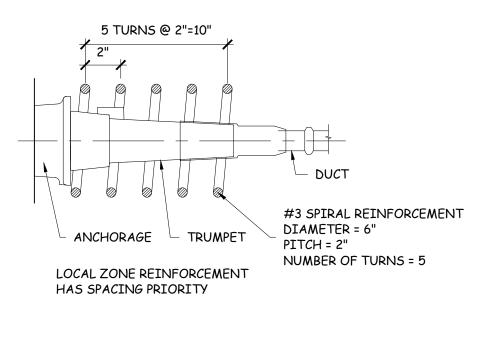



					ВҮ
					REVISION
/30/15 REV#	/15 REV#	/15 REV#		REV#	NO. DATE
09/30/	09/30/15	00 /30 /15	100 100		
NG	МΗΥ	τv	Ľ		
DES	DRN		CUN		
			STRUCTURAL TECHNOLOGIES STRONGPOINT. LLC.	10150 Old Columbia Rd. Phone: 410/850-7000	COLUMBIA, MD 21046 Fax: 410/850-4111
Structural Technologies Strongpoint claims a strict	proprietary right in all drawings, specifications and calculations ("information") set forth on this sheet. The use of such information in whole or in part or	any reproduction thereof, is restricted to the site for	which it was prepared and to the material and/or	service provided by Structural Technologies Strongpoint. Any other use is strictly prohibited, and Structural Technologies Strongpoint	DISCLAIMS ANY LIABILITY therefore.
PROJECT STEX-0135	PRESTRESSED SLAB UNDER	BLAST LOADING		BLAST PANEL TYPE "A"	PLAN AND SECTION DETAILS
JOI	B NO):			
SH	EET		51		

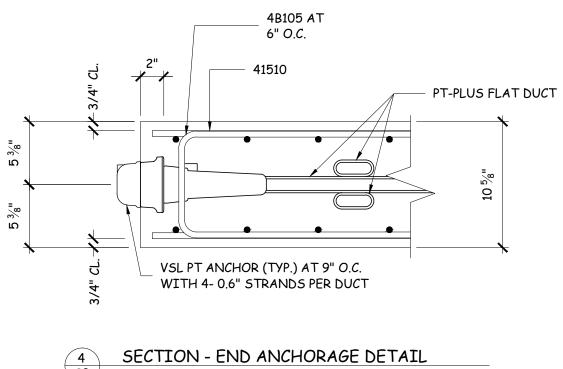

#3 SPIRAL REINFORCEMENT DIAMETER = 6" PITCH = 2" NUMBER OF TURNS = 5



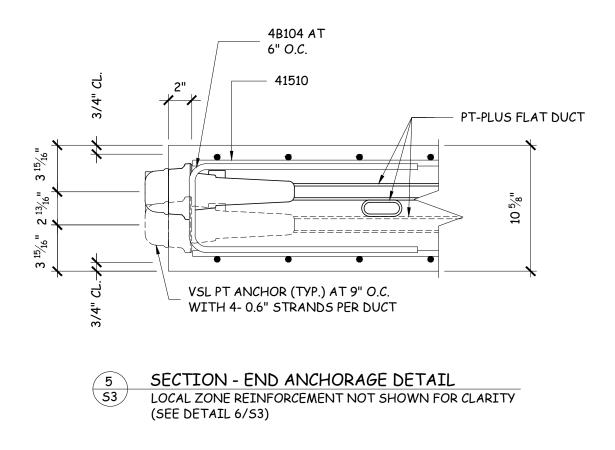
Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

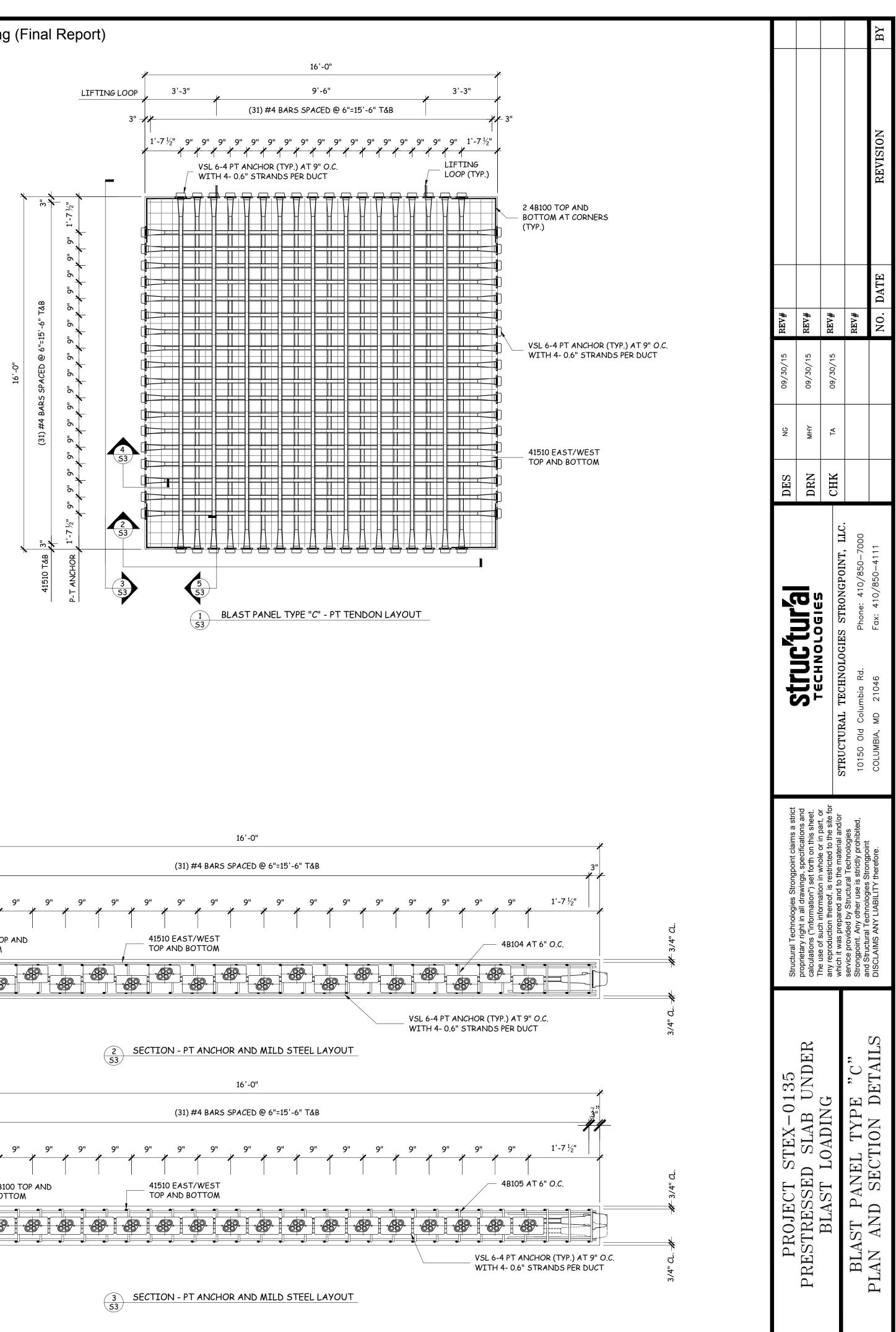


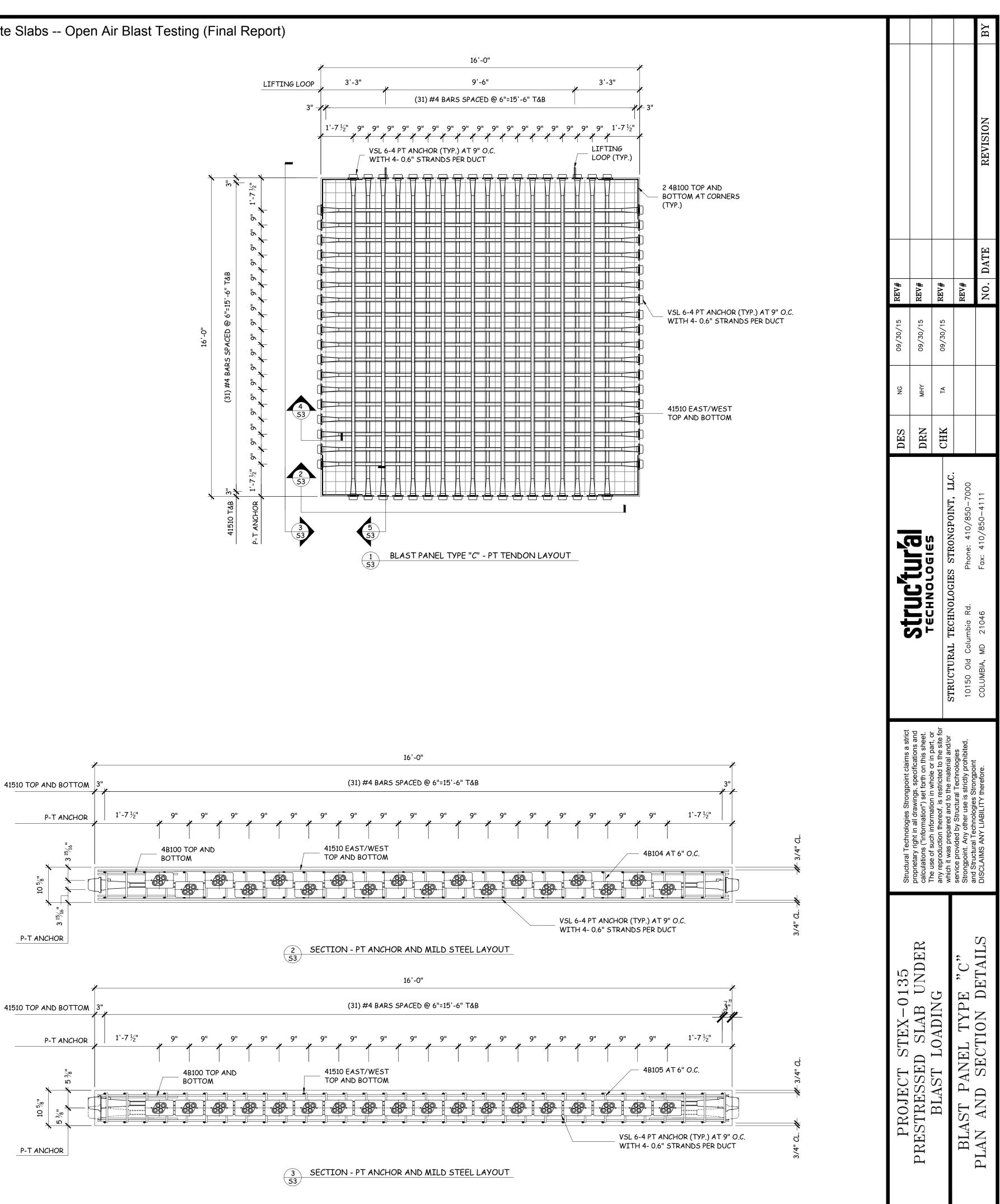
	DE	ESCRIPTION		QTY
51510	# 5	15'–10"	A615	192
5B100		2'-0"	A615	8
#5	2'-0"			0
5B104		1	A615	06
#5	1'-9"	1'-9" 7 1/2"		96
5B105		1	A615	06
#5	1'-9"	1'-9"		96

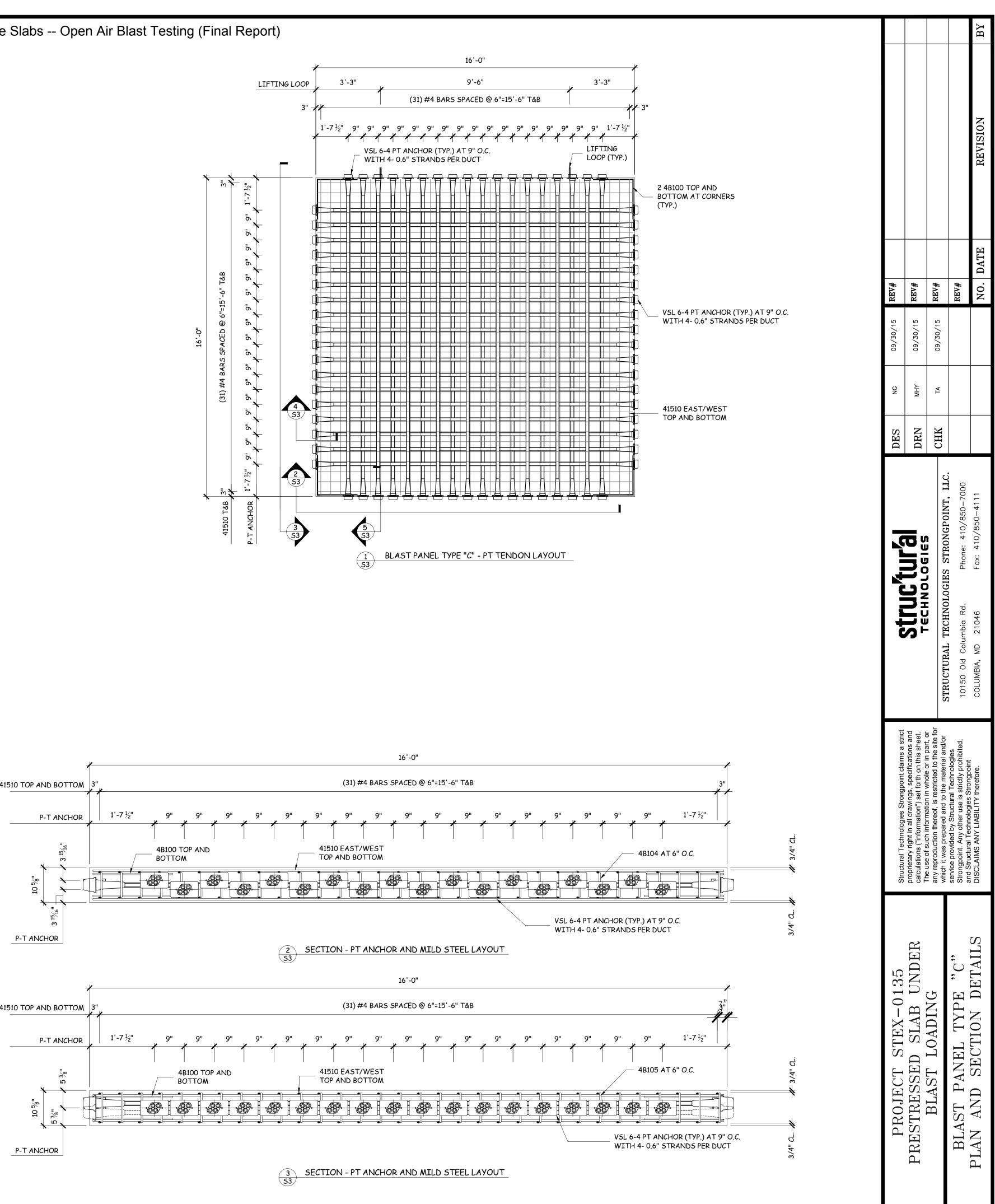


JOB NO:

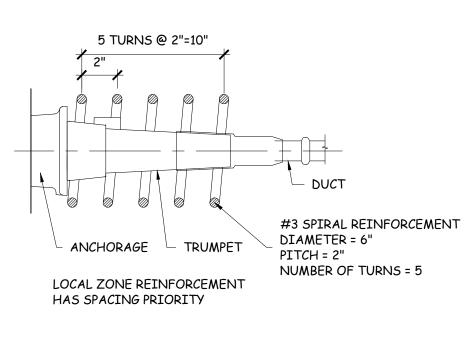

SHEET: S2

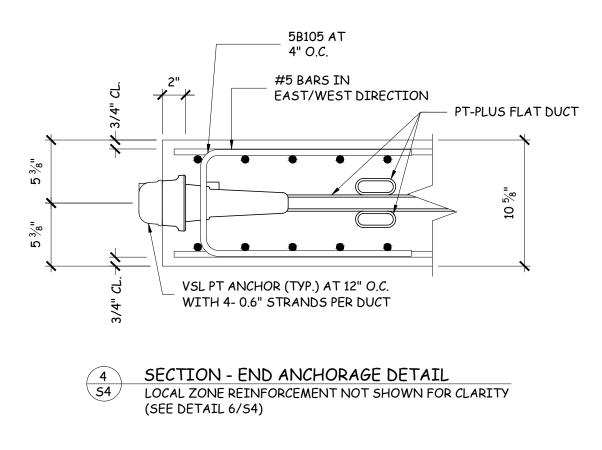

LOCAL ZONE REINFORCEMENT 6 53/

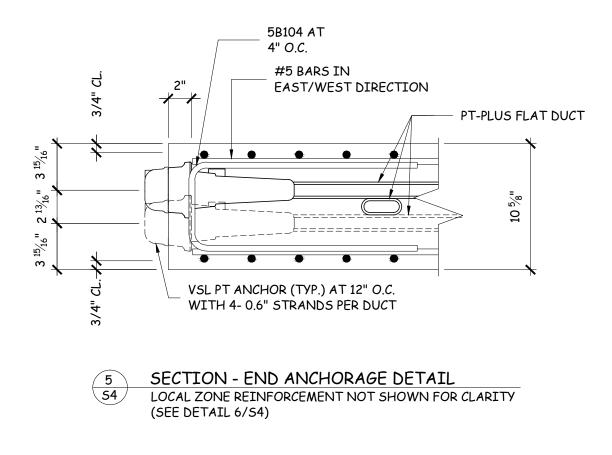

4 SECTION - END ANCHORAGE DETAIL 53 LOCAL ZONE REINFORCEMENT NOT SHOWN FOR CLARITY (SEE DETAIL 6/S3)

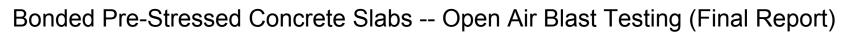


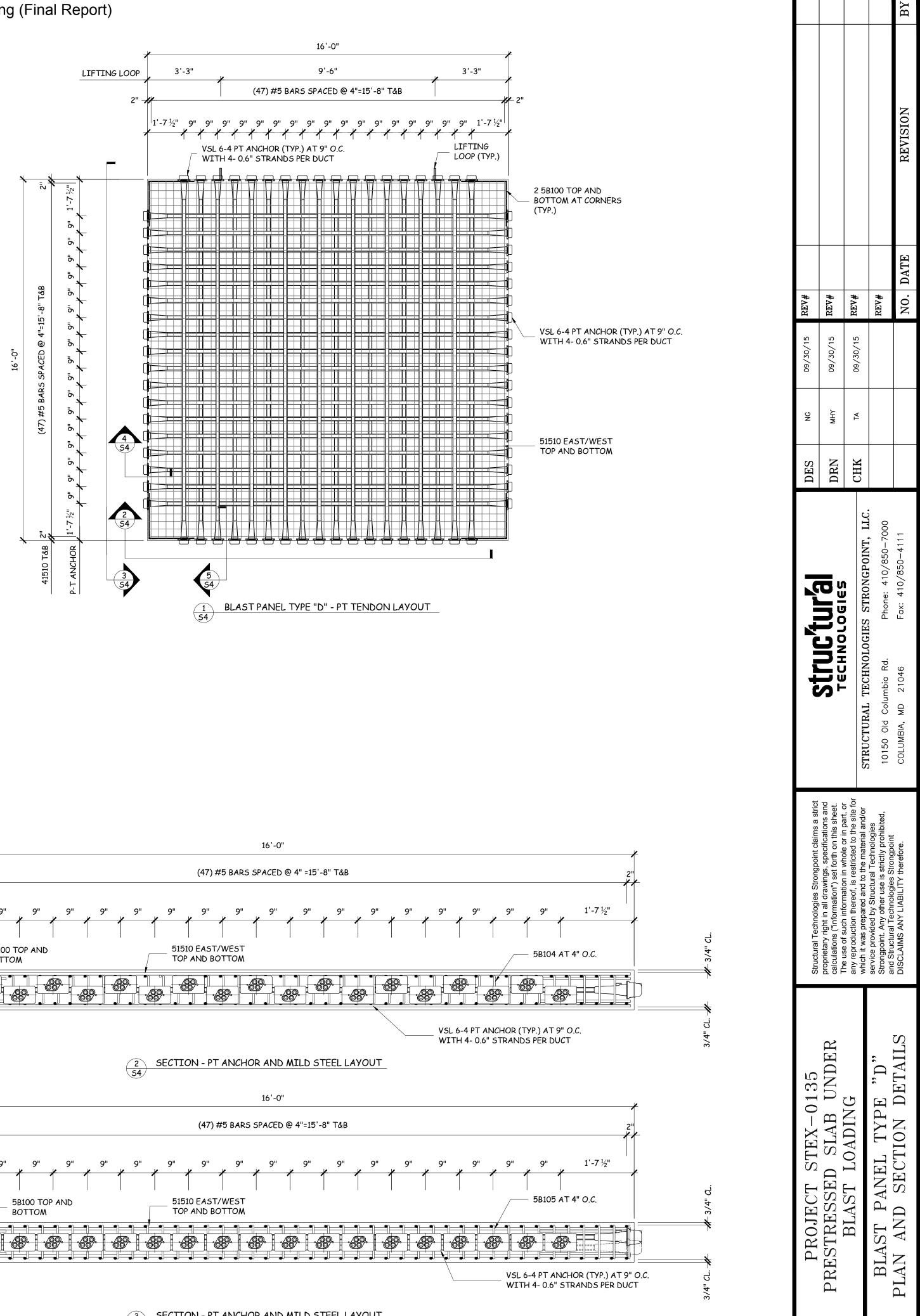
Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

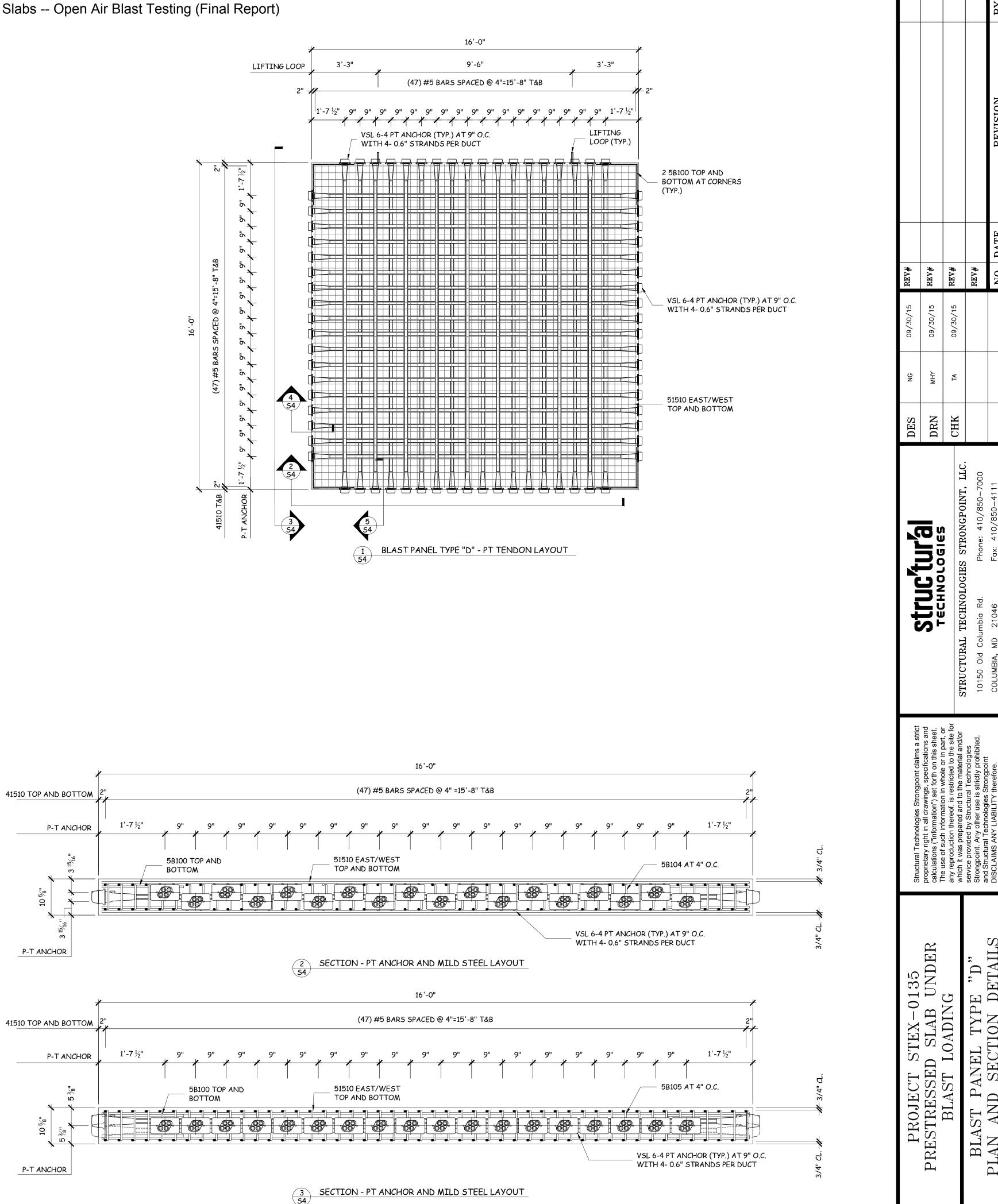

		QTY		
41510	#4	15'-10"	A615	128
4B100	–	2'-0"	A615	0
#4	2'-0"			8
4B104	1	1	A615	C 4
#4	1'-9"	1'-9" 7 1/2"		64
4B105			A615	64
#4	1'–9"	1'-9" 9"		64




SHEET: S3


JOB NO:





	DESCRIPTION									
51510	# 5	15'-10"	A615	192						
5B100		2'-0"	A615	8						
# 5	2'-0"			0						
5B104		1	A615	06						
#5	1'-9"	1'–9" 7 1/2"		96						
5B105		1	A615	06						
#5	1'–9"	1'–9" 9"		96						

JOB NO:

SHEET: S4

APPENDIX B. VSL STRESSING PROTOCOLS, DATA, AND CERTIFICATION

November 24, 2015

Khaled El-Domiaty Stone Security Engineering 2011 Crystal Drive, Suite 400 Arlington, VA 22202

Re: P/T Stressing Certified Letter - OBL 466

Dear Khaled:

VSL, as the Post-Tensioning provider for the referenced project has reviewed the stressing records for all 8 panels of the referenced project and offer the following comments:

 All tendon elongations were found to be within recommended tolerance of +/-7% plus ¼ in for extreme short tendons, such as the case for this project with tendon length being 16 ft. This is consistent with PTI/ASBI M50-12 "Guide Specification for Grouted Post-Tensioning" Section 12.6.

Based on the elongations recorded in the stressing report, VSL certifies that required posttension forces shown on the construction drawings have been provided to the panels.

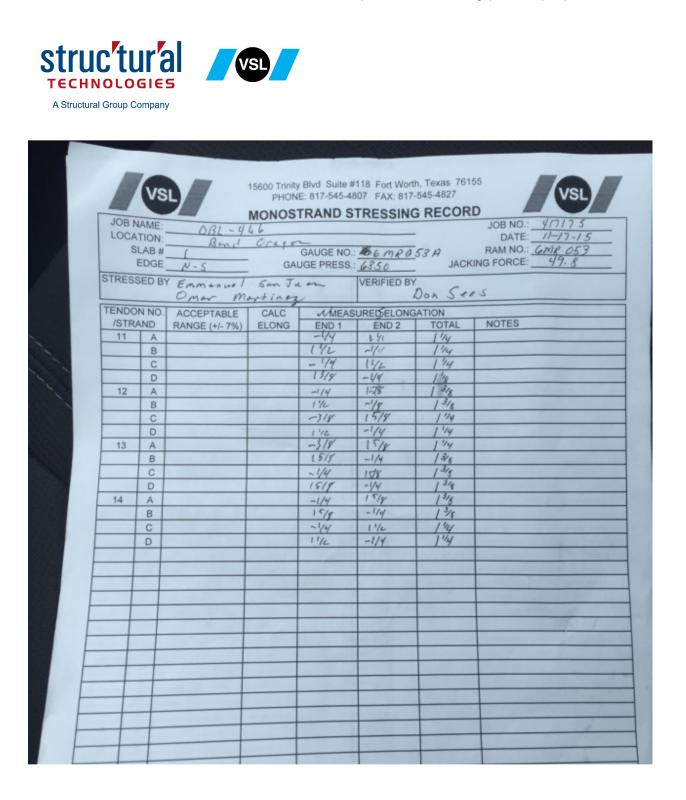
Our review of the stressing results and this certified letter are based strictly on the elongations recorded by VSL technicians on site between 11/17/2015 to 11/20/2015.

If you have any questions or comments, please contact the undersigned at VSL Dallas.

Sincerely,

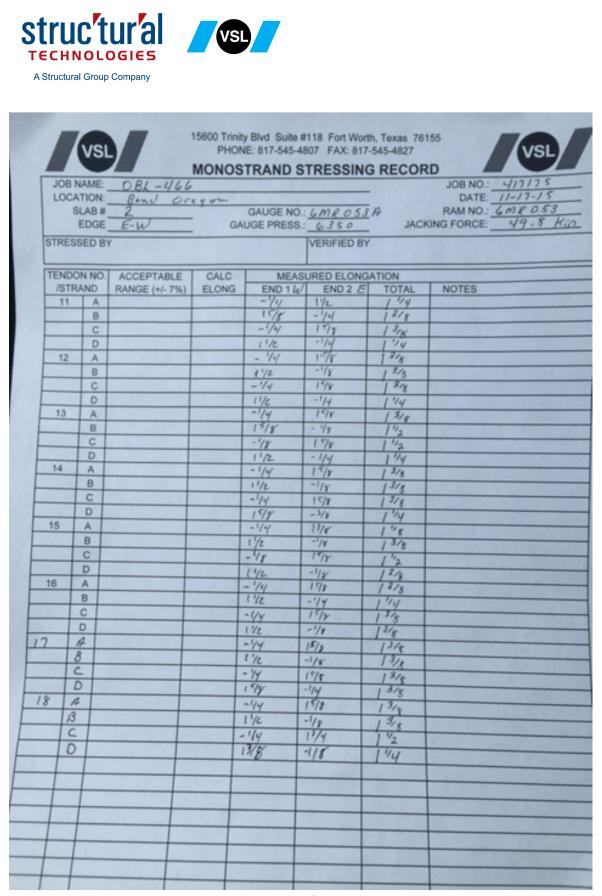
Zuming Xia, Ph.D., P.E. Senior Engineer

Confidential: Any unauthorized use or distribution is prohibited. C:\Desktop\Prototype Panel\elongation\Stressing Certified Letter _OBL 466.doc 11/24/2015


1.1	100									
	100	NAME	021	MONOS	STRAND	STRESS	NG RECO	RD		
		ATION	- Bund a	7 4 -				JOB NO .	412125	
1		SLAB #	Bond O	ale-	CALLOT N			DATE:	11-17-15	-
	CTOS	EDGE	E-W	- 64	GAUGE NO	EMR 03	53 A	RAM NO .:	6MP 057	-
	STRES	SED B	Y Enn 16		TOOL PRESS	6350	JAU	DATE: RAM NO.: CKING FORCE:	49.8	-
			F 1	Jan Jam	w					-
	TENDO	N NO.	ACCEPTABLE	eineg	R.	T	Don 5	cer		
	/STR	AND	RANGE (+/- 7%)	CALC	MEA	SURED ELOP	NGATION			
	1	A	(1/2/76)	ELUNG	L END 1/	END 2	S TOTAL	NOTES		
	-	В			+1/2 -1/4 Atal 1 5/8	13/4	11/2			
		C			+518-14		1318			
	-	D			At 1514		1318			
18	2	A			~1/4	-118 15/8	13			
		B			11/2	-1/8	13/8			
		C			- 44	11/2	1318			
	3	A			11/2	-1/4	134			
	-	B			-114	11/2	114		and the	
		C			11/2	- 44	114		100	
		D			-18	15/4	1%			-
	4	A			11/2	-1/4	114			
L		В			-1/4	15/8	1340			
H		C	and the second s	-	11/2	-1/8	13/8		The case	
-		D			11/2	15/8	12			
+	5	A			-1/4	-18 15/8	1318		1 1 1 N	
+		В			13/4	-114	134		Mar and a second	
H		C			-118	15/8	1 //4			
H		D			11/2	-1/4	13			
-		A				11/2	11/8			
-		B			11/2	-114	1318			10.54
-					-44	15/4	13/8			
-	7 A	_			1319	-118	1'14			
-	B	_				11/4	1%			
-	C	_				-118	1'2			
-	D	_			- 1/4	1514	1318			
8		+			319	118	14			
-	B	+				(Ye	1 1/4			
-	C	-			5/9	-114	18/8			
	D	-				15/8	1'2			
9	A	-				1/4	144			
9		-				114	1 1/2			
	B					119				
	C					3/4	1 3/8			-
	D					-1/4				-
10	A					1/2	13/8			-
	В					-114	1 1			-
	C			-		5/4	13%			
	D			1	-Y2 .	-1/4	11/4			

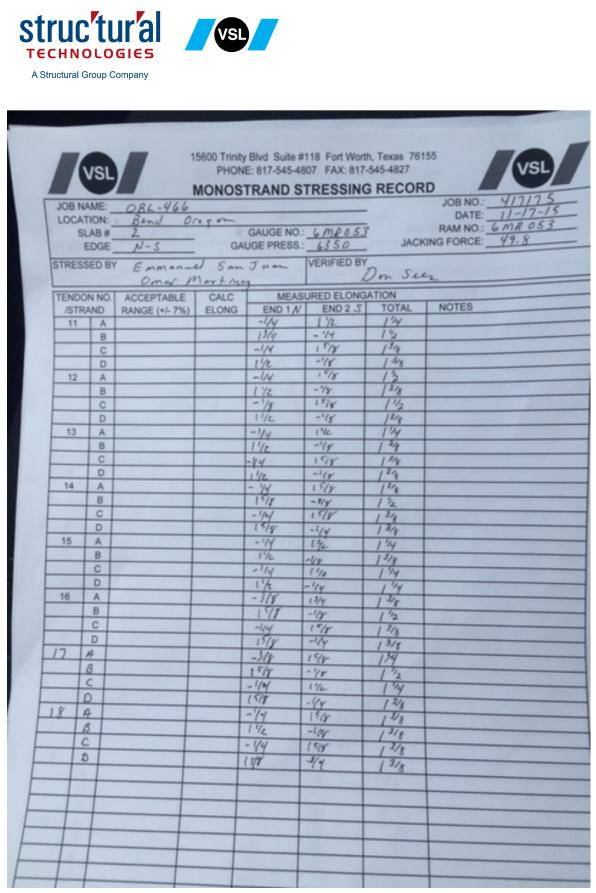
_								
						and and		
		No		15600 Trinity	Blvd Suite #1	18 Fort Worth 07 FAX: 817-5	Texas 7615	
		(vo		PHUN	DAND ST	RESSING	RECOR	
1.1	JOB N	AME			RAND ST	RESSING	RECORE	JOB NO .: 417/75
10	LOCA	TION:	081-460					DATE: 11-17-15
	SI	LAB #	Bene Ori	'	GAUGE NO .:	DEMROS	3N	RAM NO.: <u>G M R 053</u> NG FORCE: <u>49.8</u>
	-	EDGE			JGE PRESS .:			NG FOROL
	STRESS	SED BY	TE MManuel S. Omar N	on Juan Iontine		VERIFIED BY	Don 5	een
	TENDO	N NO.		CALC	MEASU	JRED ELONG	ATION	
	/STRA		RANGE (+/- 7%)		END 1W		TOTAL	NOTES
	11	A			-1/4	-1/8	13/8	
	-	B			11/2 - 1/4	1518	1318	
		C			15/8	-1/4	13/8	
	12	D			- 44	11/2	1/14	
	12	B			1/2	-1/8	1318	
		C			-1/4	11/2	1'14	
100		D			11/2	-318	118	
1	13	A			-1/4	142	11/4	
		В			15/8	-1/8	1/2	
1		С			-114	142	114	
		D			11/2	-1/4	1318	
	14	A			-174 1518	142	11/4	
	-	BC			-48	-48	13/2	
	-	D			1/2	142	1/14	
	-				116	- 19	1.4	

		-		MONOS	TRAND S	TRESSING	G RECOR	D	
	JOB	NAME:	A D1 11-1					JOB NO.: 4/1/13	
	LOCA	ATION:	Bend Dre	5.4-				DATE: 11-17-15	
				-	GAUGE NO.	6mR053	A	RAM NO.: 6MR 053	- 10
			N-S	GAI	UGE PRESS.	6350	JACK	ING FORCE	
	STRES	SED BY	Emmand S.	- Juan		VERIFIED BY	6		
			Omar may				Don S.	240	
	TEND	ON NO.	ACCEPTABLE	CALC	// MEAS	URED ELONG	ATION		100 C
	/STF	RAND	RANGE (+/- 7%)			END 2	TOTAL	NOTES	
and the second s	1	A		114	-14	11/2	114		_
1990	_	В			15/8	-1/4	1318		
1111		C			-14	16/8	128		-
		D			1/2	-14	114		
101000	2	A			-1/4	142	114		
	-	B			15/4	- 44	1318		
	-	C			r1/4	1514	1518		
100	3	A			13/5	14	1 1/4		
		B			15/8	-1/4	1318		
		C			-1/4	1319	1''8		
		D		-	142	-114	14		100
	4	A			-3/6	15/3	124		
		В			142	~114	14		
		C			- 84	15/8	13/8		
		D			1%	-114	124		
	5	A			-119	(318	114		
		В			11/2	-49	1 318		
		C			-317	142	1'8		
		D			Ult	-74	1 1/8		
	6	A			-34	15/9	1'4		
		B			17/8	-19	1 3/8		_
		C			-1/4	14/2	14		
		D			(318		1 1/8		_
	7	A			111/2	-49	13/1		_
		В			1/2	-1/9 -1/8	13/8		
1000		C			1/2	-1/4	1 1/14		
		D			11/2	11/4	114		
	8	A			-1/4		148		
		В			15/8	-14			
		С			-1/4	11/2	14		
		D			13/9	- 1/4	118		
	9	A			-44	1314	13		
	-	B			188	-1/8			
		C			-44	1518	13/8		
					1/2	-114	114		100
		D			-44	15/5	12/8		
	10	A			11/2	-119	1 31g 1 31g		
		B			- 1/8	11/2	134		



OBL 466 Stressing Record C:\Desktop\Prototype Panel\elongation\OBL 466 Stressing Record.docx 11/24/15

			UIE.			TRAND S	TRESSIN	GRECON	JOB NO.: 4/
			ION:	081 - 46k				-	JOB NO.: 4/1 DATE: //~/
	1 "		AB#	Bend	onesm	GAUGE NO.	6mROS.	3A	RAM NO .: 6 MR
				E-W	GA	UGE PRESS .:	6350		ING FORCE: 49
	10TT						VERIFIED B		
	SIF	Œ55	ED BY				VERI ILU U		
	TE	NDO	N NO.	ACCEPTABLE	CALC	MEAS	URED ELONG	ATION	1
	1	STRA	ND	RANGE (+/- 7%)	ELONG	END 1W	END 2 E	TOTAL	NOTES
		1	A			-1/4	15/4	1318	
			B			11/2	-118 13/4	13/8	
			C			-3/4	-4/4	118	
		-	D			13/Y -3/9	1/2	1'8	
	-	2	A			13/18	-114	114	
	-		B			- 44	15/18	13/4	
	-	_	C			15/8	-114	134	
		3	A			-3/8	15/4	14	
			B		-	13/8	-118	11/4	
			C			- 44	13/4		
			D			11/2	-1/8	11/2	
		4	A			-1/4	13/1	1%	
			В			11/2	- 44	134	
			С			-1/4	13/4	12	
		_	D			14/2	-48	1318	
	-	5	A			-3/8	15/4	14	
		-	B			Ulr	-48	14	
	-	-	C			-44	13/4	1 1/2	
		-	D			14/2	-119	1318	
	-	,	B			-318	1914	14	
		-	C			11/2	-44	1 3/8	
		-	D			- 1/4	1518	1318	
	7		A				-1/4	114	
	-	-	B			-1/4	1/2	114	
		-	c			15/3	-111	11/2	
		-	D				19/8	134	
	8		A				-44	1 18	
	<u> </u>	_	B			-1/4	142	114	
		_	c			15/9 .	-94	13	
		1	_			-1/4	13/4	1 1/2	
	9	A	_			11/2	-1/8	1318	
1		B				-1/4	13/4 -1/8 15/4	1318	
t		C				112	-1/5 19/4	13%	
F		_	+			-14	15/4	11/2	
F	10	D	-			1514	-114 11/L	11/2	
H	10	A	-			-1/4	11/1	124	
H		В			1	1/2	-114	120	
1		С			-	1/9	-114 1514	1 318	
1	1	D				'R	-14	1'2	


Copy of Stressing Log Mono

LOCATI	ON:	OBL-466 Bend Ore 2 N-S	0.000				JOB NO .: 4/7/75
SL	AB#	2	for	GAUGE NO -	1.mp 053	2	RAM NO: 1. MR 053
E	DGE	N-S	GA	UGE PRESS .:	6350	JACK	DATE: 11-17-15 RAM NO.: 6.19 053 GING FORCE: 49-8
STRESS	ED BY	Emmanael	C 7		VERIFIED BY		
	1	Oma M.	arting		VERIFIED DI	Don 5.	es -
		ACCEPTABLE			URED ELONG		
/STRA	_	RANGE (+/- 7%)	ELONG	END 1 N	END 2 S	TOTAL	NOTES
1	A			-14	11/2	114	
	B			11/2	-1/8 13/4	13/8	
	C			- 119	12/4	101/L 1'14 1 ³ 18 1 ³ 18 1 ³ 18 1'14	
2	D			11/2	-48	1018	
2	A			11/4	172	13%	
-	B			- 44	-48	13/8	
	D			- 14	-1/4	13/8 13/8 13/8	
3	A			142 - 7/4	15/8 -1/9 3/4 -5/8	140	
	B			142	-318	148	
	C			=1/4	(3/4	1 1/2 13/8 1/14	
	D			14/2 -3/4 14/2 -1/4 14/2	-49	134	
4	A			-318	-49 15/1	114	
	В			11/z	-1/5 1/2 -1/5	1818	
	С			-14	11/2	1'14	
	D	1000		142	-48	1 318	
5	A	Sand Street Street Street		-318	13/4 -47	1318	
	B			1/2	-47	1318	
-	C		1.00	- 3(y - 1/y - 1/y - 3/y - 3/y - 3/y - 3/y	15/1	1318	
-	D			12/8	-48	1/14	
6	B			15/0	1518	1 14	100
	C			-44	15/8	/ 1/2 / 2/3 / 3/8 / 5/8	
	D			11/2	-118	13	
7	A			-1/4	1518	130	
	B			-1/4/ [1/2	-44	114	
	C			-14	15/8	13/8	
	D			14/2	15/8	12.8	
8	A			142	15/8	13/8	
	В			194	-45	13	
	C			-3/9	13/4	121	
	D			-14 -14 1519	-418	1 3/8	
9	A			-14	1/12	114	
	В			15/9	+4/10	13/8	
	C			- 14	=1/4 13/4	14	
	D			15/9	-1/4	12	
10 A	4				14	1 1/2 1 3/8 1 3/8	
B					14/2	134	
C	_			-	-1/8	1 1/2	
D	1			- Cont	15/8	1318	
	-				-44	1318	

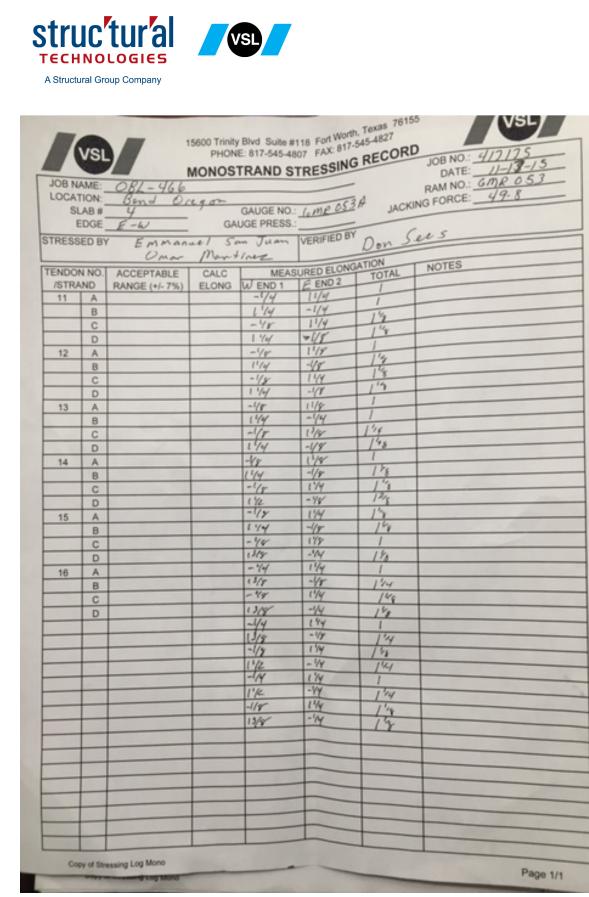
Copy of Stressing Log Mono

	-		MONOS	TRAND ST	TRESSING	ALUU	JOB NO.: 4/1/13 DATE: 11-17-15
JOB N	AME:	ORL-466					DATE: ///
LOCAT	TION:	Bend C	Jugar				DAMINO' GMIR OTT
SL	AB#	3		GAUGE NO .:	6MR076	F IACK	ING FORCE: 49-8
	DGE	and the second se	GAI	UGE PRESS .:	6330		
TRESS	ED BY	In province of	1 San	Juan	VERIFIED BY	Dens	ier
		Omar A	Nartine	4			
TENDO	NNOT			MEAS	URED ELONG	ATION	
/STRA		RANGE (+/- 7%)		END 14	END 2E	TOTAL	NOTES
1	A	Touros (LEGITO	-1/4	11/2	1 1/4	
	B		8	144	-114	1	
	C			-119	1318	194	
	D			149	-114	1	
2	A			-1/9	Ully	134	
-	B			11/4	-114	1'8	
	C			-118	13/14	114	
	D			144	-1/4	1.7	
3	A			-1/4	11/2	13/8	
3	B			14	-114	1	
	C			-119	142	133	
	D			14/4	-14	1	
4	A			-119	11/2	1318	
4				174	-114	1''8	
	B			-1/1	11/2	134	
	-			13/8	-1/4	1 3/8	
	D			-1/9	15/4	10/0	
5	A			1/4	-1/8	10/8	
	B			- 1/4	11/2	134	
_	C			1314	-1/y	il	
-	D			-110	11/2	1313	
6	A			11/4	-110	1.8	
	B			~1/8	11/2	13/8	
	C			11/4	-1/4	1	
-	D			-1/9	11/2	145	
7	A			14	~1/2	1	
	B				11/2	. 138	
	C			-1/4	-1/4	. / .	
	D			-114	14	12/8	
8	A				1/4	1	
	B			14/4	10/9	140	
	C			-1/4	r1/4	1.4	
	D			-1/4	11/4	14	
9	A			11/4	-117	148	
	B				142	144	
	C			-1/4		1 1/4	
	D			(114	-119 15/9	14	
10	A			- 44	- West	1/2	
	В			-1/2	-14		
	C				(1/L	13	
	D			144	-114	1	

Copy of Stressing Log Mono

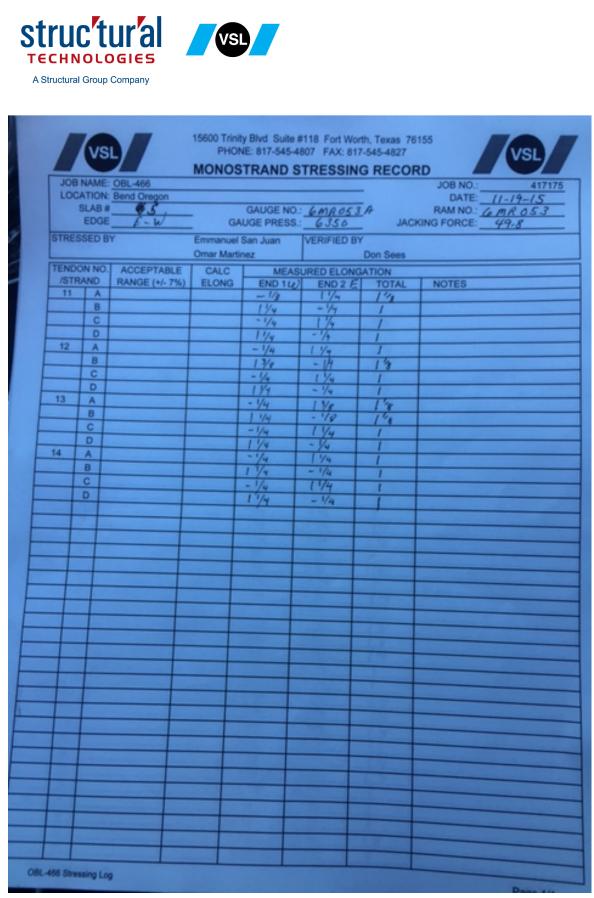
	vs	2		y Bivd Suite # E: 817-545-48				75
JOB N LOCA	TION:						JOB NO.: 4/71 DATE: //-/7 RAM NO.: 6 MR C ING FORCE: 49-8	-15
STRES	EDGE	E-W	GA	UGE PRESS.	6330	JACK	ING FORCE: 97-8	
	00001	Emman	201 30	m Juan	VERIFIED BY	Don See	5	
TENDO		ACCEPTABLE RANGE (+/- 7%)	CALC	MEAS	URED ELONG	ATION	LUCTER	
11	A	TORAGE (41- 7.36)	ELUNG	-1/3	END 2E	TOTAL 13	NOTES	
	В			1 1/4	-118	11/8		
	D			-1/4	174	12		
12	A			-1/4	-114 1318	11/8		
	8			1'M	-114	14		_
	C			-1/4	114	1'8		
13	D			11/4	- 14	1%		
1.0	AB			-14	-14	1		
	C			-118	11/2	133		
	D			1118	-119	1	a second	
14	A			-1/17	11/2	124		
	BC			144	-118	15		
	D			7/14	-1/4	1		
Spring								
_								
								_
			-					
						1		
-	-			-	2			
				and Agent				
					1.1			
	-							
-	-		_					

JOB N LOCA S	TION:	Bend C	regor	GAUGE NO .:	GMR 076	4	RAM NO.: 600 076 A
TRES	SED BY	N-S Emmenal Omar P				Don Se	e 5
TENDO							
/STR/	AND	RANGE (+/- 7%)	ELONG	END 1/V	END 2 S	TOTAL	NOTES
1	A			-14	13/4	1	
	B			1/2	- 1/4	14	
	C			-18	14	14	1
0	D			13/9	- 44	14	
2	AB			-1/4	142 .	134	
	C			149	-49	134	
	D			-14 144	1/2	114	
3	A			-1/4	-1/8 1/2	134	
	B			174	-1/8	14	
	C			- 14	1574	13%	
	D			149	-1/4	1	
4	A			-1/4	11/2	14	
	B			13/8	-1/4	11/8	
	C			-1/4	15/4	13%	
	D			144	-114	15	
5	A			-1/4	14/2	144	
	В			14	-1/4	1'8	
	C		1	- 44	UN14	158	
	D			1319	-44	14	
6	A			-1/4	14	1	
	В			11/9	-114	1'8	
	C			- 44	144	1%	
	D			114	-1/4	13	
7	A				14/4		
	B			11/4	-44 114	14	
	C			11/9	-114	1	
	D			-1/4	144	i	
8	A				-119	1%	
-	B			11/4	13/4	14	
	C			114	-1/4	14	
0	D			-114	13/18	13	
9	A			149	-48	1	
	B			-14	144	I	
	C				-49	1	
10	D			11/4 -314	142	148	
10	A			10/4	-1/4	1'3	
-	B			-1/4	ila	1'8	
	CD			144	-119	14	


F44 200 0

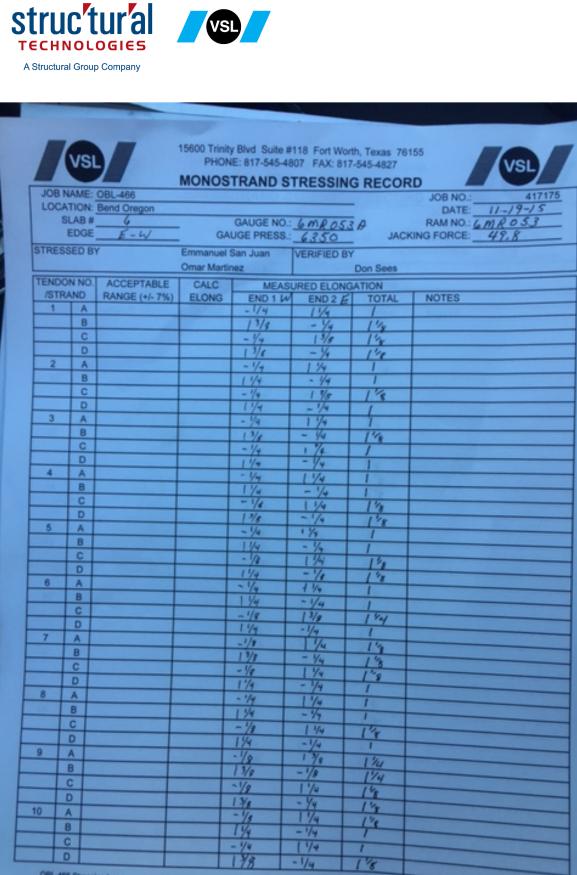
IORN	vs		MONOS	TRAND S	118 Fort Worth, 07 FAX: 817-5 TRESSING	RECOIL	JOB NO .: 4/1/1
LOCA	TION:	Bend O	0				RAM NO .: GMR 076
SI	LAB	\$3		GAUGE NO .:	GMROTE	A JACK	DATE: 17-77- RAM NO.: GMR 076 ING FORCE: 49.8
TRACA	EDGE	N-S	GA	UGE PRESS.:	6330		
STPOE 55	ED BY	Emmanuel Omar Mi	San i	Juan	VERIFIED BT	Don Sa	14
TENDO	N NO.	ACCEPTABLE		MEAS	URED ELONG		
/STR/	ND	RANGE (+/- 7%)			END 2 S		NOTES
11	A B			-1/4 1/4	13/19	18	
	C			~1/4	142	1 24	
	D			149	- 1/5	1'8	
12	AB			-714	1318 -118	1%	
	C		Y	-114	3/8	1/2	
	D			11/4	-1/4	1	
13	A		4	-1/4	13/8.	1%	
	BC			-14	-114	1	
	D			11/4	-1/8	1	
14	A			-14	1318	14	
	B			11/4	-114	1	
	D			148	-115	1	
_							
_							
_	-						
_							
-							
					10000000		
	-				-		

LOCAT	AB #	E = h)	egor GA	GAUGE NO.	6mR 053	JA JACKIN	RAM NO.: <u>CAME 050</u> IG FORCE: <u>49-8</u>
STRESS	ED BY	Emmanue Omar	1 San	- Jolan	VERIFIED BY	Don Se	nd C
TENDO	NNO.	ACCEPTABLE		MEAS	SURED ELONG	TOTAL	NOTES
/STRA	ND	RANGE (+/- 7%)		WEND 1	P END 4	150	
1	A			-1/4	13/14	1%	
	BC			11/4	-49	148	
	D			-118	-44	1'1	
2	A			~1/4	144	1	
	B			1'14	-48	14	
	C			- 1/8	14/4	118	
	D			144	-1/4	1'3	
3	A			-1/4	144	1	
	В			114	-118	1'3	
	C			- 44	11/4	1/1/8	
	D			144	13/14	14	
4	A			-1/4	-1/2	11/8	
	B			13/14	-1/4	1/14	
-	C		-	13/8	11/4	1'3	
-	D			- 1/4	-1/8	1	
5	B			11/4	4/5	13	
	C			- 44	(58	134	
<u> </u>	D			14	- (1)	13	
6	A			-44	144		
-	B			(44	-41	14	
	C			-1/2	14	148	
	D			11/4	-48	14	
7	A		-	-1/4 11/4	144	1	
	В		-	-1/5	-1/8-	14	
	C		-	11/4	-49		
	D			-48	14	1/8	
8	A			144	-1/8	1%	
	B			-14	13/14	14	
	C			14/4	-1/8	1%	
	D			-1/8	L'AY	1'4	
9	A			-1/8	-118	1'8	
	B			-48	-1/8 1°/4	14	
	C			144	-1/4	1'8	
	D			-47 147 -474 1174	144	10	
10	A			11/4	- <u>V4</u> 114	i	
	B			-1/4	11/4	T	
	CD		10000	11/4	-14	11/8	



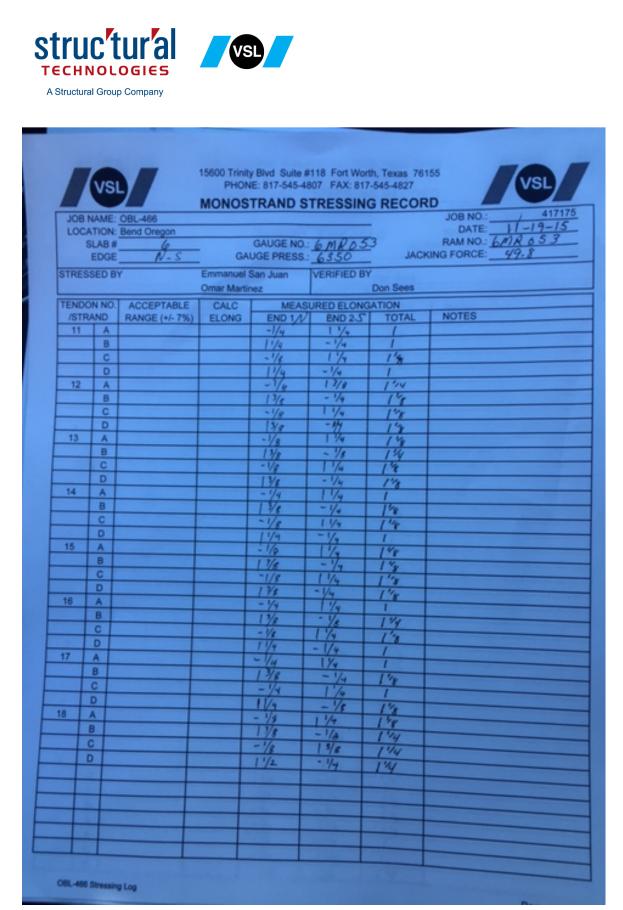
JOBN	LANKE-	0BL - 46	6	TRAND	STRESSI	NG RECOR	JOB NO .: 4/7/75
LOCA	TION:	Bend On	i com			-	DATE: 11-17-15
S	LAB #	4	70-	GAUGE NO	D: CmRO	53A	DATE: <u>17-17-</u> RAM NO.: <u>6 MR 053</u> KING FORCE: <u>49-8</u>
	EDGE	N-S	GA	UGE PRESS	3: 63	JAC	KING FORCE
STRESS	SED BY	Emmanuel	S. T		The second se	0-V-0	
		Omar Ma	undia en	uan	VERUFICE	Don Se	e 5
TENDO	N NO.	ACCEPTABLE	CALC		-		
/STR/	AND	RANGE (+/- 7%)	ELONG	L END 1	SURED ELON	TOTAL	NOTES
1	A			-1/4	13/4	1'1	
	В			144	-1/8	14	
	C			- 1/4	1.514	14	
-	D			11/4	-118	150	
2	A			-1/4	1./4	1	
	B			1/14	-14	14	
	C			-1/4	1/4	14	
3	D			11/4	-14	1	
3	AB			-114	11/4	1	
	C			11/4	-18	1'8	
	D			-1/4	179	1	
4	A			11/14	-4/8	1's	
	B			11/4	13/4	118	
	C			-1/4	13/18	1%	
	D			11/4	-44	148	
5	A	100		-1/4	144	18	
	В			11/4	-118	1%	
	С			-lir	11/4	1'3	
	D			13/18	-44	1''8	
6	A			-1/4	1318	1'8	
	B			13/19	ir	194	
	C			-119	134	1	
	D			13/1	-49	14	
7	A			-1/4	11/4	1	
_	B			1319	-117	11/4	
	C			-1/8 1)/8	14	11/4	
-	D				144	124	
8	A			-114 1318	-1/4	148	
	B			-1/8	13/4	1'18	
					-1/4		1
0	D			-115	-14 114	1''8	
9	B			1114	they all	17	
	C			-119	11/18	114	
-	D			13/9	1/11	16	
10	A			-14	11/14 -1/15 -1/15	134	
10	B			13/14	-1/8	14	
-	C			-118	144	14	
-	D			13/18	-Ax	1/2 1/2	

	Struc TECHNO A Structural Gro		V	SL			
Denser Manual Market TENDON NO. ACCEPTABLE CALC MEASURED ELONGATION 11 A RANGE (+1-7%) ELONG N END 11 A Image: Ima	LOCATION: SLAB # EDGE	ORL - 466 Bend 0 4 N-S	MONOS (ego- GA	GAUGE NO.	GMROS	G RECOR	JOB NO.: <u>4/7/75</u> DATE: <u>1/-/7-/5</u> RAM NO.: <u>6/MR 0.5.3</u> SING FORCE: <u>49.8</u>
TENDON NO. ACCEPTABLE RANGE (+/-7%) CALC ELONG MEASURED ELONGATION NOTES 11 A		Ona M	antihe			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TENDON NO			11510	URED FLON	GATION	LNOTES
11 A $-1/y$ Uy $1/y$ B $1/y$ $-1/y$ $1/y$ $1/y$ D $1/y$ $-1/y$ $1/y$ $1/y$ 12 A $-1/y$ $1/y$ $1/y$ B $1/y$ $-1/y$ $1/y$ $1/y$ C $-1/y$ $1/y$ $1/y$ $1/y$ B $1/y$ $-1/y$ $1/y$ $1/y$ C $-1/y$ $1/y$ $1/y$ $1/y$ 13 A $-1/y$ $1/y$ $1/y$ B $1/y$ $-1/y$ $1/y$ $1/y$ C $-1/y$ $1/y$ $1/y$ $1/y$ B $1/y$ $-1/y$ $1/y$ $1/y$ C $-1/y$ $1/y$ $1/y$ $1/y$ A $-1/y$ $1/y$ $1/y$ $1/y$ C $-1/y$ $1/y$ $1/y$ $1/y$ D $1/y$ $-1/y$ $1/y$ $1/y$ B $1/y$ $1/y$ $1/y$ $1/y$ <td></td> <td></td> <td></td> <td>MEAS</td> <td>LS END 2</td> <td>TOTAL</td> <td>NOTES</td>				MEAS	LS END 2	TOTAL	NOTES
B $1\frac{1}{2}\frac{1}{3}$ $-1/\gamma$ $1^{7}\gamma$ D $-1/1/\gamma$ $1^{7}\gamma$ $1^{7}\gamma$ D $1^{7}\gamma$ $1^{7}\gamma$ $1^{7}\gamma$ 12 A $-1/1/\gamma$ $1^{7}\gamma$ $1^{7}\gamma$ B $1^{1}1/\gamma$ $4^{1}\gamma^{2}$ $1^{7}\gamma$ C $-1/1/\gamma$ $1^{7}\gamma$ $1^{7}\gamma$ D $1^{1}1/\gamma$ $4^{1}\gamma^{2}$ $1^{7}\gamma$ B $1^{1}1/\gamma$ $4^{1}\gamma^{2}$ $1^{7}\gamma$ D $1^{1}1/\gamma$ $4^{1}\gamma^{2}$ $1^{7}\gamma$ B $1^{1}1/\gamma$ $4^{1}\gamma^{2}$ $1^{7}\gamma^{2}$ C $-1/1/\gamma$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ D $1^{1}1/\gamma^{2}$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ B $1^{1}1/\gamma^{2}$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ C $-1/1/\gamma^{2}$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ D $1^{1}1/\gamma^{2}$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ B $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ D $1^{1}1/\gamma^{2}$ $1^{7}\gamma^{2}$ $1^{7}\gamma^{2}$ B $1^{7}\gamma^{2}$ </td <td></td> <td>100102 (*/* 1%)</td> <td>ELONG</td> <td>-//W</td> <td></td> <td>1</td> <td></td>		100102 (*/* 1%)	ELONG	-//W		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				15/0		1/4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	the second secon			-14		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				11/4		14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				=1/4		1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				19		15	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1/4			
13 A $-1/A$ $1/A$ $1/A$ B $1/A$ $1/A$ $1/A$ $1/A$ C $-1/A$ $1/A$ $1/A$ $1/A$ D $1/A$ $1/A$ $1/A$ $1/A$ 14 A $-1/A$ $1/A$ $1/A$ 0 $1/A$ $1/A$ $1/A$ $1/A$ 15 A $-1/A$ $1/A$ $1/A$ 15 A $-1/A$ $1/A$ $1/A$ 0 $1/A$ $-1/A$ $1/A$ $1/A$ 16 A $-1/A$ $1/A$ $1/A$ 0 $1/A$ $-1/A$ $1/A$ $1/A$ 16 A $-1/A$ $1/A$ $1/A$ 17 A $-1/A$ $1/A$ $1/A$ 0 $1/A$ $1/A$ $1/A$ $1/A$				-119		11/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				~1/4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B						
14 A -''/y 1'y 1 B 1'/y -'/y 1'y 1'y C -'/y 1'y 1'y 1'y D 1'/y 1'y 1'y 1'y 15 A -'/y 1'y 1'y C -'/y 1'y 1'y C -'/y 1'y 1 B 1'y -'/y 1'y C -'/y 1'y 1'y D 1'/y -'/y 1'y B 1'y -'/y 1'y C -'/y 1'y 1'y B 1'y -'/y 1'y C -'/y 1'y 1'y D 1'/y -'y 1'y I A -'/y 1'y 1'y I A -'/y 1'y 1'y I B 1'/y 1'y 1'y I B 1'/y 1'y 1'y I B 1'/y 1'y	C			-111			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D			13/4	-49	174	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 A			-1/4	144		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B			118	-1/4	1'8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C			-1/9	11/4	13	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-118	114	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-1/4	-1/4	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						14	
D 11/4/1 -1/2/1 1/3/2 16 A -1/3/1 1/4/2 1/4/2 8 1/1/1 -4/3/2 1/4/2 1/4/2 0 -1/1/2 -4/3/2 1/4/2 1/4/2 0 -1/1/2 -4/3/2 1/4/2 1/3/2 17 A -1/1/2 1/3/2				-1/4		1	
16 A -11/2 11/14 11/14 B 11/14 -11/2 11/14 11/14 C -11/2 11/14 11/14 11/14 D 11/14 11/14 11/14 11/14 II -11/2 11/14 11/14 11/14 II A -11/2 11/14 11/14 C -11/14 11/14 11/14 11/14 C -11/14 11/14 11/14 11/14 D 11/14 -11/14 11/14 11/14 D 11/14 11/14 11/14 11/14						1%	
No B 11/1/1 -1/1/2 11/1/1 C -1/1/2 11/1/2 1/1/2 D 11/1/2 -1/1/2 1/1/2 17 A -1/1/2 1/1/2 C -1/1/2 1/1/2 1/1/2 C -1/1/2 1/1/2 1/1/2 B -1/1/2 1/1/2 1/1/2 C -1/1/2 1/1/2 1/1/2 D -1/1/2 1/1/2 1/1/2							
C -1/4 1/4 1/4 1/4 1/4 D -1/1 1/4 1/3 - - - 1/3 - - - 1/3 - - - 1/4 1/3 - - - 1/4 1/4 - - - 1/1 1/4 - - - - 1/1 - - - - - - - 1/4 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
D U/y -4y 1's 17 A -1/y 1/4 1's 8 1/14 -4y 1's C -1/y 1/14 1's D 1/3g -1/y 1's B 1/14 1's -1/s D 1/3g -1/y 1's B -1/y 1's -1/s D 1/3g -1/y 1's B -1/y 1's -1/s B -1/y 1's -1/s B -1/y 1's -1/s B -1/y 1's -1/s C -1/y 1's -1/s D 1's -1/s -1/s D 1's -1/s -1/s D 1's -1/s -1/s D -1/s -1/s -1/s D -1/s -1/s -1/s D -1/s -1/s <td></td> <td></td> <td></td> <td></td> <td>11/14</td> <td></td> <td></td>					11/14		
17 A 1/8 11/4 1/3 8 11/4 -4/8 1/3 C -4/8 11/4 1/3 D 1.1/9 -1/8 I 0 1.1/9 -1/9 I 8 -1/17 1/14 1/3 I 8 -1/17 1/16 1 I 8 -1/17 1/17 1 I 8 -1/17 1/17 1 C -1/17 1/17 1							
C -//y 11/y 1/y D 11/y -//y 1/y 18 A -//y 1/y C -//y 11/y 1 D 11/y -//y 1/y D 11/y -//y 1/y Q 11/y -//y 1 D 1 -//y 1 D <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
C -//y 11/y 1/y D 11/y -//y 1/y 18 A -//y 1/y C -//y 11/y 1 D 11/y -//y 1/y D 11/y -//y 1/y Q 11/y -//y 1 D 1 -//y 1 D <td< td=""><td>17 A</td><td></td><td></td><td>-1/8</td><td>179</td><td>17</td><td></td></td<>	17 A			-1/8	179	17	
18 # -1/1/2 1 18 # 1/1/2 -1/1/2 1 -1/1/2 1/1/2 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1				11/4			
18 # -1/1/2 1 18 # 1/1/2 -1/1/2 1 -1/1/2 1/1/2 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 1 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1/2 -1/1/2 1 -1/1	C			-119		13	
10 17 1/17 1/17 13 -1/17 1/17 1 0 -1/17 1/17 1 0 10/17 -1/17 1 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 -1/17 1/17 0 10/17 1/17 1/17 0 10/17 1/17 1/17 0 10/17 1/17 1/17 0 10/17 1/17 1/17 0 10/17 1/17 1/17 0 10/17 1/17 1/17				174		14	
B 147 149 159 C -499 1919 1 D 1719 1 D 1719 1/9 I 1919 1/9 I I 1/9 I I 1/9 I I I I I I/9 I	18 A			-49	119	1	
Cory of Streesing Log Mone	B			1119		1'8	
				-49		1	
				12/19	-14	1'8	
Image: Copy of Stressing Log Mone							
Image: Copy of Stressing Log Mono Image: Copy of Stressing Log Mono Image: Copy of Stressing Log Mono					_		
Image: Copy of Stressing Log Mono				1			
Copy of Stressing Log Mono							
Copy of Stressing Log Mono				Part and		-	
Copy of Stressing Log Mono						-	
Copy of Stressing Log Mono		1			-		
Copy of Stressing Log Mono					-		
Copy of Stressing Log Mono	States and				-		
Copy of Stressing Log Mono		and and there					
Date the	Copy of Str	essing Log Mono	and the second		-		Page 1/1

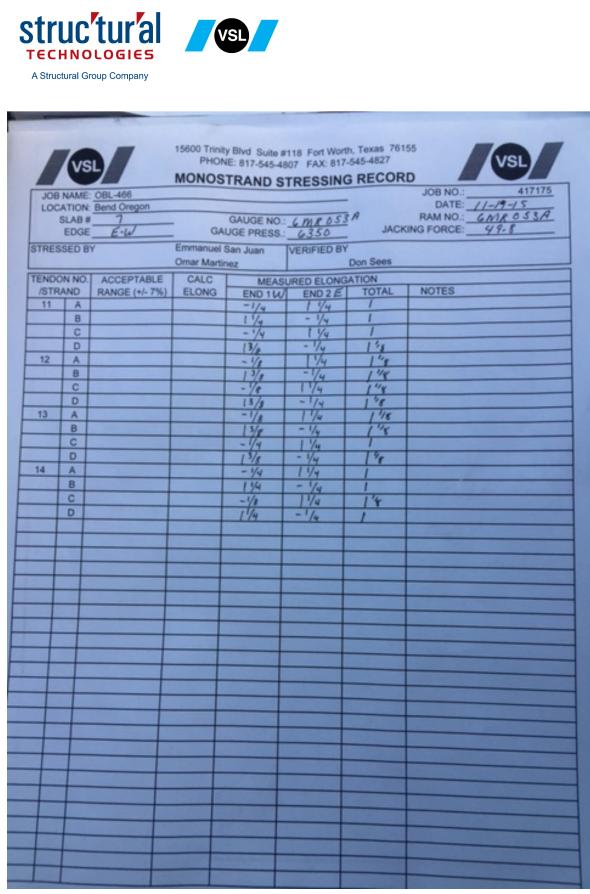

-ecł	ΙΝΟΙ	DOGIES	Vs				
			MONOS	IE: 817-545-4	5 G MR 05	G RECOR	VSL/
STRE	SSED B	Y	Emmanuel Omar Martin	San Juan	VERIFIED B		
TEN	DON NO.	ACCEPTABLE	CALC				
	RAND	RANGE (+/- 7%)		END 14	END 2 E		NOTES
1	the second s		CLONG	-1/4	(1/4	TOTAL	AUTEO
	В			13/8	- 1/4	1%	
1	С			- 1/9	1%	1	
	D			13/2	- 1/4	1'8	
2	A			-1/4	11/4	1	
	В			13/8	- 1/4	14	Statements and the second
	C			- 1/8	14	14	
	D			11/4	- 1/4	1	
3	A			-1/4	11/4	Contraction of the second	
	B			13/1	-1/4	12	
	C			-1/8	1/4	148	The second s
-	D			1 1/4	- 1/4	1	Engineering of the second second second second
4	A			- 1/4	1/4	1	Statistics of the second second second
_	B			1 1/4	- 1/8	1'8	
_	C			-1/4	1 1/4	1	
	D			144	- /+	in the second	
5	A			-1/4	17/8	14	And the second se
	B			13/1	- 1/4	1%	
	C			-1/6	11/4	148	
	D			11/4	- 1/1		
6	A			-1/4	14		Contraction of the local division of the loc
-	B			13/8	- 1/4	14	
	C			-1/8	1.42	14	
-	D			11/4	- 1/4	1	
7	A			-1/8	12/2	14	
	B			1 1/4	- 1/4	1	
	С			-1/8	11/4	1'4	
	D			1 1/4	-1/4	1	
	A	AND AND ADDRESS OF		- 1/4	1 3/9	1%	
1	B			1 1/4	- 1/7	1	
0	2	Alasedicassiscies (es		-1/8	11/4	1'8	
0		NATIONAL PROPERTY OF		1 1/4	-/4	1	
A	_	Contract of the state of the		-1/8	1 1/4	14	
B	_					1'8	
C	_			11/4			
	_			- 1/4	1/2	14	
D	-	The second second second		1/4	- 1/4		
A			-	19	1 1/4	1'8	Person and and a second s
	Sector Sector			1/4	-1/4	1	
B							
C			-	1/6		1 1/4	
			-	1/6	1 1/4	1 1/8	

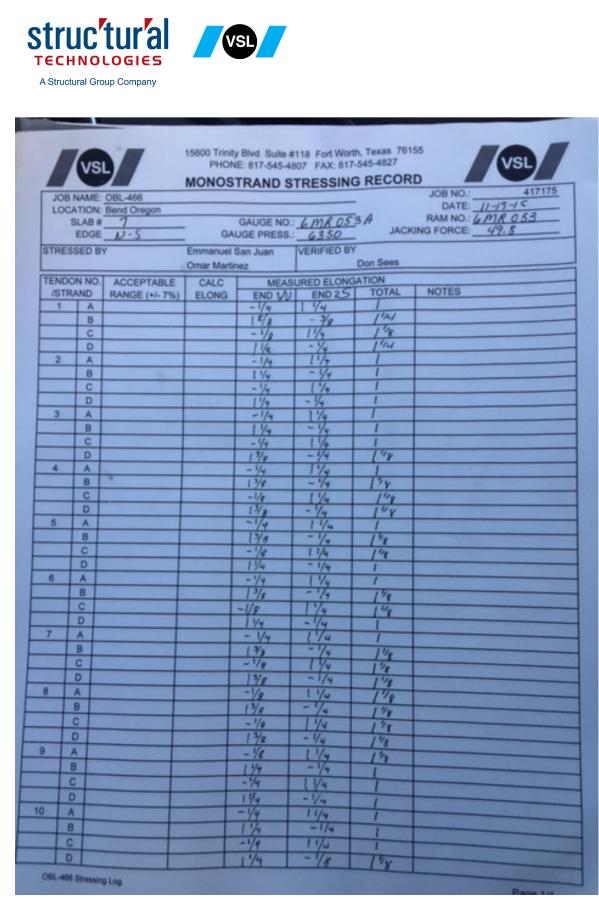
			MONOS	TRAND S	TRESSIN	G RECOR	RD
	B NAME:					_	JOB NO.: 417
	SLAB #	Bend Oregon		GALIGE NO.	6 MR 0 53	-0	DATE: 11-19- RAM NO .: 6MR 05-
	EDGE		GA	UGE PRESS.	6350	JACK	KING FORCE: 49.8
STR	ESSED B	Y	Emmanuel		VERIFIED BY		
			Omar Marti			Don Sees	
	DON NO.	ACCEPTABLE	CALC	MEAS	URED ELONG	BATION	A BERNARD AND A STATE
/5	TRAND	RANGE (+/- 7%)	ELONG	END 1/V			NOTES
-	B			- 1/8	- 1/4	148	
	C			-1/1	1%	1''8	
	D			13/8	-1/4	1 1/8	
2	B			-1/4	-1/8	1	
	C			13/8 - 1/8	-18	11/18	
	D			1 7/8	-1/4	11/8	
3	A			-1/9	11/4	148	
-	B			1/4	- 1/4	1	
	D			-'/s 13/8	13/4 - 1/4	11/4	
4	A			-1/8	1 1/4	11/2	
_	B			11/4	- 1/9	1'2	10000
	D			-18	1/4	1'4	No. of Concession, Name of
5	A	-		-1%	-1/4	1	
	8			148	-1/4	13	
	C			- 1/2	11/4	1%	
6	D			13/8	- 1/4	1'8	
0	B			-18	11/4	1 /2	
	C			- 4/3	-1/9	1%	A STATE OF A STATE
	D			1 1/4	- 1/4	1%	
7	A			-1/4	11/4	1	
	B		_	144	-1/8	1'8	
	D			-1/9	11/4	1%	
8	A			-1/8	-1/8	1%	
	в			194	-1/8	1 1/8	
	С	and the second second				1	
	D			- 1/4 1 /4 - 1/4	-1/4	1	
-	A			- 1/4	148	1'8	
-	B			14	- 1/8	1/8	
+	D			-1/4	17/8	18	
	A			1 1/4	- 1/8	148	
_	B			1/4	11/4	114	
	c			-1/4	- 1/8	11/8	
	D			11/4	-1/4	1	

LOCA	TION: LAB # EDGE	OBL-466 Bend Oregon	PHON	E: 817-545-4	#118 Fort Wo 807 FAX: 81	rth, Texas 76	155
LOCA	TION: LAB # EDGE	Bend Oregon			TRESSIN		RD
SI	LAB #	05				-	JOB NO.: 4171
E	EDGE			GALIGE NO.	6mR 05	2.0	DATE: 11-19-15 RAM NO .: 6 MR 053
STRESS	SED BY	N-S	GA	UGE PRESS.	6350	JACI	KING FORCE: 49-8
		1	Emmanuel		VERIFIED B		
			Omar Martin			Don Sees	
TENDO		ACCEPTABLE	CALC	MEAS	URED ELONG		
/STRA 11	_	RANGE (+/- 7%)	ELONG	END 1 N	END 2 S		NOTES
	AB			11/4	11/2	1	
	C			-1/4	14	1	
	D			10/4	- 1/4	1	
12	A			-1/4	11/4	I	
	B			11/4	- 1/9	1	
	CD			-1/4	1 1/4	1	
13	A			11/4	- 1/4	1	
	B			₽1/4 1.1/4	13/8	1'8	
	C			-1/4	1/2	1%	
	D			11/2	- 1/4	1 1/8	
	A			-1/4	13/8	1'2	
	B			11/4	-1/8	14	
	D			-1/4	1 1/4	1	
	-			11/4	- 1/4	1	
	-						
	-						
	-						
	-						
	1						
				-			
	-						
			_				
			_				
			_				
	11		_				

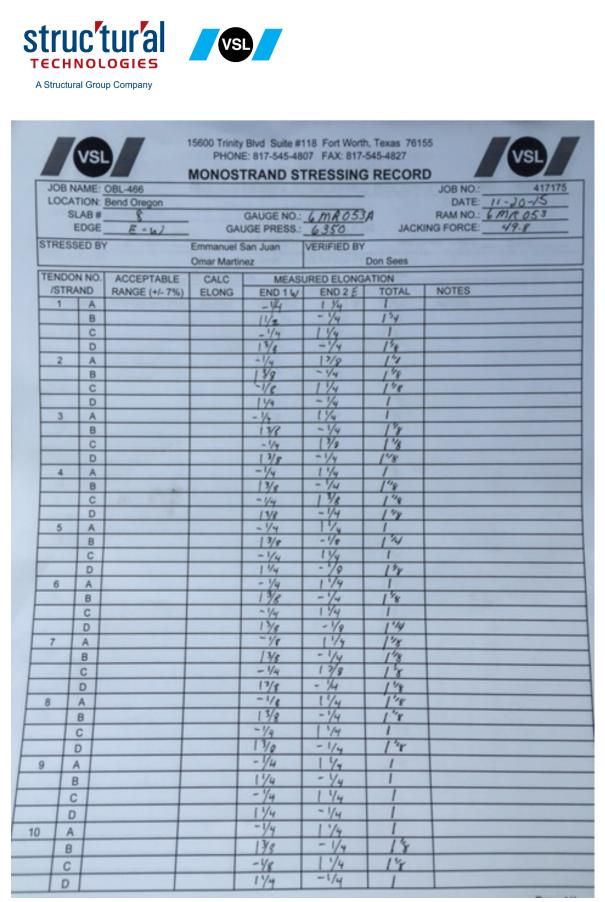

Lon

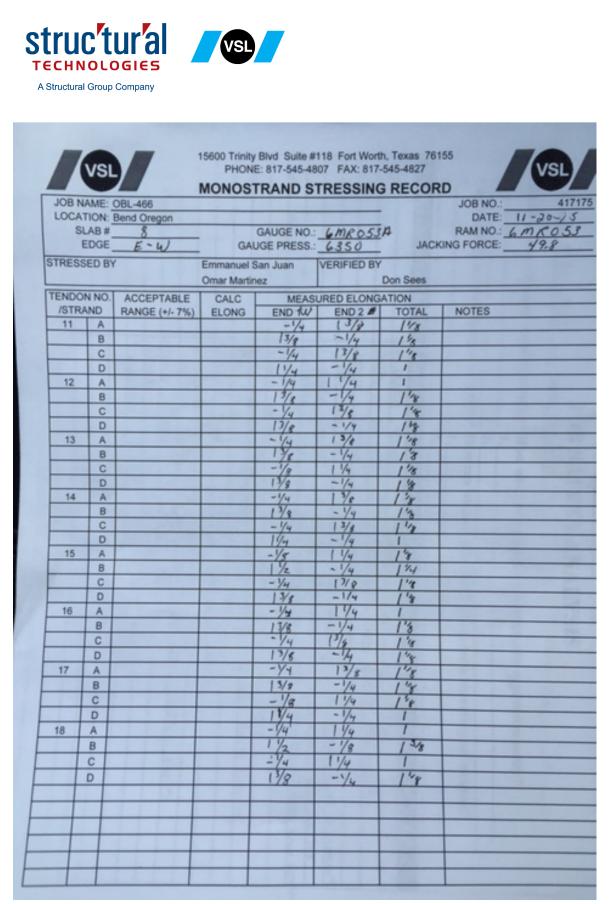
тес	ΗΝΟ	tural LOGIES	V	SL			
		SL	PHON	IE: 817-545-4	#118 Fort Wor 1807 FAX: 817	-545-4827	D JOB NO.: 417175
LO	SLAB EDG	And and a state of the local division of the	- GA	GAUGE NO.	6 MR 053	A JACK	DATE: 11-19-15 RAM NO.: 6 MR 053 GING FORCE: 49.8
STR	ESSED		Emmanuel	San Juan	VERIFIED BY	Don Sees	
TEN	DON NO	ACCEPTABLE	CALC	MEAS	SURED ELONG	ATION	
	TRAND	RANGE (+/- 7%)	ELONG	END 1 4	END 2 E		NOTES
11				- 1/2	11/2	14	
-	B			1 3/8	-18	14	
-	C			-1/1	1 1/4	1%	
10	D			1%	- 1/4	14	
12	B			-14	1 1/4	16	
	C			1 1/8	- 1/4	13	
	D			- 1/4 1 2/8	- 1/2	150	
13				- 1/8	1 1/4	1%	
	B	1		1 1/4	- 1/4	1.8	
	C			- 1/1	1 1/4	14	
	D			13/8	- 1/4	1'4	
14	A			- 48	11/4	1%	and the second s
	B			1 7/2	- 1/4	11/8	
	С			- 1/8	(%	18	Contraction of the local division of the loc
	D			1 1/4	- 1/4	1	
15	A			- 1/4	11/4	1	
	B			1 3/8	- 1/4	14	
	C			- 1/4	1/4	1	
	D			11/1	- 1/4	1%	
16	A			- 1/4	11/4	1	
	B			1 1/4	- 1/4	1	
	D			-1/8	1 /4	1%	
17	A			13/3	- /4 - /4 - /4 - /4 - /4	1%	
	B			- 1/9 11/9 - 1/9	(/4	1%	
	C			- 1/4	- 1/4	1	
	D			1 1/8	- 14	1	
18	A			-1/9	- 1/4	1%	
	B			1.14	1 /4	1'8	
	C			144 -1/4	- 1/4	1	
	D			13/8	1/4		
1				17	- 1/4	118	

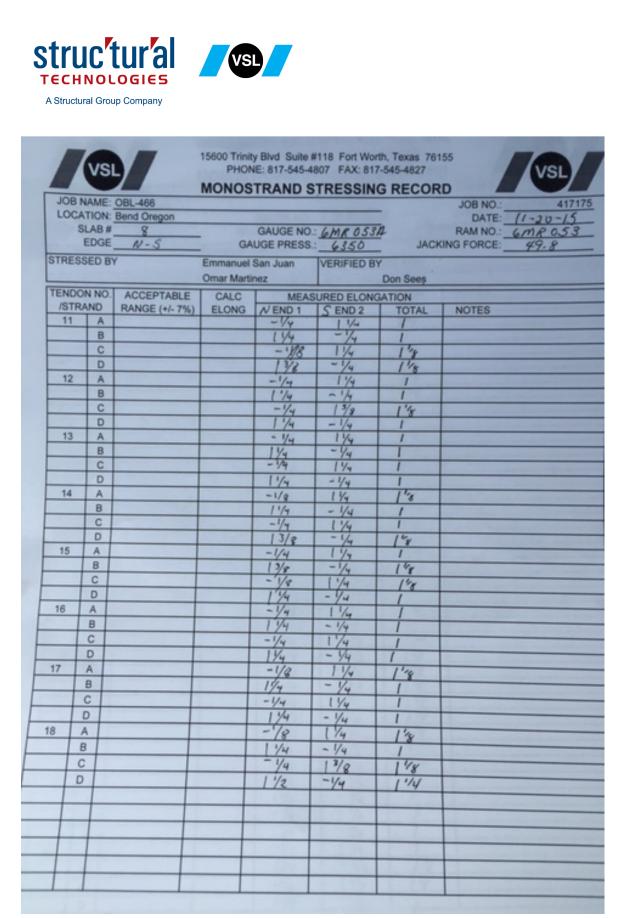

L-400 Stressing Log



			MONOS	TRAND	STRESSI	NG RECOR		41712
		OBL-466 Bend Oregon					JOB NO .:	11-19-15
	SLAB	G G		GAUGE NO	bmR.O	53	RAM NO .:	6MR-053
	EDGE	11-5	GA	UGE PRESS	8. 6350	JACI	ING FORCE:	49.8
STRES	SED B				VERIFIED	BY		
			Omar Marti		TETO ILE	Don Sees		
TEND	ON NO.	ACCEPTABLE	CALC	MEA	SURED ELON			
/STF	AND		ELONG	END 1/			NOTES	
1	A			-1/8	1 /4	1'8		
	B			11/4	- 1/4	1	-	
_	C			-1/1	11/4	1'2		
2	D			13/2	- 1/4	1 1 18		
-	B			-1/4 13/8	1 1/4	1%		
	C			-1/4	11/4	13		
	D			13/8	-1/4	11/2		
3	A			- 1/4	1 1/4	1		
	В			11/2	- 1/4	14		Real Providence
-	C			- 4e	1 /4	148		
4	DA			17/8	~ 1/4	14		
-	B			- 1/4	1/2	1		
	C			1/9	- 1/4	1		
	D			14	-/4	1'1	And the second second	
5	A			-1/4	11/4	1		
	B			13/1	- 1/4	1%		
-	C			-1/8	11/4	1 1/8		
6	A			114	-1/4	1		
0	B			-14	11/4	1'8		
	C			11/4	- 1/4			
	D			-1/9 1 //9	17/8	14		
7	A			- 1/8		1		
	В			11/4	1 1/4	1'1		
-	C			- 1/8	11/4	178		
-	D			1 1/4	- 1/4	1.6		
8	A			-1/4	1 1/4	i		
	BC			13/8	- 1/4	14		
-	D			- 1/0	1%	11/18		
	A		-	141	- 1/4	1%		
_	B			-14	1 1/4 - 1/4	/		
	c		-	178	- 1/4	1 1/8		
	5			- 1/8	1 1/4 - 1/4	1'8		
0 1					- 1/4	1		
E				- 1/4	1/4	1		
C				-1/4	- 1/8	1		
D	_			11/4	- 1/4	1%		




тес	HNO	tural LOGIES		SL			
	SLAB #		MONOS	TRAND S	118 Fort Wort 118 Fort Wort 1007 FAX: 817- TRESSING Con R 05 63 50	RECOR	VSL
STRE	EDGE SSED BY		Emmanuel :	San Juan	VERIFIED BY	1	
	- li		Omar Martin	The second s		Don Sees	
	ON NO.	ACCEPTABLE RANGE (+/- 7%)	CALC ELONG		END 2 E	TOTAL	NOTES
1	RAND	101110E (1-1-76)	LLONG	END 1W	11/4	T	
-	B			11/4	- 44	1	
	C			- 1/8	1%	14	
	D			14	-1/4	1	
2	A			-1/4	1 1/4	148	
-	B			- 1/4	13/8	1/2	
-	D			11/4	- 1/4	1	
3	A			-1/4	13/4	14	
	B			11/4	-1/4	1	
	C			- 1/4	1/4	1	
	D			11/4	-1/4	1	Martin and Martin and Martin and
4	A			- 1/9	1 1/4	148	
	B			145	- 1/4	138	
_	D			-1/4	1/4	1'1	
5	A			13/2	- 1/4	11	
	B			1/1	-1/4	1	
	C			- 1/8	1%	1%	
	D			13/8	- 1/4	1 1/4	
6	A			- 1/4	1 1/4	1	
	В			14	- 1/4	1	
	C			-1/4	13/2 -1/4	1%	
-	D			13/9	-1/4	148	
7	AB			- 14	-1/4	1	
-	C			11/4	- 1/4	1	
	D			- 1/4 1 */4 - 1/8	1 /4 - 1/4 1 /4		
8	A			- 1/0	11/4	1 48	
	B			11/4	-1/4		
	C			- 1/4	1/4	1	
	D			12/1	- 1/4 1/4 - 1/4	1%	
9	A			- 1/8	1/2	1'18	
	В			1/9	- 1/4		
	C			-1/4	11/4	1	
	D			-1/4 []/a -1/8 []/4 -1/4 -1/4 []/4	- 1/4	1	
10	A			- 1/4	11/4 -1/4 11/4	1	
	8			11/4	-1/4	1	
	C			- 1/4 1 1/4 - 1/8 1 1/H	-1/4 (1/4	14	
	D			14	- 1/4	1	
-							


Т	есн	ΝΟΙ	up Company		SL			
	LOC	ATION: SLAB # EDGE	N-S	MONOS	GAUGE NO.	TRESSIN	G RECOR	(VSL)
				Omar Marti		VERI ILD D	Don Sees	
	TENDO		ACCEPTABLE	CALC	MEAS	URED ELON	GATION	
	/STR 11	-	RANGE (+/- 7%)	ELONG	END 1/V	END 2-S	TOTAL	NOTES
		AB			13/8	1 1/4	118	
		C			-1/8	11/4	1 1/8	
		D			13/8	-1/4	1%	
	12	A			-1/4	1/4	1	
		BC			178	- 1/4	14	
1		D			-1/4	1/4	1	
[13	A			-1/4	11/4	1	
-		В			11/4	- 48	1%	
H		C			- 1/8	1%	14	
H	14	DA			13/8	-1/8	1/14	
h		B			- 1/8	1/8	114	and a second
		C			1 1/4 - 1/8	11/2	118	and the second sec
		D			11/4	- 44	1	
H								
H	-	-						
H	-					1		
								Contraction of the second second
						-		
	-	-						
	-	-						
F	-						and the second	
						and the second		
		0						and the second
-		-						
-		-						
-		-				and the second	and the second second	
-		-					and the second second	
		-					and the second second	
		-			and the second second	and and a state of the	- and the second	
	08L-458 :	Stression	llos				and the second second	

	NAME:	OBL-466			TRESSING		DATE: 11-20-15
		Bend Oregon		GALIGE NO.	: 6mR 0531	A	RAM NO .: 0 MIK - 0
	SLAB #	N-S	GA	UGE PRESS.	6350	JACK	ING FORCE: 49.8
0705					VERIFIED BY		
STRE	SSED BY		Omar Marti			Don Sees	
TEND	OON NO.	ACCEPTABLE	CALC		SURED ELONG	ATION	NOTES
/ST	RAND	RANGE (+/- 7%)	ELONG	N END 1	S END 2	TOTAL	NUTES
1	_			- V8	1 1/4	1 1/3	
	B			13/8	- 14	1.8	
	C			- 44	1/4	1	
-	D			- 14	-74	1	
2	_			13/9	144	1'8	
-	B			- 18	1/4	1'2	
-	C			1/8	-14	1	
-	D			-1/4	-1/4 [1/4	1	
3	_			1/2	- 1/4	14	
-	B			- 1/4	11/4	1	
-	D			14	1 1/4 - 1/8	1'8	
4				-1/4	11/4	1	
	B			1/2	- 1/4	14	
-	C			- 1/8	11/4	1'8	
	D			1 1/4	-/4	1	
5				- 4	14	1	
	B			1/2	- 1/4	114	
	C			- 1/4	1 1/4 - 1/4	1	
	D			1/4	- 1/4	1	
6	A			-1/8	1/4	1'8	
	B			14	- 1/8	1'8	
	C			-1/4	-1/8	1	
	D			13/8	-1/4	18	
7	A			-1/4	11/4	1	
	В			13/8	- 1/4	1'8	
	C			- 1/8	1 1/4	1'8	
	D			1/4	-1/4	1	
8	A			-1/4	14	1	
	B			1 1/4 -1/4	-1/4	1	
	C			-1/4	13/8	1'18	
	D			1/4	-1/4	1	
9	A			- 1/4	11/4	1	
9				13/8	- 1/4	1'1	
	B			-1/4	11/2	1	
	C			111	-1/4	1	
	D			1 <u>/</u> 4 - <u>/</u> 4	- /4	1	
10	A			- 44	1/4	1.44	-
	в			11/2	-1/4	1'14	
-	C			- 1/4	1/4		
	0			13/8	-1/4	1 1/8	

OBL 466 ADDITIONAL SAFTY PROCEDURES ASSOCIATED WITH STRESSING OPERATION

STRESSING

1 THE STRESSING OPERATIONS MUST BE UNDER THE IMMEDIATE CONTROL OF A PERSON EXPERIENCED IN THIS TYPE OF WORK; HE SHALL MAINTAIN A CLOSE CHECK AND RIGID CONTROL OF ALL OPERATIONS. SAFETY IS THE TOP PRIORITY!

2 ADEQUATE ACCESS SCAFFOLDS, PLATFORMS, AND SAFETY DEVICES SHALL BE PROVIDED BY THE GENERAL CONTRACTOR AS REQUIRED BY GOVERNING JOBSITE STANDARDS, INSTALLATION, OR STRESSING PROCEDURES.

3 READ VSL MAINTENANCE MANUAL FOR FIELD SAFETY AND MAINTENANCE OPERATIONS. THE JOBSITE SAFETY PROGRAM SHALL INCLUDE STRUCTURAL TECHNOLOGIES / VSL SAFETY POLICIES AND PROCEDURES.

4 TAKE SAFETY PRECAUTIONS AS NECESSARY. DO NOT PERMIT ANYONE TO STAND BEHIND, ABOVE, OR BELOW RAMS, OR DEAD END AREA WHILE STRESSING. ONLY ESSENTIAL PERSONNEL SHALL BE IN THE AREA.

5 ALL TENDONS SHALL BE STRESSED BY MEANS OF STRUCTURAL TECHNOLOGIES / VSL HYDRAULIC RAMS, EQUIPPED WITH CALIBRATED HYDRAULIC PRESSURE GAUGES. A CALIBRATION CHART SHALL ACCOMPANY EACH GAUGE. NOTE: RAMS AND GAUGES ARE NOT TO BE INTERCHANGED.

6 THE STRANDS MAY BE FULLY STRESSED WHEN CONCRETE TEST CYLINDERS, CURED UNDER JOBSITE CONDITIONS, HAVE BEEN TESTED AND INDICATE THE CONCRETE HAS REACHED THE MINIMUM CYLINDER STRENGTH INDICATED ON THE POST TENSIONING DRAWINGS.

7 THE POST TENSIONING OPERATION SHALL BE SO CONDUCTED THAT ACCURATE ELONGATION OF THE TENDONS CAN BE RECORDED AND COMPARED WITH ELONGATIONS.

8 RECORDS OF ALL GAUGE PRESSURES AND ELONGATIONS SHALL BE SUBMITTED PROMPTLY TO THE ENGINEER FOR APPROVAL.

9 PROPER ALIGNMENT OF THE ANCHORAGE AND JACKING EQUIPMENT IS MANDATORY DURING ALL STRESSING OPERATIONS. 10 STRESSING PROCEDURE (VSLAB 6-4)

A) INSPECT RAM AND PUMP FOR LOOSE SCREWS, FITTINGS, ELECTRICAL, AND HOSE CONNECTIONS AND TIGHTEN IF NECESSARY. CHECK JACK GRIPPERS TO INSURE THEY ARE CLEAN AND ALIGNED PROPERLY.

B) INSTALL WEDGES INTO EACH WEDGE CAVITY (DO NOT REMOVE OILY FILM FROM WEDGES).

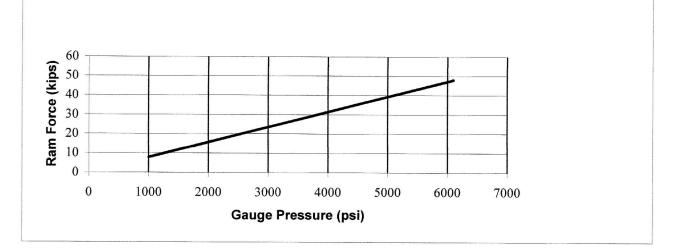
C) AS A REFERENCE FOR ELONGATIONS MEASUREMENTS, MARK BOTH ENDS WITH A QUICK DRY SPRAY PAINT, WHITEOUT OR OTHER MEANS TO ESTABLISH A REFERENCE POINT FOR ELONGATION MEASUREMENT.

D) STRESSING STRANDS IN A SYMMETRIC MANNER STARTING FROM THE CENTER OF THE SLAB USING 0.6" MONO RAM. ALWAYS STRES THE STRANDS ON THE ROW CLOSE TO THE MIDDLE OF THE SLAB FIRST, THEN GO TO THE ROW AWAY FROM THE MIDDLE OF SLAB. For THE ROW CLOSEST TO THE GROUND, RECOMMEND TO STRESS THE TENDON ON THE OTHER END OF THE SLAB SO THAT THE STRANDS CAN BE ON THE TOP ROW AWAY FROM THE GROUND. ONLY SINGLE-END STRESSING OPERATION IS NEEDED.

E) TO MEET THE DESIGN REQUIREMENT, ALL TENDONS WILL BE STRESSED TO 85% MUTS, WHICH EQUALS TO 49.8 KIPS. REFER TO THE CALIBRATION CHART OF STRESSING EQUIPMENT FOR GAUGE PRESSURE.

F) AFTER REMOVING THE JACK FROM THE TENDON TAIL, PLACE THE MARKING DEVICE AGAINST THE CONCRETE SURFACE, MEASURE THE DISTANCE FROM THE MARKING DEVICE TO THE REFERENCE MARK TO THE NEAREST 1/8 IN AND RECORD ON THE STRESSING RECORD FORM. SINCE THIS IS EXTREME SHORT TENDON (16 FT), THE MEASURED ELONGATION SHOULD COMPARE WITH ±7% OF CALCULATED ELONGATION ± 1⁄4 IN AS SPECIFIED IN PTI / ASBI M50-12 "GUIDE SPECIFICATION FOR GROUTED POST-TENSIONING" SECTION 12.6. THE CALCULATED ELONGATION IS 1.25 IN SO THE ELONGATION MEASURED SHOULD BE BETWEEN 0.91 IN TO 1.5875 IN. OR MORE STRINGENTLY BETWEEN 1 IN TO 1-1/2 IN.

G) PROMPTLY SUBMIT STRESSING RECORDS TO THE ENGINEER. UPON APPROVAL OF THE ELONGATIONS, STRESSING TAILS MAY BE REMOVED USING AN APPROVED METHOD TO APPROXIMATELY 3/4" FROM FACE OF ANCHOR HEAD.


H) INSTALL GROUT FITTINGS AND PREPARE FOR GROUTING.

REPORT OF RAM CALIBRATION

Client:	VSL	Report No.: 11384A
Ram S/N:	6MR 053	Date of Calibration: 11/04/15
Gauge:	А	Client No.: 101086
Load Cell S/N:	83103, calibrated 03/06/15	
Strain Ind. S/N:	SI-021	

Gauge Pressure	Μ	Average of Three			
(psi)	Reading #1	eading #1 Reading #2 Reading #3			
1,000	7.87	7.88	7.62	7.79	
2,000	15.75	15.79	15.78	15.77	
3,000	23.53	23.58	23.65	23.59	
4,000	31.47	31.34	31.40	31.40	
5,000	39.35	39.11	39.26	39.24	
6,000	47.10	46.67	47.01	46.93	
6,100	47.84	47.52	47.67	47.68	

Load Cell S/N:83103, calibrated 03/06/15

Gauge Pressure(psi) = (127.974 * Ram Force(kips)) -11.6

Technician:

J. Gary

Jack Gary, General Manager

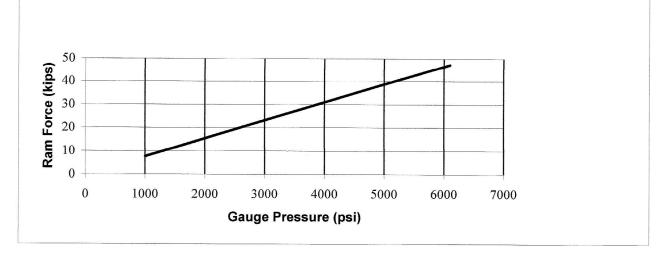
LIMITATIONS: The test results presented herein were prepared based upon the specific samples **povigi** for testing. We assume no responsibility for variation in quality (composition, appearance, performance, etc.) or any other feature of similar subject matter provided by persons or conditions over which we have no control. Our letters and reports are for the exclusive use of the clients to whom they are addressed and shall not be reproduced except in full without the written approval of Construction Testing Sciences, LLC.

REPORT OF RAM CALIBRATION

 Client:
 VSL

 Ram S/N:
 6MR 053

 Gauge:
 B


 Load Cell S/N:
 83103, calibrated 03/06/15

 Strain Ind. S/N:
 SI-021

Report No.: 11384B Date of Calibration: 11/04/15 Client No.: 101086

Gauge Pressure	м	Average of Three			
(psi)	Reading #1	Reading #1 Reading #2 Reading #3			
1,000	7.65	7.62	7.42	7.56	
2,000	15.58	15.51	15.64	15.58	
3,000	23.13	23.10	23.20	23.14	
4,000	30.85	30.75	31.04	30.88	
5,000	38.88	38.71	38.97	38.85	
6,000	46.69	46.45	46.72	46.62	
6,100	47.39	47.08	47.34	47.27	

Load Cell S/N:83103, calibrated 03/06/15

Gauge Pressure(psi) = (128.436 * Ram Force(kips)) +20.07

Technician: J. Gary

Jack Gary, General Manager

LIMITATIONS: The test results presented herein were prepared based upon the specific sample **Brogen** for testing. We assume no responsibility for variation in quality (composition, appearance, performance, etc.) or any other feature of similar subject matter provided by persons or conditions over which we have no control. Our letters and reports are for the exclusive use of the clients to whom they are addressed and shall not be reproduced except in full without the written approval of Construction Testing Sciences, LLC.

CONSTRUCTION OF Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Construction Testing Sciences P.O. Box 824483, Dallas, TX 75382-4483

CONSTRUCTION TESTING SCIENCES

Phone: 214.703.8911

Report No.: 11385A

Client No.: 101086

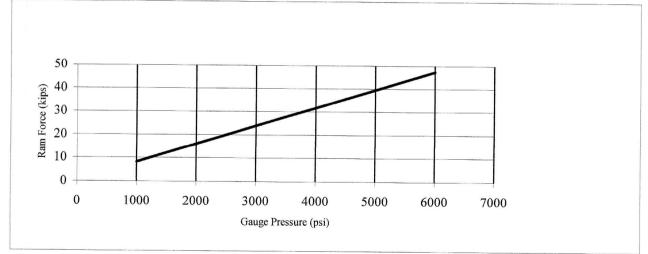
Date of Calibration: 11/04/15

www.ctsciences.com

REPORT OF RAM CALIBRATION

 Client:
 VSL

 Ram S/N:
 6MR-076


 Gauge:
 A

 Load Cell S/N:
 83103, calibrated 03/06/15

 Strain Ind. S/N:
 SI-021

Gauge Pressure		Machine Load (kips)	Average of Three
(psi)	Reading #1	Reading #2	Reading #3	Readings
1,000	8.03	8.17	8.10	8.10
2,000	15.97	16.14	16.06	16.06
3,000	24.03	23.88	23.94	23.95
4,000	31.68	31.75	31.68	31.70
5,000	39.48	39.53	39.50	39.50
6,000	47.11	47.07	47.06	47.08

Load Cell S/N:83103, calibrated 03/06/15

Gauge Pressure(psi) = (128.2 * Ram Force(kips)) -55.28

Technician:

J. Gary

Jack Gary, General Manager

LIMITATIONS: The test results presented herein were prepared based upon the specific samples provided for testing. We assume no responsibility for variation in quality (composition, appearance, performance, etc.) or any other feature of similar subject matter provided by persons or conditions over which we have no control. Our letters and reports are for the exclusive use of the clients to whom they are addressed and shall not be reproduced except in full without the weige approval of Construction Testing Sciences, LLC.

CONSTRUCTION Pre-Stressed Concrete Slabs -- Open Air Blast Testing fination Testing Sciences

CONSTRUCTION TESTING SCIENCES

P.O. Box 824483, Dallas, TX 75382-4483 Phone: 214.703.8911

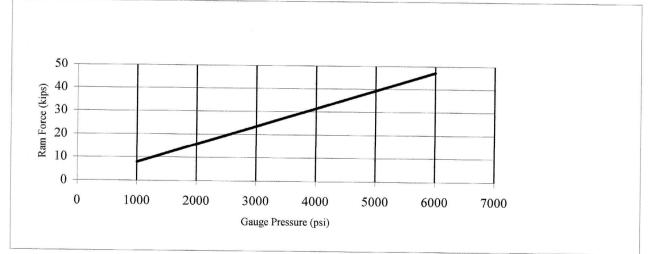
www.ctsciences.com

REPORT OF RAM CALIBRATION

 Client:
 VSL

 Ram S/N:
 6MR-076

 Gauge:
 B


 Load Cell S/N:
 83103, calibrated 03/06/15

 Strain Ind. S/N:
 SI-021

Report No.: 11385B Client No.: 101086 Date of Calibration: 11/04/15

Gauge Pressure		Machine Load (kips))	Average of Three
(psi)	Reading #1	Reading #2	Reading #3	Readings
1,000	7.99	7.81	7.62	7.81
2,000	15.73	15.72	15.69	15.71
3,000	23.50	23.42	23.62	23.51
4,000	31.41	31.48	31.47	31.45
5,000	39.14	39.34	39.32	39.27
6,000	46.98	46.99	46.95	46.97

Load Cell S/N:83103, calibrated 03/06/15

Gauge Pressure(psi) = (127.533 * Ram Force(kips)) -1.36

Technician:

J. Gary

Jack Gary **General Manager**

LIMITATIONS: The test results presented herein were prepared based upon the specific samples provided for testing. We assume no responsibility for variation in quality (composition, appearance, performance, etc.) or any other feature of similar subject matter provided by persons or conditions over which we have no control. Our letters and reports are for the exclusive use of the clients to whom they are addressed and shall not be reproduced except in full without th grate approval of Construction Testing Sciences, LLC.

,					Open Air Blas		1		
				VSTRUCTL					
			8006 Ha	aute Court, Spr	ringfield, VA 22	2150			
		F	riction and	Elongation Ca	alculations (vers	sion 4.4)			
	Project Name:	Prototype P	anel						
	Date:	11/18/	2015						
	Engineer:	ZX							
POST-TE	INSIONING SYST				'T is:				
	Coefficient of Fri				<u>'-Slab</u>				
	Coefficient of W		0.0010	/ft					
	ind PROFILES	VSLA		REQD F		klf		Note: Force	e is after seating
Span	o (() T	Tendon		Total	Support	- 4.		and before	
	Span(ft.) Type		t. <u>Right</u>	<u>alpha (rad.)</u>		Force (kip:	<u>s)</u>	losses.	0
1 2	16.00 1	5.38 5.38	5.38		1 2	41.0 41.6	45		
2					3	41.0	40		
4					4		35		
5					5		30		
6					6		30		
7					7		25	-	
8					8		20		
9					9		-		
10					10		15	-	
11					11		10	-	
12					12		5		
13 14					13 14		5		
14					14			5	10 15 20
Total	16.00				16				id vs position.
I KESSI		Near End Only	(Support 1)	O Near End Then F	Far End				
		O Far End Only		O Far End Then Ne	ear End				
	DRODERTIES	• • • • ,							
SIRAND	PROPERTIES								
	Illtimata Straca	four	270	koi C	roop Sontional	Aroa:	0.217	og in	
	Ultimate Stress,	•	270 28500		cross-Sectional		0.217	•	
	Young's Modulu	s:	28500	ksi S	trand Type:	Grade 270) Low Re	laxation	
OTHER II	Young's Modulus	s: king	28500 85%	ksi S	Beam or Slab ?	Grade 270 _ Slab Th) Low Re hickness:	laxation 10.6	in
OTHER II	Young's Modulus NFO % Jack Jacking Force pe	s: king	28500 85% 49.8	ksi S kips	Beam or Slab ?	Grade 270 _ Slab Th) Low Re	laxation 10.6	in ft
DTHER II	Young's Modulus	s: king	28500 85%	ksi S kips	Beam or Slab ?	Grade 270 _ Slab Th) Low Re hickness:	laxation 10.6	
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss:	s: king er Strand:	28500 85% 49.8 0.250	ksi S kips in.	Eeam or Slab ?	Grade 270 Slab Th Tendon	D Low Re hickness: Spacing	laxation 10.6 0.19	ft
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES	s: king er Strand:	28500 85% 49.8 0.250	ksi S kips in. ssion per stran	Eeam or Slab ?	Grade 270 Slab Th Tendon) Low Re hickness:	laxation 10.6	ft
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A:	s: king er Strand: Average Init	28500 85% 49.8 0.250 ial compres 1691	ksi S kips in. ssion per stran psi	Beam or Slab ? O Beam / Band Slab d at stressing:	Grade 270 Slab Th Tendon 40.43) Low Re hickness: Spacing kips	laxation 10.6 0.19 (after seatir	ft ng)
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng	s: king er Strand: Average Init th, Stressing:	28500 85% 49.8 0.250 ial compres 1691 6000	ksi S kips in. ssion per stran psi psi	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes:	Grade 270 - Slab Th Tendon - 40.43 I 0.5 1	D Low Re hickness: Spacing kips for post-t	laxation 10.6 0.19 (after seatir ensioned mo	ft ng) embers
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng	s: king er Strand: Average Init th, Stressing: th (28-day):	28500 85% 49.8 0.250 ial compres 1691 6000 6000	ksi S kips in. ssion per stran psi psi psi	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr:	Grade 270 - Slab Th Tendon - 40.43 I 0.5 1 1.6 1) Low Re nickness: Spacing kips for post-to for post-to	laxation 10.6 0.19 (after seatir ensioned me	ft ng) embers embers
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31	ksi S kips in. ssion per stran psi psi psi in.	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh:	Grade 270 - Slab Th Tendon - 40.43 I 0.5 f 1.6 f 0.85 f) Low Re nickness: Spacing kips for post-t for post-t for 3 days	laxation 10.6 0.19 (after seatir ensioned me ensioned most	ft ng) embers embers t cure to stress.
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31	ksi S kips in. ssion per stran psi psi in. days	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre:	Grade 270 - Slab Th Tendon - 40.43 I 0.5 f 1.6 f 0.85 f 5 l) Low Re hickness: Spacing kips for post-tu for post-tu for 3 days ksi for 27	laxation 10.6 0.19 (after seating ensioned models from moistones 0 grade low	ft ng) embers embers t cure to stress. -lax strand
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: rip:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3	ksi S kips in. ssion per stran psi psi psi in.	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh:	Grade 270 - Slab Th Tendon - 40.43 I 0.5 f 1.6 f 0.85 f 5 I 0.04 f	D Low Re hickness: Spacing kips for post-tu for 3 days ksi for 27 for 270 g	laxation 10.6 0.19 (after seating ensioned models from moisting 0 grade low-lax	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force po Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: rip: y:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80	ksi S kips in. ssion per stran psi psi psi in. days kips %	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre:	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f	b) Low Re hickness: Spacing kips for post-tr for post-tr for 3 days ksi for 27 for 270 g for low-la	laxation 10.6 0.19 (after seating ensioned models from moistones 0 grade low	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: rip: y:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80	ksi S kips in. ssion per stran psi psi psi in. days kips %	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre:	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f	b Low Re nickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979.	laxation 10.6 0.19 (after seating ensioned models from moisting 0 grade low-lax	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force po Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Con	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre:	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day	laxation 10.6 0.19 (after seatir ensioned me ensioned me s from moist 0 grade low- rade low-lax x strand at 6	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Con	trand Type: Beam or Slab ? Beam or Slab ? Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Cre: Crete Internation	Grade 270 Slab Th Tendon 40.43 I 0.5 1 1.6 1 0.85 1 0.04 1 0.7 1 nal, June 1	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day	laxation 10.6 0.19 (after seating ensioned model ensioned models from moist 0 grade low- rade low-lax x strand at 6 initial	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Ec)	trand Type: Beam or Slab ? Beam or Slab ? Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: crete Internation	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = =	b) Low Re hickness: Spacing kips for post-tr for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06	laxation 10.6 0.19 (after seating ensioned model ensioned models from moist 0 grade low- rade low-lax x strand at 6 initial	ft embers embers t cure to stress. -lax strand
_ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage:	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Con 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Cre: crete Internation 6(V/S)) (100-RH)	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = =	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71	laxation 10.6 0.19 (after seating ensioned model ensioned models from moist 0 grade low- rade low-lax x strand at 6 initial	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation:	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Ec)	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Cre: crete Internation 6(V/S)) (100-RH)	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June f = = = = = = =	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78	laxation 10.6 0.19 (after seating ensioned model ensioned model ingrade low- rade low-lax x strand at 6 initial 4.42E+06	ft embers embers t cure to stress. -lax strand
ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage:	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Con 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Cre: crete Internation 6(V/S)) (100-RH)	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = = = = = = =	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 <u>2.78</u> 28.41	laxation 10.6 0.19 (after seating ensioned model ensioned model s from moist 0 grade low-lax x strand at 6 initial 4.42E+06 ksi	ft embers embers t cure to stress. -lax strand
. ONG-TE	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Con 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Cre: crete Internation 6(V/S)) (100-RH)	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June f = = = = = = =	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78	laxation 10.6 0.19 (after seating ensioned model ensioned model s from moist 0 grade low-lax x strand at 6 initial 4.42E+06 ksi	ft embers embers t cure to stress. -lax strand
.ONG-TE	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term	king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng:	28500 85% 49.8 0.250 fal compres 1691 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? Beam or Slab ? Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: crete Internation 6(V/S)) (100-RH) CR + SH)) Cre	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = = = = = = =	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 <u>2.78</u> 28.41	laxation 10.6 0.19 (after seating ensioned model ensioned model s from moist 0 grade low-lax x strand at 6 initial 4.42E+06 ksi	ft embers embers t cure to stress. -lax strand
	Young's Modulus NFO % Jack Jacking Force pe Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term RY First Elongation:	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: rip: y: d on Estimatin s of Concrete: ng: h Losses: 1.2	28500 85% 49.8 0.250 ial compres 1691 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Eci) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes:	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = = = = = =	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 <u>2.78</u> 28.41 6.17	laxation 10.6 0.19 (after seating ensioned model ensioned model ingrade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand strand 39% Fu
- ONG-TE Formula	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term Relaxiton: Second Elongation:	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: rip: y: d on Estimatin s of Concrete: ng: h Losses: 1.2 ion:	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft in.	ksi S kips in. ssion per stran psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Eci) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes: 1. Pmax, Pmin	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = = = = = and elonga	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78 28.41 6.17 ations inc	laxation 10.6 0.19 (after seating ensioned model ensioned model ingrade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand strand 39% Fu
- ONG-TE Formula	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term EX First Elongation: Second Elongati Pmax: 41.6	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng: h Losses: 1.2 ion: 6 kips 0.7	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft in. 1 fpu	ksi S kips in. ssion per stran psi psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes:	Grade 270 Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1 = = = = = = and elongaternia	b Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 <u>2.78</u> 28.41 6.17 ations incl s.	laxation 10.6 0.19 (after seating ensioned model ensioned model ingrade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand strand 39% Fu
- ONG-TE Formula	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term EX First Elongation: Second Elongati Pmax: 41.6	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng: h Losses: 1.2 ion: 6 kips 0.7	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft in.	ksi S kips in. ssion per stran psi psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? Beam or Slab ? Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes: 1. Pmax, Pmin but not long- 2. Pave include 3. The Deltas for	Grade 270 - Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1' = = = = = = and elongaterritic sets so long-term or the first a	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78 28.41 6.17 ations incl s. n losses.	laxation 10.6 0.19 (after seating ensioned model ensioned model insteade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand c strand 69% Fu
ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term EX First Elongation: Second Elongati Pmax: 41.6	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng: h Losses: 1.2 ion: 6 kips 0.7	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft in. 1 fpu	ksi S kips in. ssion per stran psi psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? O Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes: 1. Pmax, Pmin but not long- 2. Pave include	Grade 270 - Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1' = = = = = = and elongaterritic sets so long-term or the first a	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78 28.41 6.17 ations incl s. n losses.	laxation 10.6 0.19 (after seating ensioned model ensioned model insteade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand c strand 69% Fu
- ONG-TE Formula	Young's Modulus NFO % Jack Jacking Force per Seating Loss: FRM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term Relaxation: Second Elongation Pmax: 41.6 Pave: 36.5	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: ip: y: d on Estimatin s of Concrete: ng: h Losses: 1.2 ion: 6 kips 0.7	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft in. 1 fpu	ksi S kips in. ssion per stran psi psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? Beam or Slab ? Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes: 1. Pmax, Pmin but not long- 2. Pave include 3. The Deltas for	Grade 270 - Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1' = = = = = = and elongaterritic sets so long-term or the first a	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78 28.41 6.17 ations incl s. n losses.	laxation 10.6 0.19 (after seating ensioned model ensioned model insteade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand c strand 69% Fu
ONG-TE	Young's Modulus NFO % Jack Jacking Force per Seating Loss: ERM LOSSES P/A: Concrete Streng Concrete Streng Volume to Surfa Moist Cure to Str Force in This Str Relative Humidit as used are based Young's Modulus Elastic Shortenir Creep: Shrinkage: Relaxation: Total Long-Term EY First Elongation: Second Elongati Pmax: 41.6 Pave: 36.5 0.8 Δ	s: king er Strand: Average Init th, Stressing: th (28-day): ce Ratio: ressing: rip: y: d on Estimatin s of Concrete: ng: 1.2 ion: 6 kips 0.7 5 kips 0.6	28500 85% 49.8 0.250 ial compres 1691 6000 6000 5.31 3 80 g Prestres Ec = 570 ES = Ke CR = Kc SH = 8.2 RE = (Kr 8 in. in/ft in. 1 fpu	ksi S kips in. ssion per stran psi psi psi in. days kips % s Losses, Cond 000 (f'c)^1/2 s (P/A) (E/Eci) r (P/A) (E/Eci) r (P/A) (E/Ec) e-06 Ksh E(1-0.0 re - Jre (ES + C	trand Type: Beam or Slab ? Beam or Slab ? Beam / Band Slab d at stressing: Kes: Kcr: Ksh: Kre: Jre: Cre: Crete Internation 6(V/S)) (100-RH) CR + SH)) Cre tes: 1. Pmax, Pmin but not long- 2. Pave include 3. The Deltas for	Grade 270 - Slab Th Tendon 40.43 I 0.5 f 1.6 f 0.85 f 0.04 f 0.7 f nal, June 1' = = = = = = and elongaterritic sets so long-term or the first a	D Low Re hickness: Spacing kips for post-tr for 3 days ksi for 27 for 270 g for low-la 979. 28-day 4E+06 5.46 17.47 2.71 2.78 28.41 6.17 ations incl s. n losses.	laxation 10.6 0.19 (after seating ensioned model ensioned model insteade low-lax x strand at 6 initial 4.42E+06 ksi kips	ft ng) embers embers t cure to stress. -lax strand c strand 69% Fu

APPENDIX C. SLAB INSPECTION AND CONCRETE RESULTS

		1 1ST Posi
		Slabs Open Air Blast Testing (Final Report)
re Pour Inspection	1.01.001	
iolid Slabs-Panels		Insp. Agency: K, C, C
Date:		Bed #:
Job Number: Piece Number:	58590	Set up By: Job Name: (2, 1a), L
r iede Hamber.		
	Design	Actual
form Condition & Cleanliness		6002 (Wood)
ength	16-0'	16-0
Vidth	16-0"	16-0"
Jepth	10 5/8"	105/8 TO 103/4 Some Low SPOT ON
iquareness/Diagonals		22-71/4 × 22-75/16 proving UT
P.T DercT.	LOWER G'Z' TO Z OFF B	ottom 7 Pipe are portant and in and To get perfort.
Return StraighT	1 - H	Height: Width: Length
Reveals SIL PT	Duct vary + - Y4	"Do TO BOUT P! Pe.
Chamfer U-Bans 4	BIOS North Goutn BIOY east west	TOP: DO TO CONFORT WITH Trumputs.
Plates		N.F. F.F. S.F. Qty.
Plates		N.F. F.F. S.F. Qty.
Plates		N.F. F.F. S.F. Qty.
Trampets		
Hechow #15 CSST	1-6 off sides 17	"O.C.(B) 50. 55/16 OFF B. TCL
Hadrons#2 West	1-6 OFF Sides 12	"O.C. (B) 55 5 5/16 OFF B. I Tel
Hole #1 North	1.6'OFF sides 12'	O.C (3) 50 31/16 7 61/16 TO & OFF BOHO
Hole #2 South	1.6" off gides 12"	0. C (3 sp. 3 1/16 + 6/16 TO & OFF Botta
Features		
Inserts-Coil or Ferrule		Qty: Size: N.F. F.F. S.F.
Rebar Type	AGIS	A706 (A615) A615
Bar Sizes	<u> </u>	
All Tied In		all Tiez
Clearance	3/1" TOD & Bottom	
Lifting	1/2 strant @:	50 OFF Sides Off Parn pick pout
Performed By:	@ ST Bunks @ 4	io off ends 3'0 off sides.
Foreman:		Time Checked:
	Tom Walker	C-2 Time Called:
		Request Arrival Time:

	C#2	12 posi
	R Bonded Pre-Stressed Concrete	Slabs Open Air Blast Testing (Final Report)
re Pour Inspection		
iolid Slabs-Panels		Insp. Agency: K. R. C
Date:	10-23-15	Bed #:
Job Number: Piece Number:	58580	Job Name: 0, 3, L
riece number.		300 Manie,
	Design	Actual
orm Condition & Cleanliness		Good (wood)
ength	16-0"	16-0
Vidth	16-0"	16-04
)epth	10 5/8	1098 TO 10/16
iquareness/Diagonals	LIB105 North Side	22-75/16 22-7/24
- U Baris	4BIOY Sat Site	o To conflict with Trumposts
tetum	heist	Height: Width: Length:
leveals	55/4704	
thamfer P.T. Du		Top: Bottom:
Plates	West 55/16 TO &	N.F. F.F. S.F. Qty.
Plates	North 63/11 c/ upp	N.F. F.F. S.F. Qty
Plates	South Gilled upper	N.F. F.F. S.F. Qty.
Transets	1-7/2-9"0.0	- (12) sp.
Blockout #1 CaST	55/16 CL	5 5/16 TO CLOF Tramper
Blockout #2 West	5 5/16 c/ Low 315/16 ()	55/16 TO CL
iole #1 North	upper 611/16 L	
tole #2 South	upper cit/14	
Features SIL P.T	Duct very + - 1/4"	Do To Bent Pile, come's in a rok.
nserts-Coil or Ferrule		Qty: Size: N.F. F.F. S.F.
Rebar Type		A706 (A615) AL015
Bar Sizes	6 on contr space	her #4 on all por
All Tied In		(5002
Clearance	1	(\mathcal{O}) + (\mathcal{O}) + (\mathcal{O})
Lifting (B 1/2 Strend @	3-6" of Beach Pick port
Performed By:	DBurks @ 4'-1" of	Fends 300 OFF sides 8T.
Foreman:		Time Checked:
🛛 ac:	Trom Walk	C-3 Time Called:
΄ χ		Request Arrival Time:

	RI	Slabs Open Air Blast Testing (Final Report)
		Slabs Open Air Blast Testing (Final Report)
're Pour Inspection		
iolid Slabs-Panels		Insp. Agency: Knife sure
Date:	11-3-15	Bed #:
Job Number: Piece Number:	11-3-15 58590 B 1905.3	Set up By: Job Name: 0:13.1
	Design	Actual
Form Condition & Cleanliness		6002
.ength	16-0"	16-07
	16-0"	16-07
)epth	105/8	105/8
jquareness/Diagonals	23-778	23-73/8 - 23-71/2
Trampets	1'6'-12" O.C	
Return		Height: Width: Length:
Reveals		
Chamfer		Top: Bottom
Plates		N.F. F.F. S.F. Qty
Plates		N.F. F.F. S.F. Qty
Plates		N.F. F.F. S.F. Qty.
P.T. Duct	3'5/16-5716-6/16	4" o.c 5/4 Qes 6/4 o.c
Blockout #1		
Blockout #2		
Hole #1		
Hole #2		
Features Coils		
Inserts-Coil or Ferrule		Qty: Size: N.F. F.F. S.F.
Rebar Type	#5 @ 4" O.C	A706 (A615) 4"O.C
Bar Sizes	#5	
Ali Tied In	Goed.	Yes
Clearance	34 OFF T. B.	1"off sides
Lifting 3 1/2 STra	~ 2 @ 3'-0" off s	ites with 5 # 4 stear Ber @ 2" O.C.
	· · · · · · · · · · · · · · · · · · ·	

Perform	ed By:		
	Foreman:	Time Checked:	
	QC:	C-4 Time Called:	
		Request Arrival Time:	

	Pre-Pour	
re Pour Inspection olid Slabs-Panels		. 0
		Insp. Agency: Knife Sive
	<u>11.5-15</u> S\$590	Bed #: Set up By:
	D Por Y	Job Name: D. B.L BI.ST P.
	Design	Actual
orm Condition & Cleanliness	Cool	Good
ength	16-04	16'-0"
lidth	16-01	16'-1/8'
epth	105/4	105/8"
quareness/Diagonals	23-71/2	23:71/2 - 23-77/16"
Trumpets	1.71/2 - 9" O.C. 17 pm	1-71/2 10 0 911
etum	12	Height: Width: Length:
P.T Duct's	35/16-55/10-61/10	47 51/4 61/16
hamfer		Top: Bottom:
lates		N.F. F.F. S.F. Qty.
lates		N.F. F.F. S.F. Qty.
lates		N.F. F.F. S.F. Qty.
Concert Turke	3'-4'-6"	31/8" - 41/4" - 61/16"
lockout #1		
lockout #2		19 S ₂
lole #1		
lole #2		
eatures		
nserts-Coil or Ferrule		Qty; Size; N.F. F.F. S.F.
Rebar Type	D 6	A706 (A615) #5
Bar Sizes		#50 4" O.C
All Tied In		
Clearance	3/4 T. 3 1 OFF	5.752
Lifting	1/2 strand @ 2 In	ations 3-6 off sizes To

	Foreman:		Time Checked:	
N.	QC:	T. Walky	C-5 Time Called:	
			Request Arrival Time:	

AN MOU RESOURCES	COMPANY Pre-Pour	
re Pour Inspection		
olid Slabs-Panels		V D
Date:	11-9-15	Bed #: Pos # 5
Job Number:	58590	Set up By:
Piece Number:	AZ Pos 5	Job Name: <u>CO, 15 . L</u>
	Design	Actual
orm Condition & Cleanliness	Woon	Crook
ength	16-04 11-04	1/0-074
idth	16-01	1/0-0/4
epth	105/8	$1/15/8 - 10^{11/16}$
quareness/Diagonals	77-712	$23'7'_{2}$ R 1 1 mt
kew Tour and	as many	as the survey of
1. under 1.2	1-6-130 20	Height: Width: Length:
eturn		
eveals		
hamfer		Top: Bottom:
lates		N.F. F.F. S.F. Qty.
lates		N.F. F.F. S.F. Qly.
lales		N.F. F.F. S.F. Qty.
T Pucts	35/16-55/16-61/1	4 4"-55/16-61/16-0674
lockout #1		
lockout #2		
lole #1		
lole #2 Burty	3-0 × 4-0"	3-0" × 4-0" Wood.
eatures		
serts-Coll or Ferrule	().	
		Qty: Size: N.F. F.F. S.F.
Rebar Type		A706 A615
Bar Sizes	h	# 4 @ 6 O.C
II Tied In	2/11/TR 1	YES
Clearance	3/4 1.D. 1	on gll Sides
.ifting 3	1/2 2 Locations	370 off sider
Performed By:		Time Oberland
Foreman:	T. Walker	C-6 Time Called:
	1.00 1600	Request Arrival Time:

		2 PICHG	
		Slabs Open Air Blast Testing (Final Report)	
AN MDU RESOURCES	S COMPANY Pre-Pour		
Pre Pour Inspection Solid Slabs-Panels		1000	
	11.12.15	Insp. Agency: Kn; Fe J.M.	
Job Number:	11-12-15	Bed #: Set up By:	
Piece Number:	C Pos #G	Job Name: 19, 5, L	
	Design	Actual	
Form Condition & Cleanliness	WOOD OK	OK	
.ength	76 × 16-04	\$6-01/8" × 16-01/8"	
Vidth	110:0	16-018	
Jepth	10 /8	10 1/16	
3quareness/Diagonals	23-7/2	23-71/2 Ban	1-0'
Trumpel's	1-71/2 (13) 9"	1.71/2 (DSpaces @ 9"	
Return		Height: Width: Length:	
Reveals			
Chamfer		Top: Bottom:	
Plates		N.F. F.F. S.F. Qty	
Plates		N.F. F.F. S.F. Qly.	
Plates		N.F. F.F. S.F. Qty.	
Grant TABAS	18 each side	18 pach side -	
Hochow Himp. T. Duc	is 3'5/10-59/10-6'/16	4"-514-65/8+-	
Blockout #2			
Hole #1			
Hole #2			
Patures Busk's	3.04 X Y-0"	2-10' × 3-6" conflic wit	n P.T.
Inserts-Coil or Ferrule		Qty: Size: N.F. F.F. S.F.	puets
Rebar Type		A706 (A615)	
Bar Sizes	#4 32 cach way	#FY QY TOTAL each v	nat
All Tied In	/	Yes	
Clearance	3/4" T. B 1"OFF	Sides	
Lifting	3 1/2 Strand @	3-6 OFF sidés	

Perform	ed By:		
	Foreman:	Time Checked:	
	QC:	C-7 Time Called	
	2010	Request Arrival Time:	

re Pour Inspection		
olid Slabs-Panels		I F
	1.1.2.5.12	Insp. Agency: Knifer.un
Date: Job Number:	11-13-15	Bed #: Set up By:
Piece Number:	and the second s	Job Name: 0, 13, 2
	Design	Actual
orm Condition & Cleanliness	OK	OK
ngth	16-04	16-0/4"
idth	16-04	16-01/4"
epth	105/81	10 1/16"
quareness/Diagonals	23-7/2	23-71/2 Burned 10"
ewpt Ducts	319/16-55/16-6"/16	4"-51/10-63/8"
eturn		Height: Width: Length:
reals Trumports	1-6 B@ 12"	1-6-1-67/16 3 @ 124
hamfer		Top: Bottom:
ates		N.F. F.F. S.F. Qty.
ates		N.F. F.F. S.F. Qty.
ates		N.F. F.F. S.F. Qty.
u sans	(48) 9" each s:	
lockout #1 u - D - B	(48) 71/2" each en	10 (49) 7/2 each end
lockout #2		
ale#+ L Bass	Din each com	e 37,30 cach com
ole #2		
ratures		
serts-Coil or Ferrule		Qty: Size: N.F. F.F. S.F.
lebar Type	A615	A706 A615
ar Sizes	#5 40.C	#5 4"O.C
II Tied In	8. K ~ ~ ~ // ^/	Yes
Clearance		sides
ifting (3)	1/2 (2) 3:0" of	A side's

Performe	ed By:			
	Foreman:		Time Checked:	
	QC:	T. Walk	C-8 Time Called:	
1			Request Arrival Time:	

	DP	os#8
KNIFE	R Bonded Pre-Stressed Concrete	Slabs Open Air Blast Testing (Final Report)
AN MOU RESOURCES	Pre-Pour	
Pre Pour Inspection Solid Stabs-Panels		
0.1	11.11.15	Insp. Agency: Knife own
Job Number:	/1-/4-/5	Bed #: Set up By:
Piece Number:	D Pos #8	Job Name: 03L
	Design	Actual
form Condition & Cleanliness		OK Caned "14" overall
.ength	16-0"	16:03/16
Vidth	16-04	110-01/4"
Jepth	10518	10 5/8 - 10 1/16
iquareness/Diagonals	23-71/2"	23-71/2 Burned 1-0"
Trampet	1-716-12091	1'71/2·1'-731 (DO 9"0.C
Return	2	Height: Width: Length:
LEVERTS UBas	4\$ each side	(48) each side
Chamfer		Top: Bottom:
Plates		N.F. F.F. S.F. Qty
Plates	N	N.F. F.F. S.F. Qty
Plates		N.F. F.F. S.F. Qty.
P.T. Ducts	315/16-55/16-61/16	4"- 51/4 - 63/4
Blockout #1		
Blockout #2		
Hole #1		
Hole #2		
Features Burks	3-0 × 4-0"	2-8 x 4-4"
nserts-Coll or Ferrule	-	Qty: Size: N.F. F.F. S.F.
Rebar Type		A706 A615
Bar Sizes	#5.4"O.C	#5 y'oct - moved For Lifting
All Tied In		YES.
Clearance	3/4 T.B 1"	OFF Sides
Lifting	D 1/2 Strand @ 2	ocations 3-6" offs.25r

Performe	d By::::			
	Foreman:		Time Checked:	
X	QC:	Tillg/Kr	C-9 Time Called:	
			Request Arrival Time:	

Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

SAMPLE D	ATA SHEET	FOR CO	ONCRET	TE CY	LINDER	S	E	Englis	h (E) or	Metric (M)	
CON NO. & EA		* DATA SHEE	ET NUMBER	-		L	LABORATORY REPORT NUMBER 5245				
PROJECT NAME (SECTION)		_							CONTRACT NUMBER		
	Oreç	jon Ball									
CONTRACTOR			F	PROJECT N	ANAGER				BID ITEM NU	JMBER	
	e River / OB	_									
	River Ready		ľ	SUBMITT	Kevir		Coul			REPRESENTED	
CONCRETE FOR USE IN (LOCATION					GE NUMBER			STRENGT		yd ³	
2	ecast Panel	1		0000					-	8 DAYS	
REPRESENTED BY	SET NUMBER	• DATE CA	ST	DATE	SHIPPED		CYLINDER S				
NO OF CYLS 12	1		1/2/15		11/3/15	5		x8		55245	
	• TE:	ST SPECIMENS								YIELD	
A. 3 B. 5	C. 7 D		E. 28		28 e	6. 6	5 H.	65	9.14		
* ODOT LAB / MIX	* CONCRETE S		* DESIGN C						MOISTURI	,	
MIX DÉSIGN NUMBER	MIX DESIGN N			AL CONTEN	T COARS		* COARSE #			* SAND	
DESIGN	268KN3	10S0	846		^{yd³} 1.34	%	3.02	%	%	8.01 %	
* AMBIENT TEMP		R CONTENT	* UNIT WEIGH		* CEMENTITIOU		ONTENT	* FIELD W/C			
44 °F 78 °F		1.6 %	145.2	b/ft ^a		833	lb/yd³		0.39		
*ADDITIVES *CEMENT 2965 oz 76	•FLYASH		* SILICA					* POT CALIBRATION			
2905 oz 76 *AGGREGATE #1 *AGGREG		lb	* FINE AGG (S	lb	1510 * WATER AT JO	lb		.28 RING		49810	
2480 117	100707.075	Ib	1228	'	VVATER ALJO	-			*0	APPING	
* PROJECT CONTACT PERSON	00 10	ID	* CONTACT P			lb		I nk CAST - LOV		• HIGH TEMP.	
			CONTACT						84 °F		
FIELD REMARKS											
X QUALITY CONTROL	VERIFICATION	INFO	* PHONE	No.			F	AX No			
T 23 CERTIFIED TECHNICIAN (PLEA	SE PRINT) AND CARD N	UMBER		COMPANY	NAME	S	IGNATURE			DATE	
Kevin McC	Caul 44396		k	nife R	liver	Cu	~	~		11/2/15	
			LAB USE							11/2/10	
CYLINDER DATE OF A	GE MAXIMUM	CYLINDER			POUND TYPE	:/ E	REAK				
ID BREAK D.	AYS LOAD	AREA	#REF!	PAD	DUROMETER		TYPE		REMAF	KS	
A 11/05/15	3 59204	12.56	4710		60		5		Lab Cu	re	
B 11/07/15	5 70296	12.56	5600		60		2		Lab Cure		
C 11/09/15	7 78740	12.56	6270		60	-	2		Lab Cu		
	D 11/30/15 28 98199 12.56						2		Lab Cu		
	28 97310	12.56	7750		60		2		Lab Cu		
	28 99288	12.56	7910		60		2		Lab Cu		
	65 109829	12.56	8740		60		2	Pa	Partial Field Cure		
H 01/06/16	35 112684	12.56	8970		60		4		rtial Field		
	AVE 28	DAY	7830	##			X PAS	SS	FAI	L	
COMMENTS (WHEN MATE			D)								

Cylinders G and H were field cured on site until 11/15/2015 and then lab cured until broke.

x	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22	CERTIFIED TECHNICIAN (PLEASE I	PRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McCa	aul 44396	Knife River	and make	11/30/2015

Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

	SAMF	PLE DA	ATA S	SHEET I	FOR CO	NCRE	TE	CY	LINDI	ERS		E	Englis	sh (E) or	Metric	(M)
' CON NO. & EA						* DATA SHE	* DATA SHEET NUMBER					LABORATORY REPORT NUMBER 5251				
PROJECT N	NAME (SECTIO	DN)		Orea	on Dell	iotice F						CONTRACT NUMBER				
CONTRACT	OR			Oreg	on Ball	ISUCS F			ANAGER					BID ITEM N		
		Knife	Rive	er / OBL			1100		ANAGEN	-						
CONCRETE	SUPPLIER						* SUE	эмітті						QUANTITY		NTED
				Ready I	Лix					evin l	McC			18		yd³
CONCRETE	FOR USE IN			Panel	2		BRIDGE NUMBER * SPECIFIED STRENGTH 6000 #RE						28			
REPRESEN	TED BY		SET NUM		DATE CA	ST								DAYS		
NO, OF CYL	_S_	12		2		1/2/15			11/3	3/15		4>			5525	1
			20	* TES	T SPECIMENS	AT DAYS INC	DICATE	ED							YIELD	
Α.	7 В.	28	C.	28 D.	28	E. 6		F.	65	G.	H		Η	9.1		yd³
MIX		.AB / MIX NUMBER		CONCRETE SU		* DESIGN								MOISTUR		
DESIGN	DESIGN	NONDER		58KN3F		MATER 846				0arse# 1. 34	1 %	COARSE #2	2 * CO. %	ARSE #3 %	* SAND 6.63	8 %
* AMBIENT	TEMP. CON	CRETE TEMP			RCONTENT	* UNIT WEIG			* CEMENT				FIELD W/		0.00	70
44	°F 7	7 ⁰F	7	īn	I.8 %	144.	4	lb/ft ^a		83	32	lb/ydª		0.4	0 ву	WT.
ADDITIVES		CEMENT	0	FLYASH		* SILICA			* WATER		D	* NET V		1	CALIBRAT	
286 *AGGREGA		760		b • AGGREG	Ib	A FILIS ADD	0.000	lb	17		lb	36.			4981	0
226		1174		b	ATE #3	* FINE AGG (1210) Ib	* WATER	AT JOB	lb	*cur Ta			CAPPING	
	CONTACT P		10		10	CONTACT			IBER			* TIME CYL (V TEMP.	• HIGH TE	MP.
												2:00 F	∠ M	12 ℉	84	•F
FIELD R	EMARKS															
X QUAL	ITY CONTRO	-	1			+ 5116115										
134 2			VERIFIC	AND CARD N	INFO	* PHONE	_					_	X No.			
1 23 CERTIF			,		IMBER		COMF	PANYI	NAME			GNATURE	1000		D	ATE
	Kevi	n McC	aul	44396				_	iver		<u> </u>				11	/2/15
CYLINDER	DATE C				r	LAB USE										
ID	BREA		GE NYS	MAXIMUM LOAD	CYLINDER AREA	STRENG #REF	. 1							REMA	RKS	
A	11/09/		7	55365	12.56	4410		PAU	DUROME	IEK		YPE 2		Lab Cu		
B	11/30/		28	94412	12.56	7520	_		60			3		Lab Ci		
С	11/30/		28	96750	12.56	7700		60				3		Lab Ci		_
D	11/30/		8	96118	12.56	7650			60			2		Lab Ci		
E 01/06/16 65 90658 12.56					7220		60				4	Partial Field Cure				
F 01/06/16 65 109201 12.56						8690			60			2	Pa	artial Fiel	d Cure	
G #VALUE! H Image: H <th <="" h<="" image:="" td=""><td></td><td></td><td></td></th>								<td></td> <td></td> <td></td>								
11	#VALU				1		_									
			AV		DAY	7620)	##			E	X PAS	S	FAI	L	
COMME	ENTS (M	HEN MATE	RIAL ,CYL	INDERS OR DA	TA RECEIVE	D)										

Cylinders E and F were field cured on site until 11/15/2015 and then lab cured until broke.

x	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22 (CERTIFIED TECHNICIAN (PLEAS	E PRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McC	aul 44396	Knife River	an inte	11/30/2015

Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

	SA	MPLE	DA	TA S	HEE	TF	OR CC	NCRE	TE	CY	LIN	DERS		E	Eng	glisł	n (E) or	Meti	ic (M)
* CON NO.	& EA							• DATA SHE	· DATA SHEET NUMBER					LABORATORY REPORT NUMBER 5311				2	
PROJECT N	IAME (SE	CTION)			Or	equ	on Ball	listics Project								CONTRAC	F NUME	BER	
CONTRACTO	OR	14		D :		-			-		ANAGE	R					BID ITEM N	UMBEF	
			nife	Rive	r / 0	BL													
CONCRETE	SUPPLIE		e Ri	ver F	Read	ly Ⅳ	lix		* SUBMITTED BY Kevin McCaul						QUANTITY	REPRE	SENTED yd ³		
CONCRETE	FOR US	E IN (LOC/		DR PLACE		el 3	3			BRID	SE NUM	IBER		SPECIFIE 600		igth #RE	FEI (28	DAYS
REPRESEN				SET NUN			• DATE CA	sт		DATE	SHIPPI	ED	_	YLINDER	-		INVOICE N		
NO. OF CYL	.S.	12			1		1 [.]	1/4/15		11/5/15				4	x8		10	553	511
								AT DAYS INC										YIELD	
A.	7 E			C.	28	D.	28		5	F.	6	5 G.	F		H		9.1		yd³
MIX		ot lab / i Gn nume			ONCRET			* DESIGN						REE (SU			10ISTUF RSE #3	¥	-
DESIGN					S8KN			MATER 846			yd ^a	*COARSE # 1.34	%	3.02	%	COAF	RSE #3 %	• SAN 6.	
* AMBIENT T	TEMP. + (ONCRETE	TEMP	* SLUMP			CONTENT	* UNIT WEIG		10,					* FIELD	W/C		0.	91 70
42	*F	75	°F	6.2	5 în	1	.6 %	144.	3	lb/ft³			33	lb/yd ^a			0.3	9	BY WT
• ADDITIVES			IENT		• FLY	ASH		* SILICA	_		* WAT	ER BATCHE		* NET	NEIGHT		* POT CALIBRATION		
2869 oz 7591 lb lb					lb			lb	1	626	lb	36	6.05 0.2498			310			
AGGREGA			GREGAT			GREGA	TE #3	* FINE AGG ())	* WATE	ER AT JOB			RING		*	CAPPIN	IG
226			160	0	>		lb	1222	-	lb			lb		ank				
PROJECT	CONTAC	T PERSO	N					CONTACT	PHO	NE NUM	IBER			* TIME CYL 2:45		LOW			ттемр 3 ∘г
FIELD R	EMAR	(S											k						
X QUAL	ITY CON	FROL		VERIFIC/	TION		INFO	* PHONE	No.					F	AX No				
T 23 CERTIF	IED TEC	HNICIAN (PLEASE	E PRINT)	AND CAR	RD NUI	MBER		COM	PANY	NAME		S	GNATURE					DATE
	Ke	evin N	/lcCa	aul 4	4439	6		,	Kni	fe R	liver		C.		~E		2		11/4/15
						-		LAB USI	_	_									11/4/10
CYLINDER	DAT	E OF	AG	E	MAXIM	UM	CYLINDER	STRENG			_	D TYPE /	В	REAK					
ID	BR	EAK	DA	YS	LOAI	C	AREA	#REF	Į.	PAD	DURO	METER	ר	YPE		F	REMA	RKS	5
А	11/1	1/15	7	7	6213	8	12.56	4950)		60	0		5			Lab C	ure	
В		2/15	28		8914		12.56	7100)		60	0		3			Lab C	_	
С	_	2/15	28		8655		12.56	6890			60	0		3			Lab C		
D		2/15	28		8732		12.56	6950			60	0		2			Lab C	ure	
E		8/16	6		9563		12.56	7610		60				5			tial Fie		
F		8/16	6		1027	71	12.56	8180)		60	0		2		Par	tial Fie	ld Cu	ire
G	_	LUE!	H						_	_									
H	#VA	LUE!		1		_			_										
							DAY	6980)] ##			[X PA	SS	[FA	IL	
COMME	ENTS	(WHEN	MATER	RIAL ,CYL	NDERS (DR DA	TA RECEIVE	D)											
Cylinder	rs E a	nd F w	ere f	ield cu	ired o	n sit	e until 1	1/15/201	5 ar	nd th	en la	b cured	until	broke.					

х	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	D					
T 22	2 CERTIFIED TECHNICIAN (PLEASE	EPRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE					
	Kevin McC	aul 44396	Knife River	and and	12/2/2015					

	S	AMP	ĽΕ	DA	TA S	SHE	ET F	OR CO	NCRE	ΤE	CY	LIN	DERS		E	Englis	sh (E) or	Metric (I	M)
' CON NO.	& EA								DATA SHE	EET N	UMBEI	र	-		l		RY REPORT N	IUMBER	
PROJECT	NAME	(SECTIO	N)			0	req	on Ball	istics F	ro	iect						CONTRACT	NUMBER	
CONTRACT	OR		14.4	:	D:						JECT N		ÉR				BID ITEM N	UMBER	
CONCRETE	SUP	PLIER	Kn	lite	Rive	er / C	JR			* SI	вмітт							REPRESENT	
		K			ver l		dy N	/lix		30			Kevin	McC	Caul		9		'd ³
CONCRETE	FOR	USE IN (•		Cast		nel 4	4			BRID	GE NU	MBER		· specifie 600	OSTRENGT		28 DA	AYS
REPRESEN		Y	~		SET NU	MBER		• DATE CA			DATE	SHIPF			CYLINDER S	SIZE	INVOICE N	JMBER	
NO OF CYL	_S.		9			1			1/5/15			_11	1/6/15		4	x8	10	55311	
А.	6	В.	6	6	C.	28	D.	r specimens 28			F.	6	2 G.	6	2 н.	н	#####	YIELD	'd³
* MIX		ODOT L							* DESIGN								MOISTUR		
DESIGN		COIGNI	NUMBE	=R		aix des		IOSO	MATER 846			l í ′yd³	* COARSE #	^{#1} %	* COARSE # 3.02	2 *CO	ARSE #3 %	* SAND 6.71	%
* AMBIENT	TEMP.			TEMP	* SLUMP		* AIR	CONTENT	* UNIT WEIG	нт		* CEN	IENTITIOUS	MAT. C	ONTENT	* FIELD W/	C RATIO		70
46	۴F	7	CEM	°F	n/a		_	n/a %	#####	##	lb/ft³		#VA				0.4		
285	-	oz		′594	4	Ъ	YASH	lb	* SILICA		lb		rer batche 1 701	D Ib		veight LUE!		calibratio	
· AGGREGA			-	REGAT			GREG	ATE #3	* FINE AGG ((SANE			TER AT JOB					CAPPING	
226	0	lb	_11	158	0	b		lb	1216	0	łb			lb	Та	nk			
* PROJECT	CON	TACT PE	RSON	I					* CONTACT	PHO		IBER			* TIME CYL			* HIGH TEM	P,
	_											_			1:00 F	PM 5	53 ℉	83	٩r
FIELD R Slump for wo	o ne	ot m	eas y	sure	ed	Аррі	oxi	mately	a 28" s	spr	eac	l du	ie to th	ne a	dditior	n of 14	66 on	site	
X QUAL	ITY C	ONTROL	ľ		VERIFIC	ATION		INFO	* PHONE	No.					F	AX No.			
T 23 CERTIF	FIED T	ECHNIC	IAN (P	LEASE	EPRINT)	AND CA	RD NU	MBER		COM	IPANY	NAME		s	IGNATURE			DAT	ΓE
		Kevi	n M	cCa	auł	4439	96			Kni	fe F	live	r	6	~ <u></u>	$-\epsilon$		11/5	5/16
									LAB US	_	_	_						11/0	// 10
CYLINDER	D,	ATE O	F	AG	E	MAXIN	1UM	CYLINDER	STRENG	TH	CON	/IPOU	ND TYPE /	В	REAK				
ID	-	BREAK		DA		LOA		AREA	#REF	!	PAD	DURC	DMETER		TYPE		REMA	KN3	
<u>A</u>		1/11/1		6		946		12.56	7540	_			0		2		Field C		
B	<u> </u>	1/11/1		6		877		12.56	6990	_			0		3		Field C		
C		2/03/1	_	28		1102		12.56	8770				0		3		Lab C		
D E		2/03/1 2/03/1		28 28		1138		12.56	9070		_		0		2		Lab C		
F		1/06/1		62		1146 1202		12.56	9130		-		0	—	3		Lab C		
G		1/06/1		62		1202	_	12.56	9570 9880		-		0		5 2		artial Fiel		
H	_	/ALU		H		1270	-7-7	12.00	3000		-	0	0		2	P2	artial Fiel	u cure	
			1			'Е	28	DAY	8990)]##			[X PAS	SS	FA	IL	
COMME	ΞΝΤ	S (W	HEN N	ATER	IAL ,CYL	INDERS	OR DA	TA RECEIVE	D)	_									
									1/15/001	-	1 41-								

Cylinders F and G were field cured on site until 11/15/2015 and then lab cured until broke.

х	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22 (CERTIFIED TECHNICIAN (PLEASE	PRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McCa	aul 44396	Knife River	an int	12/3/2015

SAMP	LE DA	TA SHEE	T FOR	CC	DNCRET	E C	YLIN	DERS		E	Englis	sh (E) or	Metric (M)
* CON NO. & EA					* DATA SHEE	T NUMB	ER	, ;;		L		5456	UMBER
PROJECT NAME (SECTIO	N)	0	rogon		liation D	roior	.1					CONTRACT	
CONTRACTOR		0	regon	Sal	listics P		MANAGI	ED				BID ITEM NU	IMPED
boittivioren	Knife	River / C	BL		ľ	KOJECI	MANAG						
CONCRETE SUPPLIER						SUBMIT						QUANTITY F	REPRESENTED
		/er Reac	ly Mix					Kevin I	McCa	ul		9	yd³
CONCRETE FOR USE IN (^{R PLACEMENT)}				BR	DGE NUI	MBER	* S		STRENGT		0
REPRESENTED BY		SET NUMBER		TE CA	ST	DA	E SHIPF	PED	CY	INDER S			28 DAYS
NO, OF CYLS,	9	1			/10/15			/12/15		4)			55456
			TEST SPEC		AT DAYS INDI	CATED						-	YIELD
A. 7 B.	28	c. 28	D. 2	28	E. 57	7 F	. 5	7 G.	Н	н.	Н	#####	## yd³
* * ODOT L			TE SUPPLIER	:	* DESIGN C							MOISTUR	
MIX DESIGN	NUMBER		GN NUMBER	\cap	MATERIA 846			* COARSE # 1.34		DARSE #2 3.02		ARSE #3	*SAND
	RETE TEMP		* AIR CONT		• UNIT WEIGH		b/yd ^a				* FIELD W/	%	6.55
41 [™] 70		n/a m	n/a	%	#####			#VA		lb/yd ³		0.40	О ву мт
	* CEMENT		'ASH		* SILICA		* WAT	ER BATCHE		* NET V	VEIGHT		CALIBRATION
2857 oz	7627			lb		lb	1	726	lb	#VAI	_UE!	0.2	49810
	* AGGREGAT		GREGATE #3		• FINE AGG (S			ER AT JOB		* CUI		*0	CAPPING
2340 Ib * PROJECT CONTACT PE	11840) Ib	_	lb	1220				lb	Ta			
	RSUN				CONTACT F	'HONE N	UMBER			:40 F		w темр. 50 °г	• HIGH TEMP. 81 °
FIELD REMARKS Slump not m for workabilit	У		oximat		а 20" s * рноле		d du	e to th	e ado		1 of 14	66 on	site
T 23 CERTIFIED TECHNIC	IAN (PLEASE	PRINT) AND CA	RD NUMBER			COMPAN	Y NAME		SIGN	IATURE			DATE
Kevi	n McCa	ul 4439	6		lк	'nife	Rive	r	Cur				11/10/1
					LAB USE								11/10/1
CYLINDER DATE O				DER	STRENGT			ND TYPE /	BRE	AK			
ID BREAK	K DAY	'S LOA	D AF	REA	#REF!	PA	D DURC	METER	TYF	ΡE		REMAF	KS
A 11/17/1				.56	7790		6		2			Lab Cu	ure
B 12/08/1				.56	9380			0	2			Lab Cu	ure
C 12/08/1				.56	9480		6		2			Lab Cı	
D 12/08/1				.56	9430			0	2			Lab Ci	
E 01/06/1				.56	8660		6		4			artial Fiel	
F 01/06/1			/9 12	.56	8430		6	0	2		Pa	artial Fiel	d Cure
G #VALU H #VALU													_
	c: j n			-					- o-				
			28 DA		9430	#	ŧ		X	PAS	SS	FAI	L
COMMENTS		AL, CYLINDERS	OR DATA RE	CEIVE	D)								

х	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22	2 CERTIFIED TECHNICIAN (PLEASE	EPRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McCa	aul 44396	Knife River	an all	12/8/2015

	SAMPL	.E DA	ATA S	HEET	FOR CO	NCRE	ΤE	CY	LINDI	ERS		E	Engl	ish (E) or	Metri	ic (M)
CON NO.	& EA					* DATA SHE	ET N	UMBER				L		DRY REPORT I	IUMBER	
PROJECT N	IAME (SECTION)			Ore	gon Ball	istics F	Proi	iect				2		CONTRAC	NUMB	ER
CONTRACT					•				ANAGER					BID ITEM N	UMBER	
AGNODETE		Cnite	Rive	r / OB	L					-						
CONCRETE		ife Ri	iver F	leady	Mix		* SUI	BMITTE		evin l	McCa	aul		QUANTITY	REPRES	sented yd³
CONCRETE	FOR USE IN (LC			MENT) Pane	16			BRIDO	GE NUMBE	R	· •				28	
REPRESEN	TED BY		SET NUM		* DATE CA	ST	_	DATE	SHIPPED		CI	LINDER S	-			DAYS
NO, OF CYL	.S.	9		1	11	/12/15			11/1	3/15		4>	8۷	10	555	18
	- I	_		A A 1	ST SPECIMENS									10000000	YIELD	
A	5 B.	5	C.	28 C		E. 2		F.	55	G.	55	H.	<u> </u>	####	10000	уd³
MIX	* ODOT LAE DESIGN NU			ONCRETE S		* DESIGN MATER				OARSE #		REE (SU :OARSE #:) MOISTUF OARSE #3	E SAND)
DESIGN			26	8KN3	H0S0	846		lb/		1.34		3.02	%	%	5.8	
AMBIENT 1	Conton	TE TEMP		• /		• UNIT WEIG					MAT. CON	TENT	• FIELD V	V/C RATIO		
47	-⊧ 75	°F	n/a	în	n/a %	#####	##	lb/ft ^a			LUE!	lb/ydª		0.3		BY WT.
ADDITIVES		EMENT 760	7 k	* FLYAS		* SILICA			• WATER						CALIBR/	
* AGGREGA		GGREGA			Ib EGATE #3	* FINE AGG (SAND	lb	*WATER		lb	#VA			2498	
226	0 lb	1166	50 k		lb	1214		lb			lb	Ta			07111111	-
	CONTACT PER			_		* CONTACT	_	NE NUM	I /IBER					OW TEMP.	* HIGH	TEMP.
											1	:40 F	PM	53 °F	82	2 °F
Slump for wo	EMARKS D not me prkability		ed. A		kimately	a 22" s			due	to th	e ad			466 on	site	
T 23 CERTIF	IED TECHNICIA	N (PLEAS	E PRINT)	AND CARD	NUMBER		сом	PANY I	NAME		SIG	NATURE				DATE
	Kevin	McC	aul 4	4396		,	 nit	fe R	liver		Cur		_6	-	11	1/12/15
						LAB USI	_									/12/10
CYLINDER	DATE OF	AC	E M	AXIMUN		STRENG	_				BRI	EAK				
ID	BREAK	_	YS	LOAD	AREA	#REF	!	PAD	DUROME	TER	TY	PE		REMA	RKS	
A	11/17/15			71415	12.56	5690			60			5		Field C	ure	
В	11/17/15			68127	12.56	5420			60			2		Field C	Cure	
C	12/10/15		8	96116	12.56	7650			60			3		Lab C		
D	12/10/15		8	94018	12.56	7490			60			3	_	Lab C		
E	12/10/15		8	93235	12.56	7420		_	60			2		Lab C		
F	01/06/16		5	98119	12.56	7810			60			2		Partial Fie		
G H	01/06/16		5	97892	12.56	7790			60			3	F	Partial Fie	ld Cu	re
<u> </u>	#VALUE		1				1									
			AVI	-		7520)] ##				C PAS	SS	FA	IL	
COMME	ENTS (WHE	IN MATER	RIAL ,CYLII	DERS OR	DATA RECEIVE	D)										
Cylinder	rs F and G	were	field cu	ired on	site until 1	1/15/201	5 ar	nd th	en lab	cured	until k	oroke.				

х	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22	CERTIFIED TECHNICIAN (PLEASE	E PRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McCa	aul 44396	Knife River	an inte	12/10/2015

	SAMPL	E DA	TA SH	IEET	FOR CC	NCRE	TE (CYI	LIND	ERS		E	Englis	h (E) or	Metri	с (М)
* CON NO.	& EA					* DATA SHE	ET NU	MBER		-		L		Y REPORT N	UMBER	
PROJECT N	IAME (SECTION)			0		inting F)	4						CONTRACT	NUMBE	ER
CONTRACTO	OP	_		Oreg	ion Ball	ISTICS F										
CONTRACT		Knife	River	/ OBI	_		PROJE		ANAGER	-				BID ITEM N	JMBER	
CONCRETE	SUPPLIER						• SUB	MITTE						QUANTITY	REPRES	ENTED
			ver R		Mix					evin M	McC			9		ydª
CONCRETE	FOR USE IN (LC		or placen		7			BRIDG	E NUMB	ER		specified		-	28	
REPRESEN	TED BY	110	SET NUMB		* DATE CAS	ST	_	DATE	SHIPPED)		CYLINDER S		EF! Z		DAYS
NO, OF CYL	.s. {	3		1	11	/13/15				4/15			(8)		5554	49
				* TES	T SPECIMENS	AT DAYS INC	DICATE	D							YIELD	
A. 4	4 В.	4	C.	7 D.	28	E. 2	8	F.	28	G.	5		54	#####		yd ³
MIX	* ODOT LAB DESIGN NU			NCRETE SU DESIGN N		* DESIGN MATER				COARSE #		FREE (SU • COARSE #:		MOISTUR ARSE #3	E SAND	
DESIGN		ind Life		3KN3I		846		lb/y		1.34	%	3.02	%	%	5.8	
		TE TEMP			R CONTENT	• UNIT WEIG			• CEMEN		MAT C	ONTENT	• FIELD W/C	RATIO		- ,.
50	°F 77	°F	n/a		n/a %	####	##	lb/fl³		#VA				0.4		BY WT.
* ADDITIVES		емент 761	9 lb	* FLYASH		* SILICA				8 ватснеі 8 01						
* AGGREGA		GGREGA		* AGGREO	Ib GATE #3	* FINE AGG ((SAND)	lb		R AT JOB	lb	#VA			498	
228	0 њ	1148	1 0 Ib		lb	1202		lb			Ib	Та	nk			
* PROJECT	CONTACT PER	SON				* CONTACT	PHON	E NUM	IBER				CAST + LOV		• HIGH	
												11:00	AM 5	6 °F	84	1 °F
Slump	emarks o not me orkability	asur	ed. A	pprox	imately	a 20" s	spre	ead	due	to th	e a	dditior	of 14	66 on	site	
	•			_	_											
10.201 AA	ITY CONTROL		VERIFICAT		INFO	* PHONE					_	F.	AX No.			
T 23 CERTIF	FIED TECHNICIAI				UMBER		COMP	PANY N	AME			IGNATURE		3440		DATE
	Kevin	McC	aul 4	4396		ŀ	Knif	e R	iver			~~		-	11	/12/15
CYLINDER	DATE OF				-	LAB USE							Ś.			
ID	DATE OF BREAK	AG DA	- I '''	aximum Load		STRENG				TYPE /		REAK	F	REMA	RKS	
A	11/17/15	-		B0202	AREA 12.56	#REF 6390		PAD	DUROM	EIEK		TYPE 3		Field C		
В	11/17/15	_		77323	12.56	6160			60			3		Field C		
С	11/20/15			94525	12.56	7530			60			2		Lab Ci		
D	12/11/15	_		03680	12.56	8250			60			2		Lab Cu		
E	12/11/15	_		04022	12.56	8280			60			2		Lab Cu	ure	
F	12/11/15	_		04577	12.56	8330			60			2		Lab Cu		
G H	01/06/16			12344	12.56	8940			60		_	4		rtial Fiel		
	01/06/16	1 5		08655	12.56	8650		_	60		L	2		rtial Fiel		re
			AVE		-	8290)	##			[X PAS	SS	FA	L	
COMME	ENTS (WHE		RIAL ,CYLIN	DERS OR D	ATA RECEIVE	D)										

Cylinders G and H were field cured on site until 11/15/2015 and then lab cured until broke.

х	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22	CERTIFIED TECHNICIAN (PLEASE	E PRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McCa	aul 44396	Knife River	an me	12/11/2015

	S	AMPL	E DA	TA	SHEE	ET F	FOR CO	ONCRE	ΤE	CY	LIN	DERS		Г	E	Englis	h (E) or	Metri	c (M)
* CON NO.	& EA							[*] DATA SHE	EET N	IUMBEI	R				LA		Y REPORT N	IUMBER	
PROJECT	VAME	(SECTION)		0	reg	on Ball	istics F	Pro	ject							CONTRAC	NUMBE	R
CONTRACT	OR		Knife	Rive	er / C	BL			PRO	JECT N	IANAGE	ER -					BID ITEM N	UMBER	
CONCRETE	SUP		ife Ri	ver	Rear	łv N	/iv		• su	BMITT		(evin	Mac	ایرد			QUANTITY 9	REPRESI	
CONCRETE	FOR		OCATION	OR PLAC	EMENT)	-				BRID	GE NUN			* SPECI		STRENGTH	1		yd³
REPRESEN	TED	3Y	Pre	SET NU	t Par		DATE CA	ет — — — — — — — — — — — — — — — — — — —		DATE	SHIPP	ED.)00			28	DAYS
NO, OF CYL			8	ULTINO	1			/14/15				16/15		C Y LINDI	4 x			5557	73
^	3	В.	3	lc.	5						2	0 -		- L		50		YIELD	
A. *	-	ODOT LA			CONCRE	D. TE SU		E. 2	_	F.	2 Dus	8 G.	5			53 REACELI	##### MOISTUR		уd³
МІХ	1	DESIGN NU	JMBER		MIX DESI	GN NU	MBER	MATER	IAL C			• COARSE #		• COARS			RSE #3	SAND	
DESIGN * AMBIENT	TEMP	Loovan				-	1050	846	_	lb/	/yd³	1.34	%	3.0		%	%	5.4	5 %
36	°F	72	ETE TEMP °F	n/a			A CONTENT	* UNIT WEIG		lb/ft ^a	CEM	ENTITIOUS			/yd³	FIELD W/C	RATIO 0.3	a "	
* ADDITIVE			CEMENT			(ASH	<i>in a</i> 70	* SILICA		10/10	*WAT	ER BATCHE			ET WE	EIGHT		CALIBRA	TION
285		oz	763	-	lb		lb			lb	1	843	lb	#∨	'AL	UE!	0.2	498	10
* AGGREGA						GREG.	ATE #3	* FINE AGG (D)	* WAT	ER AT JOB			CURI		•	CAPPING	
226		Ib TACT PER	1160	10	lb		lb	1206		lb			lb	* TIME (Tar			1	
1100201	0011							* CONTACT	рно	NENU	MBER			10:1			/ TEMP 2	• HIGH 1 84	
FIELD R Slump for wo	o n orka	ot me ability		ed.		oxi	mately] ⊪⊧o	а 20'' s * рноме			l du	e to th	ie a	dditi		of 14	66 on	site	
T 23 CERTIF	_	_	_	1.021.001			10/00/28		-	IPANY				IGNATU		A NO.			DATE
			McCa					 L			liver						-		DATE
		NO VIII	Micol	aur		0		LAB USE	_	_	_					,		11/	/12/15
CYLINDER		ATE OF	AG	E	MAXIN	UM	CYLINDER	STRENG	_			D TYPE /	В	REAK	Т				
ID		BREAK	DA	YS	LOA	D	AREA	#REF	1	PAD	DURO	METER	ר	ΓΥΡΕ	_	ł	REMA	RS	
A		1/17/15			5376		12.56	4280			60	0		2			Field C	ure	
B		1/17/15			5278		12.56	4200			60			2			Field C	ure	
<u>C</u>	_	1/19/15			7561	_	12.56	6020			60			2			Lab C		
D E		2/12/15			9158	_	12.56	7290		_	60			3			Lab C		
F		2/12/15 2/12/15			9116 9479	_	12.56	7260			60			2			Lab C		_
G		1/06/16			1036		12.56 12.56	7550 8250		-	60 60			2	_	De	Lab Cu		_
H		1/06/16			1023	_	12.56	8250			60			5	-		rtial Fiel rtial Fiel		
					/E		DAY	7370] ##				Z X P	ASS	0			
COMME	ENT	S (WHE	EN MATER	RIAL , CYL	INDERS	DR DA	TA RECEIVE)					_		-	11			
Cylindo									_										

Cylinders G and H were field cured on site until 11/15/2015 and then lab cured until broke.

-

х	QUALITY CONTROL	VERIFICATION	CYLINDERS REC'D	DATA SHEET RECD	
T 22 (SERTIFIED TECHNICIAN (PLEAS	SE PRINT) AND CARD NUMBER	COMPANY NAME	SIGNATURE	DATE
	Kevin McCa	aul 44396	Knife River	an ne	12/12/2015

APPENDIX D. INSTRUMENTATION CALIBRATION CERTIFICATION

e-Stressed Concrete Slabs -- Open Air Blast Testing (Fina

Certificate of Calibration

Model #:	TDAS G5 Docking Station	Certificate #:	2015813G5DS0136
Serial #:	G5DS0136	Date Received:	12 August 2015
Procedure Name:	G5 VDS Calibration	Date Calibrated:	13 August 2015
Procedure Rev:	2.1	Next Calibration:	13 August 2016
Project Number:	RA29243	Item Received:	In Tolerance
Customer:	Oregon Ballistic Laboratories	Item Returned:	In Tolerance
	2873 22nd St. SE Ste C	Temperature:	77°F/24.7°C
	Salem, OR 97302	Humidity:	38.%

DTS has been audited by the American Association for Laboratory Accreditation (A2LA) and found in compliance with ISO/IEC 17025:2005. Accredited calibrations performed within the DTS Scope of Accreditation are indicated by the presence of the A2LA Logo and Certificate Number on this Certificate of Calibration.

DTS reference standards are processed and calibrated in accordance with the DTS Quality Assurance System, and traceable to the National Institute of Standards and Technology (NIST).

All calibrations have been performed using processes having a test uncertainty ratio of four or more times greater than the unit calibrated, unless otherwise noted on the report. Uncertainties have been estimated at a 95 percent confidence level (k=2). Calibration at a 4:1 TUR provides reasonable confidence that the instrument is within the manufacturer's published specifications.

The reported data is the raw recorded data and is not corrected for uncertainty or environmental effects. Any number of factors can cause a unit to drift out of tolerance at any time following its calibration.

This report only applies only to the item(s) identified above, and shall not be reproduced except in full, without the written approval of DTS. Limitations on the uses of this instrument are detailed in the manufacturer's operating instructions.

Remarks:

Standards U Serial #	Manufacturer	Model #	Description	Cal Date	Due Date
				13-Feb-2015	13-Feb-2016
US34021614	HP	33120A	Function/Arbitrary Waveform Generator, 15 MHz		
MY42002138	Agilent	34420A	Nano Volt, Micro-Ohm Meter, 7.5 Digit	28-May-2015	28-May-2016
CAL012	DTS	CALSTAT	TDAS Calibration Station	15-Nov-2014	15-Nov-2015

Test Description	Test	Result
		As Returned
Battery Changed	N/A	Yes
Visual Inspection	Pass	Pass
Basic Channel Functions	Pass	Pass
Power Management	Pass	Pass
Sensor Excitation Sources	Pass	Pass
Etherent Communications	Pass	Pass
Data Collection Function	Pass	Pass
T=0 Trigger Function	Pass	Pass

Calibration Site: 25881 Meadowbrook Road Novi, MI 48375

Calibrated By: Bob Colento Bob Colenso

Bob Colenso Technical Support Engineer

~

Test Description

T

2V Excitation Source	es		As	Received				As	Returned		
	Limit	Actual	Reported	Unc.	Deviation	Pass/	Actual	Reported	Unc.	Deviation	Pass/
				(in Vdc)	(in %)	Fail			(in Vdc)	(in %)	Fail
Channel 1	0.1%	1.995 Vdc	1.995 Vdc	5.7E-03	0.01 %	Pass	1.995 Vdc	1.995 Vdc	5.7E-03	0.00 %	Pass
Channel 2	0.1%	1.996 Vdc	1.996 Vdc	8.1E-03	0.01 %	Pass	1.996 Vdc	1.996 Vdc	8.2E-03	0.00 %	Pass
Channel 3	0.1%	2.003 Vdc	2.003 Vdc	7.8E-03	0.02 %	Pass	2.003 Vdc	2.003 Vdc	7.8E-03	-0.01 %	Pass
Channel 4	0.1%	1.990 Vdc	1.990 Vdc	8.0E-03	0.01 %	Pass	1.990 Vdc	1.989 Vdc	8.0E-03	-0.01 %	Pass
Channel 5	0.1%	2.008 Vdc	2.008 Vdc	6.7E-03	0.01 %	Pass	2.008 Vdc	2.008 Vdc	6.7E-03	-0.01 %	Pass
Channel 6	0.1%	2.009 Vdc	2.009 Vdc	9.0E-03	0.00 %	Pass	2.009 Vdc	2.009 Vdc	9.0E-03	0.00 %	Pass
Channel 7	0.1%	1.993 Vdc	1.993 Vdc	3.1E-03	0.00 %	Pass	1.993 Vdc	1.993 Vdc	7.9E-03	0.00 %	Pass
Channel 8	0.1%	2.005 Vdc	2.005 Vdc	7.7E-03	0.01 %	Pass	2.005 Vdc	2.005 Vdc	7.7E-03	0.01 %	Pass
Channel 9	0.1%	1.994 Vdc	1.995 Vdc	8.0E-03	0.01 %	Pass	1.994 Vdc	1.994 Vdc	5.8E-03	-0.01 %	Pass
Channel 10	0.1%	1.996 Vdc	1.996 Vdc	7.5E-03	0.00 %	Pass	1.996 Vdc	1.996 Vdc	7.5E-03	0.00 %	Pass
Channel 11	0.1%	2.007 Vdc	2.007 Vdc	6.4E-03	0.00 %	Pass	2.007 Vdc	2.007 Vdc	6.4E-03	0.00 %	Pass
Channel 12	0.1%	2.008 Vdc	2.009 Vdc	6.1E-03	0.02 %	Pass	2.008 Vdc	2.008 Vdc	6.1E-03	-0.01 %	Pass
Channel 13	0.1%	1.995 Vdc	1.995 Vdc	7.4E-03	0.01 %	Pass	1.995 Vdc	1.995 Vdc	7.4E-03	0.00 %	Pass
Channel 14	0.1%	2.003 Vdc	2.003 Vdc	5.4E-03	0.01 %	Pass	2.003 Vdc	2.003 Vdc	5.4E-03	0.00 %	Pass
Channel 15	0.1%	1.997 Vdc	1.997 Vdc	6.3E-03	0.01 %	Pass	1.997 Vdc	1.997 Vdc	6.3E-03	0.01 %	Pass
Channel 16	0.1%	1.995 Vdc	1.995 Vdc	7.3E-03	0.01 %	Pass	1.995 Vdc	1.995 Vdc	7.3E-03	-0.01 %	Pass
Channel 17	0.1%	2.000 Vdc	2.000 Vdc	2.5E-03	0.00 %	Pass	2.001 Vdc	2.001 Vdc	2.5E-03	0.00 %	Pass
Channel 18	0.1%	2.005 Vdc	2.005 Vdc	6.4E-03	0.01 %	Pass	2.005 Vdc	2.005 Vdc	6.4E-03	-0.01 %	Pass
Channel 19	0.1%	1.994 Vdc	1.994 Vdc	5.5E-03	0.01 %	Pass	1.994 Vdc	1.994 Vdc	5.5E-03	0.00 %	Pass
Channel 20	0.1%	1.990 Vdc	1.990 Vdc	8.3E-03	0.01 %	Pass	1.990 Vdc	1.990 Vdc	8.3E-03	0.00 %	Pass
Channel 21	0.1%	1.993 Vdc	1.993 Vdc	7.4E-03	0.01 %	Pass	1.993 Vdc	1.992 Vdc	7.4E-03	-0.01 %	Pass
Channel 22	0.1%	2.008 Vdc	2.008 Vdc	8.1E-03	0.01 %	Pass	2.008 Vdc	2.008 Vdc	8.1E-03	-0.01 %	Pass
Channel 23	0.1%	1.999 Vdc	1.999 Vdc	6.0E-03	0.01 %	Pass	1.999 Vdc	1.999 Vdc	6.0E-03	0.00 %	Pass
Channel 24	0.1%	2.008 Vdc	2.008 Vdc	5.1E-03	0.01 %	Pass	2.008 Vdc	2.008 Vdc	5.1E-03	0.00 %	Pass
Channel 25	0.1%	2.006 Vdc	2.006 Vdc	6.9E-03	0.02 %	Pass	2.006 Vdc	2.006 Vdc	6.8E-03	0.00 %	Pass
Channel 26	0.1%	2.001 Vdc	2.001 Vdc	8.0E-03	0.01 %	Pass	2.001 Vdc	2.001 Vdc	8.0E-03	0.00 %	Pass
Channel 27	0.1%	1.992 Vdc	1.993 Vdc	8.6E-03	0.02 %	Pass	1.992 Vdc	1.992 Vdc	8.6E-03	0.00 %	Pass
Channel 28	0.1%	1.997 Vdc	1.997 Vdc	6.3E-03	0.01 %	Pass	1.997 Vdc	1.997 Vdc	6.2E-03	0.00 %	Pass
Channel 29	0.1%	2.009 Vdc	2.009 Vdc	5.5E-03	0.01 %	Pass	2.009 Vdc	2.009 Vdc	5.5E-03	0.00 %	Pass
Channel 30	0.1%	2.002 Vdc	2.002 Vdc	4.4E-03	0.01 %	Pass	2.002 Vdc	2.002 Vdc	4.4E-03	0.00 %	Pass
Channel 31	0.1%	1.996 Vdc	1.996 Vdc	5.7E-03	0.02 %	Pass	1.996 Vdc	1.996 Vdc	5.7E-03	-0.01 %	Pass
Channel 32	0.1%	2.006 Vdc	2.007 Vdc	6.0E-03	0.00 %	Pass	2.006 Vdc	2.007 Vdc	6.0E-03	0.01 %	Pass

Test Description

 \square

~

5V Excitation Source	es		As	Received				As	s Returned		
	Limit	Actual	Reported	Unc.	Deviation	Pass/	Actual	Reported	Unc.	Deviation	Pass/
				(in Vdc)	(in %)	Fail		•	(in Vdc)	(in %)	Fail
Channel 1	0.1%	4.970 Vdc	4.971 Vdc	8.5E-03	0.02 %	Pass	4.970 Vdc	4.970 Vdc	8.4E-03	0.00 %	Pass
Channel 2	0.1%	4.976 Vdc	4.976 Vdc	7.1E-03	0.00 %	Pass	4.976 Vdc	4.976 Vdc	8.3E-03	0.00 %	Pass
Channel 3	0.1%	4.976 Vdc	4.976 Vdc	8.9E-03	0.00 %	Pass	4.976 Vdc	4.976 Vdc	8.9E-03	0.00 %	Pass
Channel 4	0.1%	4.967 Vdc	4.969 Vdc	7.3E-03	0.03 %	Pass	4.967 Vdc	4.967 Vdc	8.0E-03	-0.01 %	Pass
Channel 5	0.1%	4.970 Vdc	4.971 Vdc	5.1E-03	0.01 %	Pass	4.971 Vdc	4.970 Vdc	5.1E-03	-0.01 %	Pass
Channel 6	0.1%	4.960 Vdc	4.961 Vdc	8.1E-03	0.01 %	Pass	4.960 Vdc	4.960 Vdc	9.0E-03	0.00 %	Pass
Channel 7	0.1%	4.955 Vdc	4.956 Vdc	1.1E-02	0.00 %	Pass	4.955 Vdc	4.955 Vdc	1.1E-02	0.00 %	Pass
Channel 8	0.1%	4.958 Vdc	4.959 Vdc	1.1E-02	0.02 %	Pass	4.958 Vdc	4.958 Vdc	1.1E-02	0.00 %	Pass
Channel 9	0.1%	4.973 Vdc	4.974 Vdc	7.1E-03	0.01 %	Pass	4.973 Vdc	4.973 Vdc	7.0E-03	0.00 %	Pass
Channel 10	0.1%	4.967 Vdc	4.967 Vdc	8.3E-03	0.00 %	Pass	4.967 Vdc	4.967 Vdc	7.4E-03	0.00 %	Pass
Channel 11	0.1%	4.957 Vdc	4.957 Vdc	1.1E-02	0.00 %	Pass	4.957 Vdc	4.957 Vdc	1.2E-02	0.00 %	Pass
Channel 12	0.1%	4.960 Vdc	4.960 Vdc	9.2E-03	0.01 %	Pass	4.960 Vdc	4.960 Vdc	9.3E-03	0.01 %	Pass
Channel 13	0.1%	4.967 Vdc	4.967 Vdc	7.1E-03	0.01 %	Pass	4.967 Vdc	4.967 Vdc	7.1E-03	0.00 %	Pass
Channel 14	0.1%	4.974 Vdc	4.974 Vdc	7.8E-03	0.01 %	Pass	4.974 Vdc	4.974 Vdc	8.6E-03	0.00 %	Pass
Channel 15	0.1%	4.949 Vdc	4.950 Vdc	1.0E-02	0.02 %	Pass	4.949 Vdc	4.949 Vdc	1.0E-02	0.00 %	Pass
Channel 16	0.1%	4.973 Vdc	4.974 Vdc	8.8E-03	0.02 %	Pass	4.973 Vdc	4.973 Vdc	8.7E-03	0.00 %	Pass
Channel 17	0.1%	4.968 Vdc	4.969 Vdc	6.8E-03	0.02 %	Pass	4.969 Vdc	4.968 Vdc	6.7E-03	-0.01 %	Pass
Channel 18	0.1%	4.982 Vdc	4.982 Vdc	7.6E-03	0.01 %	Pass	4.982 Vdc	4.982 Vdc	7.7E-03	0.00 %	Pass
Channel 19	0.1%	4.988 Vdc	4.988 Vdc	8.0E-03	0.02 %	Pass	4.988 Vdc	4.987 Vdc	8.0E-03	0.00 %	Pass
Channel 20	0.1%	4.963 Vdc	4.963 Vdc	8.5E-03	0.00 %	Pass	4.963 Vdc	4.963 Vdc	8.5E-03	0.01 %	Pass
Channel 21	0.1%	4.969 Vdc	4.970 Vdc	6.4E-03	0.02 %	Pass	4.969 Vdc	4.969 Vdc	6.4E-03	0.00 %	Pass
Channel 22	0.1%	4.969 Vdc	4.970 Vdc	2.4E-03	0.01 %	Pass	4.969 Vdc	4.969 Vdc	5.7E-03	0.00 %	Pass
Channel 23	0.1%	4.992 Vdc	4.993 Vdc	8.7E-03	0.01 %	Pass	4.992 Vdc	4.992 Vdc	8.7E-03	0.01 %	Pass
Channel 24	0.1%	4.968 Vdc	4.969 Vdc	8.7E-03	0.01 %	Pass	4.969 Vdc	4.969 Vdc	8.8E-03	0.00 %	Pass
Channel 25	0.1%	4.954 Vdc	4.955 Vdc	1.1E-02	0.02 %	Pass	4.954 Vdc	4.954 Vdc	9.8E-03	0.00 %	Pass
Channel 26	0.1%	4.967 Vdc	4.968 Vdc	7.6E-03	0.00 %	Pass	4.967 Vdc	4.968 Vdc	7.5E-03	0.00 %	Pass
Channel 27	0.1%	4.966 Vdc	4.967 Vdc	5.2E-03	0.00 %	Pass	4.966 Vdc	4.967 Vdc	5.2E-03	0.00 %	Pass
Channel 28	0.1%	4.955 Vdc	4.956 Vdc	9.3E-03	0.02 %	Pass	4.955 Vdc	4.955 Vdc	9.2E-03	0.00 %	Pass
Channel 29	0.1%	4.954 Vdc	4.955 Vdc	1.1E-02	0.02 %	Pass	4.954 Vdc	4.953 Vdc	1.1E-02	0.00 %	Pass
Channel 30	0.1%	4.965 Vdc	4.966 Vdc	9.2E-03	0.02 %	Pass	4.965 Vdc	4.965 Vdc	9.2E-03	0.00 %	Pass
Channel 31	0.1%	4.972 Vdc	4.973 Vdc	7.3E-03	0.01 %	Pass	4.972 Vdc	4.973 Vdc	7.4E-03	0.01 %	Pass
Channel 32	0.1%	4.972 Vdc	4.972 Vdc	8.3E-03	0.01 %	Pass	4.972 Vdc	4.972 Vdc	8.3E-03	0.00 %	Pass

*** End of Certificate***

41204 Bridge Street, Novi, MI 48375-1301 USA

Phone: +1 248 427 0045 • Fax: +1 248 427 0630

www.dtsweb.com

ressed Concrete Slabs -- Open Air Blast Testing (Fina

Certificate of Calibration

Model #:	G5 Data Acquisition	Module	Certificate #:	201508135M0279
Serial #:	5M0279		Date Received:	12 August 2015
Firmware:	01U2		Date Calibrated:	13 August 2015
Procedure Name:	G5 Calibration	Revision: 2.4	Next Calibration:	13 August 2016
Order Number:	RA29243		Item Received:	In Tolerance
Customer:	Oregon Ballistics La	aboratories	Item Returned:	In Tolerance
	2873 22nd St SE St	e C	Temperature:	76°F/24.3°C
	Salem, OR 97302		Humidity:	45 %

DTS has been audited by the American Association for Laboratory Accreditation (A2LA) and found in compliance with ISO/IEC 17025:2005. Accredited calibrations performed within the DTS Scope of Accreditation are indicated by the presence of the A2LA Logo and Certificate Number on this Certificate of Calibration.

DTS reference standards are processed and calibrated in accordance with the DTS Quality Assurance System, and traceable to the National Institute of Standards and Technology (NIST).

All calibrations have been performed using processes having a test uncertainty ratio of four or more times greater than the unit calibrated, unless otherwise noted on the report. Uncertainties have been estimated at a 95 percent confidence level (k=2). Calibration at a 4:1 TUR provides reasonable confidence that the instrument is within the manufacturer's published specifications.

The reported data is the raw recorded data and is not corrected for uncertainty or environmental effects. Any number of factors can cause a unit to drift out of tolerance at any time following its calibration.

This report only applies only to the item(s) identified above, and shall not be reproduced except in full, without the written approval of DTS. Limitations on the uses of this instrument are detailed in the manufacturer's operating instructions.

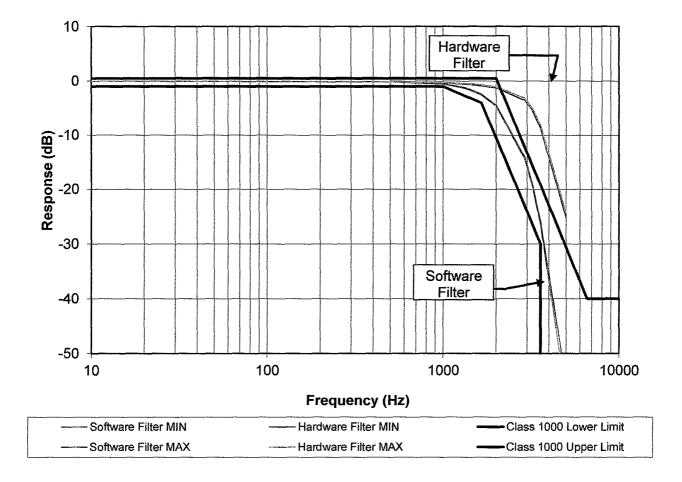
Remarks:

Standards Use	ed				
Serial #	Manufacturer	Model #	Description	Cal Date	Due Date
US34021614	HP	33120A	Function/Arbitrary Waveform Generator, 15 MHz	13-Feb-2015	13-Feb-2016
MY42002138	Agilent	34420A	Nano Volt, Micro-Ohm Meter, 7.5 Digit	28-May-2015	28-May-2016
CAL012	DTS	CALSTAT	TDAS Calibration Station	15-Nov-2014	15-Nov-2015

Results

Test Description	Test I	Result
	As Received	As Returned
Visual Inspection	Pass	Pass
Basic Channel Functions	Pass	Pass
Calibration DAC Accuracy	Pass	Pass
Excitation Sources	Pass	Pass
Gain Accuracy	Pass	Pass
Frequency Response	Pass	Pass
Timebase Accuracy	Pass	Pass
T=0 Trigger Function	Pass	Pass
Time Skew	Pass	Pass
Noise Level	Pass	Pass

Calibration Site: 25881 Meadowbrook Road Novi, MI 48375


Calibrated By: Bob Colento

Bob Colenso Technical Support Engineer

Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)^{3 August 2015}

Class 1000 System Response vs. SAE J211 (March 2014) All 32 channels typically overlap due to very tight control of component tolerances. Only the minimum and maximum response of the 32 channels are shown for clarity.

Test Description				As Rec	eived		As Returned			
Filter Response-S	oftware		Std	db	Uncertainty	Pass/	Std	db	Uncertainty	Pass/
Channel 1	Lir	nit			(mV)	Fail			(mV)	Fail
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.108	0.002	Pass	0.652 mV	-0.116	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.545	0.002	Pass	0.621 mV	-0.544	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.231	0.003	Pass	0.573 mV	-1.231	0.003	Pass
1650Hz	0.5db	-4db	0.500 mV	-2.442	0.003	Pass	0.496 mV	-2.495	0.003	Pass
2000Hz	0.5db	-10.66db	0.392 mV	-4.547	0.002	Pass	0.391 mV	-4.548	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.251	0.002	Pass	0.128 mV	-14.252	0.002	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.078	0.001	Pass	0.073 mV	-19.081	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.416	0.001	Pass	0.032 mV	-26.391	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.649	0.000	Pass	0.001 mV	-57.308	0.000	Pass
Channel 2										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.108	0.002	Pass	0.652 mV	-0.115	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.544	0.002	Pass	0.621 mV	-0.542	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.229	0.003	Pass	0.574 mV	-1.229	0.003	Pass
1650Hz	0.5db	-4db	0.500 mV	-2.439	0.003	Pass	0.496 mV	-2.492	0.003	Pass
2000Hz	0.5db	-10.66db	0.393 mV	-4.540	0.004	Pass	0.392 mV	-4.541	0.004	Pass
2900Hz	-12.37db	-23.53db	0.129 mV	-14.223	0.003	Pass	0.129 mV	-14.221	0.003	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.041	0.002	Pass	0.074 mV	-19.043	0.002	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.379	0.001	Pass	0.032 mV	-26.350	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.696	0.000	Pass	0.001 mV	-57.512	0.000	Pass
					D-6					

Serial #: 5M0279 Serial #: 5M0279 Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report) Date: 13 August 2015

Test Description				As Rec	eived	As Returned				
Filter Response			Std	db	Uncertainty	Pass/	Std	db	Uncertainty	Pass/
Channel 3		mit	otu	ub	(mV)	Fail	014	45	(mV)	Fail
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.104	0.002	Pass	0.652 mV	-0.113	0.002	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.532	0.002	Pass	0.622 mV	-0.530	0.002	Pass
		-2.69db			0.002	Pass	0.575 mV	-0.330	0.002	Pass
1325Hz	0.5db		0.576 mV	-1.209	0.002		0.498 mV	-2.461	0.002	
1650Hz	0.5db	-4db	0.502 mV	-2.404		Pass				Pass
2000Hz	0.5db	-10.66db	0.395 mV	-4.495	0.003	Pass	0.394 mV	-4.494	0.003	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.118	0.002	Pass	0.130 mV	-14.118	0.002	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.902	0.001	Pass	0.075 mV	-18.901	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.182	0.001	Pass	0.033 mV	-26.150	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.260	0.000	Pass	0.001 mV	-56.589	0.000	Pass
Channel 4						_				_
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.110	0.002	Pass	0.652 mV	-0.118	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.554	0.002	Pass	0.620 mV	-0.552	0.002	Pass
1325Hz	0.5db	-2.69db	0.574 mV	-1.246	0.002	Pass	0.572 mV	-1.246	0.002	Pass
1650Hz	0.5db	-4db	0.499 mV	-2.463	0.002	Pass	0.495 mV	-2.517	0.002	Pass
2000Hz	0.5db	-10.66db	0.391 mV	-4.578	0.002	Pass	0.390 mV	-4.577	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.297	0.002	Pass	0.127 mV	-14.296	0.002	Pass
3200Hz	-15.77db	-26.93db	0.073 mV	-19.129	0.001	Pass	0.073 mV	-19.128	0.001	Pass
3575Hz	-19.61db	-999db	0.031 mV	-26.473	0.001	Pass	0.031 mV	-26.444	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.535	0.000	Pass	0.001 mV	-57.228	0.000	Pass
Channel 5										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.103	0.002	Pass	0.652 mV	-0.112	0.002	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.531	0.002	Pass	0.622 mV	-0.528	0.002	Pass
1325Hz	0.5db	-2.69db	0.576 mV	-1.207	0.002	Pass	0.575 mV	-1.206	0.002	Pass
1650Hz	0.5db	-2.090b -4db	0.502 mV	-2.399	0.002	Pass	0.498 mV	-2.456	0.002	Pass
2000Hz	0.5db	-400 -10.66db	0.395 mV	-2.399 -4.488	0.003	Pass	0.394 mV	-2.430 -4.487	0.003	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.120	0.002	Pass	0.130 mV	-14.118	0.002	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.914	0.001	Pass	0.075 mV	-18.912	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.207	0.001	Pass	0.032 mV	-26.175	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.082	0.000	Pass	0.001 mV	-57.129	0.000	Pass
Channel 6		0 75 1								_
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	~0.96db	0.654 mV	-0.107	0.002	Pass	0.652 mV	-0.116	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.544	0.002	Pass	0.621 mV	-0.542	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.229	0.003	Pass	0.574 mV	-1.230	0.003	Pass
1650Hz	0.5db	-4db	0.500 mV	-2.434	0.002	Pass	0.496 mV	-2.491	0.002	Pass
2000Hz	0.5db	-10.66db	0.393 mV	-4.538	0.002	Pass	0.392 mV	-4.536	0.002	Pass
2900Hz	-12.37db	-23.53db	0.129 mV	-14.204	0.001	Pass	0.129 mV	-14.204	0.001	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.008	0.001	Pass	0.074 mV	-19.006	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.309	0.001	Pass	0.032 mV	-26.278	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.092	0.000	Pass	0.001 mV	-57.014	0.000	Pass
Channel 7										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.103	0.002	Pass	0.652 mV	-0.111	0.002	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.528	0.002	Pass	0.622 mV	-0.526	0.002	Pass
1325Hz	0.5db	-2.69db	0.576 mV	-1.203	0.003	Pass	0.575 mV	-1.203	0.003	Pass
1650Hz	0.5db	-4db	0.503 mV	-2.393	0.003	Pass	0.498 mV	-2.451	0.003	Pass
2000Hz	0.5db	-10.66db	0.395 mV	-4.479	0.003	Pass	0.395 mV	-4.479	0.003	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.093	0.002	Pass	0.130 mV	-14.094	0.002	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.881	0.001	Pass	0.075 mV	-18.881	0.002	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.171	0.001	Pass	0.033 mV	-26.142	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-55.928	0.000	Pass	0.000 mV	-56.981	0.000	Pass
	0		0.001 1114	00.010	0.000		0.0011110	00.001	0.000	1 433

Serial #: 5M0279 Serial #: 5M0279 Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (FinaPReptorRA29243 Date: 13 August

Test Description				As Rec	eived			As Ret	urned	
Filter Response-S			Std	db	Uncertainty	Pass/	Std	db	Uncertainty	Pass/
	Lin		Siu	up.	•	Fail	30	ab	(mV)	Fail
Channel 8 10Hz		-0.75db	0.662 mV	0.000	(mV) 0.002	Pass	0.661 mV	0.000	0.002	Pass
	0.5db	-0.96db	0.655 mV	-0.101	0.002	Pass	0.652 mV	-0.110	0.002	Pass
500Hz 1000Hz	0.5db 0.5db	-0.960b -1db	0.624 mV	-0.518	0.002	Pass	0.623 mV	-0.110	0.002	Pass
1325Hz	0.5db	-2.69db	0.578 mV	-1.185	0.002	Pass	0.576 mV	-1.185	0.002	Pass
1650Hz	0.5db	-4db	0.504 mV	-2.369	0.003	Pass	0.500 mV	-2.425	0.003	Pass
2000Hz	0.5db	-10.66db	0.397 mV	-4.446	0.003	Pass	0.396 mV	-4.447	0.003	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.055	0.002	Pass	0.131 mV	-14.054	0.002	Pass
3200Hz	-15.77db	-26.93db	0.076 mV	-18.849	0.001	Pass	0.075 mV	-18.851	0.001	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.156	0.001	Pass	0.033 mV	-26.129	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.371	0.000	Pass	0.001 mV	-56.975	0.000	Pass
Channel 9						-				~
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.106	0.002	Pass	0.654 mV	-0.090	0.002	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.531	0.002	Pass	0.621 mV	-0.537	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.235	0.002	Pass	0.574 mV	-1.219	0.002	Pass
1650Hz	0.5db	-4db	0.500 mV	-2.443	0.003	Pass	0.498 mV	-2.448	0.003	Pass
2000Hz	0.5db	-10.66db	0.394 mV	-4.515	0.003	Pass	0.392 mV	-4.533	0.003	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.123	0.002	Pass	0.130 mV	-14.087	0.002	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.946	0.001	Pass	0.075 mV	-18.935	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.213	0.001	Pass	0.032 mV	-26.193	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.114	0.000	Pass	0.001 mV	-57.204	0.000	Pass
Channel 10										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.107	0.003	Pass	0.654 mV	-0.090	0.003	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.532	0.002	Pass	0.621 mV	-0.538	0.002	Pass
1325Hz	0.5db	-2.69db	0.574 mV	-1.236	0.003	Pass	0.574 mV	-1.221	0.003	Pass
1650Hz	0.5db	-4db	0.500 mV	-2.445	0.003	Pass	0.498 mV	-2.451	0.003	Pass
2000Hz	0.5db	-10.66db	0.393 mV	-4.519	0.002	Pass	0.392 mV	-4.537	0.002	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.131	0.002	Pass	0.130 mV	-14.095	0.002	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.965	0.001	Pass	0.075 mV	-18.954	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.259	0.001	Pass	0.032 mV	-26.241	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.336	0.000	Pass	0.001 mV	-57.208	0.000	Pass
Channel 11										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.112	0.003	Pass	0.653 mV	-0.095	0.003	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.551	0.002	Pass	0.620 mV	-0.558	0.002	Pass
1325Hz	0.5db	-2.69db	0.572 mV	-1.270	0.002	Pass	0.572 mV	-1.255	0.002	Pass
1650Hz	0.5db	-4db	0.497 mV	-2.498	0.003	Pass	0.495 mV	-2.504	0.003	Pass
2000Hz	0.5db	-10.66db	0.390 mV	-4.596	0.002	Pass	0.388 mV	-4.615	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.295	0.001	Pass	0.128 mV	-14.257	0.001	Pass
3200Hz	-15.77db	-26.93db	0.073 mV	-19.153	0.001	Pass	0.073 mV	-19.144	0.001	Pass
3575Hz	-19.61db	-999db	0.031 mV	-26.469	0.001	Pass	0.031 mV	-26.450	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.607	0.000	Pass	0.001 mV	-57.711	0.000	Pass
Channel 12										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.108	0.002	Pass	0.654 mV	-0.092	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.537	0.002	Pass	0.620 mV	-0.544	0.002	Pass
1325Hz	0.5db	-2.69db	0.574 mV	-1.245	0.002	Pass	0.573 mV	-1.230	0.002	Pass
1650Hz	0.5db	-4db	0.499 mV	-2.459	0.002	Pass	0.497 mV	-2.466	0.002	Pass
2000Hz	0.5db	-10.66db	0.392 mV	-4.541	0.003	Pass	0.391 mV	-4.559	0.003	Pass
2900Hz	-12.37db	-23.53db	0.129 mV	-14.184	0.002	Pass	0.130 mV	-14.146	0.002	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.022	0.001	Pass	0.074 mV	-19.010	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.313	0.001	Pass	0.032 mV	-26.293	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.443	0.000	Pass	0.001 mV	-57.432	0.000	Pass

Serial #: 5M0279 Serial #: 5M0279 Date: 13 August

Test Dependention				As Rec	boviod			As Returned		
Test Description			Std	db	Uncertainty	Pass/	Std	db	Uncertainty	Pass/
Filter Response-S			510	ab	-		Siu	ub	-	Fail
Channel 13	Lin		0.000	0.000	(mV)	Fail	0.660 mV	0.000	(mV) 0.002	Pass
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass			0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.104	0.002	Pass	0.654 mV	-0.088		
1000Hz	0.5db	-1db	0.623 mV	-0.521	0.002	Pass	0.622 mV	-0.528	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.219	0.002	Pass	0.575 mV	-1.202	0.002	Pass
1650Hz	0.5db	-4db	0.501 mV	-2.419	0.002	Pass	0.500 mV	-2.422	0.002	Pass
2000Hz	0.5db	-10.66db	0.395 mV	-4.481	0.002	Pass	0.393 mV	-4.499	0.002	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.060	0.001	Pass	0.131 mV	-14.026	0.001	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.876	0.001	Pass	0.075 mV	-18.867	0.001	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.133	0.001	Pass	0.033 mV	-26.117	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.089	0.000	Pass	0.001 mV	-57.350	0.000	Pass
Channel 14										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.111	0.003	Pass	0.653 mV	-0.094	0.003	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.547	0.002	Pass	0.620 mV	-0.554	0.002	Pass
1325Hz	0.5db	-2.69db	0.572 mV	-1.263	0.002	Pass	0.572 mV	-1.249	0.002	Pass
1650Hz	0.5db	-4db	0.497 mV	-2.487	0.003	Pass	0.496 mV	-2.495	0.003	Pass
2000Hz	0.5db	-10.66db	0.391 mV	-4.579	0.002	Pass	0.389 mV	-4.599	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.251	0.001	Pass	0.129 mV	-14.214	0.001	Pass
3200Hz	-15.77db	-26.93db	0.073 mV	-19.096	0.001	Pass	0.073 mV	-19.087	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.399	0.001	Pass	0.032 mV	-26.381	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.513	0.000	Pass	0.001 mV	-57.504	0.000	Pass
Channel 15										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.104	0.002	Pass	0.654 mV	-0.088	0.002	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.521	0.001	Pass	0.622 mV	-0.528	0.001	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.219	0.002	Pass	0.575 mV	-1.202	0.002	Pass
1650Hz	0.5db	-4db	0.501 mV	-2.419	0.002	Pass	0.500 mV	-2.422	0.002	Pass
2000Hz	0.5db	-10.66db	0.395 mV	-4.480	0.003	Pass	0.394 mV	-4.498	0.003	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.043	0.002	Pass	0.132 mV	-14.011	0.002	Pass
3200Hz	-15.77db	-26.93db	0.076 mV	-18.847	0.002	Pass	0.075 mV	-18.839	0.002	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.090	0.001	Pass	0.033 mV	-26.074	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.080	0.000	Pass	0.001 mV	-57.159	0.000	Pass
Channel 16										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.113	0.002	Pass	0.653 mV	-0.096	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.553	0.002	Pass	0.619 mV	-0.560	0.002	Pass
1325Hz	0.5db	-2.69db	0.572 mV	-1.273	0.002	Pass	0.571 mV	-1.259	0.002	Pass
1650Hz	0.5db	-4db	0.496 mV	-2.500	0.003	Pass	0.495 mV	-2.509	0.003	Pass
2000Hz	0.5db	-10.66db	0.390 mV	-4.599	0.002	Pass	0.388 mV	-4.618	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.285	0.002	Pass	0.128 mV	-14.246	0.002	Pass
3200Hz	-15.77db	-26.93db	0.073 mV	-19.139	0.001	Pass	0.073 mV	-19.128	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.452	0.001	Pass	0.031 mV	-26.433	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.471	0.000	Pass	0.001 mV	-57.607	0.000	Pass
Channel 17			0.001		0.000	1 400	0.001 111	-01.001	0.000	1 033
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.091	0.002	Pass	0.653 mV	-0.099	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.540	0.002	Pass	0.621 mV	-0.534	0.002	Pass
1325Hz	0.5db	-2.69db	0.574 mV	-1.238	0.002	Pass	0.577 mV	-0.534	0.002	Pass
1650Hz	0.5db	-4db	0.499 mV	-2.454	0.002	Pass	0.502 mV	-2.384	0.002	
2000Hz	0.5db	-10.66db	0.395 mV	-2.454 -4.484	0.002	Pass	0.393 mV	-2.304 -4.516	0.002	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.078	0.002	Pass	0.131 mV	-14.062	0.002	Pass
3200Hz	-12.37db	-26.93db	0.075 mV	-18.925	0.002	Pass	0.131 mV 0.075 mV	-14.062 -18.913	0.002	Pass
3575Hz	-19.61db	-20.930b	0.033 mV	-26.171	0.001	Pass	0.032 mV	-16.913	0.001	Pass Pass
5000Hz	-31.23db	-999db	0.003 mV	-57.094	0.000	Pass	0.001 mV	-56.301	0.001	Pass
0000112	01.2000	00000	0.001114	07.004	0.000	1 0 3 3	0.0011114	-30.301	0.000	F 033

Serial #: 5M0279 Serial #: 5M0279 Serial #: 5M0279 Serial #: 5M0279

Test Description	1			As Rec	eived			As Ret	urned	
Filter Response-S			Std	db	Uncertainty	Pass/	Std	db	Uncertainty	Pass/
Channel 18	Lin	nit	014		(mV)	Fail			(mV)	Fail
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.096	0.002	Pass	0.653 mV	-0.103	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.559	0.002	Pass	0.620 mV	-0.552	0.002	Pass
1325Hz	0.5db	-2.69db	0.572 mV	-1.271	0.002	Pass	0.575 mV	-1.203	0.002	Pass
1650Hz	0.5db	-4db	0.497 mV	-2.502	0.002	Pass	0.499 mV	-2.434	0.002	Pass
2000Hz	0.5db	-10.66db	0.392 mV	-4.555	0.003	Pass	0.390 mV	-4.585	0.002	Pass
2900Hz	-12.37db	-23.53db	0.129 mV	-14.200	0.002	Pass	0.129 mV	-14.187	0.002	Pass
3200Hz	-12.37db -15.77db	-26.93db	0.074 mV	-14.200	0.002	Pass	0.074 mV	-19.048	0.001	Pass
					0.001	Pass	0.074 mV 0.032 mV	-26.306	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV 0.001 mV	-26.310	0.001	Pass	0.001 mV	-56.368	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.388	0.000	Pass	0.001 mV	-30.300	0.000	Pass
Channel 19	0 5 1		0.000 N/		0.000	D	0.000	0.000	0.000	D
10Hz	0.5db	-0.75db	0.663 mV	0.000	0.002	Pass	0.660 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.093	0.002	Pass	0.653 mV	-0.101	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.547	0.002	Pass	0.621 mV	-0.541	0.002	Pass
1325Hz	0.5db	-2.69db	0.574 mV	-1.251	0.002	Pass	0.576 mV	-1.184	0.002	Pass
1650Hz	0.5db	-4db	0.498 mV	-2.474	0.002	Pass	0.501 mV	-2.405	0.002	Pass
2000Hz	0.5db	-10.66db	0.394 mV	-4.514	0.003	Pass	0.391 mV	-4.544	0.003	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.131	0.002	Pass	0.130 mV	-14.116	0.002	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-18.986	0.001	Pass	0.074 mV	-18.970	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.237	0.001	Pass	0.032 mV	-26.237	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.181	0.000	Pass	0.001 mV	-56.148	0.000	Pass
Channel 20										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.656 mV	-0.088	0.002	Pass	0.653 mV	-0.095	0.002	Pass
1000Hz	0.5db	-1db	0.623 mV	-0.529	0.002	Pass	0.622 mV	-0.523	0.002	Pass
1325Hz	0.5db	-2.69db	0.576 mV	-1.220	0.002	Pass	0.579 mV	-1.152	0.002	Pass
1650Hz	0.5db	-4db	0.501 mV	-2.423	0.001 ,	Pass	0.504 mV	-2.356	0.002	Pass
2000Hz	0.5db	-10.66db	0.397 mV	-4.442	0.002	Pass	0.395 mV	-4.471	0.002	Pass
2900Hz	-12.37db	-23.53db	0.132 mV	-13.980	0.002	Pass	0.132 mV	-13.969	0.002	Pass
3200Hz	-15.77db	-26.93db	0.076 mV	-18.807	0.001	Pass	0.076 mV	-18.794	0.001	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.019	0.001	Pass	0.033 mV	-26.016	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.882	0.000	Pass	0.001 mV	-55.706	0.000	Pass
Channel 21	02040	00000	0.001 1110	00.002	0.000	. 400	0.001 (1.1	00.700	0.000	. 400
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.094	0.002	Pass	0.653 mV	-0.101	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.552	0.002	Pass	0.620 mV	-0.546	0.002	Pass
1325Hz	0.5db	-2.69db	0.573 mV	-1.260	0.002	Pass	0.576 mV	-1.192	0.002	Pass
1650Hz	0.5db	-2.0900 -4db	0.497 mV	-2.487	0.002	Pass	0.500 mV	-2.417	0.002	Pass
2000Hz	0.5db	-10.66db	0.393 mV	-4.533	0.002	Pass	0.391 mV	-4.564	0.002	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.163	0.002	Pass	0.130 mV	-14.146	0.002	Pass
3200Hz	-12.37db	-26.93db	0.074 mV	-19.012	0.002	Pass	0.074 mV	-18.997	0.002	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.258	0.001					
5000Hz	-31.23db	-999db	0.002 mV	-57.192	0.000	Pass Pass	0.032 mV 0.001 mV	-26.255	0.001	Pass
Channel 22	-01.2000	-99900	0.001 1110	-57.192	0.000	F 855	0.001 mV	-56.056	0.000	Pass
10Hz	0 Edb	0.7546	0.662 mV	0.000	0.000	Deen	0.004	0.000	0.000	D
	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.096	0.002	Pass	0.653 mV	-0.103	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.556	0.002	Pass	0.620 mV	-0.549	0.002	Pass
1325Hz	0.5db	-2.69db	0.573 mV	-1.265	0.002	Pass	0.576 mV	-1.197	0.002	Pass
1650Hz	0.5db	-4db	0.497 mV	-2.491	0.002	Pass	0.500 mV	-2.423	0.002	Pass
2000Hz	0.5db	-10.66db	0.393 mV	-4.536	0.002	Pass	0.390 mV	-4.567	0.002	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.156	0.001	Pass	0.130 mV	-14.142	0.001	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.009	0.002	Pass	0.074 mV	-18.996	0.002	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.256	0.000	Pass	0.032 mV	-26.253	0.000	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.301	0.000	Pass	0.001 mV	-56.181	0.000	Pass

Serial #: 5M0279 Serial #: 5M0279 DTB Bonned Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Fina Preprint August Date: 13 August

Test Description	_			As Received As Returned						
Test Description			Std	db	Uncertainty	Pass/	Std	db	Uncertainty	Pass/
Filter Response-	Lin	. 14	310	ab	(mV)	Fail	Old	46	(mV)	Fail
Channel 23			0.000 mV	0.000	0.002	Pass	0.661 mV	0.000	0.003	Pass
10Hz	0.5db	-0.75db	0.662 mV		0.002	Pass	0.653 mV	-0.098	0.003	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.092				-0.534	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.541	0.002	Pass	0.621 mV			
1325Hz	0.5db	-2.69db	0.574 mV	-1.240	0.002	Pass	0.577 mV	-1.171	0.002	Pass
1650Hz	0.5db	-4db	0.499 mV	-2.453	0.002	Pass	0.502 mV	-2.385	0.002	Pass
2000Hz	0.5db	-10.66db	0.395 mV	-4.485	0.002	Pass	0.393 mV	-4.513	0.002	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.052	0.002	Pass	0.131 mV	-14.041	0.002	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.879	0.001	Pass	0.075 mV	-18.864	0.001	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.087	0.001	Pass	0.033 mV	-26.086	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.074	0.000	Pass	0.001 mV	-55.901	0.000	Pass
Channel 24										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.655 mV	-0.098	0.002	Pass	0.653 mV	-0.106	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.567	0.002	Pass	0.619 mV	-0.561	0.002	Pass
1325Hz	0.5db	-2.69db	0.571 mV	-1.285	0.002	Pass	0.574 mV	-1.217	0.002	Pass
1650Hz	0.5db	-4db	0.495 mV	-2.525	0.002	Pass	0.498 mV	-2.455	0.001	Pass
2000Hz	0.5db	-10.66db	0.391 mV	-4.588	0.001	Pass	0.388 mV	-4.619	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.284	0.001	Pass	0.128 mV	-14.266	0.001	Pass
3200Hz	-15.77db	-26.93db	0.073 mV	-19.167	0.002	Pass	0.073 mV	-19.152	0.002	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.453	0.000	Pass	0.031 mV	-26.449	0.000	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.533	0.000	Pass	0.001 mV	-56.481	0.000	Pass
Channel 25										
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.102	0.002	Pass	0.654 mV	-0.087	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.536	0.002	Pass	0.622 mV	-0.524	0.002	Pass
1325Hz	0.5db	-2.69db	0.578 mV	-1.179	0.003	Pass	0.575 mV	-1.213	0.003	Pass
1650Hz	0.5db	-4db	0.503 mV	-2.382	0.003	Pass	0.499 mV	-2.441	0.002	Pass
2000Hz	0.5db	-10.66db	0.394 mV	-4.511	0.003	Pass	0.394 mV	-4.497	0.003	Pass
2900Hz	-12.37db	-23.53db	0.132 mV	-14.031	0.002	Pass	0.132 mV	-13.992	0.002	Pass
3200Hz	-15.77db	-26.93db	0.076 mV	-18.844	0.001	Pass	0.076 mV	-18.822	0.001	Pass
3575Hz	-19.61db	-999db	0.033 mV	-26.080	0.001	Pass	0.033 mV	-26.065	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.708	0.000	Pass	0.001 mV	-55.272	0.000	Pass
Channel 26	0	00000	0.001	0000	0.000					
10Hz	0.5db	-0.75db	0.661 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.103	0.002	Pass	0.654 mV	-0.089	0.002	Pass
1000Hz	0.5db	-1db	0.622 mV	-0.540	0.002	Pass	0.622 mV	-0.529	0.002	Pass
1325Hz	0.5db	-2.69db	0.577 mV	-1.185	0.003	Pass	0.574 mV	-1.220	0.003	Pass
1650Hz	0.5db	-4db	0.502 mV	-2.391	0.002	Pass	0.498 mV	-2.452	0.002	Pass
2000Hz	0.5db	-10.66db	0.393 mV	-4.524	0.002	Pass	0.393 mV	-4.513	0.002	Pass
2900Hz	-12.37db	-23.53db	0.131 mV	-14.058	0.001	Pass	0.131 mV	-14.022	0.001	Pass
3200Hz	-15.77db	-26.93db	0.075 mV	-18.875	0.002	Pass	0.075 mV	-18.860	0.002	Pass
3575Hz	-19.61db	-20.950b	0.033 mV	-26.118	0.002	Pass	0.033 mV	-26.108	0.002	Pass
5000Hz	-31.23db	-999db	0.003 mV	-56.973	0.000	Pass	0.001 mV	-26.108	0.000	Pass
Channel 27	-01.2000	-99900	0.001 1110	-30.975	0.000	1 033	0.001 111	-00.200	0.000	F 835
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass	0.661 mV	0.000	0.002	Deee
500Hz	0.5db						0.661 mV	0.000	0.002	Pass
1000Hz	0.5db	-0.96db -1db	0.653 mV 0.619 mV	-0.112 -0.575	0.002 0.002	Pass Pass	0.653 mV 0.619 mV	-0.098	0.002	Pass
1325Hz		-2.69db						-0.564	0.002	Pass
	0.5db		0.573 mV	-1.245	0.002	Pass	0.570 mV	-1.278	0.003	Pass
1650Hz	0.5db	-4db	0.497 mV	-2.485	0.002	Pass	0.493 mV	-2.545	0.002	Pass
2000Hz	0.5db	-10.66db	0.387 mV	-4.662	0.002	Pass	0.387 mV	-4.649	0.002	Pass
2900Hz	-12.37db	-23.53db	0.127 mV	-14.338	0.002	Pass	0.127 mV	-14.306	0.002	Pass
3200Hz	-15.77db	-26.93db	0.072 mV	-19.211	0.001	Pass	0.073 mV	-19.191	0.001	Pass
3575Hz	-19.61db	-999db	0.031 mV	-26.510	0.001	Pass	0.031 mV	-26.504	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.511	0.000	Pass	0.001 mV	-56.597	0.000	Pass

Serial #: 5M0279 Serial #: 5M0279 Example Ofference Stressed Concrete Slabs -- Open Air Blast Testing (Finalree #0fference) Date: 13 August

-1.2 Vdc

0.0 Vdc

-1.2025 Vdc -1.1975 Vdc

-0.0005 Vdc 0.0005 Vdc

Date: 13 August 2015

Test Description				As Receiv					As Ret		
Filter Response-So			Std	db l	Incertaint	•		Std	db	Uncertainty	
Channel 28	Lir	nit			(mV)	Fail				(mV)	Fail
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass		0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.653 mV	-0.109	0.002	Pass		0.654 mV	-0.094	0.002	Pass
1000Hz	0.5db	-1db	0.620 mV	-0.561	0.002	Pass		0.620 mV	-0.550	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.223	0.002	Pass		0.572 mV	-1.256	0.002	Pass
1650Hz	0.5db	-4db	0.499 mV	-2.450	0.002	Pass		0.495 mV	-2.511	0.002	Pass
2000Hz	0.5db	-10.66db	0.389 mV	-4.613	0.002	Pass		0.389 mV	-4.600	0.002	Pass
2900Hz	-12.37db	-23.53db	0.128 mV	-14.250	0.002	Pass		0.129 mV	-14.218	0.002	Pass
3200Hz	-15.77db	-26.93db	0.073 mV	-19.112	0.001	Pass		0.073 mV	-19.094	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.400	0.001	Pass		0.032 mV	-26.393	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.339	0.000	Pass		0.001 mV	-56.707	0.000	Pass
Channel 29											
10Hz	0.5db	-0.75db	0.661 mV	0.000	0.002	Pass		0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.653 mV	-0.107	0.002	Pass		0.654 mV	-0.093	0.002	Pass
1000Hz	0.5db	-1db	0.620 mV	-0.556	0.002	Pass		0.621 mV	-0.545	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.212	0.002	Pass		0.572 mV	-1.246	0.002	Pass
1650Hz	0.5db	-4db	0.500 mV	-2.435	0.002	Pass		0.496 mV	-2.495	0.002	Pass
2000Hz	0.5db	-10.66db	0.390 mV	-4.590	0.002	Pass		0.390 mV	-4.576	0.002	Pass
2900Hz	-12.37db	-23.53db	0.129 mV	-14.206	0.001	Pass		0.129 mV	-14.173	0.001	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.059	0.001	Pass		0.074 mV	-19.040	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.336	0.001	Pass		0.032 mV	-26.325	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.404	0.000	Pass		0.001 mV	-56.203	0.000	Pass
Channel 30	-01.2000	-00000	0.0011110	-07.404	0.000	1 033		0.003 1114	-00.200	0.000	1 499
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass		0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.653 mV	-0.109	0.002	Pass		0.654 mV	-0.094	0.002	
1000Hz	0.5db	-1db	0.620 mV								Pass
				-0.561	0.002	Pass		0.620 mV	-0.549	0.002	Pass
1325Hz	0.5db	-2.69db	0.575 mV	-1.220	0.002	Pass		0.572 mV	-1.253	0.002	Pass
1650Hz	0.5db	-4db	0.499 mV	-2.445	0.002	Pass		0.495 mV	-2.505	0.002	Pass
2000Hz	0.5db	-10.66db	0.389 mV	-4.601	0.002	Pass		0.390 mV	-4.586	0.002	Pass
2900Hz	-12.37db	-23.53db	0.129 mV	-14.209	0.002	Pass		0.129 mV	-14.173	0.002	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-19.062	0.001	Pass		0.074 mV	-19.042	0.001	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.348	0.001	Pass		0.032 mV	-26.337	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-57.377	0.000	Pass		0.001 mV	-56.584	0.000	Pass
Channel 31											
10Hz	0.5db	-0.75db	0.661 mV	0.000	0.002	Pass		0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.653 mV	-0.106	0.002	Pass		0.654 mV	-0.092	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.549	0.002	Pass		0.621 mV	-0.538	0.002	Pass
1325Hz	0.5db	-2.69db	0.576 mV	-1.200	0.003	Pass		0.573 mV	-1.234	0.003	Pass
1650Hz	0.5db	-4db	0.501 mV	-2.416	0.003	Pass		0.497 mV	-2.476	0.003	Pass
2000Hz	0.5db	-10.66db	0.391 mV	-4.561	0.003	Pass		0.391 mV	-4.548	0.003	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.143	0.002	Pass		0.130 mV	-14.109	0.002	Pass
3200Hz	-15.77db	-26.93db	0.074 mV	-18.986	0.002	Pass		0.074 mV	-18.965	0.002	Pass
3575Hz	-19.61db	-999db	0.032 mV	-26.253	0.001	Pass		0.032 mV	-26.240	0.001	Pass
5000Hz	-31.23db	-999db	0.001 mV	-56.292	0.000	Pass		0.001 mV	-55.337	0.000	Pass
Channel 32											
10Hz	0.5db	-0.75db	0.662 mV	0.000	0.002	Pass		0.661 mV	0.000	0.002	Pass
500Hz	0.5db	-0.96db	0.654 mV	-0.105	0.002	Pass		0.654 mV	-0.091	0.002	Pass
1000Hz	0.5db	-1db	0.621 mV	-0.549	0.002	Pass		0.621 mV	-0.538	0.002	Pass
1325Hz	0.5db	-2.69db	0.576 mV	-1.200	0.002	Pass		0.573 mV	-1.234	0.002	Pass
1650Hz	0.5db	-4db	0.501 mV	-2.415	0.002	Pass		0.497 mV	-2.476	0.002	
2000Hz	0.5db	-10.66db	0.391 mV	-4.560	0.002	Pass		0.391 mV	-2.476	0.002	Pass
2900Hz	-12.37db	-23.53db	0.130 mV	-14.133	0.002	Pass		0.391 mV 0.130 mV	-4.546 -14.097		Pass
3200Hz	-12.37db	-26.93db	0.075 mV	-14.135	0.001					0.002	Pass
3575Hz	-19.61db	-26.930b -999db	0.075 mV 0.032 mV			Pass		0.075 mV	-18.944	0.001	Pass
5000Hz	-19.61db -31.23db			-26.217	0.001	Pass		0.032 mV	-26.207	0.001	Pass
5000HZ	-31.2300	-999db	0.001 mV	-57.270	0.000	Pass		0.001 mV	-56.351	0.000	Pass
Toot Docorintia-					A. D.						
Test Description Cal DAC	Louise	imit Ilma	t imit		As Rec		Dessi			Returned	D
	Lower	Limit Upper	LITTIE	UUT	Ur	ncertainty	Pass/	U	UT L		Pass/
211/10	3 4035	Vdo 2 207	5 \/do	0 2004	Vde	(Vdc)	Fail	0.400	01/4-	(Vdc)	Fail
-2.4 Vdc	-2.4020	Vdc -2.397		-2.3994	VUC	0.0002	Pass	-2.400	0 Vdc	0.0002	Pass

0.0002

0.0001

Pass

Pass

-1.2000 Vdc

0.0000 Vdc

0.0001

0.0001

Pass

Pass

-1.1997 Vdc

0.0000 Vdc D-12

Serial #: 5M0279 Serial #: 5M0279 DTB Benaced Pre-Stressed Concrete Slabs -- Open Air Blast Testing (FinaDRep#ort%A29243 Date: 13 August 2015

L

Test Description

Test Description						_		
5V Excitation Short Circuit Re	ecovery			Received			s Returned	
	Lower Limit	Upper Limit	UUT	Uncertainty	Pass/	UUT	Uncertainty	Pass/
				(Vdc)	Fail		(Vdc)	Fail
Channel 1	4.9 Vdc	N/A	4.962 Vdc	0.011	Pass	4.964 Vdc	0.010	Pass
Channel 2	4.9 Vdc	N/A	4.970 Vdc	0.010	Pass	4.971 Vdc	0.010	Pass
Channel 3	4.9 Vdc	N/A	4.972 Vdc	0.010	Pass	4.973 Vdc	0.010	Pass
Channel 4	4.9 Vdc	N/A	4.962 Vdc	0.010	Pass	4.964 Vdc	0.010	Pass
Channel 5	4.9 Vdc	N/A	4.966 Vdc	0.010	Pass	4.969 Vdc	0.010	Pass
Channel 6	4.9 Vdc	N/A	4.955 Vdc	0.010	Pass	4.956 Vdc	0.010	Pass
Channel 7	4.9 Vdc	N/A	4.951 Vdc	0.011	Pass	4.952 Vdc	0.011	Pass
Channel 8	4.9 Vdc	N/A	4.956 Vdc	0.011	Pass	4.958 Vdc	0.011	Pass
Channel 9	4.9 Vdc	N/A	4.973 Vdc	0.010	Pass	4.973 Vdc	0.010	Pass
Channel 10	4.9 Vdc	N/A	4.964 Vdc	0.010	Pass	4.964 Vdc	0.010	Pass
Channel 11	4.9 Vdc	N/A	4.957 Vdc	0.011	Pass	4.957 Vdc	0.011	Pass
Channel 12	4.9 Vdc	N/A	4.957 Vdc	0.010	Pass	4.957 Vdc	0.010	Pass
Channel 13	4.9 Vdc	N/A	4.959 Vdc	0.011	Pass	4.960 Vdc	0.011	Pass
Channel 14	4.9 Vdc	N/A	4.971 Vdc	0.010	Pass	4.972 Vdc	0.010	Pass
Channel 15	4.9 Vdc	N/A	4.942 Vdc	0.013	Pass	4.943 Vdc	0.013	Pass
Channel 16	4.9 Vdc	N/A	4.968 Vdc	0.010	Pass	4.968 Vdc	0.010	Pass
Channel 17	4.9 Vdc	N/A	4.964 Vdc	0.011	Pass	4.965 Vdc	0.011	Pass
Channel 18	4.9 Vdc	N/A	4.974 Vdc	0.010	Pass	4.974 Vdc	0.010	Pass
Channel 19	4.9 Vdc	N/A	4.984 Vdc	0.011	Pass	4.984 Vdc	0.011	Pass
Channel 20	4.9 Vdc	N/A	4.957 Vdc	0.011	Pass	4.957 Vdc	0.011	Pass
Channel 21	4.9 Vdc	N/A	4.967 Vdc	0.010	Pass	4.968 Vdc	0.010	Pass
Channel 22	4.9 Vdc	N/A	4.964 Vdc	0.010	Pass	4.964 Vdc	0.010	Pass
Channel 23	4.9 Vdc	N/A	4.988 Vdc	0.010	Pass	4.988 Vdc	0.011	Pass
Channel 24	4.9 Vdc	N/A	4.959 Vdc	0.011	Pass	4.959 Vdc	0.011	Pass
Channel 25	4.9 Vdc	N/A	4.949 Vdc	0.011	Pass	4.949 Vdc	0.011	Pass
Channel 26	4.9 Vdc	N/A	4.957 Vdc	0.011	Pass	4.957 Vdc	0.011	Pass
Channel 27	4.9 Vdc	N/A	4.960 Vdc	0.010	Pass	4.959 Vdc	0.010	Pass
Channel 28	4.9 Vdc	N/A	4.951 Vdc	0.011	Pass	4.951 Vdc	0.011	Pass
Channel 29	4.9 Vdc	N/A	4.951 Vdc	0.011	Pass	4.949 Vdc	0.011	Pass
Channel 30	4.9 Vdc	N/A	4.961 Vdc	0.010	Pass	4.961 Vdc	0.010	Pass
Channel 31	4.9 Vdc	N/A	4.970 Vdc	0.010	Pass	4.970 Vdc	0.010	Pass
Channel 32	4.9 Vdc	N/A	4.971 Vdc	0.010	Pass	4.970 Vdc	0.010	Pass
5V Excitation Source Output								
Channel 1	4.94 Vdc	5.05 Vdc	4.963 Vdc	0.010	Pass	4.964 Vdc	0.010	Pass
Channel 2	4.94 Vdc	5.05 Vdc	4.970 Vdc	0.013	Pass	4.972 Vdc	0.013	Pass
Channel 3	4.94 Vdc	5.05 Vdc	4.971 Vdc	0.011	Pass	4.973 Vdc	0.011	Pass
Channel 4	4.94 Vdc	5.05 Vdc	4.962 Vdc	0.012	Pass	4.963 Vdc	0.012	Pass
Channel 5	4.94 Vdc	5.05 Vdc	4.965 Vdc	0.013	Pass	4.968 Vdc	0.013	Pass
Channel 6	4.94 Vdc	5.05 Vdc	4.954 Vdc	0.011	Pass	4.956 Vdc	0.011	Pass
Channel 7	4.94 Vdc	5.05 Vdc	4.950 Vdc	0.014	Pass	4.952 Vdc	0.014	Pass
Channel 8	4.94 Vdc	5.05 Vdc	4.955 Vdc	0.015	Pass	4.957 Vdc	0.015	Pass
Channel 9	4.94 Vdc	5.05 Vdc	4.973 Vdc	0.011	Pass	4.973 Vdc	0.011	Pass
Channel 10	4.94 Vdc	5.05 Vdc	4.964 Vdc	0.011	Pass	4.964 Vdc	0.011	Pass
Channel 11	4.94 Vdc	5.05 Vdc	4.957 Vdc	0.012	Pass	4.957 Vdc	0.012	Pass
Channel 12	4.94 Vdc	5.05 Vdc	4.957 Vdc	0.017	Pass	4.957 Vdc	0.017	Pass
Channel 13	4.94 Vdc	5.05 Vdc	4.958 Vdc	0.010	Pass	4.958 Vdc	0.010	Pass
Channel 14	4.94 Vdc	5.05 Vdc	4.970 Vdc	0.013	Pass	4.970 Vdc	0.013	Pass
Channel 15	4.94 Vdc	5.05 Vdc	4.941 Vdc	0.010	Pass	4.942 Vdc	0.010	Pass
Channel 16	4.94 Vdc	5.05 Vdc	4.967 Vdc	0.015	Pass	4.967 Vdc	0.015	Pass
Channel 17	4.94 Vdc	5.05 Vdc	4.965 Vdc	0.007	Pass	4.966 Vdc	0.007	Pass
Channel 18	4.94 Vdc	5.05 Vdc	4.974 Vdc	0.006	Pass	4.974 Vdc	0.006	Pass
Channel 19	4.94 Vdc	5.05 Vdc	4.984 Vdc	0.008	Pass	4.984 Vdc	0.008	Pass
Channel 20	4.94 Vdc	5.05 Vdc	4.957 Vdc	0.010	Pass	4.957 Vdc	0.010	Pass
Channel 21	4.94 Vdc	5.05 Vdc	4.967 Vdc	0.010	Pass	4.967 Vdc	0.010	Pass
Channel 22	4.94 Vdc	5.05 Vdc	4.962 Vdc	0.011	Pass	4.963 Vdc	0.011	Pass
Channel 23	4.94 Vdc	5.05 Vdc	4.987 Vdc	0.006	Pass	4.987 Vdc	0.006	Pass
Channel 24	4.94 Vdc	5.05 Vdc	4.957 Vdc	0.007	Pass	4.958 Vdc	0.007	Pass
Channel 25	4.94 Vdc	5.05 Vdc	4.950 Vdc	0.013	Pass	4.949 Vdc	0.013	Pass

Date: 13 August 2015

Test Description

5V Excitation Source Output			A	s Received		As Returned			
	Lower Limit	Upper Limit	UUT	Uncertainty (Vdc)	Pass/ Fail	UUT	Uncertainty (Vdc)	Pass/ Fail	
Channel 26	4.94 Vdc	5.05 Vdc	4.957 Vdc	0.016	Pass	4.957 Vdc	0.016	Pass	
Channel 27	4.94 Vdc	5.05 Vdc	4.960 Vdc	0.010	Pass	4.959 Vdc	0.010	Pass	
Channel 28	4.94 Vdc	5.05 Vdc	4.951 Vdc	0.010	Pass	4.950 Vdc	0.010	Pass	
Channel 29	4.94 Vdc	5.05 Vdc	4.949 Vdc	0.013	Pass	4.948 Vdc	0.013	Pass	
Channel 30	4.94 Vdc	5.05 Vdc	4.960 Vdc	0.009	Pass	4.960 Vdc	0.009	Pass	
Channel 31	4.94 Vdc	5.05 Vdc	4.969 Vdc	0.014	Pass	4.969 Vdc	0.014	Pass	
Channel 32	4.94 Vdc	5.05 Vdc	4.969 Vdc	0.013	Pass	4.968 Vdc	0.013	Pass	

Excitation Reported by DAS for Data Scaling

	rted by DAS for D	-	As	Received				As Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std DA	S Deviation	Unc.	Pass/
		(Vdc)	(Vdc)	(%)	(Vdc)	Fail	(Vdc) (Vd		(Vdc)	Fail
Channel 1	+/-0.3%	4.963	4.966	0.066	0.010	Pass	4.964 4.9	64 -0.008	0.011	Pass
Channel 2	+/-0.3%	4.970	4.973	0.055	0.011	Pass	4.972 4.9	0.007	0.011	Pass
Channel 3	+/-0.3%	4.971	4.974	0.053	0.012	Pass	4.973 4.9	73 0.001	0.012	Pass
Channel 4	+/-0.3%	4.962	4.966	0.088	0.012	Pass	4.963 4.9	-0.004	0.012	Pass
Channel 5	+/-0.3%	4.965	4.969	0.074	0.012	Pass	4.968 4.90	68 0.010	0.012	Pass
Channel 6	+/-0.3%	4.954	4.957	0.052	0.011	Pass	4.956 4.9	56 0.008	0.011	Pass
Channel 7	+/-0.3%	4.950	4.952	0.037	0.015	Pass	4.952 4.9	52 0.010	0.015	Pass
Channel 8	+/-0.3%	4.955	4.958	0.053	0.015	Pass	4.957 4.9	57 0.000	0.015	Pass
Channel 9	+/-0.3%	4.973	4.979	0.117	0.012	Pass	4.973 4.9	73 -0.009	0.012	Pass
Channel 10	+/-0.3%	4.964	4.963	-0.013	0.011	Pass	4.964 4.9	64 -0.005	0.011	Pass
Channel 11	+/-0.3%	4.957	4.959	0.045	0.011	Pass	4.957 4.9		0.011	Pass
Channel 12	+/-0.3%	4.957	4.957	0.009	0.017	Pass	4.957 4.9		0.017	Pass
Channel 13	+/-0.3%	4.958	4.961	0.061	0.010	Pass	4.958 4.9		0.010	Pass
Channel 14	+/-0.3%	4.970	4.972	0.049	0.013	Pass	4.970 4.9		0.013	Pass
Channel 15	+/-0.3%	4.941	4.941	-0.009	0.010	Pass	4.942 4.94		0.010	Pass
Channel 16	+/-0.3%	4.967	4.969	0.039	0.014	Pass	4.967 4.96		0.015	Pass
Channel 17	+/-0.3%	4.965	4.961	-0.086	0.008	Pass	4.966 4.96		0.008	Pass
Channel 18	+/-0.3%	4.974	4.971	-0.054	0.007	Pass	4.974 4.97		0.007	Pass
Channel 19	+/-0.3%	4.984	4.982	-0.038	0.007	Pass	4.984 4.98	34 -0.002	0.007	Pass
Channel 20	+/-0.3%	4.957	4.954	-0.055	0.011	Pass	4.957 4.9	57 -0.004	0.010	Pass
Channel 21	+/-0.3%	4.967	4.964	-0.054	0.010	Pass	4.967 4.96		0.010	Pass
Channel 22	+/-0.3%	4.962	4.959	-0.067	0.012	Pass	4.963 4.96	0.002	0.011	Pass
Channel 23	+/-0.3%	4.987	4.981	-0.113	0.006	Pass	4.987 4.98	-0.002	0.006	Pass
Channel 24	+/-0.3%	4.957	4.949	-0.169	0.009	Pass	4.958 4.9	-0.004	0.008	Pass
Channel 25	+/-0.3%	4.950	4.951	0.028	0.012	Pass	4.949 4.94	9 -0.002	0.012	Pass
Channel 26	+/-0.3%	4.957	4.959	0.035	0.015	Pass	4.957 4.9		0.015	Pass
Channel 27	+/-0.3%	4.960	4.960	0.006	0.011	Pass	4.959 4.95	9 0.000	0.011	Pass
Channel 28	+/-0.3%	4.951	4.952	0.022	0.009	Pass	4.950 4.95	-0.009	0.009	Pass
Channel 29	+/-0.3%	4.949	4.947	-0.036	0.013	Pass	4.948 4.94	8 0.002	0.013	Pass
Channel 30	+/-0.3%	4.960	4.959	-0.022	0.008	Pass	4.960 4.96		0.008	Pass
Channel 31	+/-0.3%	4.969	4.969	-0.001	0.013	Pass	4.969 4.96		0.013	Pass
Channel 32	+/-0.3%	4.969	4.970	0.012	0.013	Pass	4.968 4.96		0.013	Pass
•	rted by DAS for D	•								
Channel 1	+/-3%	4.963	4.967	0.076	0.016	Pass	4.964 4.96		0.016	Pass
Channel 2	+/-3%	4.970	4.965	-0.112	0.020	Pass	4.972 4.96		0.020	Pass
Channel 3	+/-3%	4.971	4.965	-0.135	0.020	Pass	4.973 4.96		0.020	Pass
Channel 4	+/-3%	4.962	4.956	-0.112	0.021	Pass	4.963 4.95		0.021	Pass
Channel 5	+/-3%	4.965	4.966	0.010	0.008	Pass	4.968 4.96		0.008	Pass
Channel 6	+/-3%	4.954	4.948	-0.123	0.023	Pass	4.956 4.94		0.023	Pass
Channel 7	+/-3%	4.950	4.943	-0.143	0.023	Pass	4.952 4.94		0.023	Pass
Channel 8	+/-3%	4.955	4.947	-0.171	0.023	Pass	4.957 4.95		0.022	Pass
Channel 9	+/-3%	4.973	4.979	0.115	0.021	Pass	4.973 4.97		0.021	Pass
Channel 10	+/-3%	4.964	4.973	0.186	0.020	Pass	4.964 4.97		0.020	Pass
Channel 11	+/-3%	4.957	4.969	0.240	0.022	Pass	4.957 4.96		0.023	Pass
Channel 12	+/-3%	4.957	4.971	0.298	0.028	Pass	4.957 4.97		0.028	Pass
Channel 13	+/-3%	4.958	4.973	0.298	0.019	Pass	4.958 4.97	1 0.261	0.019	Pass
					D-14					

Serial #: 5M02/9 Serial #: 5M02/9 Date: 13 August Date: 13 August Date: 13 August 2015

Test Description

Excitation Reported by DAS for Diagnostic Check

Excitation Report	ed by DAS for D	hagnostic Chec	ĸ								
			As	Received				4	s Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
		(Vdc)	(Vdc)	(%)	(Vdc)	Fail	(Vdc)	(Vdc)	(%)	(Vdc)	Fail
Channel 14	+/-3%	4.970	4.978	0.168	0.022	Pass	4.970	4.978	0.146	0.022	Pass
Channel 15	+/-3%	4.941	4.949	0.157	0.016	Pass	4.942	4.951	0.173	0.015	Pass
Channel 16	+/-3%	4.967	4.975	0.166	0.024	Pass	4.967	4.976	0.173	0.024	Pass
Channel 17	+/-3%	4.965	4.964	-0.036	0.014	Pass	4.966	4.965	-0.005	0.014	Pass
Channel 18	+/-3%	4.974	4.980	0.125	0.014	Pass	4.974	4.980	0.111	0.014	Pass
Channel 19	+/-3%	4.984	4.989	0.101	0.016	Pass	4.984	4.991	0.140	0.016	Pass
Channel 20	+/-3%	4.957	4.962	0.114	0.016	Pass	4.957	4.963	0.121	0.016	Pass
Channel 21	+/-3%	4.967	4.974	0.149	0.015	Pass	4.967	4.973	0.125	0.015	Pass
Channel 22	+/-3%	4.962	4.969	0.129	0.018	Pass	4.963	4.972	0.173	0.018	Pass
Channel 23	+/-3%	4.987	4.988	0.031	0.015	Pass	4.987	4.988	0.026	0.015	Pass
Channel 24	+/-3%	4.957	4.962	0.087	0.017	Pass	4.958	4.961	0.059	0.017	Pass
Channel 25	+/-3%	4.950	4.952	0.057	0.021	Pass	4.949	4.952	0.050	0.021	Pass
Channel 26	+/-3%	4.957	4.964	0.142	0.022	Pass	4.957	4.961	0.078	0.023	Pass
Channel 27	+/-3%	4.960	4.965	0.111	0.017	Pass	4.959	4.962	0.064	0.017	Pass
Channel 28	+/-3%	4.951	4.958	0.151	0.018	Pass	4.950	4.955	0.098	0.018	Pass
Channel 29	+/-3%	4.949	4.954	0.103	0.014	Pass	4.948	4.949	0.014	0.014	Pass
Channel 30	+/-3%	4.960	4.964	0.074	0.015	Pass	4.960	4.959	-0.015	0.016	Pass
Channel 31	+/-3%	4.969	4.975	0.116	0.020	Pass	4.969	4.970	0.024	0.020	Pass
Channel 32	+/-3%	4.969	4.970	0.004	0.014	Pass	4.968	4.970	0.024	0.014	Pass

Gain Response			40	Received					s Returned		
Gain of 4: 625mV	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
Channel 1	Limit	(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-369.220	-369.859	-0.102	0.891	Pass	-368.741	-369.371	-0.101	0.781	Pass
-30 %	+/-0.5%	-309.220	-185.302	-0.102	0.297	Pass	-184.638	-184.943	-0.049	0.485	Pass
-30 %	+/-0.5%	185.326	185.569	0.039	0.241	Pass	185.149	185.191	0.007	0.400	Pass
50 % 60 %	+/-0.5%	370.161	370.889	0.039	0.241	Pass	369.836	370.381	0.087	0.462	Pass
	+/-0.5%	370.101	3/0.009	0.110	0.470	rdss	309.030	370.301	0.007	0.402	F a 3 3
Channel 2 -60 %	+/-0.5%	-369.220	-369.837	-0.099	0.508	Pass	-368.741	-369.481	-0.118	0.634	Pass
					0.363	Pass	-184.638	-184.987	-0.056	0.409	Pass
-30 %	+/-0.5%	-184.883	-185.203	-0.051							
30 %	+/-0.5%	185.326	185.640	0.050	0.090	Pass	185.149	185.310	0.026	0.069	Pass
60 %	+/-0.5%	370.161	371.033	0.139	0.079	Pass	369.836	370.639	0.129	0.121	Pass
Channel 3						_					_
-60 %	+/-0.5%	-369.220	-369.875	-0.105	0.513	Pass	-368.741	-369.332	-0.095	0.682	Pass
-30 %	+/-0.5%	-184.883	-185.253	-0.059	0.294	Pass	-184.638	-184.972	-0.053	0.397	Pass
30 %	+/-0.5%	185.326	185.616	0.046	0.144	Pass	185.149	185.258	0.018	0.068	Pass
60 %	+/-0.5%	370.161	370.869	0.113	0.094	Pass	369.836	370.383	0.088	0.198	Pass
Channel 4											
-60 %	+/-0.5%	-369.220	-369.971	-0.120	0.640	Pass	-368.741	-369.498	-0.121	0.750	Pass
-30 %	+/-0.5%	-184.883	-185.310	-0.068	0.397	Pass	-184.638	-184.997	-0.057	0.545	Pass
30 %	+/-0.5%	185.326	185.634	0.049	0.328	Pass	185.149	185.264	0.018	0.383	Pass
60 %	+/-0.5%	370.161	371.039	0.140	0.090	Pass	369.836	370.546	0.114	0.068	Pass
Channel 5											
-60 %	+/-0.5%	-369.220	-369.966	-0.119	0.605	Pass	-368.741	-369.456	-0.114	0.750	Pass
-30 %	+/-0.5%	-184.883	-185.250	~0.059	0.399	Pass	-184.638	-185.024	-0.062	0.478	Pass
30 %	+/-0.5%	185.326	185.690	0.058	0.176	Pass	185.149	185.329	0.029	0.112	Pass
60 %	+/-0.5%	370.161	371.112	0.152	0.072	Pass	369.836	370.487	0.104	0.175	Pass
Channel 6											
-60 %	+/-0.5%	-369.220	-370.030	-0.130	0.521	Pass	-368.741	-369.416	-0.108	0.698	Pass
-30 %	+/-0.5%	-184.883	-185.359	-0.076	0.368	Pass	-184.638	-185.042	-0.065	0.437	Pass
30 %	+/-0.5%	185.326	185.664	0.054	0.313	Pass	185,149	185.233	0.013	0.089	Pass
60 %	+/-0.5%	370.161	371.118	0.153	0.113	Pass	369,836	370.466	0.101	0.216	Pass
Channel 7					••••						
-60 %	+/-0.5%	-369.220	-369.676	-0.073	0.666	Pass	-368.741	-369.218	-0.076	0.791	Pass
-30 %	+/-0.5%	-184.883	-185.180	-0.048	0.412	Pass	-184.638	-184.884	-0.039	0.489	Pass
30 %	+/-0.5%	185.326	185.523	0.031	0.227	Pass	185.149	185.170	0.003	0.191	Pass
60 %	+/-0.5%	370.161	370.817	0.105	0.114	Pass	369.836	370.301	0.074	0.092	Pass
00 /0	17-0.070	570.101	010.011			1 200	000.000	0.0.001	0.017	0.001	. 400
					D-15						

Date: 13 August 2015

Test	Descript	ion

Gain Response

Gain of 4: 625mV			۵s	Received		As Returned					
Gain of 4. 025mV	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
Channel 8		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-369.220	-369.598	-0.061	0.603	Pass	-368.741	• •	-0.059	0.717	Pass
-30 %	+/-0.5%	-184.883	-185.113	-0.037	0.379	Pass	-184.638		-0.026	0.407	Pass
30 %	+/-0.5%	185.326	185.531	0.033	0.152	Pass	185.149		-0.007	0.075	Pass
60 %	+/-0.5%	370.161	370.833	0.108	0.080	Pass	369.836		0.075	0.150	Pass
Channel 9	0.070	0.0.70	010.000	0.100	0.000	1 400	000.000	010.001	0.010	0.100	
-60 %	+/-0.5%	-369.127	-369.679	-0.088	0.935	Pass	-368.696	-369.256	-0.090	0.810	Pass
-30 %	+/-0.5%	-184.835	-185.174	-0.054	0.192	Pass	-184.612		-0.038	0.732	Pass
30 %	+/-0.5%	185.318	185.575	0.041	0.207	Pass	185.125		0.029	0.069	Pass
60 %	+/-0.5%	370.155	370.826	0.107	0.233	Pass	369.793		0.064	0.103	Pass
Channel 10		570.155	570.020	0.107	0.200	1 000	000.700	570.152	0.004	0.105	1 033
-60 %	+/-0.5%	-369.127	-369.711	-0.093	0.426	Pass	-368.696	-369.343	-0.104	0.511	Pass
-30 %	+/-0.5%	-184.835	-185.138	-0.048	0.234	Pass	-184.612		-0.038	0.312	Pass
30 %	+/-0.5%	185.318	185.477	0.025	0.254	Pass	185.125		0.025	0.074	Pass
60 %	+/-0.5%	370.155	370.822	0.023	0.007	Pass	369.793		0.023	0.282	
Channel 11	17-0.070	570.155	570.022	0.107	0.134	F 033	509.795	570.247	0.075	0.202	Pass
-60 %	+/-0.5%	-369.127	-369.759	-0.101	0.649	Deee	260 600	-369.304	0.007	0 777	Daaa
-30 %	+/-0.5%	-184.835	-185.193	-0.101		Pass	-368.696		-0.097	0.777	Pass
					0.393	Pass	-184.612		-0.038	0.459	Pass
30 %	+/-0.5%	185.318	185.517	0.032	0.185	Pass	185.125		0.026	0.257	Pass
60 %	+/-0.5%	370.155	370.862	0.113	0.070	Pass	369.793	370.217	0.068	0.091	Pass
Channel 12		000 407	000 504		0.000	-					_
-60 %	+/-0.5%	-369.127	-369.501	-0.060	0.525	Pass	-368.696		-0.055	0.640	Pass
-30 %	+/-0.5%	-184.835	-185.084	-0.040	0.274	Pass	-184.612		-0.025	0.364	Pass
30 %	+/-0.5%	185.318	185.504	0.030	0.124	Pass	185.125		0.013	0.073	Pass
60 %	+/-0.5%	370.155	370.646	0.079	0.125	Pass	369.793	369.938	0.023	0.225	Pass
Channel 13		000 407				-					-
-60 %	+/-0.5%	-369.127	-369.679	-0.088	0.810	Pass	-368.696		-0.095	0.959	Pass
-30 %	+/-0.5%	-184.835	-185.119	-0.045	0.613	Pass	-184.612		-0.039	0.746	Pass
30 %	+/-0.5%	185.318	185.505	0.030	0.361	Pass	185.125		0.019	0.340	Pass
60 %	+/-0.5%	370.155	370.778	0.100	0.215	Pass	369.793	370.213	0.067	0.142	Pass
Channel 14											_
-60 %	+/-0.5%	-369.127	-369.628	-0.080	0.422	Pass	-368.696		-0.088	0.582	Pass
-30 %	+/-0.5%	-184.835	-185.101	-0.042	0.271	Pass	-184.612		-0.032	0.324	Pass
30 %	+/-0.5%	185.318	185.483	0.026	0.066	Pass	185.125		0.023	0.080	Pass
60 %	+/-0.5%	370.155	370.833	0.108	0.151	Pass	369.793	370.161	0.059	0.271	Pass
Channel 15						_					
-60 %	+/-0.5%	-369.127	-369.814	-0.110	0.528	Pass	-368.696		-0.108	0.705	Pass
-30 %	+/-0.5%	-184.835	-185.153	-0.051	0.391	Pass	-184.612		-0.044	0.458	Pass
30 %	+/-0.5%	185.318	185.608	0.046	0.172	Pass	185.125		0.035	0.135	Pass
60 %	+/-0.5%	370.155	370.951	0.127	0.078	Pass	369.793	370.340	0.088	0.094	Pass
Channel 16						_					
-60 %	+/-0.5%	-369.127	-369.543	-0.067	0.618	Pass	-368.696		-0.050	0.769	Pass
-30 %	+/-0.5%	-184.835		-0.032	0.401	Pass	-184.612		-0.024	0.470	Pass
30 %	+/-0.5%	185.318	185.436	0.019	0.194	Pass	185.125		-0.001	0.108	Pass
60 %	+/-0.5%	370.155	370.645	0.078	0.077	Pass	369.793	369.959	0.026	0.081	Pass
Channel 17											
-60 %	+/-0.5%	-369.081	-370.000	-0.147	1.033	Pass	-368.698		-0.140	0.842	Pass
-30 %	+/-0.5%	-184.810	-185.277	-0.075	0.317	Pass	-184.611		-0.056	0.434	Pass
30 %	+/-0.5%	185.314	185.525	0.034	0.181	Pass	185.127		0.013	0.238	Pass
60 %	+/-0.5%	370.145	370.974	0.133	0.119	Pass	369.804	370.663	0.137	0.227	Pass
Channel 18						_					
-60 %	+/-0.5%	-369.081	-369.929	-0.136	0.254	Pass		-369.430	-0.117	0.697	Pass
-30 %	+/-0.5%	-184.810	-185.299	-0.078	0.410	Pass		-184.896	-0.046	0.450	Pass
30 %	+/-0.5%	185.314	185.662	0.056	0.179	Pass		185.316	0.030	0.118	Pass
60 %	+/-0.5%	370.145	370.922	0.124	0.085	Pass	369.804	370.614	0.130	0.109	Pass
Channel 19						_					
-60 %	+/-0.5%	-369.081	-369.845	-0.122	0.374	Pass		-369.329	-0.101	0.497	Pass
-30 %	+/-0.5%	-184.810	-185.218	-0.065	0.193	Pass		-184.807	-0.031	0.290	Pass
30 %	+/-0.5%	185.314	185.580	0.043	0.116	Pass		185.322	0.031	0.157	Pass
60 %	+/-0.5%	370.145	370.932	0.126	D-16	Pass	369.804	370.568	0.122	0.341	Pass
					2.0						

Test Description

Test Description Gain Response											
Gain of 4: 625mV				Received					s Returned		
	Limit	Std	DAS	Deviation		Pass/	Std	DAS	Deviation		Pass/
Channel 20		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-369.081	-369.833	-0.120	0.478	Pass	-368.698	-369.321	-0.100	0.610	Pass
-30 %	+/-0.5%	-184.810	-185.240	-0.069	0.265	Pass	-184.611	-184.860	-0.040	0.313	Pass
30 %	+/-0.5%	185.314	185.640	0.052	0.077	Pass	185.127	185.336	0.033	0.091	Pass
60 %	+/-0.5%	370.145	370.994	0.136	0.161	Pass	369.804	370.558	0.121	0.285	Pass
Channel 21											
-60 %	+/-0.5%	-369.081	-369.987	-0.145	0.437	Pass	-368.698	-369.511	-0.130	0.551	Pass
-30 %	+/-0.5%	-184.810	-185.307	-0.080	0.274	Pass	-184.611	-184.955	-0.055	0.315	Pass
30 %	+/-0.5%	185.314	185.688	0.060	0.069	Pass	185.127	185.355	0.036	0.112	Pass
60 %	+/-0.5%	370.145	371.109	0.154	0.110	Pass	369.804	370.710	0.145	0.271	Pass
Channel 22											
-60 %	+/-0.5%	-369.081	-370.058	-0.156	0.206	Pass	-368.698	-369.580	-0.141	0.310	Pass
-30 %	+/-0.5%	-184.810	-185.378	-0.091	0.069	Pass	-184.611	-184.969	-0.057	0.086	Pass
30 %	+/-0.5%	185.314	185.775	0.074	0.264	Pass	185.127	185.441	0.050	0.341	Pass
60 %	+/-0.5%	370.145	371.228	0.173	0.300	Pass	369.804	370.882	0.173	0.424	Pass
Channel 23		0/0.140	011.220	0.110	0.000	1 455	000.001	010.002	0.170	0.121	,
-60 %	+/-0.5%	-369.081	-369.663	-0.093	0.404	Pass	-368.698	-369.221	-0.084	0.523	Pass
-30 %	+/-0.5%	-184.810	-185.182	-0.060	0.203	Pass	-184.611	-184.753	-0.023	0.300	Pass
-30 %	+/-0.5%	185.314	185.543	0.037	0.100	Pass	185.127	185.246	0.019	0.147	Pass
60 %	+/-0.5%	370.145	370.839	0.007	0.225	Pass	369.804	370.511	0.113	0.330	Pass
Channel 24	+7-0.0%	570.145	370.639	0.111	0.225	r ass	509.004	570.511	0.115	0.000	1 033
-60 %	+/-0.5%	-369.081	-369.505	-0.068	0.659	Pass	-368.698	-369.080	-0.061	0.802	Pass
					0.059			-184.692	-0.001	0.504	Pass
-30 %	+/-0.5%	-184.810	-185.085	-0.044		Pass	-184.611				
30 %	+/-0.5%	185.314	185.523	0.033	0.175	Pass	185.127	185.224	0.016	0.113	Pass
60 %	+/-0.5%	370.145	370.703	0.089	0.069	Pass	369.804	370.353	0.088	0.122	Pass
Channel 25						-		000 (00	0.007	0.047	B
-60 %	+/-0.5%	-368.699	-369.182	-0.077	0.686	Pass	-368.776	-369.193	-0.067	0.347	Pass
-30 %	+/-0.5%	-184.621	-185.022	-0.064	0.411	Pass	-184.655	-184.979	-0.052	0.214	Pass
30 %	+/-0.5%	185.129	185.098	-0.005	0.122	Pass	185.086	184.979	-0.017	0.080	Pass
60 %	+/-0.5%	369.784	370.273	0.078	0.126	Pass	369.698	370.093	0.063	0.364	Pass
Channel 26											
-60 %	+/-0.5%	-368.699	-369.074	-0.060	0.508	Pass	-368.776	-369.132	-0.057	0.534	Pass
-30 %	+/-0.5%	-184.621	-184.859	-0.038	0.251	Pass	-184.655	-184.879	-0.036	0.242	Pass
30 %	+/-0.5%	185.129	185.182	0.008	0.317	Pass	185.086	185.107	0.003	0.347	Pass
60 %	+/-0.5%	369.784	370.345	0.090	0.330	Pass	369.698	370.233	0.086	0.364	Pass
Channel 27											
-60 %	+/-0.5%	-368.699	-369.116	-0.067	0.469	Pass	-368.776	-369.162	-0.062	0.432	Pass
-30 %	+/-0.5%	-184.621	-184.910	-0.046	0.174	Pass	-184.655	-184.943	-0.046	0.192	Pass
30 %	+/-0.5%	185.129	185.177	0.008	0.199	Pass	185.086	185.114	0.005	0.238	Pass
60 %	+/-0.5%	369.784	370.373	0.094	0.385	Pass	369.698	370.266	0.091	0.432	Pass
Channel 28											
-60 %	+/-0.5%	-368.699	-369.377	-0.108	0.239	Pass	-368.776	-369.434	-0.105	0.239	Pass
-30 %	+/-0.5%	-184.621	-185.145	-0.084	0.066	Pass	-184.655	-185.135	-0.077	0.070	Pass
30 %	+/-0.5%	185.129	185.031	-0.016	0.306	Pass	185.086	185.002	-0.013	0.308	Pass
60 %	+/-0.5%	369.784	370.403	0.099	0.450	Pass	369.698	370.271	0.092	0.463	Pass
Channel 29					-						,
-60 %	+/-0.5%	-368.699	-369.154	-0.073	0.514	Pass	-368.776	-369.123	-0.056	0.490	Pass
-30 %	+/-0.5%	-184.621	-184.940	-0.051	0.223	Pass	-184.655	-184.887	-0.037	0.243	Pass
30 %	+/-0.5%	185.129	185.170	0.006	0.156	Pass	185.086	185.135	0.008	0.197	Pass
60 %	+/-0.5%	369.784	370.378	0.095	0.351	Pass	369.698	370.194	0.079	0.416	Pass
Channel 30	.7-0.578	505.704	3/0.3/0	0.035	0.001	1 499	505.050	570.154	0.079	0.410	rass
-60 %	+/-0.5%	368 600	-369.074	0.060	0 667	Doco	269 776	260 001	0.040	0 502	Doog
-30 %	+/-0.5% +/-0.5%	-368.699 -184.621	-369.074	-0.060 -0.049	0.567 0.323	Pass	-368.776	-369.081	-0.049	0.592 0.322	Pass
						Pass	-184.655	-184.875	-0.035		Pass
30 %	+/-0.5%	185.129	185.215	0.014	0.076	Pass	185.086	185.123	0.006	0.095	Pass
60 %	+/-0.5%	369.784	370.372	0.094	0.272	Pass	369.698	370.188	0.078	0.318	Pass
Channel 31		000 000	000 111	0.074	0 150	D -	000 070	000 00-	0.004	0.445	-
-60 %	+/-0.5%	-368.699	-369.144	-0.071	0.459	Pass	-368.776	-369.282	-0.081	0.440	Pass
-30 %	+/-0.5%	-184.621	-184.942	-0.051	0.187	Pass	-184.655	-184.983	-0.052	0.233	Pass
30 %	+/-0.5%	185.129	185.170	0.006	0.140	Pass	185.086	185.191	0.017	0.168	Pass
60 %	+/-0.5%	369.784	370.511	0.116	0,335 D-17	Pass	369.698	370.497	0.128	0.351	Pass

Date: 13 August 2015

Test Description											
Gain Response			_						. D		
Gain of 4: 625mV				Received		D /	04-1		s Returned	11	Deec/
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
Channel 32		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-368.699	-369.120	-0.067	0.525	Pass	-368.776	-369.212	-0.070	0.487	Pass
-30 %	+/-0.5%	-184.621	-184.941	-0.051	0.237	Pass	-184.655	-184.958	-0.049	0.263	Pass
30 %	+/-0.5%	185.129	185.112	-0.003	0.157	Pass	185.086	185.072	-0.002	0.149	Pass
60 %	+/-0.5%	369.784	370.338	0.089	0.312	Pass	369.698	370.240	0.087	0.383	Pass
Gain Response Gain of 48: 52.083	mV										
Channel 1						_				0.400	-
-60 %	+/-0.5%	-30.832	-30.890	-0.112	0.177	Pass	-30.797	-30.845	-0.092	0.180	Pass
-30 %	+/-0.5%	-15.418	-15.460	-0.080	0.125	Pass	-15.401	-15.433	-0.062	0.140	Pass
30 %	+/-0.5%	15.421	15.442	0.040	0.136	Pass	15.404	15.427	0.044	0.139	Pass
60 %	+/-0.5%	30.846	30.903	0.110	0.116	Pass	30.811	30.866	0.107	0.116	Pass
Channel 2											
-60 %	+/-0.5%	-30.832	-30.901	-0.132	0.141	Pass	-30.797	-30.851	-0.104	0.144	Pass
-30 %	+/-0.5%	-15.418	-15.457	-0.074	0.090	Pass	-15.401	-15.426	-0.048	0.092	Pass
30 %	+/-0.5%	15.421	15.452	0.059	0.061	Pass	15.404	15.434	0.057	0.061	Pass
60 %	+/-0.5%	30.846	30.925	0.152	0.101	Pass	30.811	30.882	0.137	0.101	Pass
Channel 3											
-60 %	+/-0.5%	-30.832	-30.896	-0.124	0.115	Pass	-30.797	-30.857	-0.116	0.118	Pass
-30 %	+/-0.5%	-15.418	-15.460	-0.081	0.085	Pass	-15.401	-15.434	-0.065	0.087	Pass
30 %	+/-0.5%	15.421	15.447	0.050	0.090	Pass	15.404	15.434	0.059	0.090	Pass
60 %	+/-0.5%	30.846	30.898	0.100	0.083	Pass	30.811	30.875	0.124	0.084	Pass
Channel 4											
-60 %	+/-0.5%	-30.832	-30.909	-0.147	0.128	Pass	-30.797	-30.854	-0.110	0.132	Pass
-30 %	+/-0.5%	-15.418	-15.461	-0.082	0.086	Pass	-15.401	-15.441	-0.077	0.089	Pass
30 %	+/-0.5%	15.421	15.456	0.067	0.125	Pass	15.404	15.430	0.049	0.124	Pass
60 %	+/-0.5%	30.846	30.928	0.158	0.134	Pass	30.811	30.870	0.115	0.133	Pass
Channel 5											
-60 %	+/-0.5%	-30.832	-30.899	-0.129	0.107	Pass	-30.797	-30.862	-0.125	0.109	Pass
-30 %	+/-0.5%	-15.418	-15.458	-0.076	0.071	Pass	-15.401	-15.434	-0.065	0.072	Pass
30 %	+/-0.5%	15.421	15.453	0.061	0.107	Pass	15.404	15.443	0.074	0.107	Pass
60 %	+/-0.5%	30.846	30.920	0.143	0.120	Pass	30.811	30.887	0.146	0.121	Pass
Channel 6	11-0.070	50.040	50.520	0.140	0.120	1 433	00.011	50.007	0.140	0. (2.)	1 433
-60 %	+/-0.5%	-30.832	-30.901	-0.132	0.114	Pass	-30.797	-30.862	-0.125	0.117	Pass
-30 %	+/-0.5%	-30.832	-15.464	-0.132	0.091	Pass	-15.401	-15.439	-0.125	0.093	Pass
-30 %		-15.418	-15.464 15.448	-0.088	0.091				-0.074	0.093	
50 % 60 %	+/-0.5%					Pass	15.404	15.436			Pass
Channel 7	+/-0.5%	30.846	30.897	0.099	0.106	Pass	30.811	30.886	0.145	0.106	Pass
-60 %	+/-0.5%	20.922	-30.886	0 105	0.400	Deee	20 707	20.020	0.004	0.440	Deee
		-30.832		-0.105	0.106	Pass	-30.797	-30.829	-0.061	0.112	Pass
-30 %	+/-0.5%	-15.418	-15.455	-0.072	0.089	Pass	-15.401	-15.423	-0.043	0.092	Pass
30 %	+/-0.5%	15.421	15.444	0.044	0.067	Pass	15.404	15.423	0.038	0.067	Pass
60 %	+/-0.5%	30.846	30.908	0.118	0.102	Pass	30.811	30.852	0.078	0.102	Pass
Channel 8						_					_
-60 %	+/-0.5%	-30.832	-30.872	-0.076	0.117	Pass	-30.797	-30.835	-0.073	0.120	Pass
-30 %	+/-0.5%	-15.418	-15.445	-0.051	0.078	Pass	-15.401	-15.424	-0.045	0.081	Pass
30 %	+/-0.5%	15.421	15.438	0.033	0.070	Pass	15.404	15.426	0.042	0.070	Pass
60 %	+/-0.5%	30.846	30.899	0.102	0.074	Pass	30.811	30.867	0.109	0.075	Pass
Channel 9											
-60 %	+/-0.5%	-30.828	-30.887	-0.114	0.191	Pass	-30.793	-30.837	-0.084	0.188	Pass
-30 %	+/-0.5%	-15.416	-15.445	-0.054	0.146	Pass	-15.399	-15.434	-0.067	0.141	Pass
30 %	+/-0.5%	15.419	15.446	0.052	0.123	Pass	15.402	15.411	0.018	0.123	Pass
60 %	+/-0.5%	30.841	30.894	0.101	0.143	Pass	30.807	30.851	0.085	0.143	Pass
Channel 10											
-60 %	+/-0.5%	-30.828	-30.890	-0.118	0.138	Pass	-30.793	-30.841	-0.091	0.140	Pass
-30 %	+/-0.5%	-15.416	-15.446	-0.057	0.125	Pass	-15.399	-15.427	-0.054	0.126	Pass
30 %	+/-0.5%	15.419	15.444	0.048	0.116		15.402	15.407	0.011	0.116	Pass
60 %	+/-0.5%	30.841	30.896	0.105	0.159	Pass	30.807	30.852	0.086	0.159	Pass

Test Description

-30 %

30 %

60 %

+/-0.5%

+/-0.5%

+/-0.5%

Test Description Gain Response											
Gain of 48: 52.08	3mV		As	Received				Α	s Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
Channel 11		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-30.828	-30.893	-0.125	0.159	Pass	-30.793	-30.831	-0.074	0.163	Pass
-30 %	+/-0.5%	-15.416	-15.446	-0.057	0.128	Pass	-15.399	-15.429	-0.057	0.130	Pass
30 %	+/-0.5%	15.419	15.443	0.045	0.112	Pass	15.402	15.409	0.014	0.111	Pass
60 %	+/-0.5%	30.841	30.893	0.099	0.150	Pass	30.807	30.848	0.078	0.150	Pass
Channel 12	17-0.070	50.041	00.000	0.000	0.100	1 400	001001				
-60 %	+/-0.5%	-30.828	-30.866	-0.074	0.136	Pass	-30,793	-30.823	-0.058	0.139	Pass
-30 %	+/-0.5%	-15.416	-15.438	-0.042	0.092	Pass	-15.399	-15.428	-0.056	0.093	Pass
-30 %	+/-0.5%	15.419	15.440	0.040	0.050	Pass	15.402	15.407	0.009	0.050	Pass
60 %	+/-0.5%	30.841	30.878	0.070	0.072	Pass	30.807	30.839	0.062	0.073	Pass
Channel 13	+/-0.5%	50.041	50.070	0.070	0.072	1 433	00.001	00.000	0.002	0.010	1 400
	+/-0.5%	-30.828	-30.887	-0.114	0.154	Pass	-30.793	-30.838	-0.087	0.165	Pass
-60 %		-30.828	-15.447	-0.059	0.134	Pass	-15.399	-15.423	-0.046	0.135	Pass
-30 %	+/-0.5%		15.447	0.039	0.133	Pass	15.402	15.405	0.005	0.141	Pass
30 %	+/-0.5%	15.419				Pass	30.807	30.847	0.005	0.170	Pass
60 %	+/-0.5%	30.841	30.894	0.101	0.170	rass	30.007	30.047	0.070	0.170	1 035
Channel 14		00.000	00.004	0.400	0 407	Deee	-30.793	-30.839	-0.088	0.131	Pass
-60 %	+/-0.5%	-30.828	-30.891	-0.120	0.127	Pass		-15.432	-0.063	0.081	Pass
-30 %	+/-0.5%	-15.416	-15.444	-0.053	0.080	Pass	-15.399			0.059	
30 %	+/-0.5%	15.419	15.444	0.047	0.059	Pass	15.402	15.407	0.011		Pass
60 %	+/-0.5%	30.841	30.900	0.113	0.116	Pass	30.807	30.854	0.090	0.117	Pass
Channel 15						-		~~ ~ ~ ~ ~		0 455	
-60 %	+/-0.5%	-30.828	-30.905	-0.147	0.148	Pass	-30.793	-30.844	-0.099	0.155	Pass
-30 %	+/-0.5%	-15.416	-15.445	-0.056	0.126	Pass	-15.399	-15.425	-0.051	0.127	Pass
30 %	+/-0.5%	15.419	15.455	0.069	0.094	Pass ·	15.402	15.417	0.030	0.093	Pass
60 %	+/-0.5%	30.841	30.908	0.128	0.087	Pass	30.807	30.861	0.103	0.088	Pass
Channel 16											
-60 %	+/-0.5%	-30.828	-30.883	-0.106	0.152	Pass	-30.793	-30.825	-0.061	0.156	Pass
-30 %	+/-0.5%	-15.416	-15.440	-0.046	0.101	Pass	-15.399	-15.420	-0.040	0.102	Pass
30 %	+/-0.5%	15.419	15.442	0.043	0.070	Pass	15.402	15.400	-0.003	0.069	Pass
60 %	+/-0.5%	30.841	30.883	0.080	0.130	Pass	30.807	30.838	0.059	0.130	Pass
Channel 17											
-60 %	+/-0.5%	-30.826	-30.899	-0.140	0.164	Pass	-30.793	-30.872	-0.153	0.183	Pass
-30 %	+/-0.5%	-15.415	-15.460	-0.086	0.151	Pass	-15.399	-15.437	-0.074	0.151	Pass
30 %	+/-0.5%	15.418	15.434	0.031	0.143	Pass	15.401	15.419	0.034	0.146	Pass
60 %	+/-0.5%	30.839	30.909	0.133	0.112	Pass	30.806	30.880	0.142	0.113	Pass
Channel 18			-								
-60 %	+/-0.5%	-30.826	-30.899	-0.141	0.121	Pass	-30.793	-30.866	-0.140	0.124	Pass
-30 %	+/-0.5%	-15.415	-15.463	-0.091	0.100	Pass	-15.399	-15.444	-0.088	0.103	Pass
30 %	+/-0.5%	15.418	15.450	0.060	0.087	Pass	15.401	15.428	0.051	0.087	Pass
60 %	+/-0.5%	30.839	30.917	0.149	0.116	Pass	30.806	30.877	0.135	0.116	Pass
Channel 19											
-60 %	+/-0.5%	-30.826	-30.903	-0.149	0.125	Pass	-30.793	-30.859	-0.127	0.129	Pass
-30 %	+/-0.5%	-15.415	-15.458	-0.083	0.096	Pass	-15.399	-15.427	-0.055	0.098	Pass
30 %	+/-0.5%	15.418	15.447	0.055	0.090	Pass	15.401	15.427	0.049	0.091	Pass
60 %	+/-0.5%	30.839	30.918	0.151	0.119	Pass	30.806	30.872	0.126	0.126	Pass
Channel 20		· ·	-	-							
-60 %	+/-0.5%	-30.826	-30.897	-0.137	0.100	Pass	-30.793	-30.867	-0.142	0.103	Pass
-30 %	+/-0.5%	-15.415	-15.462	-0.091	0.065	Pass	-15.399	-15.430	-0.061	0.067	Pass
30 %	+/-0.5%	15.418	15.449	0.060	0.062	Pass	15.401	15.430	0.055	0.062	Pass
60 %	+/-0.5%	30.839	30.920	0.155	0.111	Pass	30.806	30.883	0.147	0.112	Pass
Channel 21				0.100				00.000	0.147	J E	. 466
-60 %	+/-0.5%	-30.826	-30.905	-0.152	0.123	Pass	-30.793	-30.877	-0.162	0.125	Pass
-30 %	+/-0.5%	-15.415	-15.462	-0.091	0.078	Pass	-15.399	-15.437	-0.074	0.080	Pass
30 %	+/-0.5%	15.418	15.453	0.066	0.056	Pass	15.401	15.432	0.059	0.056	Pass
60 %	+/-0.5%	30.839	30.929	0.173	0.094	Pass	30.806	30.897	0.000	0.095	Pass
Channel 22	11 0.070	00.000	00.020	0.170	0.004	1 435	00.000	00.001	0.170	0.000	1 033
-60 %	+/-0.5%	-30.826	-30.912	-0.166	0.134	Pass	-30.793	-30.880	-0.167	0.136	Pass
-00 %	+/-0.5%	-30.020	15 460	-0.100	0.134	Pass	-50.795	-30.000	-0.107	0.130	Deee

0.065

0.091 D-19

0.075 Pass

Pass

Pass

-15.399

15.401

30.806

-15.439

15.439

30.904

-0.078

0.072

0.188

0.075

0.067

0.092

Pass

Pass

Pass

-15.468

15.460

30.940

-0.102

0.081

0.193

-15.415

15.418

30.839

Date: 13 August 2015

ć

Gain Response	92m\/		<u>ـ</u> ا	Dessived					o Boturne d		
Gain of 48: 52.0	Somv Limit	Std	AS DAS	Received Deviation	Unc.	Pass/	Std	DAS	s Returned Deviation	Unc.	Pass/
Channel 23	L11111	(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-30.826	-30.883	-0.109	0.162	Pass	-30.793	-30.853	-0.115	0.164	Pass
-30 %	+/-0.5%	-15.415	-15.451	-0.069	0.146	Pass	-15.399	-15.428	-0.057	0.147	Pass
30 %	+/-0.5%	15.418	15.440	0.042	0.168	Pass	15.401	15.417	0.029	0.168	Pass
60 %	+/-0.5%	30.839	30.906	0.127	0.177	Pass	30.806	30.874	0.129	0.178	Pass
Channel 24											
-60 %	+/-0.5%	-30.826	-30.876	-0.096	0.126	Pass	-30.793	-30.826	-0.065	0.133	Pass
-30 %	+/-0.5%	-15.415	-15.447	-0.061	0.092	Pass	-15.399	-15.414	-0.030	0.092	Pass
30 %	+/-0.5%	15.418	15.442	0.046	0.061	Pass	15.401	15.414	0.024	0.060	Pass
60 %	+/-0.5%	30.839	30.902	0.119	0.081	Pass	30.806	30.851	0.085	0.081	Pass
Channel 25											
-60 %	+/-0.5%	-30.795	-30.856	-0.116	0.147	Pass	-30.792	-30.830	-0.072	0.153	Pass
-30 %	+/-0.5%	-15.400	-15.433	-0.063	0.135	Pass	-15.399	-15.425	-0.050	0.136	Pass
30 %	+/-0.5%	15.403	15.410	0.014	0.111	Pass	15.401	15.408	0.014	0.111	Pass
60 %	+/-0.5%	30.809	30.857	0.094	0.126	Pass	30.806	30.838	0.061	0.128	Pass
Channel 26 -60 %	+(0 50/	20 705	20 020	0.092	0 4 4 2	Deea	20 702	-30.817	0.047	0.444	Dees
-60 % -30 %	+/-0.5% +/-0.5%	-30.795 -15.400	-30.838 -15.417	-0.082 -0.032	0.142 0.077	Pass Pass	-30.792 -15.399	-30.817 -15.414	-0.047 -0.030	0.144 0.076	Pass Pass
-30 %	+/-0.5%	-15.400	15.417	-0.032	0.077	Pass	-15.399	-15.414	-0.030	0.076	Pass Pass
60 %	+/-0.5%	30.809	30.859	0.097	0.003	Pass	30.806	30.843	0.069	0.003	Pass
Channel 27		00.000	00.000	0.007	0.007	1 400	00.000	00.040	0.000	0.000	1 433
-60 %	+/-0.5%	-30.795	-30.833	-0.072	0.114	Pass	-30.792	-30.822	-0.056	0.115	Pass
-30 %	+/-0.5%	-15.400	-15.416	-0.030	0.070	Pass	-15.399	-15.416	-0.033	0.069	Pass
30 %	+/-0.5%	15.403	15.409	0.012	0.050	Pass	15.401	15.411	0.018	0.052	Pass
60 %	+/-0.5%	30.809	30.857	0.093	0.098	Pass	30.806	30.846	0.076	0.099	Pass
Channel 28											
-60 %	+/-0.5%	-30.795	-30.859	-0.123	0.137	Pass	-30.792	-30.849	-0.108	0.137	Pass
-30 %	+/-0.5%	-15.400	-15.431	-0.060	0.081	Pass	-15.399	-15.432	-0.065	0.081	Pass
30 %	+/-0.5%	15.403	15.400	-0.004	0.058	Pass	15.401	15.403	0.003	0.060	Pass
60 %	+/-0.5%	30.809	30.856	0.091	0.082	Pass	30.806	30.853	0.090	0.082	Pass
Channel 29											
-60 %	+/-0.5%	-30.795	-30.842	-0.091	0.114	Pass	-30.792	-30.834	-0.079	0.115	Pass
-30 %	+/-0.5%	-15.400	-15.417	-0.033	0.079	Pass	-15.399	-15.423	-0.048	0.078	Pass
30 % 60 %	+/-0.5%	15.403	15.409	0.012	0.150	Pass	15.401	15.417	0.030	0.150	Pass
Channel 30	+/-0.5%	30.809	30.860	0.099	0.110	Pass	30.806	30.858	0.099	0.110	Pass
-60 %	+/-0.5%	-30.795	-30.842	-0.090	0 4 4 7	Daga	20 700	20.005	0.000	0.4.40	
-30 %	+/-0.5%	-15.400	-15.417	-0.090	0.147 0.091	Pass Pass	-30.792 -15.399	-30.825 -15.414	-0.062 -0.030	0.148 0.091	Pass
30 %	+/-0.5%	15.403	15.414	0.033	0.091	Pass	-15.399	-15.414 15.416	0.030	0.091	Pass Pass
60 %	+/-0.5%	30.809	30.861	0.101	0.116	Pass	30.806	30.849	0.027	0.074	
Channel 31					0.110		00.000	00.040	0.002	0.1410	Pass
-60 %	+/-0.5%	-30.795	-30.834	-0.075	0.139	Pass	-30.792	-30.820	-0.052	0.140	Pass
-30 %	+/-0.5%	-15.400	-15.415	-0.029	0.124	Pass	-15.399	-15.416	-0.034	0.140	Pass
30 %	+/-0.5%	15.403	15.410	0.014	0.149	Pass	15.401	15.415	0.026	0.149	Pass
60 %	+/-0.5%	30.809	30.867	0.111	0.148	Pass	30.806	30.857	0.097	0.147	Pass
Channel 32											
-60 %	+/-0.5%	-30.795	-30.849	-0.104	0.111	Pass	-30.792	-30.834	-0.079	0.112	Pass
-30 %	+/-0.5%	-15.400	-15.423	-0.045	0.116	Pass	-15.399	-15.430	-0.060	0.116	Pass
30 %	+/-0.5%	15.403	15.412	0.017	0.094	Pass	15.401	15.417	0.030	0.094	Pass
60 %	+/-0.5%	30.809	30.869	0.115	0.135	Pass	30.806	30.856	0.096	0.135	Pass
Gain Response Gain of 128: 19.3 Channel 1	3125mV										
-60 %	+/-0.5%	-11.563	-11.589	-0.132	0.048	Pass	-11.550	-11.572	-0.113	0.055	Pass
-30 %	+/-0.5%	-5.781	-5.795	-0.075	0.059	Pass	-5.774	-5.790	-0.080	0.064	Pass
30 %	+/-0.5%	5.782	5.785	0.019	0.062	Pass	5.775	5.780	0.024	0.060	Pass
60 %	+/-0.5%	11.565	11.589	0.123	0.068	Pass	11.551	11.575	0.122	0.068	Pass

.

.

Gain Response Gain of 128: 19.3	125m\/		٨٩	Received				۵	s Returned		
Gain 01 126. 19.3	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass
Channel 2	LIMIL	(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-11.563	-11.589	-0.129	0.047	Pass	-11.550	-11.571	-0.106	0.049	Pass
-30 %	+/-0.5%	-5.781	-5.792	-0.059	0.037	Pass	-5.774	-5.787	-0.066	0.037	Pass
30 %	+/-0.5%	5.782	5.789	0.037	0.028	Pass	5.775	5.781	0.029	0.028	Pass
50 % 60 %	+/-0.5%	11.565	11.594	0.150	0.039	Pass	11.551	11.582	0.156	0.040	Pass
Channel 3	17-0.070	11.000	11.004	0.100	0.000	1 0.00					
-60 %	+/-0.5%	-11.563	-11.591	-0.141	0.042	Pass	-11.550	-11.574	-0.120	0.043	Pass
-30 %	+/-0.5%	-5.781	-5.795	-0.071	0.026	Pass	-5.774	-5.790	-0.077	0.027	Pass
30 %	+/-0.5%	5.782	5.788	0.034	0.076	Pass	5.775	5.781	0.031	0.076	Pass
60 %	+/-0.5%	11.565	11.580	0.081	0.038	Pass	11.551	11.574	0.114	0.038	Pass
Channel 4	., 0.070	11.000		0.001	0.000						
-60 %	+/-0.5%	-11.563	-11.594	-0.157	0.052	Pass	-11.550	-11.572	-0.113	0.054	Pass
-30 %	+/-0.5%	-5.781	-5.796	-0.080	0.032	Pass	-5.774	-5.789	-0.074	0.033	Pass
30 %	+/-0.5%	5.782	5.789	0.036	0.033	Pass	5.775	5.780	0.028	0.032	Pass
60 %	+/-0.5%	11.565	11.595	0.154	0.062	Pass	11.551	11.576	0.128	0.062	Pass
Channel 5	., 0.070	11.000		0.101			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
-60 %	+/-0.5%	-11.563	-11.596	-0.165	0.039	Pass	-11.550	-11.576	-0.133	0.041	Pass
-30 %	+/-0.5%	-5.781	-5.796	-0.077	0.033	Pass	-5.774	-5.790	-0.078	0.029	Pass
30 %	+/-0.5%	5.782	-5.791	0.046	0.020	Pass	5.775	5.783	0.041	0.039	Pass
60 %	+/-0.5%	11.565	11.596	0.162	0.053	Pass	11.551	11.581	0.152	0.053	Pass
Channel 6	T/-0.J /0	11.505	11.550	0.102	0.000	1 400	11.001	11.001	0.102	0.000	
-60 %	+/-0.5%	-11.563	-11.597	-0.172	0.046	Pass	-11.550	-11.574	-0.123	0.048	Pass
-30 %	+/-0.5%	-5.781	-5.800	-0.099	0.035	Pass	-5.774	-5.791	-0.083	0.035	Pass
-30 %	+/-0.5%	5.782	-5.789	0.033	0.035	Pass	5.775	5.782	0.034	0.026	Pass
60 %	+/-0.5%	11.565	11.597	0.165	0.020	Pass	11.551	11.580	0.148	0.052	Pass
Channel 7	+/-0.576	11.000	11.557	0.100	0.001	1 433	11.001	11.000	0.140	0.002	1 400
-60 %	+/-0.5%	-11.563	-11.587	-0.124	0.041	Pass	-11.550	-11.566	-0.079	0.043	Pass
-30 %	+/-0.5%	-5.781	-5.793	-0.061	0.025	Pass	-5.774	-5.785	-0.055	0.025	Pass
-30 %	+/-0.5%	5.782	5.786	0.024	0.025	Pass	5.775	5.779	0.021	0.024	Pass
60 %	+/-0.5%	11.565	11.587	0.114	0.028	Pass	11.551	11.571	0.101	0.049	Pass
Channel 8	11-0.070	11.000	11.007	0.114	0.010	1 465	11.001		0.101	0.010	,
-60 %	+/-0.5%	-11.563	-11.584	-0.108	0.046	Pass	-11.550	-11.563	-0.066	0.048	Pass
-30 %	+/-0.5%	-5.781	-5.791	-0.052	0.028	Pass	-5.774	-5.784	-0.047	0.030	Pass
30 %	+/-0.5%	5.782	5.783	0.009	0.021	Pass	5.775	5.777	0.010	0.021	Pass
60 %	+/-0.5%	11.565	11.589	0.123	0.035	Pass	11.551	11.571	0.099	0.035	Pass
Channel 9	17-0.070	11.000	11.000	0.120	0.000	1 000	11.001	11.011	0.000	0.000	1 400
-60 %	+/-0.5%	-11.562	-11.580	-0.092	0.073	Pass	-11.549	-11.561	-0.065	0.078	Pass
-30 %	+/-0.5%	-5.780	-5.793	-0.067	0.050	Pass	-5.774	-5.781	-0.038	0.050	Pass
30 %	+/-0.5%	5.781	5.791	0.051	0.052	Pass	5.774	5.777	0.013	0.050	Pass
60 %	+/-0.5%	11.563	11.589	0.133	0.059	Pass	11.550	11.561	0.056	0.060	Pass
Channel 10		11.505	11.003	0.100	0.000	1 433	11.000	11.001	0.000	0.000	1 033
-60 %	+/-0.5%	-11.562	-11.579	-0.089	0.056	Pass	-11.549	-11.559	-0.054	0.057	Pass
-30 %	+/-0.5%	-5.780	-5.792	-0.062	0.030	Pass	-5.774	-5.778	-0.022	0.042	Pass
30 %	+/-0.5%	5.781	5.788	0.034	0.041	Pass	5.774	-5.775 5.775	0.022	0.042	Pass
60 %	+/-0.5%	11.563	11.588	0.034	0.045	Pass	11.550	11.562	0.060	0.040	Pass
Channel 11	17-0.078	11.000	11.000	0.121	0.000	1 433	11.000	11.002	0.000	0.000	1 433
-60 %	+/-0.5%	-11.562	-11.580	-0.092	0.056	Pass	-11.549	-11.563	-0.072	0.058	Pass
-30 %	+/-0.5%	-5.780	-5.793	-0.052	0.030	Pass	-5.774		-0.072	0.030	
-30 % 30 %	+/-0.5%	-5.780 5.781	-5.793 5.788	0.038	0.042	Pass	-5.774 5.774	-5.781 5.777	-0.037 0.015	0.042	Pass Pass
60 %	+/-0.5%	11.563	11.587	0.124	0.059	Pass	11.550	11.565	0.079	0.055	Pass
Channel 12	17-0.070	11.000	11.007	0.124	0.004	1 033	11.000	11.000	0.0/9	0.000	Pass
-60 %	+/-0.5%	-11.562	-11.570	-0.042	0.055	Pass	-11.549	-11.555	-0.032	0.056	Pass
-30 %	+/-0.5%	-11.502	-5.789	-0.042	0.035	Pass	-5.774	-5.776	-0.032	0.037	Pass
-30 %	+/-0.5%	-5.780 5.781	-5.789 5.787	-0.045	0.035	Pass Pass	-5.774	-5.776 5.776	0.007	0.037	Pass
30 % 60 %				0.029 0.087	0.017			5.776 11.559		0.017	
	+/-0.5%	11.563	11.580	0.067	0.055	Pass	11.550	11.009	0.044	0.035	Pass
Channel 13	+10 50/	14 660	11 500	0 101	0.054	Dece	14 EAD	11 560	0.072	0.050	Dece
-60 %	+/-0.5%	-11.562	-11.582	-0.101	0.054	Pass	-11.549	-11.563	-0.073	0.056	Pass
-30 %	+/-0.5%	-5.780	-5.793	-0.067	0.043	Pass	-5.774	-5.781	-0.037	0.044	Pass
30 % 60 %	+/-0.5% +/-0.5%	5.781 11.563	5.788 11.590	0.035 0.137	0.040 0.058 D-21	Pass Pass	5.774 11.550	5.777 11.566	0.012 0.083	0.039 0.058	Pass Pass

Test Description

actor	лч7	20240	
Deter	40	A	2045

Gain of 128: 19.31		614		Received Deviation	Unc.	Pass/	Std	DAS	s Returned Deviation	Unc.	Pass
	Limit	Std	DAS							(mV)	Fail
Channel 14		(mV)	(mV)	(%)	(mV)	Fail	(mV) -11.549	(mV) -11.561	(%) -0.061	0.052	Pase
-60 %	+/-0.5%	-11.562	-11.577	-0.075	0.050	Pass			-0.031	0.032	Pas
-30 %	+/-0.5%	-5.780	-5.792	-0.059	0.033	Pass	-5.774	-5.780		0.034	Pas
30 %	+/-0.5%	5.781	5.788	0.036	0.026	Pass	5.774	5.777	0.012		
60 %	+/-0.5%	11.563	11.587	0.126	0.051	Pass	11.550	11.565	0.077	0.051	Pas
Channel 15						_			0.007	0.057	D
-60 %	+/-0.5%	-11.562	-11.581	-0.100	0.055	Pass	-11.549	-11.568	-0.097	0.057	Pas
-30 %	+/-0.5%	-5.780	-5.793	-0.065	0.039	Pass	-5.774	-5.782	-0.045	0.041	Pas
30 %	+/-0.5%	5.781	5.791	0.051	0.022	Pass	5.774	5.781	0.032	0.022	Pas
60 %	+/-0.5%	11.563	11.590	0.138	0.038	Pass	11.550	11.570	0.103	0.038	Pas
Channel 16											_
-60 %	+/-0.5%	-11.562	-11.569	-0.035	0.059	Pass	-11.549	-11.556	-0.038	0.060	Pas
-30 %	+/-0.5%	-5.780	-5.788	-0.038	0.042	Pass	-5.774	-5.777	-0.017	0.043	Pas
30 %	+/-0.5%	5.781	5.783	0.010	0.027	Pass	5.774	5.774	-0.002	0.027	Pas
60 %	+/-0.5%	11.563	11.577	0.073	0.050	Pass	11.550	11.559	0.044	0.050	Pas
Channel 17											
-60 %	+/-0.5%	-11.561	-11.583	-0.110	0.046	Pass	-11.549	-11.577	-0.143	0.052	Pas
-30 %	+/-0.5%	-5.780	-5.789	-0.047	0.037	Pass	-5.774	-5.785	-0.060	0.039	Pas
30 %	+/-0.5%	5.781	5.781	0.005	0.045	Pass	5.774	5.776	0.010	0.045	Pas
60 %	+/-0.5%	11.562	11.580	0.089	0.064	Pass	11.550	11.573	0.119	0.065	Pas
Channel 18											
-60 %	+/-0.5%	-11.561	-11.580	-0.094	0.045	Pass	-11.549	-11.577	-0.146	0.046	Pas
-30 %	+/-0.5%	-5.780	-5.790	-0.053	0.032	Pass	-5.774	-5.786	-0.065	0.034	Pas
30 %	+/-0.5%	5.781	5.786	0.026	0.037	Pass	5.774	5.781	0.037	0.037	Pas
60 %	+/-0.5%	11.562	11.581	0.095	0.056	Pass	11.550	11.577	0.141	0.056	Pas
Channel 19											
-60 %	+/-0.5%	-11.561	-11.579	-0.092	0.053	Pass	-11.549	-11.575	-0.132	0.053	Pas
-30 %	+/-0.5%	-5.780	-5.788	-0.040	0.032	Pass	-5.774	-5.784	-0.054	0.032	Pas
30 %	+/-0.5%	5.781	5.786	0.028	0.031	Pass	5.774	5.781	0.034	0.032	Pas
60 %	+/-0.5%	11.562	11.579	0.086	0.046	Pass	11.550	11.570	0.105	0.046	Pas
Channel 20	17-0.070	11.002	11.070	0.000	0.040	1 400	11.000	11.010	0.100	0.010	
-60 %	+/-0.5%	-11.561	-11.579	-0.091	0.041	Pass	-11.549	-11.574	-0.132	0.042	Pas
-30 %	+/-0.5%	-5.780	-5.789	-0.045	0.023	Pass	-5.774	-5.786	-0.062	0.025	Pas
30 %	+/-0.5%	5.781	5.786	0.027	0.024	Pass	5.774	5.781	0.037	0.024	Pas
60 %	+/-0.5%	11.562	11.583	0.107	0.050	Pass	11.550	11.578	0.145	0.051	Pas
Channel 21	17-0.370	11.002	11.000	0.107	0.000	1 433	11.000	11.070	0.140	0.001	i ac
-60 %	+/-0.5%	-11.561	-11.582	-0.108	0.050	Pass	-11.549	-11.579	-0.153	0.050	Pas
-30 %	+/-0.5%	-5.780	-5.790	-0.051	0.030	Pass	-5.774	-5.788	-0.073	0.030	Pas
30 %	+/-0.5%	5.781	5.786	0.030	0.025	Pass	5.774	5.782	0.041	0.025	Pas
60 %	+/-0.5%	11.562	11.585	0.000	0.025	Pass	11,550	11.580	0.153	0.025	Pas
Channel 22	+7-0.570	11.502	11.000	0.110	0.045	P 055	11.000	11.000	0.155	0.045	Fat
-60 %	+/-0.5%	-11.561	-11.586	-0.129	0.019	Pass	-11.549	-11.581	-0.168	0.019	Pas
-30 %	+/-0.5%	-5.780	-5.792	-0.125	0.040						
-30 %	+/-0.5%	-5.780 5.781	-5.792 5.789	0.044		Pass	-5.774	-5.790	-0.084	0.040	Pas
					0.038	Pass	5.774	5.786	0.058	0.038	Pas
60 %	+/-0.5%	11.562	11.590	0.142	0.058	Pass	11.550	11.585	0.180	0.058	Pas
Channel 23		44 504	44 574	0.000	0.070	D	44 540	44 500	0.007	0.070	-
-60 %	+/-0.5%	-11.561	-11.574	-0.063	0.072	Pass	-11.549	-11.568	-0.097	0.072	Pas
-30 %	+/-0.5%	-5.780	-5.787	-0.035	0.060	Pass	-5.774	-5.783	-0.048	0.060	Pas
30 %	+/-0.5%	5.781	5.784	0.017	0.055	Pass	5.774	5.778	0.020	0.055	Pas
60 %	+/-0.5%	11.562	11.575	0.064	0.066	Pass	11.550	11.565	0.076	0.066	Pas
Channel 24		== .				5					-
-60 %	+/-0.5%	-11.561	-11.566	-0.027	0.027	Pass	-11.549	-11.562	-0.066	0.026	Pas
-30 %	+/-0.5%	-5.780	-5.782	-0.009	0.032	Pass	-5.774	-5.779	-0.026	0.033	Pas
30 %	+/-0.5%	5.781	5.780	-0.003	0.020	Pass	5.774	5.776	0.007	0.020	Pas
60 %	+/-0.5%	11.562	11.570	0.040	0.031	Pass	11.550	11.566	0.082	0.031	Pas
Channel 25											
-60 %	+/-0.5%	-11.550	-11.561	-0.057	0.029	Pass	-11.549	-11.573	-0.125	0.023	Pas
-30 %	+/-0.5%	-5.774	-5.784	-0.050	0.046	Pass	-5.773	-5.788	-0.076	0.045	Pas
30 %	+/-0.5%	5.775	5.775	0.001	0.039	Pass	5.774	5.781	0.035	0.039	Pas
60 %	+/-0.5%	11.551	11.566		D-22	Pass	11.550	11.577	0.138	0.056	Pas

ain Response ain of 128: 19.3	125mV		As	Received				Α	s Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pa
Channel 26		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	F
-60 %	+/-0.5%	-11.550	-11.558	-0.040	0.056	Pass	-11.549	-11.556	-0.038	0.057	Pa
-30 %	+/-0.5%	-5.774	-5.781	-0.035	0.036	Pass	-5.773	-5.778	-0.024	0.036	Pa
30 %	+/-0.5%	5.775	5.776	0.005	0.022	Pass	5.774	5.776	0.010	0.023	P
60 %	+/-0.5%	11.551	11.569	0.094	0.037	Pass	11.550	11.565	0.079	0.038	P
hannel 27											
-60 %	+/-0.5%	-11.550	-11.561	-0.058	0.049	Pass	-11.549	-11.558	-0.047	0.049	Р
-30 %	+/-0.5%	-5.774	-5.782	-0.039	0.028	Pass	-5.773	-5.780	-0.036	0.028	F
30 %	+/-0.5%	5.775	5.778	0.018	0.024	Pass	5.774	5.777	0.013	0.025	F
60 %	+/-0.5%	11.551	11.572	0.108	0.044	Pass	11.550	11.558	0.041	0.045	F
Channel 28											
-60 %	+/-0.5%	-11.550	-11.568	-0.094	0.047	Pass	-11.549	-11.566	-0.091	0.047	F
-30 %	+/-0.5%	-5.774	-5.788	-0.070	0.032	Pass	-5.773	-5.787	-0.067	0.032	F
30 %	+/-0.5%	5.775	5.774	-0.007	0.023	Pass	5.774	5.773	-0.005	0.023	F
60 %	+/-0.5%	11.551	11.569	0.095	0.037	Pass	11.550	11.567	0.088	0.036	F
hannel 29											
-60 %	+/-0.5%	-11.550	-11.558	-0.042	0.043	Pass	-11.549	-11.559	-0.051	0.042	F
-30 %	+/-0.5%	-5.774	-5.781	-0.033	0.031	Pass	-5.773	-5.781	-0.039	0.031	
30 %	+/-0.5%	5.775	5.777	0.012	0.041	Pass	5.774	5.779	0.023	0.041	1
60 %	+/-0.5%	11.551	11.568	0.090	0.061	Pass	11.550	11.565	0.079	0.061	I
Channel 30											
-60 %	+/-0.5%	-11.550	-11.556	-0.031	0.053	Pass	-11.549	-11.556	-0.039	0.054	I
-30 %	+/-0.5%	-5.774	-5.780	-0.029	0.035	Pass	-5.773	-5.779	-0.030	0.035	1
30 %	+/-0.5%	5.775	5.778	0.014	0.024	Pass	5.774	5.777	0.013	0.024	ļ
60 %	+/-0.5%	11.551	11.567	0.085	0.024	Pass	11.550	11.562	0.064	0.048	İ
hannel 31	17-0.070	11.501	11.007	0.000	0.040	1 455	11.000	11.002	0.004	0.040	
-60 %	+/-0.5%	-11.550	-11.562	-0.063	0.049	Pass	-11.549	-11.564	-0.080	0.049	1
-30 %	+/-0.5%	-5.774	-5.783	-0.045	0.037	Pass	-5.773	-5.783	-0.049	0.038	1
30 %	+/-0.5%	5.775	5.780	0.043	0.044	Pass	5.774	5.781	0.033	0.044	1
60 %	+/-0.5%	11.551	11.577	0.135	0.061	Pass	11.550	11.577	0.141	0.061	ļ
Channel 32	-17-0.570	11.001	11.577	0.100	0.001	1 035	11.000	11.071	0.141	0.001	,
-60 %	+/-0.5%	-11.550	-11.560	-0.054	0.043	Pass	-11.549	-11.558	-0.048	0.043	F
-30 %	+/-0.5%	-5.774	-5.783	-0.034	0.043	Pass	-5.773	-5.781	-0.048	0.043	
-30 %	+/-0.5%	5.775	-5.777	0.042	0.038	Pass	-5.774	5.775	0.006	0.030	
50 % 60 %	+/-0.5%	11.551	11.572	0.012	0.056		5.774 11.550	5.775 11.565			F
00 %	<i>±1-</i> 0.576	11.551	11.572	0.106	0.050	Pass	11.550	11.505	0.079	0.055	F
ain Response Gain of 1024: 2.	4414mV										
Channel 1											
-60 %	+/-0.5%	-1.445	-1.448	-0.136	0.014	Pass	-1.443	-1.446	-0.113	0.014	F
-30 %	+/-0.5%	-0.722	-0.723	-0.058	0.011	Pass	-0.721	-0.722	-0.047	0.011	F
30 %	+/-0.5%	0.721	0.722	0.023	0.013	Pass	0.720	0.720	-0.016	0.013	F
60 %	+/-0.5%	1.444	1.446	0.076	0.012	Pass	1.442	1.444	0.097	0.013	F
Channel 2				0.010	0.012	1 400	1	1.777	0.007	0.015	
-60 %	+/-0.5%	-1.445	-1.449	-0.137	0.013	Pass	-1.443	-1.446	-0.118	0.013	F
-30 %	+/-0.5%	-0.722	-0.723	-0.043	0.011	Pass	-0.721	-0.722	-0.037	0.013	F
30 %	+/-0.5%	0.721	0.722	0.034	0.010	Pass	0.720	0.722	-0.007	0.011	
60 %	+/-0.5%	1.444	1.446	0.108	0.011	Pass	1.442	1.445	0.123	0.010	F
Channel 3	., 0.070	1.444	1.440	0.100	0.011	1 233	1.442	1.445	0.125	0.011	F
-60 %	+/-0.5%	-1.445	-1.448	-0.136	0.012	Bass	1 440	1 446	0.115	0.040	
-30 %	+/-0.5%	-0.722	-0.723	-0.136		Pass	-1.443	-1.446	-0.115	0.013	F
-30 %	+/-0.5%				0.011	Pass	-0.721	-0.722	-0.045	0.012	F
50 % 60 %		0.721	0.722	0.038	0.014	Pass	0.720	0.720	-0.011	0.014	F
	+/-0.5%	1.444	1.446	0.071	0.015	Pass	1.442	1.444	0.097	0.015	F
Channel 4		4 4 4 5	4 4 4 4 4	0.404	0.010	Dest			.		_
-60 %	+/-0.5%	-1.445	-1.448	-0.134	0.010	Pass	-1.443	-1.447	-0.141	0.010	F
-30 %	+/-0.5%	-0.722	-0.723	-0.042	0.008	Pass	-0.721	-0.722	-0.055	0.008	F
30 % 60 %	+/-0.5%	0.721	0.722	0.029	0.009	Pass	0.720	0.720	-0.007	0.009	F
	+/-0.5%	1.444	1.446	0.081	0.011	Pass	1.442	1.445	0.125	0.011	F

Serial #: 5M0279 Serial #: 5M0279 Dete: 13 August

in Response ain of 1024:			As	Received				A	s Returned		
am or 1024.	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pa
hannel 5		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fa
-60 %	+/-0.5%	-1.445	-1.449	-0.163	0.010	Pass	-1.443	-1.447	-0.142	0.010	Pa
-30 %	+/-0.5%	-0.722	-0.723	-0.058	0.009	Pass	-0.721	-0.722	-0.052	0.009	Pa
-30 %	+/-0.5%	0.721	0.723	0.061	0.011	Pass	0.720	0.720	0.005	0.011	Pa
60 %	+/-0.5%	1.444	1.447	0.114	0.012	Pass	1.442	1.445	0.123	0.012	Pa
Channel 6	17-0.570	1.444	1.7777	0.174	0.072	. 400					
-60 %	+/-0.5%	-1.445	-1.449	-0.169	0.010	Pass	-1.443	-1,447	-0.146	0.010	Pa
-30 %	+/-0.5%	-0.722	-0.723	-0.062	0.008	Pass	-0.721	-0.722	-0.062	0.008	P
-30 %	+/-0.5%	0.722	0.723	0.047	0.000	Pass	0.721	0.720	-0.013	0.010	P
30 % 60 %	+/-0.5%	1.444	1.447	0.116	0.012	Pass	1.442	1.445	0.127	0.012	P
	+/-0.3%	1.444	1.447	0.110	0.012	F 435	1.442	1.445	0.121	0.012	
hannel 7		4 445	4 4 4 0	0.440	0.012	Deee	-1.443	-1.445	-0.082	0.012	Р
-60 %	+/-0.5%	-1.445	-1.448	-0.110		Pass		-0.722	-0.032	0.012	P
-30 %	+/-0.5%	-0.722	-0.722	-0.034	0.010	Pass	-0.721				
30 %	+/-0.5%	0.721	0.722	0.019	0.010	Pass	0.720	0.720	-0.020	0.010	P
60 %	+/-0.5%	1.444	1.446	0.072	0.011	Pass	1.442	1.444	0.075	0.011	P
hannel 8						_			0.070	0.040	-
-60 %	+/-0.5%	-1.445	-1.448	-0.107	0.010	Pass	-1.443	-1.445	-0.073	0.010	F
-30 %	+/-0.5%	-0.722	-0.723	-0.039	0.009	Pass	-0.721	-0.721	-0.024	0.009	F
30 %	+/-0.5%	0.721	0.721	0.014	0.009	Pass	0.720	0.720	-0.026	0.009	F
60 %	+/-0.5%	1.444	1.446	0.075	0.010	Pass	1.442	1.444	0.073	0.010	F
hannel 9											
-60 %	+/-0.5%	-1.445	-1.447	-0.083	0.012	Pass	-1.443	-1.446	-0.111	0.012	F
-30 %	+/-0.5%	-0.722	-0.723	-0.058	0.010	Pass	-0.721	-0.722	-0.055	0.010	F
30 %	+/-0.5%	0.721	0.722	0.022	0.012	Pass	0.720	0.720	-0.007	0.012	F
60 %	+/-0.5%	1.444	1.446	0.117	0.013	Pass	1.442	1.446	0.152	0.013	F
hannel 10											
-60 %	+/-0.5%	-1.445	-1.447	-0.096	0.013	Pass	-1.443	-1.445	-0.080	0.013	F
-30 %	+/-0.5%	-0.722	-0.723	-0.051	0.010	Pass	-0.721	-0.721	-0.031	0.011	F
30 %	+/-0.5%	0.721	0.721	0.016	0.011	Pass	0.720	0.720	-0.024	0.011	F
60 %	+/-0.5%	1.444	1.446	0.108	0.012	Pass	1.442	1.445	0.108	0.012	F
hannel 11											
-60 %	+/-0.5%	-1.445	-1.447	-0,081	0.010	Pass	-1.443	-1,445	-0.082	0.010	F
-30 %	+/-0.5%	-0.722	-0.723	-0.051	0.009	Pass	-0.721	-0.722	-0.038	0.009	F
30 %	+/-0.5%	0.721	0.722	0.022	0.010	Pass	0.720	0.720	-0.011	0.010	F
60 %	+/-0.5%	1.444	1.446	0.099	0.012	Pass	1.442	1.445	0.107	0.012	F
hannel 12	17-0.576	1.444	1.440	0.035	0.012	1 000	1.44 <u>4</u>	1.440	0.107	0.012	•
-60 %	+/-0.5%	-1.445	-1.446	-0.046	0.011	Pass	-1.443	-1.445	-0.047	0.011	F
-60 % -30 %	+/-0.5%	-0.722	-0.722	-0.048	0.001	Pass	-0.721	-0.722	-0.047	0.008	F
			-0.722	-0.038	0.008	Pass	0.721	0.722	-0.039	0.008	
30 %	+/-0.5%	0.721									F
60 %	+/-0.5%	1.444	1.445	0.057	0.011	Pass	1.442	1.444	0.075	0.012	F
hannel 13	1.0.00					_					-
-60 %	+/-0.5%	-1.445	-1.447	-0.091	0.012	Pass	-1.443	-1.445	-0.087	0.012	F
-30 %	+/-0.5%	-0.722	-0.723	-0.056	0.010	Pass	-0.721	-0.721	-0.030	0.010	F
30 %	+/-0.5%	0.721	0.721	0.019	0.013	Pass	0.720	0.720	-0.022	0.013	F
60 %	+/-0.5%	1.444	1.446	0.111	0.014	Pass	1.442	1.445	0.140	0.014	F
hannel 14											
-60 %	+/-0.5%	-1.445	-1.447	-0.088	0.011	Pass	-1.443	-1.445	-0.084	0.011	F
-30 %	+/-0.5%	-0.722	-0.723	-0.058	0.009	Pass	-0.721	-0.722	-0.045	0.009	F
30 %	+/-0.5%	0.721	0.722	0.021	0.010	Pass	0.720	0.720	-0.017	0.010	F
60 %	+/-0.5%	1.444	1.446	0.112	0.011	Pass	1.442	1.445	0.122	0.011	F
hannel 15											
-60 %	+/-0.5%	-1.445	-1.447	-0.096	0.012	Pass	-1.443	-1.446	-0.115	0.011	F
-30 %	+/-0.5%	-0.722	-0.723	-0.060	0.010	Pass	-0.721	-0.722	-0.047	0.010	F
30 %	+/-0.5%	0.721	0.722	0.028	0.012	Pass	0.720	0.720	-0.002	0.013	F
60 %	+/-0.5%	1.444	1.447	0.132	0.012	Pass	1.442	1.445	0.144	0.013	F
hannel 16											•
-60 %	+/-0.5%	-1.445	-1.446	-0.049	0.012	Pass	-1.443	-1.445	-0.062	0.012	F
-30 %	+/-0.5%	-0.722	-0.722	-0.045	0.009	Pass	-0.721	-0.721	-0.028	0.009	F
-30 % 30 %	+/-0.5%	0.722	0.722	-0.003	0.009	Pass	0.720	0.720	-0.020	0.009	F
								1.444	0.091	0.003	F
60 %	+/-0.5%	1.444	1.445	0.073	0.012 D-24	Pass	1.442	1.444	0.031	0.012	5

Test Description

•	(OpOi	9		
	Date:	13	August	2015

Gain of 1024: 2.4				Received			• • •		s Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pas
Channel 17		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fa
-60 %	+/-0.5%	-1.445	-1.447	-0.088	0.010	Pass	-1.443	-1.446	-0.104	0.010	Pa
-30 %	+/-0.5%	-0.722	-0.722	-0.021	0.010	Pass	-0.721	-0.722	-0.047	0.010	Pa
30 %	+/-0.5%	0.721	0.720	-0.038	0.010	Pass	0.720	0.721	0.027	0.011	Pa
60 %	+/-0.5%	1.443	1.445	0.047	0.007	Pass	1.442	1.444	0.098	0.008	Pa
Channel 18					-						
-60 %	+/-0.5%	-1.445	-1.447	-0.071	0.008	Pass	-1.443	-1.446	-0.099	0.008	Pa
-30 %	+/-0.5%	-0.722	-0.722	0.003	0.007	Pass	-0.721	-0.722	-0.047	0.007	Pa
30 %	+/-0.5%	0.721	0.720	-0.026	0.009	Pass	0.720	0.722	0.061	0.009	Pa
					0.009		1.442	1.444	0.092	0.009	Pa
60 %	+/-0.5%	1.443	1.444	0.026	0.009	Pass	1.442	1.444	0.092	0.009	га
Channel 19		<i></i>				-	4.440	4 445	0.007	0.040	D -
-60 %	+/-0.5%	-1.445	-1.447	-0.074	0.010	Pass	-1.443	-1.445	-0.087	0.010	Pa
-30 %	+/-0.5%	-0.722	-0.722	-0.005	0.008	Pass	-0.721	-0.722	-0.038	0.008	Pa
30 %	+/-0.5%	0.721	0.720	-0.020	0.011	Pass	0.720	0.721	0.040	0.011	Pa
60 %	+/-0.5%	1.443	1.445	0.048	0.012	Pass	1.442	1.444	0.096	0.012	Pa
Channel 20											
-60 %	+/-0.5%	-1.445	-1.447	-0.074	0.005	Pass	-1.443	-1.445	-0.083	0.006	Pa
-30 %	+/-0.5%	-0.722	-0.722	-0.003	0.004	Pass	-0.721	-0.722	-0.061	0.004	Pa
30 %	+/-0.5%	0.721	0.720	-0.024	0.004	Pass	0.720	0.722	0.056	0.004	Pa
60 %	+/-0.5%	1.443	1.445	0.053	0.004	Pass	1.442	1.445	0.111	0.006	Pa
Channel 21	TI-0.5%	1.445	1.440	0.055	0.000	1 455	1.772	1.440	0.111	0.000	
	. (0 00/	4 445	4 4 4 7	0.004	0.000	Deee	4 443	1 446	-0.105	0.009	Pa
-60 %	+/-0.5%	-1.445	-1.447	-0.094	0.009	Pass	-1.443	-1.446			
-30 %	+/-0.5%	-0.722	-0.722	-0.011	0.008	Pass	-0.721	-0.722	-0.052	0.008	Pa
30 %	+/-0.5%	0.721	0.721	-0.018	0.008	Pass	0.720	0.722	0.054	0.008	P
60 %	+/-0.5%	1.443	1.445	0.075	0.007	Pass	1.442	1.445	0.124	0.007	Pa
Channel 22											
-60 %	+/-0.5%	-1.445	-1.448	-0.120	0.010	Pass	-1.443	-1.447	-0.129	0.010	Pa
-30 %	+/-0.5%	-0.722	-0.722	-0.016	0.008	Pass	-0.721	-0.722	-0.069	0.008	P
30 %	+/-0.5%	0.721	0.721	-0.006	0.009	Pass	0.720	0.722	0.077	0.009	P
60 %	+/-0.5%	1.443	1.446	0.110	0.011	Pass	1.442	1.446	0.160	0.011	Pa
Channel 23											
-60 %	+/-0.5%	-1,445	-1.446	-0.052	0.012	Pass	-1.443	-1.445	-0.050	0.012	Pa
-30 %	+/-0.5%	-0.722	-0.721	0.018	0.012	Pass	-0.721	-0.722	-0.042	0.012	P
30 %	+/-0.5%	0.721	0.721	-0.044	0.009	Pass	0.720	0.721	0.042	0.009	P
60 %	+/-0.5%	1.443	1.444	0.014	0.013	Pass	1.442	1.444	0.074	0.013	P
hannel 24						-					-
-60 %	+/-0.5%	-1.445	-1.445	-0.008	0.010	Pass	-1.443	-1.444	-0.023	0.010	P
-30 %	+/-0.5%	-0.722	-0.721	0.031	0.009	Pass	-0.721	-0.721	-0.008	0.009	P
30 %	+/-0.5%	0.721	0.720	-0.047	0.009	Pass	0.720	0.721	0.022	0.009	P
60 %	+/-0.5%	1.443	1.443	-0.009	0.009	Pass	1.442	1.443	0.044	0.009	Р
hannel 25											
-60 %	+/-0.5%	-1.443	-1.445	-0.050	0.012	Pass	-1.444	-1.444	-0.020	0.011	P
-30 %	+/-0.5%	-0.721	-0.722	-0.036	0.010	Pass	-0.721	-0.722	-0.043	0.010	P
30 %	+/-0.5%	0.720	0.720	-0.024	0.011	Pass	0.720	0.720	-0.019	0.012	P
60 %	+/-0.5%	1.442	1.443	0.030	0.011	Pass	1.442	1.443	0.043	0.011	P
hannel 26	., 0.070	1. 7 74	1.440	0.000	0.011	1 233	1	1.440	0.040	0.011	1-1
	1/0 59/	4 442	1 4 4 4	0.025	0.010	Deee	4 4 4 4	4 4 4 4	0.000	0.040	
-60 %	+/-0.5%	-1.443	-1.444	-0.025	0.010	Pass	-1.444	-1.444	-0.028	0.010	P
-30 %	+/-0.5%	-0.721	-0.721	-0.011	0.008	Pass	-0.721	-0.721	-0.022	0.008	P
30 %	+/-0.5%	0.720	0.720	-0.017	0.009	Pass	0.720	0.720	-0.008	0.009	P
60 %	+/-0.5%	1.442	1.443	0.042	0.010	Pass	1.442	1.444	0.064	0.009	P
hannel 27											
-60 %	+/-0.5%	-1.443	-1.444	-0.026	0.010	Pass	-1.444	-1.444	-0.032	0.010	P
-30 %	+/-0.5%	-0.721	-0.721	-0.011	0.008	Pass	-0.721	-0.721	-0.024	0.008	Р
30 %	+/-0.5%	0.720	0.720	-0.014	0.008	Pass	0.720	0.720	0.006	0.008	P
60 %	+/-0.5%	1.442	1.442	0.012	0.009	Pass	1.442	1.444	0.080	0.009	P
Channel 28		1.776	1	0.012	0.000		1. TTE	1	0.000	0.000	,
	+/ 0 59/	1 440	1 A A F	0 079	0.040	Daga	1	1 445	0.074	0.000	
-60 %	+/-0.5%	-1.443	-1.445	-0.073	0.010	Pass	-1.444	-1.445	-0.074	0.009	P
-30 %	+/-0.5%	-0.721	-0.722	-0.045	0.008	Pass	-0.721	-0.722	-0.056	0.008	P
30 %	+/-0.5%	0.720	0.720	-0.032	0.009	Pass	0.720	0.720	-0.021	0.009	P
60 %	+/-0.5%	1.442	1.443	0.040	0.011 D-25	Pass	1.442	1.444	0.082	0.011	P

Serial #: 5M0279 Serial #: 5M0279 Date: 13 August Date: 13 August

Test Description

Date: 13 August 2015

Gain of 1024: 2.4	l414mV		As	Received					s Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
Channel 29		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-1.443	-1.444	-0.018	0.009	Pass	-1.444	-1.445	-0.039	0.009	Pass
-30 %	+/-0.5%	-0.721	-0.721	-0.009	0.007	Pass	-0.721	-0.721	-0.026	0.007	Pass
30 %	+/-0.5%	0.720	0.720	-0.019	0.009	Pass	0.720	0.720	0.002	0.009	Pass
60 %	+/-0.5%	1.442	1.443	0.029	0.010	Pass	1.442	1.443	0.059	0.010	Pass
Channel 30											
-60 %	+/-0.5%	-1.443	-1.444	-0.032	0.010	Pass	-1.444	-1.444	-0.030	0.010	Pass
-30 %	+/-0.5%	-0.721	-0.721	-0.010	0.009	Pass	-0.721	-0.721	-0.025	0.009	Pass
30 %	+/-0.5%	0.720	0.720	-0.024	0.009	Pass	0.720	0.720	-0.005	0.009	Pass
60 %	+/-0.5%	1.442	1.443	0.027	0.009	Pass	1.442	1.444	0.066	0.009	Pass
Channel 31											
-60 %	+/-0.5%	-1.443	-1.445	-0.048	0.009	Pass	-1.444	-1.444	-0.032	0.009	Pass
-30 %	+/-0.5%	-0.721	-0.721	-0.023	0.008	Pass	-0.721	-0.721	-0.029	0.008	Pass
30 %	+/-0.5%	0.720	0.720	-0.014	0.009	Pass	0.720	0.720	0.005	0.009	Pass
60 %	+/-0.5%	1.442	1.444	0.077	0.010	Pass	1.442	1.445	0.105	0.010	Pass
Channel 32											
-60 %	+/-0.5%	-1.443	-1.445	-0.050	0.009	Pass	-1.444	-1.445	-0.046	0.009	Pass
-30 %	+/-0.5%	-0.721	-0.721	-0.016	0.011	Pass	-0.721	-0.721	-0.027	0.011	Pass
30 %	+/-0.5%	0.720	0.720	-0.021	0.012	Pass	0.720	0.720	-0.019	0.012	Pass
60 %	+/-0.5%	1.442	1.443	0.046	0.012	Pass	1.442	1.444	0.075	0.012	Pass
Gain Response											
Gain of 2048: 1.22	207m\/										
Channel 1	.07111V										
-60 %	+/-0.5%	-0.722	-0.723	-0.133	0.005	Pass	-0.721	-0.722	-0.054	0.005	Pass
-30 %	+/-0.5%	-0.361	-0.361	-0.014	0.006	Pass	-0.360	-0.362	-0.108	0.006	Pass
30 %	+/-0.5%	0.360	0.360	0.030	0.005	Pass	0.360	0.360	0.058	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.086	0.007	Pass	0.720	0.722	0.121	0.007	Pass
Channel 2	T-0.570	0.721	0.722	0.000	0.007	1 033	0.720	0.722	0.121	0.007	1 200
-60 %	+/-0.5%	-0.722	-0.723	-0.128	0.007	Pass	-0.721	-0.722	-0.065	0.007	Pass
-30 %	+/-0.5%	-0.361	-0.361	-0.011	0.008	Pass	-0.360	-0.361	-0.087	0.008	Pass
30 %	+/-0.5%	0.360	0.360	0.041	0.005	Pass	0.360	0.360	0.059	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.102	0.006	Pass	0.720	0.722	0.141	0.006	Pass
Channel 3	17-0.570	0.721	0.122	0.102	0.000	1 200	0.720	0.7 22	0.141	0.000	1 200
-60 %	+/-0.5%	-0.722	-0.723	-0.126	0.007	Pass	-0.721	-0.722	-0.071	0.007	Pass
-30 %	+/-0.5%	-0.361	-0.723	-0.120	0.007	Pass	-0.360	-0.362	-0.115	0.007	Pass
30 %	+/-0.5%	0.360	0.360	0.043	0.006	Pass	0.360	0.360	0.062	0.006	Pass
60 %	+/-0.5%	0.300	0.300	0.043	0.000	Pass	0.300	0.300	0.129	0.007	Pass
Channel 4	+7-0.576	0.721	0.122	0.079	0.007	F 833	0.720	0.722	0.129	0.007	r a 3 5
-60 %	+/-0.5%	-0.722	-0.723	-0.139	0.004	Pass	-0.721	-0.722	-0.084	0.004	Pass
-30 %	+/-0.5%	-0.361	-0.361	-0.016	0.004	Pass	-0.360	-0.362	-0.127	0.007	Pass
-30 %	+/-0.5%	0.360	0.360	0.033	0.007	Pass	0.360	0.360	0.072	0.007	Pass
60 %	+/-0.5%	0.300	0.300	0.033	0.004	Pass	0.300	0.300	0.072	0.004	Pass
Channel 5	Ŧ /-0. 570	0.721	0.122	0.080	0.000	rass	0.720	0.722	0.144	0.000	rd55
-60 %	+/-0.5%	-0.722	-0.724	-0.154	0.006	Beec	-0.721	-0.722	-0.072	0.005	Deee
-30 %	+/-0.5%	-0.722 -0.361	-0.724 -0.361	-0.154	0.008	Pass Pass	-0.721	-0.722	-0.072	0.005	Pass Pass
30 %	+/-0.5%	0.360	0.361	0.052	0.007	Pass	0.360	0.361	0.080	0.007	Pass
60 %	+/-0.5%	0.300	0.723	0.052	0.005		0.300	0.722	0.080	0.005	Pass
Channel 6	+1-0.5%	0.721	0.725	0.110	0.000	Pass	0.720	0.722	0.140	0.000	Fd33
-60 %	1/0 59/	0 700	0 704	0.190	0.007	Deee	-0.721	0 700	0.000	0.007	Deee
	+/-0.5% +/-0.5%	-0.722	-0.724	-0.189	0.007	Pass		-0.722	-0.080	0.007	Pass
-30 %		-0.361	-0.361	-0.019	0.008	Pass	-0.360	-0.362	-0.124	0.008	Pass
30 %	+/-0.5%	0.360	0.361	0.061	0.004	Pass	0.360	0.360	0.071	0.005	Pass
60 %	+/-0.5%	0.721	0.723	0.130	0.006	Pass	0.720	0.722	0.156	0.006	Pass
					0.005	Dees	0 704	0 701	0.047	0.005	.
Channel 7		A 700									
-60 %	+/-0.5%	-0.722	-0.723	-0.107	0.005	Pass	-0.721	-0.721	-0.017	0.005	Pass
-60 % -30 %	+/-0.5%	-0.361	-0.361	-0.015	0.007	Pass	-0.360	-0.361	-0.083	0.007	Pass
-60 %											

Test Description

Gain of 2048: 1.:		A 4 -		Received	11	Decol	01-1	DAS	s Returned Deviation	Unc.	Pass/
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std				Fail
Channel 8		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	
-60 %	+/-0.5%	-0.722	-0.723	-0.105	0.006	Pass	-0.721	-0.721	-0.005	0.006	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.009	0.008	Pass	-0.360	-0.361	-0.080	0.007	Pass
30 %	+/-0.5%	0.360	0.360	0.023	0.005	Pass	0.360	0.360	0.040	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.074	0.007	Pass	0.720	0.722	0.103	0.007	Pass
Channel 9						_			0 075	0.007	
-60 %	+/-0.5%	-0.721	-0.723	-0.095	0.007	Pass	-0.721	-0.722	-0.075	0.007	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.059	0.009	Pass	-0.360	-0.362	-0.175	0.009	Pass
30 %	+/-0.5%	0.360	0.360	0.019	0.006	Pass	0.360	0.359	-0.044	0.006	Pass
60 %	+/-0.5%	0.721	0.722	0.065	0.008	Pass	0.720	0.721	0.057	0.008	Pass
Channel 10											
-60 %	+/-0.5%	-0.721	-0.723	-0.100	0.006	Pass	-0.721	-0.721	-0.056	0.006	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.019	0.008	Pass	-0.360	-0.362	-0.131	0.008	Pass
30 %	+/-0.5%	0.360	0.360	0.014	0.006	Pass	0.360	0.359	-0.049	0.006	Pass
60 %	+/-0.5%	0.721	0.722	0.082	0.007	Pass	0.720	0.721	0.045	0.007	Pass
Channel 11											
-60 %	+/-0.5%	-0.721	-0.723	-0.101	0.005	Pass	-0.721	-0.722	-0.072	0.006	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.011	0.008	Pass	-0.360	-0.362	-0.144	0.008	Pass
30 %	+/-0.5%	0.360	0.360	0.009	0.005	Pass	0.360	0.359	-0.034	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.083	0.006	Pass	0.720	0.721	0.048	0.006	Pass
Channel 12											
-60 %	+/-0.5%	-0.721	-0.722	-0.081	0.005	Pass	-0.721	-0.721	-0.013	0.004	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.040	0.007	Pass	-0.360	-0.362	-0.112	0.007	Pass
30 %	+/-0.5%	0.360	0.360	0.026	0.005	Pass	0.360	0.359	-0.051	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.063	0.007	Pass	0.720	0.721	0.024	0.007	Pass
Channel 13											
-60 %	+/-0.5%	-0.721	-0.723	-0.087	0.006	Pass	-0.721	-0.722	-0.076	0.006	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.028	0.007	Pass	-0.360	-0.362	-0.143	0.007	Pass
30 %	+/-0.5%	0.360	0.360	0.006	0.005	Pass	0.360	0.359	-0.041	0.006	Pass
60 %	+/-0.5%	0.721	0.722	0.080	0.007	Pass	0.720	0.721	0.058	0.007	Pass
Channel 14		0	0.7 ==	0.000							
-60 %	+/-0.5%	-0.721	-0.722	-0.081	0.005	Pass	-0.721	-0.721	-0.063	0.005	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.031	0.007	Pass	-0.360	-0.362	-0.159	0.007	Pass
30 %	+/-0.5%	0.360	0.360	0.010	0.005	Pass	0.360	0.359	-0.027	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.075	0.008	Pass	0.720	0.721	0.048	0.008	Pass
Channel 15	1-0.070	0.721	0.1	0.070	0.000	. 400	0.720	0.121	0.010	0.000	1 400
-60 %	+/-0.5%	-0.721	-0.723	-0.101	0.006	Pass	-0.721	-0.722	-0.086	0.006	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.029	0.008	Pass	-0.360	-0.362	-0.160	0.008	Pass
30 %	+/-0.5%	0.360	0.360	0.015	0.006	Pass	0.360	0.359	-0.026	0.006	Pass
60 %	+/-0.5%	0.721	0.722	0.086	0.008	Pass	0.720	0.721	0.075	0.008	Pass
Channel 16		0.121	0.122	0.000	0.000	1 455	0.720	0.721	0.070	0.000	1 400
-60 %	+/-0.5%	-0.721	-0.722	-0.061	0.006	Pass	-0.721	-0.721	-0.036	0.006	Pass
-30 %	+/-0.5%	-0.361	-0.360	0.057	0.007	Pass	-0.360	-0.362	-0.135	0.007	Pass
30 %	+/-0.5%	0.360	0.360	-0.012	0.005	Pass	0.360	0.359	-0.057	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.022	0.006	Pass	0.720	0.720	0.016	0.005	Pass
Channel 17	17-0.070	0.721	0.722	0.022	0.000	1 455	0.720	0.720	0.010	0.000	F a 3 3
-60 %	+/-0.5%	-0.722	-0.722	-0.073	0.006	Pass	-0.721	-0.721	-0.036	0.007	Pass
-30 %	+/-0.5%	-0.361	-0.361	-0.073	0.000		-0.360	-0.362	-0.030	0.007	
						Pass					Pass
30 % 60 %	+/-0.5%	0.360	0.360	0.009	0.005	Pass	0.359	0.358	-0.103	0.005	Pass
	+/-0.5%	0.721	0.722	0.057	0.007	Pass	0.720	0.721	0.068	0.007	Pass
Channel 18	10 50	0 700	0 700	0.040	0.005	Dees	0 704	0 704	0.029	0.005	Dees
-60 %	+/-0.5%	-0.722	-0.722	-0.042	0.005	Pass	-0.721	-0.721	-0.038	0.005	Pass
-30 %	+/-0.5%	-0.361	-0.361	-0.018	0.007	Pass	-0.360	-0.362	-0.139	0.007	Pass
30 %	+/-0.5%	0.360	0.360	0.041	0.005	Pass	0.359	0.359	-0.072	0.005	Pass
60 %	+/-0.5%	0.721	0.722	0.041	0.006	Pass	0.720	0.721	0.064	0.006	Pass
Channel 19			a		0.005	D	0 -01	0 70/	0.040	0 000	
-60 %	+/-0.5%	-0.722	-0.722	-0.045	0.005	Pass	-0.721	-0.721	-0.019	0.005	Pass
-30 %	+/-0.5%	-0.361	-0.361	-0.017	0.007	Pass	-0.360	-0.362	-0.144	0.007	Pass
	1/0 50/	0.360	0.360	0.037	0.006	Pass	0.359	0.358	-0.084	0.006	Pass
30 % 60 %	+/-0.5% +/-0.5%	0.721	0.722		0.008 D-27	Pass	0.720	0.721	0.076	0.008	Pass

Serial #: 5M0279 Serial #: 5M0279 Dete: 13 August

Gam of 24.8: L2027/TV As Received The state State Deviation Unic. Pass/ Channel 20 (mV) (mV) <th>Test Descript Gain Respons</th> <th></th>	Test Descript Gain Respons											
Limit SAS Deviation Unc. Pass/ Sdd DAS Deviation Unc. Pass/ -60 % +10.6% -0.722 -0.722 -0.072 0.069 Pass -0.721 -0.721 -0.721 -0.721 -0.721 0.078 0.009 Pass 30 % +10.6% -3.86 0.360 0.060 0.004 Pass 0.256 0.352 0.171 0.078 0.007 Pass -80 % +10.5% -0.722 -0.721 0.010 Pass -0.322 0.056 0.004 Pass -0.320 0.005 Pass -30 % +10.5% -0.722 0.722 0.066 0.005 Pass 0.306 0.006 Pass 0.308 0.007 Pass 0.308 0.006 Pass 0.308 0.006 Pass 0.308 0.007 Pass 0.308 0.007 Pass 0.308 0.008 Pass 0.308 0.008 Pass 0.308 0.008 Pass				As	Received				A	s Returned		
Channel 20 (mV)	Oun of 2010.		Std			Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
	Channel 20							(mV)	(mV)	(%)	(mV)	Fail
		+/-0 5%							• •		0.006	Pass
30 ***** 0.380 0.380 0.037 0.0078 0.0049 Pass 60 ************************************												
60 % +0.6 % 0.721 0.722 0.077 0.007 Pass 0.720 0.721 0.076 0.007 Pass -60 % +0.0,5% -0.722 -0.722 -0.059 0.004 Pass -0.721 -0.721 -0.720 0.006 0.004 Pass -30 % +0.0,5% 0.361 0.055 0.004 Pass 0.369 0.358 -0.066 0.004 Pass -60 % +0.05% 0.721 0.722 0.073 0.006 Pass 0.360 0.032 0.008 Pass 0.360 0.032 0.009 Pass 0.360 0.032 0.009 Pass 0.360 0.032 0.009 Pass 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.368 0.0169 Pass 0.360 0.361 0.017 Pass 0.360 0.361 0.017 Pass 0.360 0.361 0.361 0.361												
Channel 21 -0.021 -0.724 -0.721 -0.721 -0.724 -0.721 -0.724 -0.724 -0.721 -0.					-							
		7/-0.070	0.721	0.722	0.077	0.001	1 433	0.720	0.721	0.010	0.007	
30 % +0.05% -0.361 -0.016 0.009 Pass 0.360 -0.360 -0.366 0.009 Pass 0.8 % +0.05% 0.721 0.722 0.068 0.005 Pass 0.389 -0.066 0.004 Pass -60 % +0.05% 0.722 0.723 -0.094 0.005 Pass 0.721 0.721 0.084 0.005 Pass 0.721 0.024 0.008 Pass 0.721 0.024 0.008 Pass 0.721 0.024 0.008 Pass 0.721 0.721 0.024 0.008 Pass 0.721 0.721 0.024 0.008 Pass 0.721		11 0 504	0 722	0 722	0.050	0.004	Dace	-0 721	-0 721	-0.020	0 004	Pass
30 % +/.0 5% 0.360 0.0361 0.055 0.004 Pass 0.359 0.0361 0.006 Pass Channel 22 - 0.036 0.005 Pass 0.720 0.721 0.086 0.006 Pass 30 % +/0.6% -0.361 -0.031 0.006 Pass 0.360 -0.044 0.006 Pass 30 % +/0.6% -0.361 -0.031 0.002 Pass 0.360 0.042 0.006 Pass 60 % +/0.5% 0.721 0.722 0.115 0.009 Pass 0.720 0.0320 0.048 0.009 Pass Channel 23 - 0.721 0.722 0.045 0.006 Pass 0.720 0.051 0.005 Pass Channel 24 - 0.721 0.721 0.722 0.721 0.720 0.721 0.720 0.651 0.006 Pass 0.359 0.356 -0.116 0.007 Pass 0.356 -0.116					-							
co. %. +/0.5% 0.721 0.722 0.068 0.005 Pass 0.720 0.721 0.086 0.005 Pass c0 % +/0.5% -0.721 -0.731 -0.082 0.008 Pass -0.721 -0.034 0.006 Pass c0 % +/0.5% 0.360 0.361 0.071 0.002 0.008 Pass 0.360 -0.362 0.008 Pass 0.360 -0.362 0.008 Pass 0.360 -0.364 0.007 Pass 0.360 0.368 -0.082 0.008 Pass 0.360 0.368 -0.082 0.008 Pass 0.360 0.364 0.007 Pass 0.360 0.368 -0.082 0.098 Pass 0.320 0.368 0.098 Pass 0.360 0.364 0.007 Pass 0.360 0.360 0.364 0.007 Pass 0.360 0.361 0.028 0.371 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 <td></td>												
Channel 22 OTZ OTZ <thotz< th=""> OTZ <thotz< th=""> <thotz< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thotz<></thotz<></thotz<>					-							
		+/-0.5%	0.721	0.722	0.000	0.005	rass	0.720	0.721	0.000	0.005	r ass
30 % +10 5% 0.361 0.361 0.362 0.0164 0.009 Pass 30 % +10.5% 0.321 0.722 0.71 0.035 Pass 0.359 0.358 0.002 0.005 Pass Channel 23			0 700	0 700	0.004	0.000	D	0 701	0 704	0.024	0.006	Dece
50 % +/0.5% 0.360 0.361 0.071 0.005 Pass 0.720 0.721 0.002 D.002 Pass Channel 23 - - - - - 0.721 0.721 0.721 0.721 0.721 0.721 0.007 Pass 30 % +/0.5% 0.360 0.360 0.034 0.007 Pass 0.362 -0.156 0.008 Pass 30 % +/0.5% 0.360 0.360 0.034 0.006 Pass 0.362 -0.114 0.006 Pass 60 % +/0.5% 0.722 0.721 0.015 0.005 Pass 0.371 0.406 0.006 Pass 30 % +/0.5% 0.360 0.360 0.013 0.017 Pass 0.360 0.361 0.007 Pass 0.369 0.386 0.007 Pass 30 % +/0.5% 0.360 0.366 0.013 0.017 Pass 0.360 0.361 0.006 Pas												
S0 % +0.5% 0.721 0.722 0.115 0.009 Pass 0.720 0.721 0.034 0.009 Pass Channel 23 +10.5% 0.722 -0.722 -0.031 0.007 Pass -0.720 0.034 0.007 Pass 30 % +10.5% 0.361 -0.361 -0.011 0.006 Pass -0.362 -0.161 0.005 Pass 30 % +10.5% 0.361 -0.211 0.024 0.005 Pass -0.362 -0.161 0.005 Pass -60 % +10.5% 0.721 0.721 0.016 0.007 Pass -0.360 -0.361 -0.007 Pass -30 % +10.5% 0.360 0.360 0.016 0.007 Pass 0.361 -0.020 0.007 Pass -30 % +10.5% 0.360 0.362 0.116 Pass 0.360 0.361 0.006 Pass 0.360 0.361 0.007 Pass 0.360 0.361				-								
Channel 23 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 0.008 Pass -30 % +/-0.5% -0.361 -0.361 -0.011 0.008 Pass -0.360 -0.362 -0.156 0.008 Pass 30 % +/-0.5% 0.721 0.721 0.045 0.008 Pass 0.3269 0.326 0.014 0.005 Pass -60 % +/-0.5% -0.721 0.722 -0.721 0.015 0.005 Pass -0.720 0.721 0.005 Pass -30 % +/-0.5% -0.361 -0.360 0.113 0.171 Pass 0.369 0.366 0.002 0.071 Pass -30 % +/-0.5% 0.721 0.721 -0.014 0.017 Pass 0.360 0.362 0.171 Pass -30 % +/-0.5% 0.721 -0.721 -0.014 0.006 Pass 0.360 0.368 0.011 Pass 0.360 0.361 -0.068 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
-60 % +/-0.5% -0.722 -0.722 -0.043 0.007 Pass -0.720 0.024 0.007 Pass 30 % +/-0.5% 0.360 0.360 0.034 0.005 Pass 0.369 0.362 0.165 0.006 Pass 0.369 0.361 0.016 Pass 0.361 0.045 Pass 0.361 0.045 0.005 Pass 0.721 0.045 0.006 Pass 0.361 0.045 0.006 Pass 0.361 0.051 0.005 Pass 0.361 0.056 0.361 0.050 Pass 0.361 0.051 0.007 Pass 0.361 0.056 0.031 0.171 Pass 0.369 0.356 0.022 0.171 Pass 0.361 0.024 0.007 Pass 0.361 0.026 Pass 0.021 0.024 0.007 Pass 0.361 0.026 Pass 0.361 0.026 Pass 0.361 0.026 Pass 0.361 0.026 Pass		+/-0.5%	0.721	0.722	0.115	0.009	Pass	0.720	0.721	0.088	0.009	Pass
-30% +/0.5% -0.361 -0.361 -0.111 0.008 Pass -0.362 -0.166 0.008 Pass 30% +/0.5% 0.721 0.721 0.721 0.721 0.045 Pass 0.356 0.134 0.005 Pass 0.720 0.721 0.045 0.008 Pass -60% +/0.5% -0.721 0.722 -0.721 0.015 0.005 Pass -0.721 0.021 Pass -0.361 -0.360 0.161 0.007 Pass 0.360 -0.361 -0.0360 0.016 0.007 Pass 0.360 -0.361 -0.032 0.007 Pass 0.720 0.721 Pass -0.721 0.024 0.007 Pass 0.720 0.721 Pass -0.721 </td <td></td> <td>_</td>												_
30 % +/0.5% 0.360 0.034 0.005 Pass 0.359 0.358 -0.114 0.005 Pass Channel 24 - - 0.015 0.005 Pass -0.721 0.045 0.006 Pass -30 % +/0.5% -0.361 -0.360 0.016 0.007 Pass -0.361 -0.082 0.007 Pass 30 % +/0.5% 0.360 0.360 0.013 0.017 Pass 0.369 0.368 -0.082 0.017 Pass 60 % +/0.5% 0.721 0.721 0.013 0.007 Pass 0.360 0.368 -0.081 0.006 Pass -0.721 -0.041 0.006 Pass -0.721 -0.041 Pass -0.721 -0.041 Pass -0.721 -0.041 Pass -0.721 -0.046 Pass Pass			-									
60 % +/0.5% 0.721 0.722 0.045 0.006 Pass 0.720 0.721 0.045 0.006 Pass G0 % +/0.5% -0.361 -0.360 0.016 0.007 Pass -0.721 -0.720 0.051 0.005 Pass 30 % +/0.5% -0.360 0.361 0.060 Pass Channel Z5 - - 0.011 0.006 Pass 0.361 -0.041 0.006 Pass 0.361 -0.040 0.006 Pass 30 % +/0.5% 0.359 0.358 -0.011 0.005 Pass 0.360 0.361 -0.080 Pass -30 % +/0.5% 0.360 0.361 -0.060 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Channel 24 Channel 25 Control 10 Contro 11 Control 10 Control							Pass					
-60 % +/0.5% -0.721 -0.721 0.015 0.005 Pass -0.720 0.021 0.007 Pass -30 % +/0.5% 0.360 0.360 0.013 0.171 Pass 0.359 0.358 -0.092 0.007 Pass 30 % +/0.5% 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.024 0.007 Pass -60 % +/0.5% 0.360 0.362 -0.112 0.018 Pass 0.360 0.361 0.068 Pass 0.369 0.046 0.009 Pass 30 % +/0.5% 0.360 0.361 -0.080 0.006 Pass 0.360 0.361 0.006 Pass 0.360 0.361 0.068 Pass 30 % +/0.5% 0.720 0.721 0.011 0.005 Pass 0.360 0.360 0.360 0.361 0.006 Pass 0.360 0.360 0.360 0.361	60 %	+/-0.5%	0.721	0.722	0.045	0.006	Pass	0.720	0.721	0.045	0.006	Pass
30 % +/0.5% 0.361 -0.360 0.016 0.007 Pass -0.360 -0.361 -0.092 0.007 Pass 30 % +/0.5% 0.360 0.013 0.171 Pass 0.359 0.359 0.024 0.007 Pass 60 % +/0.5% -0.721 -0.721 -0.018 0.007 Pass 0.720 0.721 0.024 0.007 Pass -60 % +/0.5% -0.721 -0.721 0.018 0.006 Pass 0.360 -0.361 -0.064 0.006 Pass 30 % +/0.5% 0.359 0.358 -0.112 0.011 Pass 0.360 0.361 -0.064 0.006 Pass 30 % +/0.5% 0.721 0.721 0.011 0.005 Pass 0.360 -0.018 0.006 Pass 0.360 -0.018 0.008 Pass 0.360 -0.018 0.008 Pass 0.360 -0.018 0.008 Pass 0.360 0.360	Channel 24											
30 % +/-0.5% 0.360 0.360 0.013 0.171 Pass 0.358 0.022 0.171 Pass 60 % +/-0.5% 0.721 -0.071 -0.004 0.007 Pass 0.720 0.720 0.024 0.007 Pass -60 % +/-0.5% -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 0.024 0.007 Pass -30 % +/-0.5% -0.360 -0.362 -0.112 0.011 Pass -0.360 -0.360 0.066 Pass 0.360 0.066 Pass 0.360 0.066 Pass 0.720 0.721 0.004 Pass 60 % +/-0.5% 0.360 -0.361 0.006 Pass -0.721 -0.721 -0.721 -0.721 Pass -0.360 -0.368 Pass -0.360 -0.368 Pass -0.360 0.360 Pass -0.721 -0.721 -0.721 Pass -0.721 -0.721 -0.721 Pass -0.720	-60 %	+/-0.5%	-0.722	-0.721	0.015	0.005	Pass	-0.721	-0.720	0.051	0.005	Pass
60 % +/-0.5% 0.721 0.721 -0.004 0.007 Pass 0.720 0.720 0.724 0.007 Pass -60 % +/-0.5% -0.721 -0.721 -0.018 0.006 Pass -0.721 -0.721 -0.041 0.006 Pass -30 % +/-0.5% -0.369 -0.362 -0.112 0.011 Pass -0.360 0.358 -0.018 0.006 Pass -60 % +/-0.5% 0.720 0.721 -0.011 0.005 Pass 0.720 0.721 -0.018 0.006 Pass -60 % +/-0.5% -0.721 -0.721 -0.011 0.005 Pass -0.721 -0.018 0.068 Pass -60 % +/-0.5% -0.720 0.721 -0.044 0.007 Pass -0.721 -0.018 0.068 Pass -60 % +/-0.5% -0.721 -0.721 -0.721 Pass -0.721 -0.721 -0.083 0.007 Pass -0.721	-30 %	+/-0.5%	-0.361	-0.360	0.016	0.007	Pass	-0.360	-0.361	-0.092	0.007	Pass
Channel 25	30 %	+/-0.5%	0.360	0.360	0.013	0.171	Pass	0.359	0.358	-0.092	0.171	Pass
Channel 25	60 %	+/-0.5%	0.721	0.721	-0.004	0.007	Pass	0.720	0.720	0.024	0.007	Pass
-60 % +/-0.5% -0.721 -0.721 -0.721 -0.721 -0.041 0.006 Pass -30 % +/-0.5% 0.360 -0.362 -0.112 0.011 Pass -0.360 -0.361 -0.058 0.011 Pass 30 % +/-0.5% 0.320 0.721 0.033 0.009 Pass 0.360 -0.361 -0.058 0.011 Pass Channel 26	Channel 25											
-30 % +/-0.5% -0.360 -0.362 -0.112 0.011 Pass -0.360 -0.361 -0.068 0.006 Pass 30 % +/-0.5% 0.720 0.721 0.033 0.009 Pass 0.360 0.359 -0.008 0.006 Pass -60 % +/-0.5% -0.721 -0.721 -0.011 0.005 Pass -0.721 -0.046 0.006 Pass -60 % +/-0.5% -0.360 -0.68 Pass -0.360 -0.68 Pass 0.360 -0.018 0.005 Pass 30 % +/-0.5% -0.361 -0.060 0.058 Pass 0.360 -0.081 0.005 Pass 30 % +/-0.5% 0.721 -0.721 -0.010 0.004 Pass 0.360 0.068 0.007 Pass 0.360 -0.061 0.004 Pass -30 % +/-0.5% -0.721 -0.721 -0.010 0.004 Pass 0.360 -0.066 0.004 Pa		+/-0.5%	-0.721	-0.721	-0.018	0.006	Pass	-0.721	-0.721	-0.041	0.006	Pass
30 % +/-0.5% 0.359 0.388 -0.108 0.006 Pass 0.360 0.359 -0.008 0.006 Pass 60 % +/-0.5% 0.721 0.721 -0.011 0.005 Pass 0.721 -0.018 0.006 Pass -60 % +/-0.5% -0.360 -0.361 -0.080 0.068 Pass -0.360 -0.018 0.005 Pass -30 % +/-0.5% -0.360 -0.361 -0.080 0.068 Pass -0.360 -0.018 0.005 Pass 30 % +/-0.5% -0.720 0.721 0.044 0.007 Pass 0.360 -0.062 0.007 Pass 0.360 -0.052 0.007 Pass 0.721 -0.052 0.007 Pass 0.720 0.721 -0.010 0.004 Pass 0.360 -0.036 0.004 Pass -0.721 -0.036 0.004 Pass -0.721 -0.036 0.004 Pass -0.360 -0.160 0.072	-30 %	+/-0.5%	-0.360	-0.362	-0.112	0.011	Pass	-0.360	-0.361	-0.058	0.011	Pass
60 % +/-0.5% 0.720 0.721 0.033 0.009 Pass 0.720 0.721 0.046 0.009 Pass Channel 26			0.359	0.358	-0.108	0.006	Pass	0.360	0.359	-0.008	0.006	Pass
Channel 26 -60 % +/-0.5% -0.721 -0.721 -0.011 0.005 Pass -0.721 -0.721 -0.031 0.005 Pass 30 % +/-0.5% 0.359 0.358 -0.096 0.068 Pass -0.360 -0.080 0.068 Pass -0.360 -0.080 0.066 Pass -0.360 -0.080 0.068 Pass -0.360 -0.080 0.068 Pass -0.360 -0.080 0.068 Pass -0.360 -0.080 0.060 Pass -0.360 -0.081 0.007 Pass -0.60 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 -0.721 0.066 0.006 Pass -0.721 -0.764 0.006 Pass -0.721 -0.764 0.027 Pass -0.721 -0.763 0.007 Pass -0.721 -0.721 0.066 0.006 Pass									0.721	0.046	0.009	Pass
-60 % +/-0.5% -0.721 -0.721 -0.011 0.005 Pass -0.721 -0.721 -0.031 0.005 Pass -30 % +/-0.5% -0.360 -0.361 -0.080 0.068 Pass -0.360 -0.080 0.068 Pass 60 % +/-0.5% 0.720 0.721 0.044 0.007 Pass 0.720 0.721 0.052 0.007 Pass 60 % +/-0.5% 0.720 0.721 0.044 0.007 Pass 0.721 0.052 0.007 Pass -60 % +/-0.5% -0.360 -0.362 -0.089 0.007 Pass -0.360 -0.016 0.007 Pass -30 % +/-0.5% 0.359 0.358 -0.096 0.004 Pass 0.360 -0.080 0.007 Pass 0.721 0.066 0.004 Pass -60 % +/-0.5% 0.721 -0.721 -0.721 0.026 Pass 0.360 0.360 0.005 Pass -30 % +/-0.5% 0.721 -0.721 0.007 Pass				••••	•••••							
-30 % +/-0.5% -0.360 -0.361 -0.080 0.068 Pass -0.360 -0.018 0.068 Pass 30 % +/-0.5% 0.359 0.358 -0.096 0.007 Pass 0.360 0.008 0.005 Pass 60 % +/-0.5% 0.721 -0.721 0.0721 0.072 Pass 0.720 0.721 0.052 0.007 Pass -60 % +/-0.5% -0.721 -0.721 0.010 0.004 Pass -0.360 -0.036 0.004 Pass -30 % +/-0.5% 0.360 -0.362 -0.089 0.007 Pass -0.360 0.066 0.060 Pass 0.360 0.006 Pass 0.360 0.066 Pass 0.360 0.006 Pass 0.360 0.066 Pass 0.360 0.066 Pass 0.720 0.721 0.050 Pass 0.720 0.721 Pass 0.360 0.360 0.006 Pass 0.720 0.721 Pass 0.360 0.061 Pass 0.721 0.721 0.721 Pass 0.360		+/-0 5%	-0 721	-0 721	-0.011	0.005	Pass	-0 721	-0 721	-0.031	0 005	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-									
60 % +/-0.5% 0.720 0.721 0.044 0.007 Pass 0.720 0.721 0.057 Pass Channel 27 -60 % +/-0.5% -0.721 -0.721 -0.010 0.004 Pass -0.721 -0.721 -0.036 0.004 Pass .30 % +/-0.5% -0.360 -0.362 -0.089 0.007 Pass -0.360 -0.016 0.004 Pass 30 % +/-0.5% 0.359 0.358 -0.096 0.004 Pass 0.360 0.008 0.004 Pass 60 % +/-0.5% 0.721 -0.721 -0.050 0.006 Pass 0.360 0.008 0.009 Pass -60 % +/-0.5% -0.721 -0.721 -0.043 0.005 Pass -0.360 -0.362 Pass -30 % +/-0.5% -0.720 0.721 -0.120 0.007 Pass -0.360 -0.361 -0.053 0.007 Pass -60 % +/-0.5% <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Channel 27 -60 % +/-0.5% -0.721 -0.721 -0.010 0.004 Pass -0.721 -0.721 -0.036 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.089 0.007 Pass -0.360 -0.360 -0.080 0.007 Pass 30 % +/-0.5% 0.720 0.721 0.050 0.006 Pass 0.360 0.008 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.050 0.006 Pass 0.720 0.721 0.065 Pass 0.720 0.721 0.065 Pass 0.720 0.721 0.050 Pass 0.720 0.721 0.065 Pass 0.720 0.721 0.063 0.007 Pass 0.360 -0.361 -0.053 0.007 Pass -30 % +/-0.5% -0.720 0.721 -0.120 0.007 Pass 0.360 -0.361 -0.053 0.007 Pass 30 % +/-0.5% 0.												
-60 % +/-0.5% -0.721 -0.721 -0.010 0.004 Pass -0.721 -0.036 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.089 0.007 Pass -0.360 -0.360 -0.016 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.096 0.004 Pass 0.360 0.360 0.008 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.050 0.006 Pass 0.721 0.066 0.008 0.004 Pass -60 % +/-0.5% -0.721 -0.721 -0.043 0.005 Pass -0.721 -0.722 -0.083 0.005 Pass -30 % +/-0.5% -0.721 -0.721 -0.043 0.007 Pass -0.360 -0.010 Pass -0.360 -0.010 Pass -0.360 -0.010 Pass -0.360 -0.010 Pass -0.721 -0.721 -0.072 Pass -0.360 -0.361 -0.020 Pass -0.721 -0.020 pass -0.721		47-0.578	0.720	0.721	0.044	0.007	1 033	0.720	0.721	0.002	0.007	1 000
-30 % +/-0.5% -0.360 -0.362 -0.089 0.007 Pass -0.360 -0.016 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.096 0.004 Pass 0.360 0.008 0.008 Pass 60 % +/-0.5% 0.720 0.721 0.050 0.006 Pass 0.720 0.721 0.066 0.008 Pass -60 % +/-0.5% -0.721 -0.721 -0.721 -0.721 -0.722 -0.083 0.005 Pass -30 % +/-0.5% -0.360 -0.362 -0.120 0.007 Pass -0.360 -0.361 -0.053 0.007 Pass -30 % +/-0.5% 0.359 0.358 -0.122 0.005 Pass 0.360 -0.010 0.006 Pass 0.721 0.072 Pass 30 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.020 0.006 Pass -30 % +/-0.5% 0.359 0.358 -0.029 0.007 Pass -0.360 <td></td> <td>+/ 0 50/</td> <td>0 721</td> <td>0 721</td> <td>0.010</td> <td>0.004</td> <td>Dace</td> <td>0 721</td> <td>0 721</td> <td>0.036</td> <td>0.004</td> <td>Doce</td>		+/ 0 50/	0 721	0 721	0.010	0.004	Dace	0 721	0 721	0.036	0.004	Doce
30 % +/-0.5% 0.359 0.358 -0.096 0.004 Pass 0.360 0.080 0.008 Pass 60 % +/-0.5% 0.720 0.721 0.050 0.006 Pass 0.720 0.721 0.066 Pass -60 % +/-0.5% -0.721 -0.043 0.005 Pass -0.722 -0.083 0.005 Pass -30 % +/-0.5% -0.360 -0.362 -0.120 0.007 Pass -0.360 -0.031 0.005 Pass 30 % +/-0.5% 0.359 0.358 -0.122 0.007 Pass 0.360 -0.011 0.005 Pass 60 % +/-0.5% 0.720 0.721 0.064 0.007 Pass 0.721 0.072 Pass 60 % +/-0.5% 0.721 -0.721 -0.064 0.007 Pass 0.360 -0.361 -0.020 Pass 30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 -0.011 0.002 S0 % +/-0.5% 0.720 0												
60 % +/-0.5% 0.720 0.721 0.050 0.006 Pass 0.720 0.721 0.066 0.006 Pass -60 % +/-0.5% -0.721 -0.721 -0.043 0.005 Pass -0.721 -0.722 -0.083 0.005 Pass -30 % +/-0.5% -0.360 -0.362 -0.120 0.007 Pass -0.360 -0.053 0.007 Pass -30 % +/-0.5% 0.359 0.358 -0.122 0.005 Pass -0.360 -0.061 0.005 Pass 60 % +/-0.5% 0.720 0.721 0.064 0.007 Pass 0.720 0.721 Pass -60 % +/-0.5% 0.721 -0.721 -0.010 0.006 Pass -0.721 -0.020 0.007 Pass -30 % +/-0.5% -0.721 -0.721 -0.036 0.007 Pass 0.360 -0.011 0.007 Pass -30 % +/-0.5% 0.359 0.358												
Channel 28 -60 % +/-0.5% -0.721 -0.721 -0.043 0.005 Pass -0.721 -0.722 -0.083 0.005 Pass -30 % +/-0.5% -0.360 -0.362 -0.120 0.007 Pass -0.360 -0.361 -0.053 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.122 0.005 Pass 0.360 -0.061 0.007 Pass 60 % +/-0.5% 0.720 0.721 0.006 Pass 0.720 0.721 0.079 0.007 Pass -60 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.361 -0.080 9.038 Pass -0.721 -0.020 0.006 Pass -30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.721												
-60 % +/-0.5% -0.721 -0.721 -0.043 0.005 Pass -0.721 -0.722 -0.083 0.005 Pass -30 % +/-0.5% -0.360 -0.362 -0.120 0.007 Pass -0.360 -0.061 -0.053 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.122 0.005 Pass 0.360 -0.011 0.005 Pass 60 % +/-0.5% 0.720 0.721 0.064 0.007 Pass 0.360 -0.020 0.007 Pass -60 % +/-0.5% -0.721 -0.721 -0.010 0.066 Pass -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.031 0.007 Pass -30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 -0.011 0.003 Pass -60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.007 <td></td> <td>+/-0.5%</td> <td>0.720</td> <td>0.721</td> <td>0.050</td> <td>0.006</td> <td>Pass</td> <td>0.720</td> <td>0.721</td> <td>0.000</td> <td>0.006</td> <td>Pass</td>		+/-0.5%	0.720	0.721	0.050	0.006	Pass	0.720	0.721	0.000	0.006	Pass
-30 % +/-0.5% -0.360 -0.362 -0.120 0.007 Pass -0.360 -0.051 -0.053 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.122 0.005 Pass 0.360 0.360 -0.001 0.005 Pass 60 % +/-0.5% 0.720 0.721 0.064 0.007 Pass 0.720 0.721 0.079 0.007 Pass -60 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.360 -0.361 -0.030 Pass -30 % +/-0.5% -0.361 -0.086 0.007 Pass -0.360 -0.361 0.003 Pass -00 % +/-0.5% 0.358 -0.099 0.003 Pass 0.360 -0.001 0.008 Pass -60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass -0.721 -0.003 0.004 Pass <td></td> <td>10 594</td> <td>0 704</td> <td>0 704</td> <td>0.040</td> <td>0.005</td> <td>D</td> <td>0.704</td> <td>0 700</td> <td>0.000</td> <td>0.005</td> <td>n</td>		10 594	0 704	0 704	0.040	0.005	D	0.704	0 700	0.000	0.005	n
30 % +/-0.5% 0.359 0.358 -0.122 0.005 Pass 0.360 0.001 0.005 Pass 60 % +/-0.5% 0.720 0.721 0.064 0.007 Pass 0.720 0.721 0.072 Pass -60 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.311 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 -0.011 0.003 Pass 30 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.003 Pass 60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.007 Pass -60 % +/-0.5% -0.721 -0.721 0.007 Pass -0.360 -0.009 0.007 Pass -3												
60 % +/-0.5% 0.720 0.721 0.064 0.007 Pass 0.720 0.721 0.079 0.007 Pass Channel 29 -60 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.031 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 -0.011 0.003 Pass 60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.003 Pass 60 % +/-0.5% 0.721 0.721 0.002 0.004 Pass 0.720 0.721 0.002 0.004 Pass -60 % +/-0.5% -0.721 -0.721 0.007 Pass -0.360 -0.009 0.007 Pass -30 % +/-0.5% </td <td></td>												
Channel 29 -60 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.031 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 -0.011 0.003 Pass 60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.003 Pass 0.721 -0.003 0.004 Pass -60 % +/-0.5% -0.721 -0.721 0.007 Pass -0.360 -0.030 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.												
-60 % +/-0.5% -0.721 -0.721 -0.010 0.006 Pass -0.721 -0.721 -0.020 0.006 Pass -30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.361 -0.031 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 0.360 -0.011 0.003 Pass 60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.003 Pass -60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.009 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 <td></td> <td>+/-0.5%</td> <td>0.720</td> <td>0.721</td> <td>0.064</td> <td>0.007</td> <td>Pass</td> <td>0.720</td> <td>0.721</td> <td>0.079</td> <td>0.007</td> <td>Pass</td>		+/-0.5%	0.720	0.721	0.064	0.007	Pass	0.720	0.721	0.079	0.007	Pass
-30 % +/-0.5% -0.360 -0.361 -0.086 0.007 Pass -0.360 -0.361 -0.031 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 0.360 -0.011 0.003 Pass 60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.000 Pass -60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.099 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 30 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721							_					
30 % +/-0.5% 0.359 0.358 -0.099 0.003 Pass 0.360 0.001 0.003 Pass 60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.003 Pass Channel 30 -60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.099 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.037 0.006 Pass Channel 31 - - -0.721 -0.721 -0.047 0.004 Pass												
60 % +/-0.5% 0.720 0.721 0.053 0.008 Pass 0.720 0.721 0.060 0.008 Pass Channel 30 -60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.009 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.005 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.037 Pass Channel 31 - - -0.721 -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102												Pass
Channel 30 -60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.009 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.037 0.006 Pass Channel 31 - - - - - 0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.361 -0.047 0.004 Pass -30 % +/-0.5% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pass</td></t<>												Pass
-60 % +/-0.5% -0.721 -0.721 0.002 0.004 Pass -0.721 -0.003 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.099 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.037 0.006 Pass 60 % +/-0.5% 0.721 -0.721 -0.039 0.005 Pass 0.720 0.721 0.037 0.006 Pass Channel 31 - - -0.721 -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.361 -0.042 0.009 Pass 30 % +/		+/-0.5%	0.720	0.721	0.053	0.008	Pass	0.720	0.721	0.060	0.008	Pass
-30 % +/-0.5% -0.360 -0.362 -0.094 0.007 Pass -0.360 -0.009 0.007 Pass 30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.006 Pass Channel 31 - - - - - - 0.012 0.005 Pass -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.361 -0.042 0.009 Pass 30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0												
30 % +/-0.5% 0.359 0.358 -0.127 0.004 Pass 0.360 0.360 0.005 0.004 Pass 60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.006 Pass Channel 31 -60 % +/-0.5% -0.721 -0.721 -0.039 0.005 Pass -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.361 -0.042 0.009 Pass 30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0.360 0.360 0.019 0.003 Pass	-60 %	+/-0.5%		-0.721	0.002	0.004	Pass	-0.721	-0.721	-0.003	0.004	Pass
60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.037 0.006 Pass Channel 31 -60 % +/-0.5% -0.721 -0.721 -0.039 0.005 Pass -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.042 0.009 Pass 30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0.360 0.019 0.003 Pass	-30 %	+/-0.5%	-0.360	-0.362	-0.094	0.007	Pass	-0.360	-0.360	-0.009	0.007	Pass
60 % +/-0.5% 0.720 0.721 0.035 0.006 Pass 0.720 0.721 0.037 0.006 Pass Channel 31 -60 % +/-0.5% -0.721 -0.721 -0.039 0.005 Pass -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.042 0.009 Pass 30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0.360 0.019 0.003 Pass	30 %	+/-0.5%	0.359	0.358	-0.127	0.004	Pass	0.360	0.360	0.005	0.004	Pass
Channel 31 -60 % +/-0.5% -0.721 -0.721 -0.039 0.005 Pass -0.721 -0.047 0.004 Pass -30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.361 -0.042 0.009 Pass 30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0.360 0.019 0.003 Pass												
-60 %+/-0.5%-0.721-0.721-0.0390.005Pass-0.721-0.721-0.0470.004Pass-30 %+/-0.5%-0.360-0.362-0.1020.009Pass-0.360-0.361-0.0420.009Pass30 %+/-0.5%0.3590.358-0.0830.003Pass0.3600.3600.0190.003Pass							-					
-30 % +/-0.5% -0.360 -0.362 -0.102 0.009 Pass -0.360 -0.361 -0.042 0.009 Pass 30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0.360 0.360 0.019 0.003 Pass		+/-0.5%	-0.721	-0.721	-0,039	0.005	Pass	-0.721	-0.721	-0.047	0.004	Pass
30 % +/-0.5% 0.359 0.358 -0.083 0.003 Pass 0.360 0.360 0.019 0.003 Pass												
D-28 0.120 0.121 0.102 0.003 1.23												
	00 70	., 0.070	0.720	J.1 22	0.100	D-28	. 400	020		552	0.000	

÷

Test Description

Gain of 2048: 1.2	207mV		As	Received				A	s Returned		
	Limit	Std	DAS	Deviation	Unc.	Pass/	Std	DAS	Deviation	Unc.	Pass/
Channel 32		(mV)	(mV)	(%)	(mV)	Fail	(mV)	(mV)	(%)	(mV)	Fail
-60 %	+/-0.5%	-0.721	-0.721	-0.021	0.008	Pass	-0.721	-0.721	-0.021	0.008	Pass
-30 %	+/-0.5%	-0.360	-0.362	-0.121	0.009	Pass	-0.360	-0.360	-0.019	0.009	Pass
30 %	+/-0.5%	0.359	0.358	-0.129	0.006	Pass	0.360	0.360	0.000	0.006	Pass
60 %	+/-0.5%	0.720	0.721	0.061	0.006	Pass	0.720	0.721	0.073	0.006	Pass

End of Report

HBM Inc. 19 Bartlett Street Marlborough, MA 01752 United States

Phone: +1-800-578-4260 or +1-508-624-4500 Fax: +1-508-485-7480

www.hbm.com

Dear HBM Customer.

We are pleased to return your instrument to you. It has been calibrated or repaired as you requested, cleaned and fully tested to assure proper operation.

Our repairs are covered under a 90-day limited warranty, which includes parts, labor and return freight. If our repair is in any way unsatisfactory, please feel free to contact us 1-800-578-4260.

1-GN441-2 SN: IDV1101016 As found: Out of spec As left: in spec (adjusted)

HBM Service & Technical Support

HBM Inc 19 Bartlett Street Marlborough, MA 01752 Phone 1-800-578-4260

Genesis Module Certificate of Calibration

Certificate No: 2017062

Customer: Oregon Ballistic Laboratories, LLC Salem OR 97302

Model: Universal 1M 512

Serial No: IDV1101016

Calibration Type: ☐ Original ☑ Standard ☐ Full B/W ☐ Military/ANSI

As Found: In Tolerance Out Tolerance As Left:

✓ In Tolerance (adjusted)

HBM Inc does hereby certify that the above instrument has been calibrated using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology. The calibration system supporting these standards and instruments meets the requirements of MIL-STD-45662A and ANSI/NCSL Z540-1-1994.

Standard	Serial Number	Trace Number
luke 5700A	7685601	42450
Keysight	MY45050433	3458AMY450504
onditions:	24.8 Degrees Centigrade	<u>37.2</u> % R/H
Jim Grassey	03-Dec-14	03-Dec-15
Technician:	Cal Date:	Cal Due:
Teohnician	110 3-Dec-14	

Note: This Certificate and any attached data may not be copied, except in full, without prior written approval from,

GEN series Calibratio	on and Verification Software	: V2.92						
Post Calibration Verification results (Mil Standard)								
Verification Date	: Dec 03, 2014							
SPEC-File version	: 2.92							
Mainframe Interface	Info							
Serialnumber	: IDJ0000001							
Туре	: GEN16t							
SW version	: 6.16.11067							
Recorder Info								
Physical Name	: Recorder B							
Serialnumber	: IDV1101016							
Туре	: GEN series 1MS/s							
SW version	: 6.16.11067							
No. channels	: 4							
Channel Type	: Diff Amplifier							

Board Test PASSED

r. 2

Used Equipment for testir	ng board:
DC reference	: Fluke 5700A
Voltmeter	: HP3458A
LF generator	: Fluke 5700A
HF generator	: Fluke 5820A
Generator (HV)	: Fluke 5700A
PWG	: Unspecified (manual)
Multimeter	: HP3458A
Signal Switch	: Unspecified (manual)

 Filter: W	 ideband		, 					
Input: 1	latouna							
Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	
0.02	0.682	-0.016	0.005	0.689	NA	NA	0.101	NA
0.04	0.352	0.006	0.007	0.357	NA	NA	0.050	NA
0.1	0.134	-0.002	0.007	0.139	NA	NA	0.021	NA
0.2	0.068	0.009	0.007	0.076	313.4	NA	0.012	NA
0.4	0.025	0.002	0.006	0.031	NA	NA	0.014	NA
1.0	0.003	0.004	0.006	0.008	NA	NA	0.007	NA
2.0	-0.002	0.008	0.007	0.012	528.6	NA	0.006	NA
4.0	-0.004	-0.007	0.006	0.014	504.2	NA	0.014	NA
10.0	-0.006	-0.005	0.007	0.014	NA	NA	0.007	NA
20.0	-0.005	-0.002	0.008	0.014	NA	NA	0.006	NA
40.0	-0.003	-0.004	0.007	0.012	503.5	NA	0.013	NA
100.0	-0.008	-0.002	0.006	0.014	NA	NA	0.007	NA
200.0	-0.006	0.005	0.006	0.013	NA	NA	0.006	NA
					IEPE	IEPE	IEPE	
Range	Offset_A	dcGain_A	SINL_A	MSE_A	Comp.	Exc.	Gain	
(V)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
0.02	NA	NA	NA	NA	NA	NA	NA	
0.04	NA	NA	NA	NA	NA	NA	NA	
0.1	NA	NA	NA	NA	NA	NA	NA	
0.2	NA	NA	NA	NA	NA	NA	NA	
0.4	NA	NA	NA	NA	NA	NA	NA	
1.0	-0.009	-0.022	0.007	0.025	NA	NA	0.046	
2.0	NA	NA	NA	NA	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	24.407	0.314	0.022	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	
 Filter: W	/ideband							
Input: 2								
Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	27.4
0.02	0.238	0.004	0.014	0.247	NA	NA	0.089	NA
0.04	0.120	0.004	0.005	0.125	NA	NA	0.045	NA
0.1	0.045	-0.006	0.004	0.048	NA	NA	0.018	NA
0.2	0.026	0.002	0.006	0.032	311.1	NA	0.010	NA
0.4	0.014	0.005	0.003	0.016	NA	NA	0.013	NA
1.0	-0.007	0.003	0.005	0.013	NA 532.6	NA	0.007	NA NA

532.6

504.9

NA

NA

NA

NA

NA

NA

0.012

0.008

0.011

0.016

-0.003

-0.005

-0.004

-0.006

2.0

4.0

10.0

20.0

0.009

-0.001

-0.007

-0.004

0.006

0.004

0.004

0.008

0.006

0.014

0.007

0.006

NA

NA

NA

NA

	Bor	nded Pre-St	tressed Co	ncrete Sla	abs Ope	n Air Blast	Testing (F	inal Report)
40.0	-0.006	-0.006	0.007	0.014	504.1	NA	0.013	NA
100.0	-0.003	-0.008	0.003	0.010	NA	NA	0.007	NA
200.0	-0.002	-0.006	0.007	0.011	NA	NA	0.006	NA
200.0	-0.002	-0.000	0.007	0.011	142 4	1111	0.000	
					IEPE	IEPE	IEPE	
Pango	Officiat A	dcGain A	STNI A	MSE A	Comp.	Exc.	Gain	
Range	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
(V)	(70) NA	NA	NA	NA	NA	NA	NA	
0.02					NA	NA	NA	•
0.04	NA	NA	NA	NA				
0.1	NA	NA	NA	NA	NA	NA	NA	
0.2	NA	NA	NA	NA	NA	NA	NA	
0.4	NA	NA	NA	NA	NA	NA	NA	
1.0	0.006	-0.001	0.004	0.010	NA	NA	0.058	
2.0	NA	NA	NA	NA	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	24.358	0.368	0.025	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	
Filter: W Input: 3	ïdeband							
Range	Offset	DCGain	SINL	MSE	DWdth	CMRR	Noise	ACCpl
itungo	011301	DCGam	STINE	INISE/	BWdth	CIVINA	140150	пеері
-	(%)	(%)	(%)	(%)	ыwuun (kHz)	(dB)	(%)	пеер
(V) 0.02								NA
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	-
(V) 0.02	(%) -0.123	(%) 0.003	(%) 0.007	(%) 0.129	(kHz) NA	(dB) NA	(%) 0.107	NA
(V) 0.02 0.04	(%) -0.123 -0.078	(%) 0.003 -0.016	(%) 0.007 0.010	(%) 0.129 0.095	(kHz) NA NA	(dB) NA NA	(%) 0.107 0.052	NA NA
(V) 0.02 0.04 0.1	(%) -0.123 -0.078 -0.037	(%) 0.003 -0.016 -0.008	(%) 0.007 0.010 0.006	(%) 0.129 0.095 0.047	(kHz) NA NA NA	(dB) NA NA NA	(%) 0.107 0.052 0.021	NA NA NA
(V) 0.02 0.04 0.1 0.2	(%) -0.123 -0.078 -0.037 -0.019	(%) 0.003 -0.016 -0.008 0.002	(%) 0.007 0.010 0.006 0.006	(%) 0.129 0.095 0.047 0.025	(kHz) NA NA NA 314.5	(dB) NA NA NA NA	(%) 0.107 0.052 0.021 0.012	NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4	(%) -0.123 -0.078 -0.037 -0.019 -0.021	(%) 0.003 -0.016 -0.008 0.002 -0.001	(%) 0.007 0.010 0.006 0.006 0.006 0.009 0.008	(%) 0.129 0.095 0.047 0.025 0.027	(kHz) NA NA 314.5 NA	(dB) NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013	NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009	(%) 0.007 0.010 0.006 0.006 0.006 0.009	(%) 0.129 0.095 0.047 0.025 0.027 0.020	(kHz) NA NA 314.5 NA NA	(dB) NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007	NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.009 0.000 -0.010	(%) 0.007 0.010 0.006 0.006 0.006 0.009 0.008 0.004 0.010	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA	(dB) NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005	NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.009 0.000 -0.010 -0.002	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.010 0.009	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014	(kHz) NA NA 314.5 NA 533.2 507.0 NA NA	(dB) NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005	NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.010 0.009 0.006	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA	(dB) NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007	NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.010 0.009 0.006 0.007	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA	(dB) NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.010 0.009 0.006	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8	(dB) NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013	NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.010 0.009 0.006 0.007	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA	(dB) NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.003	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.004 0.009 0.006 0.007 0.009	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.011	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.003	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.011 MSE_A	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA S06.8 NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V)	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.003	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%)	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%)	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.011 MSE_A (%)	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA S06.8 NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V) 0.02	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.006 -0.003 Offset_A (%) NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.011 MSE_A (%) NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA IEPE Comp. (V) NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V) 0.02 0.04	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.003 Offset_A (%) NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.011 MSE_A (%) NA NA	(kHz) NA NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA EPE Comp. (V) NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 S 0.013 0.007 0.005 S 0.013 0.007 0.005 NA NA	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V) 0.02 0.04 0.1	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.006 -0.003 Offset_A (%) NA NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.015 0.014 0.011 MSE_A (%) NA NA NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA EPE Comp. (V) NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 ULEPE Gain (%) NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V) 0.02 0.04	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.003 Offset_A (%) NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.015 0.014 0.011 MSE_A (%) NA NA NA NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA EPE Comp. (V) NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 S 0.013 0.007 0.005 S IEPE Gain (%) NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 8 Range (V) 0.02 0.04 0.1 0.2	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.006 -0.003 Offset_A (%) NA NA NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.015 0.014 0.011 MSE_A (%) NA NA NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA NA VA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 S 0.013 0.007 0.005 S S S S S S S S S S S S S S S S S S	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 8 Range (V) 0.02 0.04 0.1 0.2 0.4	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.006 -0.006 -0.003 Offset_A (%) NA NA NA NA NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA NA NA NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA NA NA NA NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.015 0.014 0.011 MSE_A (%) NA NA NA NA NA NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA EPE Comp. (V) NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 S 0.013 0.007 0.005 S IEPE Gain (%) NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0 1.0 1.0 2.0 4.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.006 -0.006 -0.003 Offset_A (%) NA NA NA NA NA NA NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA NA NA NA NA NA NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA NA NA NA NA NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.015 0.014 0.011 MSE_A (%) NA NA NA NA NA NA NA NA NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA NA VA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 V.013 0.007 0.005 V.013 0.007 0.005 V.013 0.007 0.005 V.013 V.012 V.013 V.007 V.005 V.005 V.005 V.013 V.007 V.005 V.013 V.007 V.005 V.005 V.007 V.005 V.005 V.007 V.005 V.005 V.007 V.005 V.	NA NA NA NA NA NA NA NA NA NA NA
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0 100.0 200.0 Range (V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 4.1 0.2 0.4 1.0 2.0 4.1 0.2 0.4 1.0 2.0 4.1 0.2 0.4 1.0 2.0 4.1 0.2 0.4 1.0 2.0 4.1 0.2 0.4 1.0 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	(%) -0.123 -0.078 -0.037 -0.019 -0.021 -0.011 -0.004 -0.005 -0.008 -0.007 -0.006 -0.006 -0.006 -0.006 -0.003 Offset_A (%) NA NA NA NA NA NA NA NA NA NA	(%) 0.003 -0.016 -0.008 0.002 -0.001 0.009 0.009 0.009 0.000 -0.010 -0.002 -0.006 -0.004 0.002 dcGain_A (%) NA NA NA NA NA NA NA NA NA NA NA	(%) 0.007 0.010 0.006 0.006 0.009 0.008 0.004 0.009 0.006 0.007 0.009 SINL_A (%) NA NA NA NA NA NA NA NA NA	(%) 0.129 0.095 0.047 0.025 0.027 0.020 0.013 0.009 0.020 0.014 0.015 0.014 0.015 0.014 0.011 MSE_A (%) NA NA NA NA NA NA NA NA NA NA NA NA	(kHz) NA NA 314.5 NA NA 533.2 507.0 NA NA 506.8 NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.107 0.052 0.021 0.012 0.013 0.007 0.005 0.013 0.007 0.005 0.013 0.007 0.005 S 0.013 0.007 0.005 S 0.013 0.007 0.005 NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA

D-34

	Во	nded Pre-S	Stressed Co	oncrete SI	abs Ope	en Air Blas	t Testing (I	Final R
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	
Filter: W Input: 4	ideband							
Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCp
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	
0.02	-0.159	-0.015	0.004	0.170	NA	NA	0.094	NA
0.04	-0.088	0.008	0.010	0.095	NA	NA	0.047	NA
0.1	-0.036	-0.006	0.007	0.045	NA	NA	0.019	NA
0.2	-0.023	-0.004	0.007	0.031	311.1	NA	0.011	NA
0.4	-0.010	0.012	0.004	0.019	NA	NA	0.013	NA
1.0	-0.005	0.007	0.006	0.012	NA	NA	0.007	NA
2.0	-0.003	0.007	0.007	0.011	529.4	NA	0.005	NA
4.0	-0.004	0.002	0.006	0.010	502.3	NA	0.014	NA
10.0	-0.005	-0.004	0.004	0.010	NA	NA	0.007	NA
20.0	-0.006	0.003	0.007	0.013	NA	NA	0.006	NA
40.0	-0.002	0.015	0.003	0.009	502.9	NA	0.013	NA
100.0	-0.005	-0.003	0.005	0.012	NA	NA	0.007	NA
200.0	-0.004	0.002	0.008	0.011	NA	NA	0.005	NA
					IEPE	IEPE	IEPE	
Range	Offset A	dcGain_A	SINL_A	MSE_A	Comp.	Exc.	Gain	
(Ŭ)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
0.02	NA	NA	NA	NA	NA	NA	NA	
0.04	NA	NA	NA	NA	NA	NA	NA	
0.1	NA	NA	NA	NA	NA	NA	NA	
0.2	NA	NA	NA	NA	NA	NA	NA	
0.4	NA	NA	NA	NA	NA	NA	NA	
1.0	0.012	0.022	0.005	0.021	NA	NA	0.033	
2.0	NA	NA	NA	NA	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	24.518	0.931	0.017 °	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	

-

Filter: Analog Anti Alias Bessel Input: 1

-

Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	
0.02	-0.010	-0.006	0.006	0.016	NA	NA	0.065	NA
0.04	-0.010	0.003	0.007	0.016	NA	NA	0.033	NA
0.1	-0.005	-0.006	0.006	0.014	NA	NA	0.013	NA
0.2	-0.004	0.002	0.007	0.010	NA	NA	0.007	NA
0.4	-0.004	0.005	0.008	0.009	NA	NA	0.008	NA
1.0	-0.006	-0.006	0.004	0.013	NA	NA	0.004	NA
2.0	-0.007	0.003	0.004	0.011	NA	NA	0.003	NA
4.0	-0.005	-0.013	0.005	0.015	209.4	NA	0.010	NA
10.0	-0.007	-0.010	0.005	0.016	NA	NA	0.005	NA
20.0	-0.004	-0.005	0.006	0.012	NA	NA	0.004	NA
40.0	-0.004	-0.007	0.006	0.013	NA	NA	0.008	NA
100.0	-0.003	-0.001	0.005	0.008	NA	NA	0.004	NA
200.0	0.000	0.007	0.005	0.005	NA	NA	0.004	NA
					IEPE	IEPE	IEPE	
Range	Offset A	dcGain A	SINL A	MSE A	IEPE Comp.	IEPE Exc.	IEPE Gain	
Range	Offset_A	dcGain_A		MSE_A (%)	Comp.	Exc.	Gain	
(Ŭ)	(%)	(%)	(%)	(%)	Comp. (V)	Exc. (%)	Gain (%)	
(V) 0.02	(%) NA	(%) NA	(%) NA	(%) NA	Comp. (V) NA	Exc. (%) NA	Gain (%) NA	
(V) 0.02 0.04	(%) NA NA	(%) [–] NA NA	(%) NA NA	(%) [–] NA NA	Comp. (V) NA NA	Exc. (%) NA NA	Gain (%) NA NA	
(V) 0.02 0.04 0.1	(%) NA NA -0.004	(%) [–] NA NA -0.062	(%) NA NA 0.018	(%) NA NA 0.039	Comp. (V) NA NA NA	Exc. (%) NA NA NA	Gain (%) NA NA NA	
(V) 0.02 0.04 0.1 0.2	(%) NA NA -0.004 NA	(%) ⁻ NA NA -0.062 NA	(%) NA NA 0.018 NA	(%) NA NA 0.039 NA	Comp. (V) NA NA NA NA	Exc. (%) NA NA NA NA	Gain (%) NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4	(%) NA NA -0.004 NA NA	(%) NA NA -0.062 NA NA	(%) NA NA 0.018 NA NA	(%) NA NA 0.039	Comp. (V) NA NA NA NA NA	Exc. (%) NA NA NA NA NA	Gain (%) NA NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0	(%) NA NA -0.004 NA NA -0.003	(%) NA NA -0.062 NA NA -0.017	(%) NA NA 0.018 NA NA 0.006	(%) NA NA 0.039 NA NA 0.013	Comp. (V) NA NA NA NA NA	Exc. (%) NA NA NA NA	Gain (%) NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0	(%) NA NA -0.004 NA NA -0.003 NA	(%) NA NA -0.062 NA NA	(%) NA NA 0.018 NA NA	(%) NA NA 0.039 NA NA	Comp. (V) NA NA NA NA NA	Exc. (%) NA NA NA NA NA NA	Gain (%) NA NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0	(%) NA NA -0.004 NA NA -0.003 NA NA	(%) NA NA -0.062 NA NA -0.017 NA	(%) NA NA 0.018 NA NA 0.006 NA	(%) NA NA 0.039 NA NA 0.013 NA NA	Comp. (V) NA NA NA NA NA NA	Exc. (%) NA NA NA NA NA NA NA	Gain (%) NA NA NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0	(%) NA NA -0.004 NA -0.003 NA NA NA	(%) NA NA -0.062 NA NA -0.017 NA NA NA	(%) NA NA 0.018 NA 0.006 NA NA NA NA	(%) NA NA 0.039 NA NA 0.013 NA NA NA	Comp. (V) NA NA NA NA NA NA NA NA	Exc. (%) NA NA NA NA NA NA NA NA	Gain (%) NA NA NA NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0	(%) NA NA -0.004 NA NA -0.003 NA NA	(%) NA NA -0.062 NA NA -0.017 NA NA	(%) NA NA 0.018 NA NA 0.006 NA NA	(%) NA NA 0.039 NA NA 0.013 NA NA	Comp. (V) NA NA NA NA NA NA NA	Exc. (%) NA NA NA NA NA NA NA NA	Gain (%) NA NA NA NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0	(%) NA NA -0.004 NA -0.003 NA NA NA NA	(%) NA NA -0.062 NA NA -0.017 NA NA NA NA	(%) NA NA 0.018 NA 0.006 NA NA NA NA NA	(%) NA NA 0.039 NA NA 0.013 NA NA NA NA NA	Comp. (V) NA NA NA NA NA NA NA NA	Exc. (%) NA NA NA NA NA NA NA NA NA	Gain (%) NA NA NA NA NA NA NA NA	
(V) 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10.0 20.0 40.0	(%) NA NA -0.004 NA NA NA NA NA NA NA	(%) NA NA -0.062 NA NA -0.017 NA NA NA NA NA	(%) NA NA 0.018 NA 0.006 NA NA NA NA NA	(%) NA NA 0.039 NA NA 0.013 NA NA NA NA NA	Comp. (V) NA NA NA NA NA NA NA NA NA	Exc. (%) NA NA NA NA NA NA NA NA NA NA	Gain (%) NA NA NA NA NA NA NA NA NA	

Filter: Analog Anti Alias Bessel Input: 2

Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	-
0.02	-0.011	0.005	0.012	0.021	NA	NA	0.060	NA
0.04	0.009	-0.005	0.005	0.013	NA	NA	0.031	NA
0.1	-0.001	0.009	0.006	0.011	NA	NA	0.013	NA
0.2	-0.005	0.001	0.006	0.011	NA	NA	0.007	NA
0.4	0.001	0.009	0.005	0.009	NA	NA	0.008	NA
1.0	-0.007	0.004	0.005	0.014	NA	NA	0.004	NA
2.0	-0.001	0.002	0.008	0.007	NA	NA	0.004	NA
4.0	-0.002	-0.003	0.003	0.005	209.6	NA	0.011	NA
10.0	-0.005	-0.010	0.007	0.017	NA	NA	0.004	NA
20.0	-0.003	-0.009	0.007	0.014	NA	NA	0.004	NA

	Bor							
40.0	-0.003		0.006	0.011	NA	NA	0.008	NA
100.0	-0.006		0.005	0.018	NA	NA	0.004	NA
200.0	-0.008	-0.015	0.005	0.021	NA	NA	0.004	NA
		·			IEPE	IEPE	IEPE	
Range	Offset_A	dcGain_A	SINL_A	MSE_A	Comp.	Exc.	Gain	
(V)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
).02	NA	NA	NA	NA	ŇÁ	ŇÁ	NA	
).04	NA	NA	NA	NA	NA	NA	NA	
.1	0.002	-0.039	0.011	0.022	NA	NA		
.2	NA	NA	NA	NA	NA		NA	
.4	NA	NA	NA			NA	NA	
.0				NA	NA	NA	NA	
	-0.005	-0.004	0.006	0.012	NA	NA	NA	
.0	NA	NA	NA	NA	NA	NA	NA	
.0	NA	NA	NA	NA	NA	NA	NA	
0.0	NA	NA	NA	NA	NA	NA	NA	
0.0	NA	NA	NA	NA	NA	NA	NA	
0.0	NA	NA	NA	NA	NA	NA	NA	
00.0	NA	NA	NA	NA	NA	NA	NA	
00.0	NA	NA	NA	NA	NA			
		4 %	1 12 1	11/1	1974	NA	NA	
nput: 3		lias Bessel						
lange	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
tange (V)	Offset (%)	DCGain (%)	(%)	(%)	(kHz)	(dB)	(%)	-
ange (V) .02	Offset (%) 0.021	DCGain (%) 0.003	(%) 0.001	(%) 0.023	(kHz) NA	(dB) NA	(%) 0.061	NA
ange (V) .02 .04	Offset (%) 0.021 0.011	DCGain (%) 0.003 -0.002	(%) 0.001 0.005	(%) 0.023 0.016	(kHz) NA NA	(dB) NA NA	(%) 0.061 0.030	NA NA
ange (V) .02 .04 .1	Offset (%) 0.021 0.011 -0.001	DCGain (%) 0.003 -0.002 -0.006	(%) 0.001 0.005 0.008	(%) 0.023 0.016 0.011	(kHz) NA NA NA	(dB) NA NA NA	(%) 0.061 0.030 0.013	NA NA NA
ange (V) .02 .04 .1 .2	Offset (%) 0.021 0.011 -0.001 0.000	DCGain (%) 0.003 -0.002 -0.006 0.007	(%) 0.001 0.005 0.008 0.006	(%) 0.023 0.016 0.011 0.009	(kHz) NA NA NA NA	(dB) NA NA NA NA	(%) 0.061 0.030 0.013 0.007	NA NA
ange (V) .02 .04 .1 .2 .4	Offset (%) 0.021 0.011 -0.001 0.000 -0.003	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003	(%) 0.001 0.005 0.008 0.006 0.005	(%) 0.023 0.016 0.011 0.009 0.007	(kHz) NA NA NA NA NA	(dB) NA NA NA NA NA	(%) 0.061 0.030 0.013	NA NA NA
ange (V) .02 .04 .1 .2 .4	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.007	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004	(%) 0.001 0.005 0.008 0.006 0.005 0.007	(%) 0.023 0.016 0.011 0.009	(kHz) NA NA NA NA NA NA	(dB) NA NA NA NA	(%) 0.061 0.030 0.013 0.007	NA NA NA NA
ange (V) .02 .04 .1 .2 .4 .0 .0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.007 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008	(%) 0.001 0.005 0.008 0.006 0.005	(%) 0.023 0.016 0.011 0.009 0.007	(kHz) NA NA NA NA NA	(dB) NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008	NA NA NA NA
ange (V) .02 .04 .1 .2 .4 .0 .0 .0 .0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.007 -0.005 -0.004	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006	(%) 0.001 0.005 0.008 0.006 0.005 0.007	(%) 0.023 0.016 0.011 0.009 0.007 0.013	(kHz) NA NA NA NA NA NA	(dB) NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004	NA NA NA NA NA NA
ange (V) .02 .04 .1 .2 .4 .0 .0 .0 .0 .0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.007 -0.005 -0.004 -0.003	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013	(kHz) NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009	NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0.0).0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013	(kHz) NA NA NA NA NA NA 209.5	(dB) NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.004 0.009 0.005	NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0.0 0.0 0.0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.007 -0.005 -0.004 -0.003	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013	(kHz) NA NA NA NA NA 209.5 NA NA	(dB) NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004	NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0 0.0 0.0 0.0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.015 0.010	(kHz) NA NA NA NA NA 209.5 NA NA NA	(dB) NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008	NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0.0 0.0 0.0 0.0 0.0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.005 -0.006	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.015 0.010 0.009	(kHz) NA NA NA NA NA 209.5 NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004	NA NA NA NA NA NA NA NA NA NA
ange (V) .02 .04 .1 .2 .4	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.015 0.010	(kHz) NA NA NA NA NA 209.5 NA NA NA	(dB) NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008	NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0.0 0.0 0.0 0.0 0.0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.007 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.004 0.005 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011	(kHz) NA NA NA NA NA 209.5 NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.004 0.004	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.006 0.008 0.008 0.004 0.005 0.008 SINL_A	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011	(kHz) NA NA NA NA NA 209.5 NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.004 0.004	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 00.0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%)	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.004 0.005 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.004 0.004 UEPE Gain (%)	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 00.0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 NA	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.004 0.004	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.004 0.004 UEPE Gain (%)	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 NA	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.008 0.004 0.004 UEPE Gain (%) NA NA	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA NA 0.026	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.009 0.005 0.004 0.009 0.005 0.004 0.008 0.004 0.004 0.004 UEPE Gain (%) NA NA NA	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 12 2 04	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA NA 0.004	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.006 0.008 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA NA 0.017 NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA NA 0.026 NA	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.009 0.005 0.004 0.008 0.004 0.008 0.004 0.004 UEPE Gain (%) NA NA NA NA	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 NA NA NA NA NA NA	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA 0.004 NA NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005 0.008 0.004 0.005 0.008 SINL_A (%) NA NA 0.017 NA NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA NA 0.026 NA NA	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.009 0.005 0.004 0.008 0.004 0.008 0.004 0.004 0.004 UEPE Gain (%) NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 NA NA -0.008 NA NA -0.003	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA 0.004 NA NA 0.004 NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA NA 0.017 NA NA 0.017 NA NA 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA NA 0.026 NA NA 0.010	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.008 0.004 0.004 0.004 0.004 NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 NA NA NA -0.008 NA NA -0.003 NA	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA 0.004 NA NA 0.004 NA NA 0.005 NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005 0.008 0.004 0.005 0.008 SINL_A (%) NA NA 0.017 NA NA 0.0017 NA NA 0.008 NA	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA NA 0.026 NA NA 0.010 NA	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.008 0.004 0.004 0.004 0.004 NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA
ange (V) 02 04 1 2 4 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Offset (%) 0.021 0.011 -0.001 0.000 -0.003 -0.005 -0.004 -0.003 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 NA NA -0.008 NA NA -0.003	DCGain (%) 0.003 -0.002 -0.006 0.007 0.003 0.004 0.008 -0.006 0.005 0.012 -0.003 0.001 0.004 dcGain_A (%) NA NA 0.004 NA NA 0.004 NA	(%) 0.001 0.005 0.008 0.006 0.005 0.007 0.007 0.006 0.008 0.008 0.008 0.004 0.005 0.008 SINL_A (%) NA NA 0.017 NA NA 0.017 NA NA 0.008	(%) 0.023 0.016 0.011 0.009 0.007 0.013 0.013 0.013 0.013 0.013 0.013 0.015 0.010 0.009 0.011 MSE_A (%) NA NA 0.026 NA NA 0.010	(kHz) NA NA NA NA NA NA NA NA NA NA NA NA NA	(dB) NA NA NA NA NA NA NA NA NA NA NA NA NA	(%) 0.061 0.030 0.013 0.007 0.008 0.004 0.004 0.009 0.005 0.004 0.008 0.004 0.008 0.004 0.004 0.004 0.004 NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA

-

	Bo	nded Pre-S	tressed Co	oncrete Sla	abs Ope	en Air Blas	st Testing (Final Re
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	
Filter: Ai Input: 4	nalog Anti A	lias Bessel						
Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	
0.02	0.006	-0.003	0.010	0.015	NA	NA	0.061	NA
0.04	-0.003	-0.013	0.006	0.014	NA	NA	0.030	NA
0.1	-0.003	-0.010	0.008	0.015	NA	NA	0.013	NA
0.2	-0.005	-0.009	0.005	0.013	NA	NA	0.007	NA
0.4	-0.003	0.006	0.003	0.009	NA	NA	0.008	NA
1.0	-0.002	-0.003	0.005	0.008	NA	NA	0.004	NA
2.0	-0.005	-0.004	0.005	0.012	NA	NA	0.004	NA
4.0	-0.002	0.002	0.004	0.005	207.6	NA	0.009	NA
10.0	-0.006	-0.009	0.006	0.016	NA	NA	0.005	NA
20.0	-0.004	-0.005	0.006	0.012	NA	NA	0.004	NA
40.0	-0.003	0.003	0.004	0.007	NA	NA	0.008	NA
100.0	-0.006	-0.004	0.005	0.012	NA	NA	0.004	NA
200.0	-0.005	-0.008	0.005	0.014	NA	NA	0.004	NA
					IEPE	IEPE	IEPE	
Range	Offset A	dcGain A	SINL A	MSE_A	Comp.	Exc.	Gain	
(Ŭ)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
0.02	NA	NA	NA	NA	NA	NA	NA	
0.04	NA	NA	NA	NA	NA	NA	NA	
0.1	0.000		0.023	0.025	NA	NA	NA	
0.2	NA	NA	NA	NA	NA	NA	NA	
0.4	NA	NA	NA	NA	NA	NA	NA	
1.0	-0.003	0.011	0.006	0.013	NA	NA	NA	
2.0	NA	NA	NA	NA	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	NA	NA	NA	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	

- -

Filter: Analog Anti Alias Butterworth Input: 1

Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(Ŭ)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	-
0.02	-0.012	-0.006	0.005	0.019	NA	NA	0.079	NA
0.04	-0.011	-0.012	0.005	0.021	NA	NA	0.039	NA
0.1	-0.005	-0.003	0.008	0.013	NA	NA	0.016	NA
0.2	-0.004	0.004	0.006	0.012	NA	NA	0.009	NA
0.4	-0.002	-0.006	0.004	0.009	NA	-121.1	0.009	NA
1.0	-0.007	-0.009	0.005	0.016	NA	NA	0.005	NA
2.0	-0.006	-0.001	0.005	0.011	NA	NA	0.004	NA
4.0	-0.005	-0.014	0.004	0.015	355.9	-81.8	0.011	Passed
10.0	-0.004	-0.014	0.008	0.015	NA	NA	0.005	NA
20.0	-0.004	-0.015	0.006	0.017	NA	NA	0.004	NA
40.0	0.000	-0.007	0.004	0.007	NA	-79.8	0.009	NA
100.0	-0.007	-0.007	0.008	0.017	NA	NA	0.005	NA
200.0	-0.002	-0.004	0.007	0.011	NA	NA	0.004	NA
					IEPE	IEPE	IEPE	
Range	Offset A	dcGain A	SINL A	MSE A	Comp.	Exc.	Gain	
(V)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
0.02	NA	NA	NA	NA	NÁ	NA	NÁ	
0.04	NA	NA	NA	NA	NA	NA	NA	
0.1	-0.011	-0.068	0.018	0.039	NA	NA	NA	
0.2	-0.006	-0.047	0.007	0.033	NA	NA	NA	
0.4	-0.005	-0.025	0.008	0.016	NA	NA	NA	
1.0	-0.002	-0.013	0.004	0.011	NA	NA	NA	
2.0	-0.006	0.034	0.005	0.026	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	NA	NA	NA	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	

Filter: Analog Anti Alias Butterworth Input: 2

Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	
0.02	-0.005	0.009	0.005	0.011	NA	NA	0.074	NA
0.04	-0.007	0.012	0.005	0.014	NA	NA	0.037	NA
0.1	0.002	0.006	0.006	0.009	NA	NA	0.015	NA
0.2	-0.003	0.005	0.006	0.010	NA	NA	0.008	NA
0.4	-0.007	0.009	0.005	0.013	NA	-134.8	0.009	NA
1.0	-0.004	0.002	0.006	0.009	NA	NA	0.005	NA
2.0	-0.006	-0.004	0.009	0.017	NA	NA	0.004	NA
4.0	-0.003	0.001	0.002	0.006	353.3	-84.2	0.010	Passed
10.0	-0.006	-0.007	0.006	0.015	NA	NA	0.005	NA
20.0	-0.003	-0.007	0.004	0.010	NA	NA	0.004	NA

	Bor	nded Pre-S	tressed Co	oncrete Sla	abs Ope	en Air Blas	t Testing (Final Report)
40.0	-0.003	-0.002	0.002	0.005	NA	-81.4	0.009	NA
100.0	-0.010		0.002	0.005	NA	-61.4 NA	0.009	
200.0	-0.003		0.006	0.025	NA	NA		
	01005	0.01-	0.000	0.010	NA	INA	0.004	NA
					IEPE	IEPE	IEPE	
Range	Offset_A	dcGain_A	SINL A	MSE A		Exc.	Gain	
(V)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
0.02	NA	ŇÁ	ŇÁ	NA	NA	NA	NA	
0.04	NA	NA	NA	NA	NA	NA	NA	
0.1	0.011	-0.024	0.012	0.025	NA	NA	NA	
0.2	0.008		0.007	0.016	NA	NA	NA	
0.4	-0.003		0.007	0.012	NA	NA	NA	
1.0	-0.006		0.009	0.018	NA	NA	NA	
2.0	-0.007	0.033	0.007	0.030	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	NA	NA	NA	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	
				1 17 1	1174	nA.	NA	
Filter: An Input: 3	nalog Anti A	lias Butterw	orth					
Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	ł
0.02	0.018	-0.003	0.011	0.028	NA	NA	0.073	NA
0.04	0.003	-0.010	0.006	0.009	NA	NA	0.037	NA
0.1	0.004	-0.005	0.006	0.007	NA	NA	0.015	NA
0.2	-0.001	0.004	0.006	0.006	NA	NA	0.008	NA
0.4	-0.001	0.008	0.005	0.008	NA	-117.4	0.009	NA
1.0	-0.003	0.002	0.006	0.009	NA	NA	0.005	NA
2.0	-0.007	0.005	0.008	0.015	NA	NA	0.004	NA
4.0	-0.002	0.002	0.006	0.007	354.5	-85.2	0.010	Passed
10.0	-0.005	-0.001	0.007	0.012	NA	NA	0.005	NA
20.0	-0.006	-0.002	0.006	0.013	NA	NA	0.004	NA
40.0	-0.005	-0.003	0.007	0.014	NA	-82.0	0.009	NA
100.0	0.000	-0.006	0.007	0.009	NA	NA	0.005	NA
200.0	-0.001	0.003	0.007	0.008	NA	NA	0.004	NA
					IEPE	IEPE	IEPE	
Range	Offset A	dcGain_A	SINL A	MSE A	Comp.	Ere.	Gain	
(V)	(%)	(%)	(%)	(%)				
0.02	NA	NA	NA	(70) NA	(V) NA	(%) NA	(%) NA	
0.04	NA	NA	NA	NA NA	NA NA	NA	NA	
0.1	-0.022	-0.021	0.015	0.035	NA	NA NA	NA	
	~	0.041	0.010				NA	
		-0.005	0.008	0.015	N A	NIA	NT A	
0.2	-0.008	-0.005 -0.018	0.008 0.007	0.015	NA NA	NA NA	NA	
0.2 0.4	-0.008 0.002	-0.018	0.007	0.013	NA	NA	NA	
0.2 0.4 1.0	-0.008 0.002 -0.004	-0.018 -0.009	0.007 0.006	0.013 0.011	NA NA	NA NA	NA NA	
0.2 0.4 1.0 2.0	-0.008 0.002 -0.004 -0.004	-0.018 -0.009 0.026	0.007 0.006 0.005	0.013 0.011 0.020	NA NA NA	NA NA NA	NA NA NA	
0.2 0.4 1.0	-0.008 0.002 -0.004	-0.018 -0.009	0.007 0.006	0.013 0.011	NA NA	NA NA	NA NA	

-

	Bon	ided Pre-St	ressed Co	ncrete Sla	ıbs Opei	n Air Blast	Testing (I	Final Rep
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	
Filter: Ai Input: 4	nalog Anti A	lias Butterw	orth					
Range	Offset	DCGain	SINL	MSE	BWdth	CMRR	Noise	ACCpl
(V)	(%)	(%)	(%)	(%)	(kHz)	(dB)	(%)	•
0.02	0.010	0.001	0.006	0.016	NA	NA	0.074	NA
0.04	0.007	0.009	0.003	0.011	NA	NA	0.037	NA
0.1	-0.004	-0.005	0.004	0.010	NA	NA	0.016	NA
0.2	-0.003	0.000	0.008	0.011	NA	NA	0.008	NA
0.4	-0.001	0.011	0.004	0.009	NA	-114.1	0.009	NA
1.0	-0.005	0.006	0.007	0.011	NA	NA	0.005	NA
2.0	0.001	0.015	0.006	0.010	NA	NA	0.004	NA
4.0	-0.005	0.010	0.005	0.012	356.3	-86.7		Passed
10.0	0.000	-0.003	0.007	0.007	NA	NA	0.005	NA
20.0	-0.006	0.004	0.006	0.012	NA	NA	0.004	NA
40.0	-0.006	0.011	0.006	0.012	NA	-83.9	0.009	NA
100.0	-0.002	0.003	0.006	0.009	NA	NA	0.005	NA
200.0	-0.005	0.002	0.005	0.009	NA	NA	0.004	NA
_					IEPE	IEPE	IEPE	
Range	Offset_A	dcGain_A		MSE_A	Comp.	Exc.	Gain	
(V)	(%)	(%)	(%)	(%)	(V)	(%)	(%)	
0.02	NA	NA	NA	NA	NA	NA	NA	
0.04	NA	NA	NA	NA	NA	NA	NA	
0.1	0.009	-0.022	0.018	0.029	NA	NA	NA	
0.2	0.003	0.004	0.008	0.011	NA	NA	NA	
0.4	-0.001	0.018	0.005	0.012	NA	NA	NA	
1.0	-0.005	0.017	0.006	0.017	NA	NA	NA	
2.0	-0.006	0.060	0.006	0.038	NA	NA	NA	
4.0	NA	NA	NA	NA	NA	NA	NA	
10.0	NA	NA	NA	NA	NA	NA	NA	
20.0	NA	NA	NA	NA	NA	NA	NA	
40.0	NA	NA	NA	NA	NA	NA	NA	
100.0	NA	NA	NA	NA	NA	NA	NA	
200.0	NA	NA	NA	NA	NA	NA	NA	

-

-

Hottinger Baldwin Measurements, Inc.

19 Bartlett Street Marlboro, MA 01752 Phone: 800-578-4260 Fax: 508-485-7480 www.mra@usa.hbm.com

Analysis Report/Analyse Report

Issued on/Erstelldatum: 21-Nov-14 MRA number/Auftrag: 4907125

Customer Information/Daten des Auftraggebers:

Client/Auftraggeber: HBM-GMBH Customer Number/Kunden-Nr.: U10160

Product/Produkt:

Part Number/Material-Nr.: Sigma 90-8 Serial Number/Serial-Nr.: IDM0300210

Original Customer Complaint/Fehlerbeschreibung des Kunden:

Calibration request.

Findings/Untersuchungsergebnisse:

N/A

Repair Actions/Reparaturschritte:

Calibration with data.

Hottinger Baldwin Weasurements, The Concrete Slabs -- Open Air Blast Testing (Final Beport)

19 Bartlett Street Marlboro, MA 01752 Phone: 800-578-4260 Fax: 508-485-7480 www.mra@usa.hbm.com

Analysis Report/Analyse Report

Issued on/Erstelldatum: 21-Nov-14 MRA number/Auftrag: 4907125

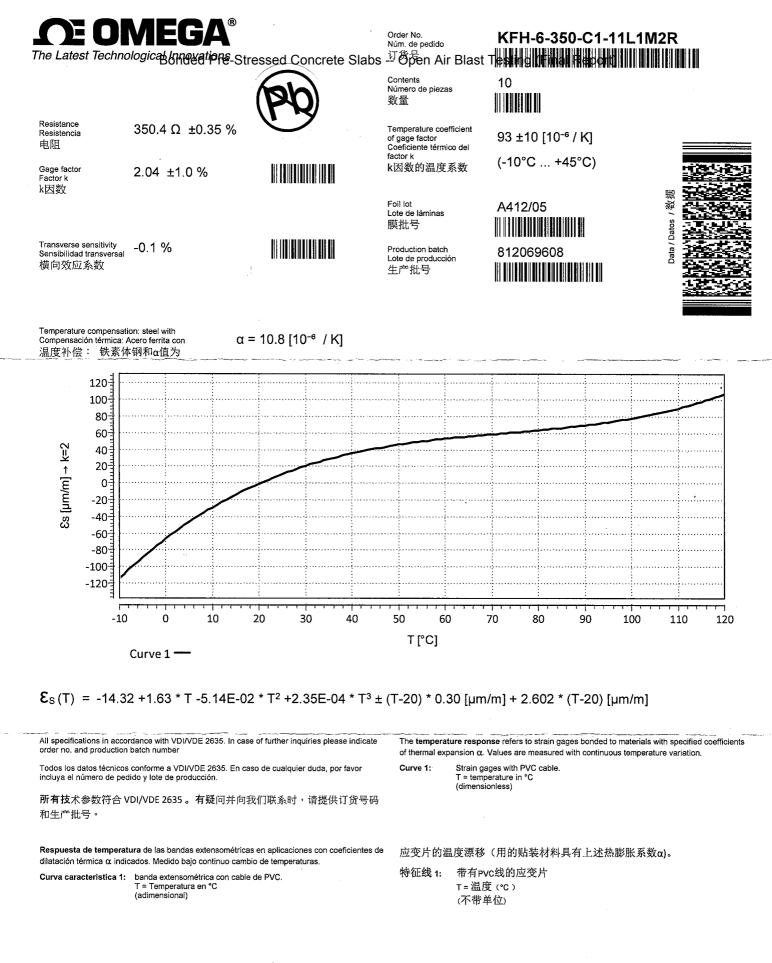
Customer Information/Daten des Auftraggebers:

Client/Auftraggeber: HBM-GMBH Customer Number/Kunden-Nr.: U10160

Product/Produkt:

Part Number/Material-Nr.: Sigma 90-8 Serial Number/Serial-Nr.: IDM0300210

Original Customer Complaint/Fehlerbeschreibung des Kunden:


Calibration request.

Findings/Untersuchungsergebnisse:

N/A

Repair Actions/Reparaturschritte:

Calibration with data.

Header / Datos de encabezamiento / 文件头

Bonded Pre-Stressed Concrete Slabs -- Open Air Blast Testing (Final Report)

			M ^a
		♥PCB PIEZOTRON	VIC5 **
	CERTIF	ICATION OF COM	NFORMANCE
		ge of Calibration Certificate	
cu	STOMER:	PURCHASE ORDER #:	H Bose-CC
Oregon Ballistic Labs 2873 22nd Street Southeast Salem, OR 97302 UNITED STATES		PCB ORDER #:	342014
QT	Y ITEM	DESCRIPTION	
6	PCS-1	RECAL 137A22	
	S/N 6403 6404 6405	7214 7215 7150	
			e de la constante de
Note	es:		
1.			epaired (if applicable), tested, or inspected in pecifications per PCB Quality Policy Manual Rev. I
2.	Equipment used in validation is traceabl	e to NIST and appropriate records	are on file.
3.	Calibrations comply with ISO 17025 and	I ANSI/NCSL Z540-1-1994 except a	as noted on associated calibration certificate(s).
4.		e calibration certificate. Calibration	(TUR) of four or more times greater than the unit at 4:1 TUR provides reasonable confidence that the
Log	gistics Associate:	my he how	Date: 11/17/15
	- ISO	9001 Certified / ISO 17025 PCB Piezotronics, In	
		n Avenue Depew, New Yo one: 716-684-0001 Fax: 716	ork, US 14043-2495

PCB PIEZOTRONICS	Order # Date PO#	342014 11/17/2015 H Bose-CC	DO # D000121883
3425 WALDEN AVENUE DEPEW, NY 14043			

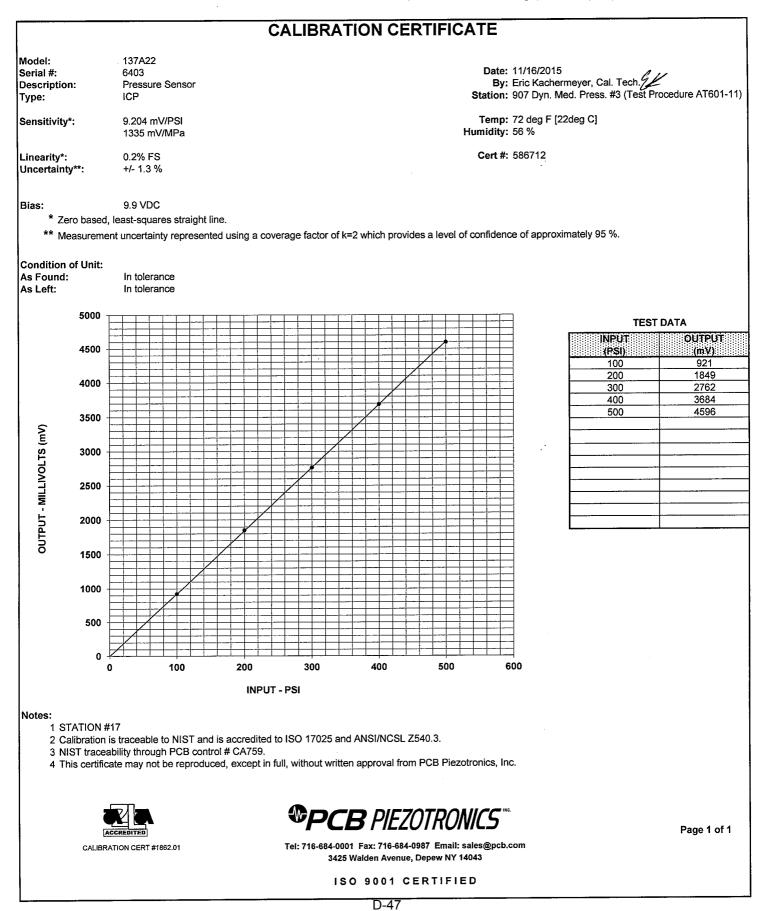
DEPEW, NY 14043 UNITED STATES

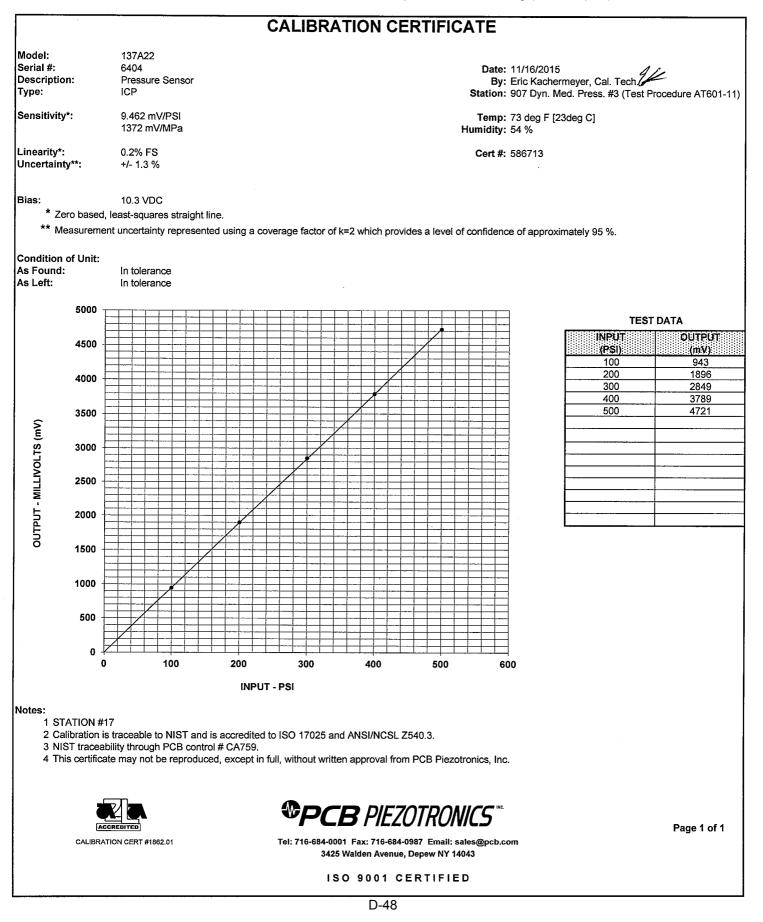
SHIP TO

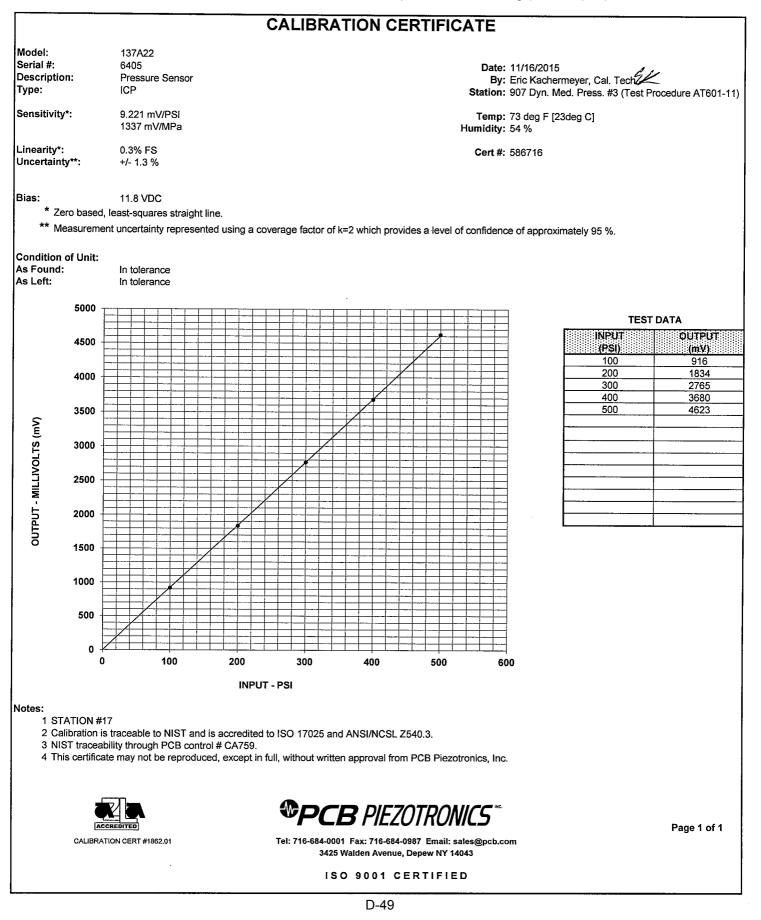
Oregon Ballistic Labs 2873 22nd Street Southeast Salem, OR 97302 UNITED STATES Please check the material received against this listing, informing us promptly of discrepancies and referring to the order number above. Items not included have been back ordered as noted and will be shipped as soon as possible. Be sure to check carefully before reporting shortage. Any shortage of items as shown on Bill of Lading or damage should be called to the attention of the delivering agent who should acknowledge on the freight bill. Please contact us if we can answer any questions or if you would like to provide feedback of any type.

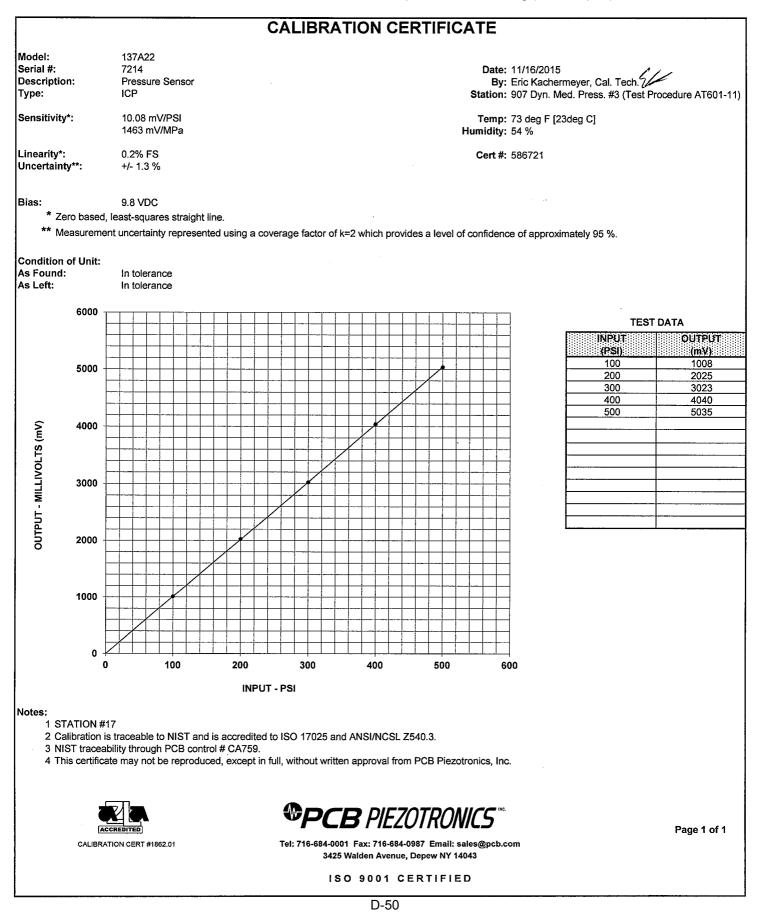
Contact: Justin Greeley

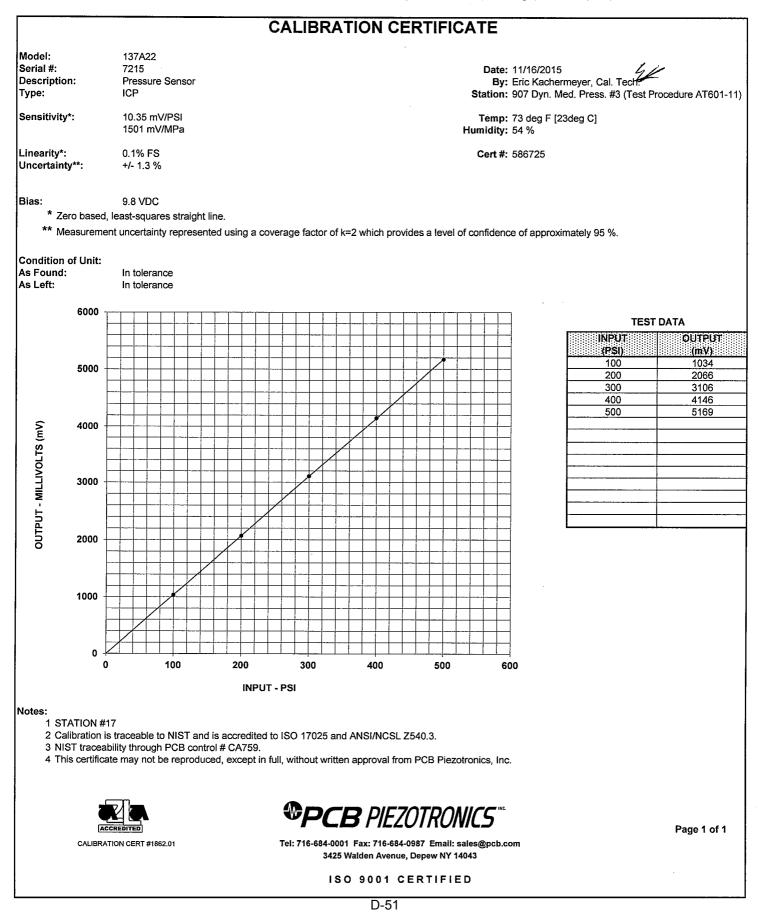
Custo	mer PO # I	H Bose-CC		Pieces	1 We	ight 1 1.50 LB	3
Line	Release	Item Number	Item Description		Ordere	d Shipped	Due
1	0	PCS-1	RECAL 137A22			6 6	0

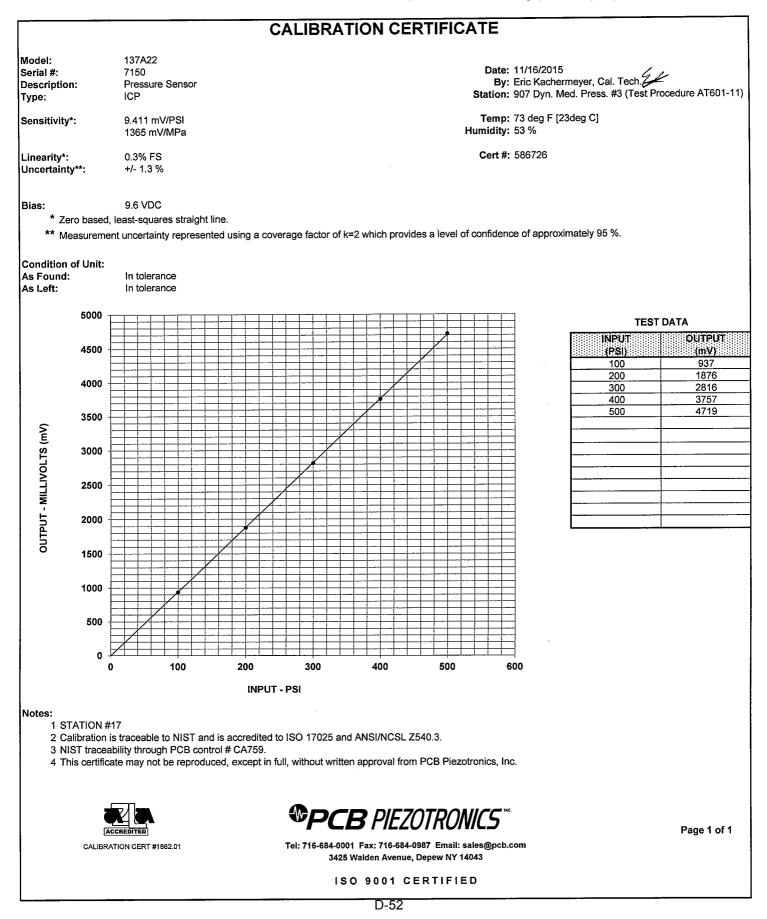

S/N 6403 6404 6405 7214 7215 7150

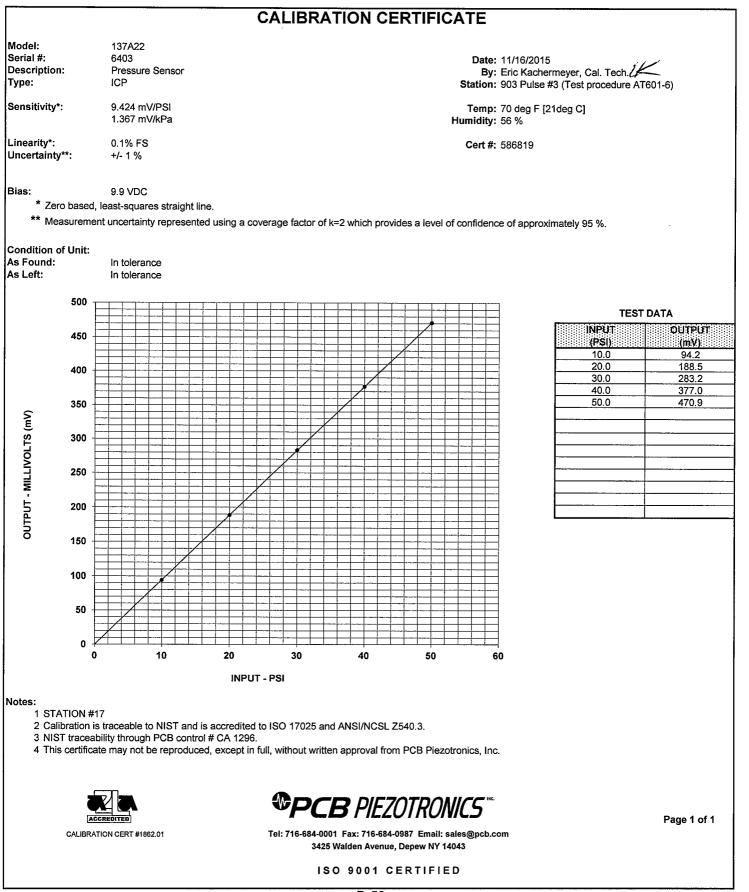

Notes:

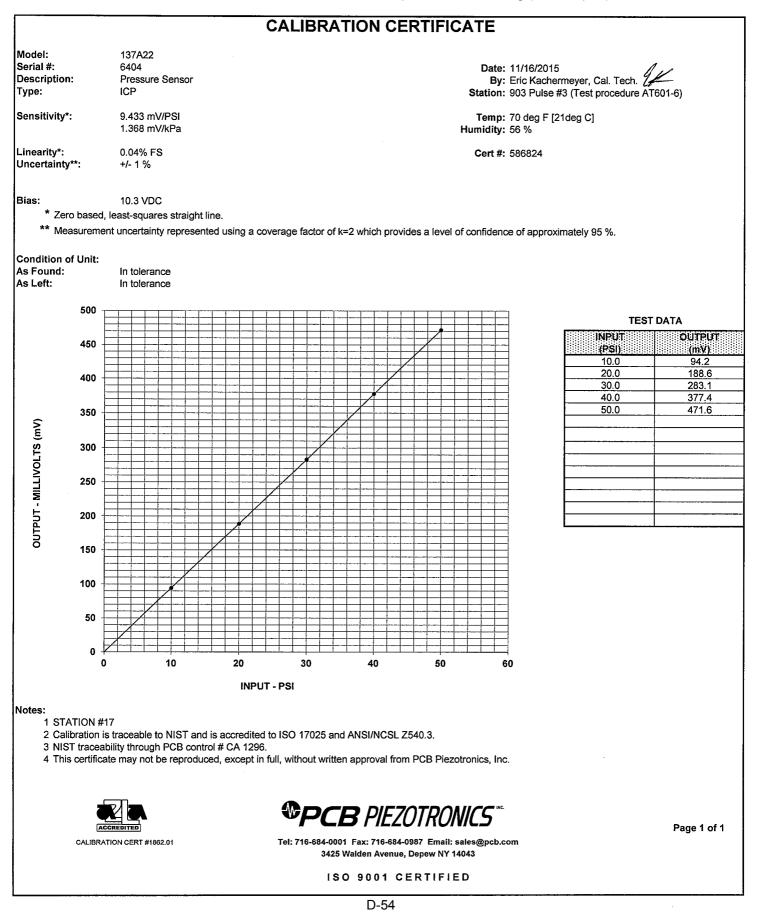

UPS / 3 Day Select / Collect /

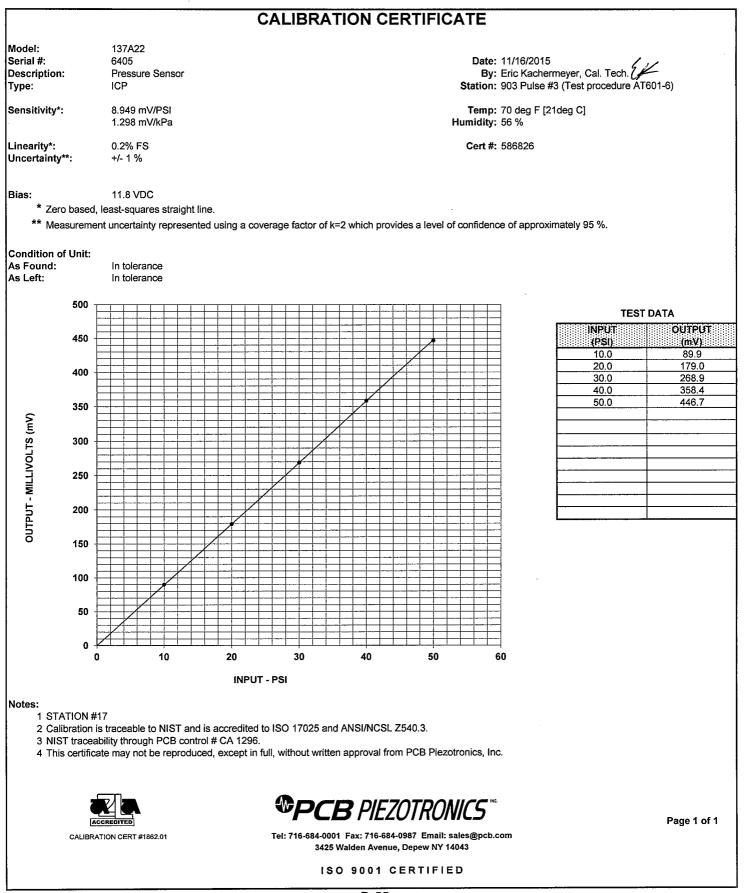

Carrier: UNITED PARCEL SERVICE

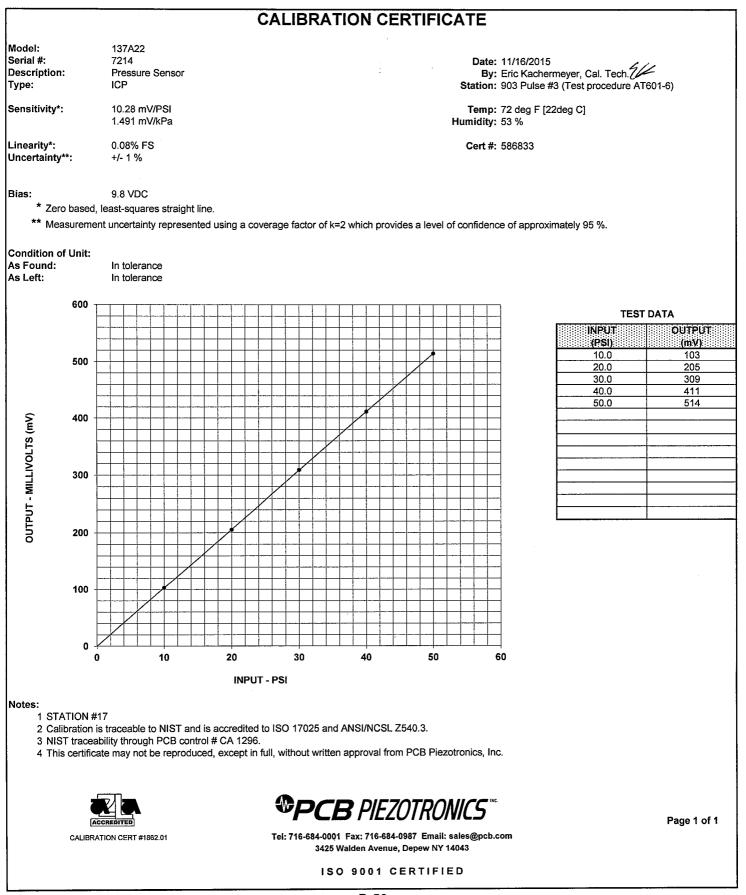

Pro Bill Number

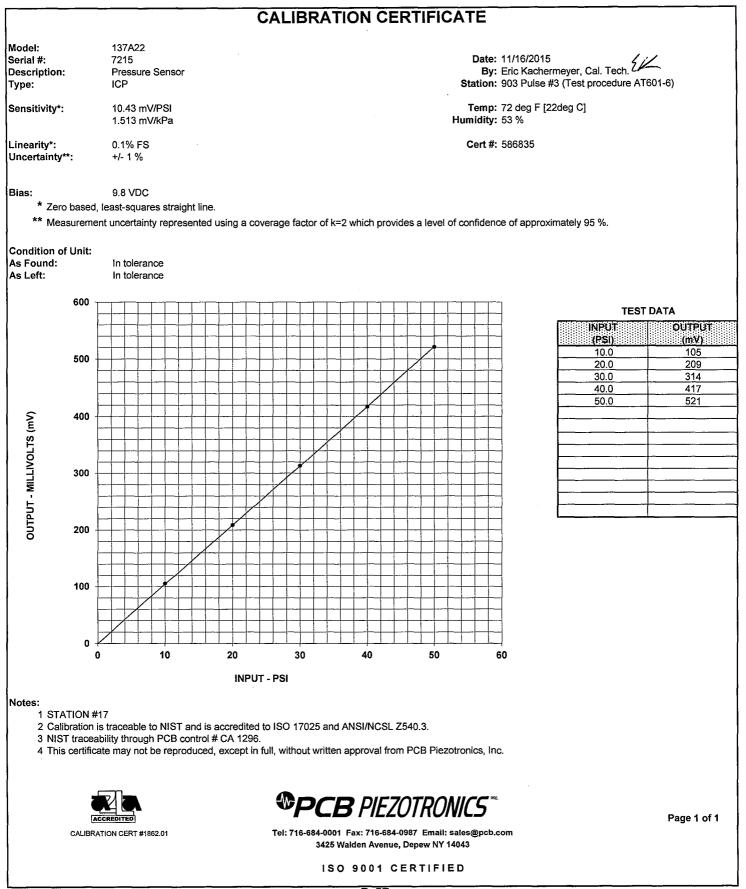


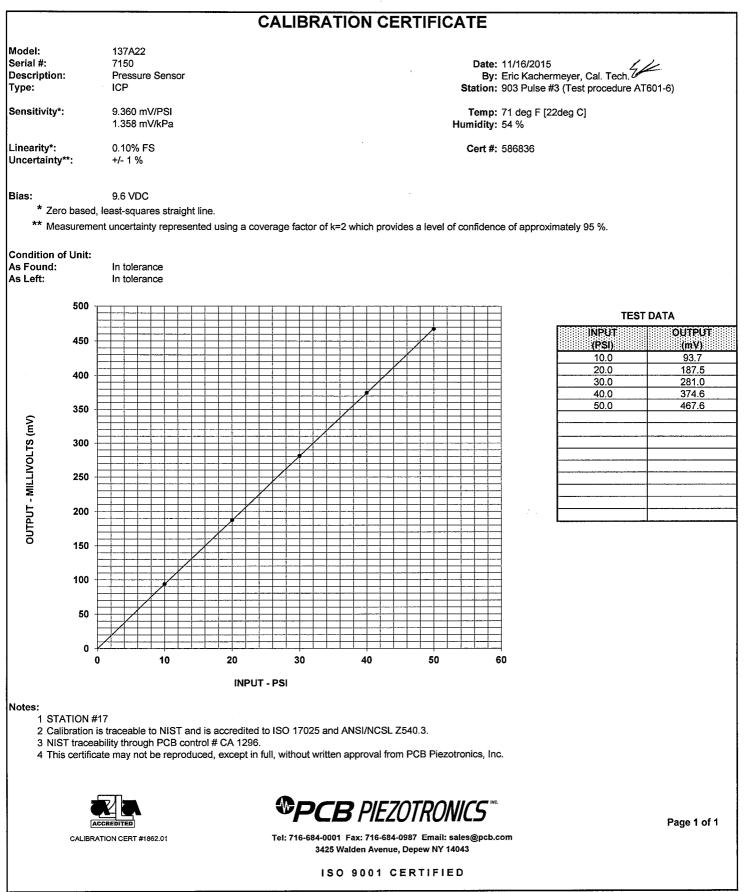












		<u> </u>	♥PCB PIEZOTROI	WICS [®]
		CERTIFI	CATION OF CO	
			e of Calibration Certificat	
CU	STOMER:		PURCHASE ORDER #:	Paul -Verbal
As 27 Sa	PD LLC symmetric Product De 725 19th Street SE alem, OR 97302 NITED STATES	velopment	PCB ORDER #:	312993
QT	Y ITEM		DESCRIPTION	
1	106B		ICP MICROPHONE	
			00014985	
1	061A13		B & K PISTON PHONE	ADAPTOR
1	060A53		CLAMP NUT	
Note	s:			
1.	This document certifies accordance with refere 03/07/2012.	s that the subject ite nced purchase ord	em(s) have been manufactured, r ler and conform(s) to applicable s	epaired (if applicable), tested, or inspected in pecifications per PCB Quality Policy Manual Rev. H
2.	Equipment used in vali	dation is traceable	to NIST and appropriate records	are on file.
3.	Calibrations comply with	th ISO 17025 and /	ANSI/NCSL Z540-1-1994 except	as noted on associated calibration certificate(s).
4.	Calibrations are perforn calibrated, unless othe instrument is within pro	rwise noted on the	calibration certificate. Calibration	(TUR) of four or more times greater than the unit n at 4:1 TUR provides reasonable confidence that the
Log	gistics Associate:	21-	20-	Date: 09/09/14
		3425 Walden	0001 Certified / ISO 17025 PCB Piezotronics, In Avenue Depew, New Yo ne: 716-684-0001 Fax: 71	ic. ork, US 14043-2495
1				

PCB PIEZOTRONICS Orde Date

Order # 312993 Date 9/9/2014 DO # D000075857

200 18

3425 WALDEN AVENUE DEPEW, NY 14043 UNITED STATES

SHIP TO

APD LLC Asymmetric Product Development 2725 19th Street SE Salem, OR 97302 UNITED STATES Please check the material received against this listing, informing us promptly of discrepancies and referring to the order number above. Items not included have been back ordered as noted and will be shipped as soon as possible. Be sure to check carefully before reporting shortage. Any shortage of items as shown on Bill of Lading or damage should be called to the attention of the delivering agent who should acknowledge on the freight bill. Please contact us if we can answer any questions or if you would like to provide feedback of any type.

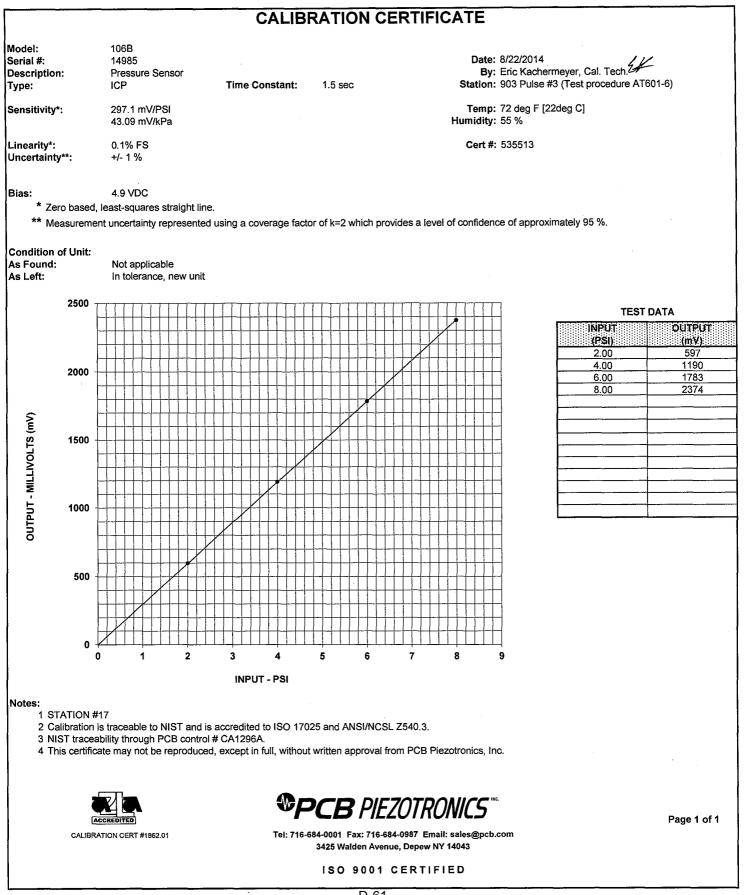
1

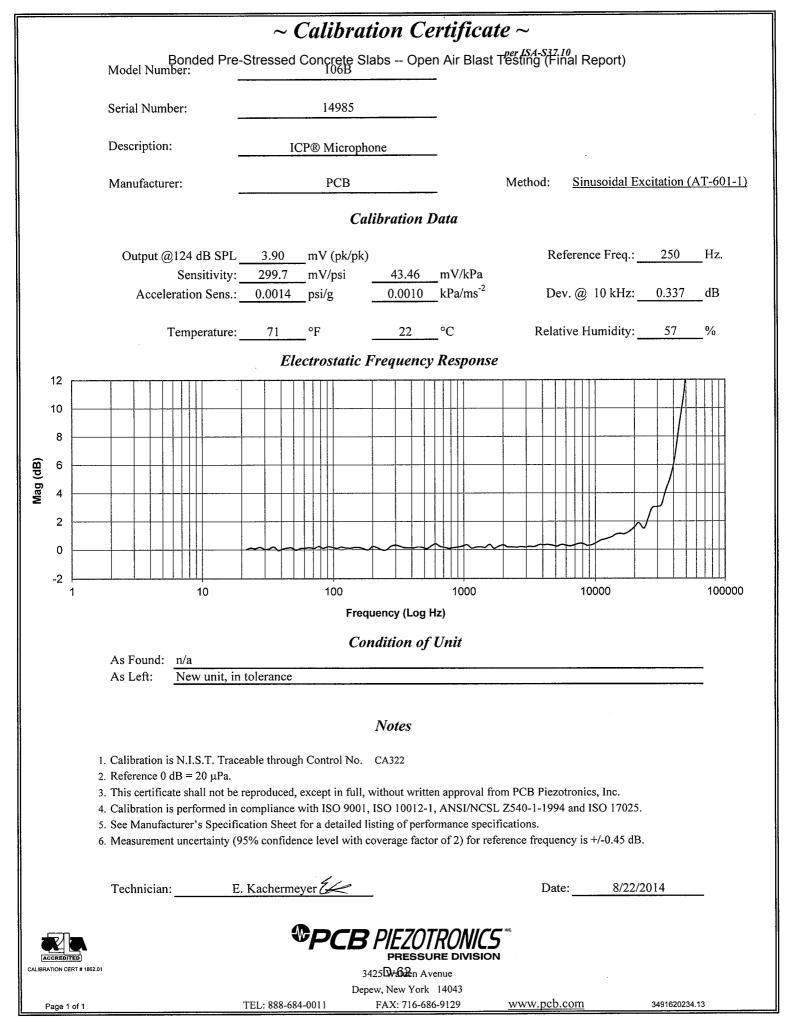
Maimht.

Contact: Paul Cheney

Diacas

Customer PO # Paul -Verbai


Customer	PO # Paul-ve	rbai	Pieces	I	weight	2.00 LD	
Line	Release	Item Number	Item Description		Ordered	Shipped	Due
1	0	106B	ICP MICROPHONE		1	1	0
	Serials:	00014985					
2	0	061A13	B & K PISTON PHONE ADAPTOR		1	1	0
3	0	060A53	CLAMP NUT		1	1	0


Notes:

UPS / Ground / Prepaid and Charge /

Carrier: UNITED PARCEL SERVICE

Pro Bill Number

PCB PIEZOTRONICS

Model 106B

ICP® Pressure Sensor

Installation and Operating Manual

For assistance with the operation of this product, contact PCB Piezotronics, Inc.

Toll-free: 800-828-8840 24-hour SensorLine: 716-684-0001 Fax: 716-684-0987 E-mail: info@pcb.com Web: www.pcb.com

A PCB GROUP COMPANY

Warranty, Service, Repair, and Return Policies and Instructions

The information contained in this document supersedes all similar information that may be found elsewhere in this manual.

Total Customer Satisfaction – PCB Piezotronics guarantees Total Customer Satisfaction. If, at any time, for any reason, you are not completely satisfied with any PCB product, PCB will repair, replace, or exchange it at no charge. You may also choose to have your purchase price refunded in lieu of the repair, replacement, or exchange of the product.

Service – Due to the sophisticated nature and associated of the sensors provided instrumentation bv PCB Piezotronics, user servicing or repair is not recommended and, if attempted, may void the factory warranty. Routine maintenance, such as the cleaning of electrical connectors, housings, and mounting surfaces with solutions and techniques that will not harm the physical material of construction, is acceptable. Caution should be observed to insure that liquids are not permitted to migrate into devices that are not hermetically sealed. Such devices should only be wiped with a dampened cloth and never submerged or have liquids poured upon them.

Repair – In the event that equipment becomes damaged or ceases to operate, arrangements should be made to return the equipment to PCB Piezotronics for repair. User servicing or repair is not recommended and, if attempted, may void the factory warranty.

Calibration – Routine calibration of sensors and associated instrumentation is

recommended as this helps build confidence in measurement accuracy and acquired data. Equipment calibration cycles are typically established by the users own quality regimen. When in doubt about a calibration cycle, a good "rule of thumb" is to recalibrate on an annual basis. It is also good practice to recalibrate after exposure to any severe temperature extreme, shock, load, or other environmental influence, or prior to any critical test.

PCB Piezotronics maintains an ISO-9001 certified metrology laboratory and offers calibration services. which are accredited by A2LA to ISO/IEC 17025, with full traceablility to N.I.S.T. In addition to the normally supplied calibration, special testing is also available, such as: sensitivity at elevated cryogenic temperatures, phase or response. extended high or low frequency response, extended range, leak testing, hydrostatic pressure testing, and others. For information on standard recalibration services or special testing, contact your local PCB Piezotronics sales representative, distributor. or factory customer service representative.

Returning Equipment – Following these procedures will insure that your returned materials are handled in the most expedient manner. Before returning any equipment to PCB Piezotronics, contact your local distributor, sales representative, or factory customer service representative to obtain a Return Materials Authorization (RMA) Number. This RMA number should be clearly marked on the outside of all package(s) and on the packing list(s) accompanying the shipment. A detailed account of the nature of the problem(s) being experienced with the equipment should also be included inside the package(s) containing any returned materials.

A Purchase Order, included with the returned materials, will expedite the turn-around of serviced equipment. It is recommended to include authorization on the Purchase Order for PCB to proceed with any repairs, as long as they do not exceed 50% of the replacement cost of the returned item(s). PCB will provide a price quotation or replacement recommendation for any item whose repair costs would exceed 50% of replacement cost, or any item that is not economically feasible to repair. For routine calibration services, the Purchase Order should include authorization to proceed and return at current pricing, which can be obtained from a factory customer service representative.

Warranty – All equipment and repair services provided by PCB Piezotronics, Inc. are covered by a limited warranty against defective material and workmanship for a period of one year from date of original purchase. Contact PCB for a complete statement of our warranty. Expendable items, such as batteries and mounting hardware, are not by warranty. covered Mechanical damage to equipment due to improper use is not covered by warranty. Electronic circuitry failure caused by the introduction of unregulated or improper excitation power electrostatic or discharge is not covered by warranty.

Contact Information – International customers should direct all inquiries to their local distributor or sales office. A complete list of distributors and offices can be found www.pcb.com. at Customers within the United States may contact their local sales representative or customer factory service a representative. A complete list of sales representatives can be found at www.pcb.com. Toll-free telephone numbers for a factory customer service representative, in the division responsible for this product, can be found on the title page at the front of this manual. Our ship to address and general contact numbers are:

PCB Piezotronics, Inc. 3425 Walden Ave. Depew, NY 14043 USA Toll-free: (800) 828-8840 24-hour SensorLineSM: (716) 684-0001 Website: www.pcb.com E-mail: info@pcb.com

DOCUMENT NUMBER: 21354 DOCUMENT REVISION: B ECN: 17900

1.0 INTRODUCTION

The Series 106B microphones feature highsensitivity, acceleration-compensated quartz pressure elements coupled to built-in integrated circuit impedance converting amplifiers.

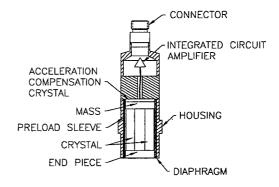
These very sensitive sensors are designed to measure pressure perturbations in air or in fluids in severe environments. They can also be used to measure very small pressure disturbances on a much higher static head, with certain precautions.

2.0 DESCRIPTION

The quartz elements in the 106B Series utilize a special cut in quartz to produce a proportionately higher output voltage than the standard X-cut compression crystals normally used.

A built-in seismic mass acting on another quartz crystal effectively cancels the spurious signal produced by the mass of the diaphragm and end piece acting upon the very sensitive crystals in the presence of axial vibration inputs.

This design produces an extremely high level output signal with good resolution, relatively free from unwanted vibration effects.


As with all quartz sensors, the high rigidity results in negligible diaphragm motion producing excellent linearity from the threshold pressure to full-scale pressure. The high rigidity of quartz also results in sensors with high natural frequency, giving a very wide useful frequency range.

Although the same basic quartz element is used in both models, the sensitivity of the 106B50 is twice that of the 106B, the result of a larger diaphragm area in the B50.

The Model 106B10 consists of the Model 106B element in a customized package specifically designed for paper mill headbox measurements.

The built-in electronics consist of a low-noise MOSFET input source follower with unity gain. A single wire feeds constant current power to the source of the FET and also carries the dynamic signal, superimposed on the +3 to +5 bias.

See "Guide to ICP[®] Instrumentation, G-0001B" for a more complete treatment of the "Integrated Circuit Piezoelectric" (ICP[®]) concept.

Cross Section: Series 106B Microphone Element

3.0 POLARITY

Both models produce a positive-going output signal with increasing pressure at the diaphragm. Since the bias voltage of the low-noise electronics is rather low compared to other ICP^{\circledast} instruments, the output voltage capability is nonsymmetrical, i.e. the units can produce positive-going voltages to 12 or 13 volts with a +18 V battery supply, but the linear negative-going output voltage is limited to approximately 2.5 volts.

This is not a disadvantage because +2.5 volts provide an adequate output signal for most microphone applications and the higher positive-going voltage affords an ability to measure much higher positivegoing pulses if desirable.

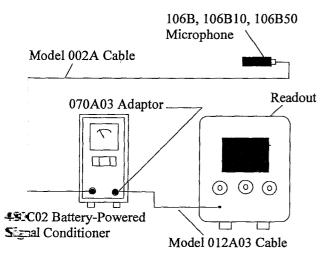
4.0 POWER UNITS

In general, it is advisable to use battery-powered signal conditioners (such as the 480C02) to power the Series 106 microphones because of their inherently low noise.

If line powering is desirable, consult the factory for help in selecting the best signal conditioner for the application.

Manual Number: 21083 Revision: A ECR Number: 24751

\$80


Bonded Pre-Stregge RATEON AND PED FOR AST Testing (Final Report) HIGH INTENSITY MICROPHONES MODELS 106B, 106B10, 106B50

2

These sensors must only be powered through constant-current diodes or other equivalent currentlimiting circuitry, (2 to 20 mA) as contained in all PCB signal conditioners.

CAUTION: Never apply power directly to the center pin of the connector without the current-limiting protection (2 mA maximum), as to do so will destroy the built-in amplifier.

Connect the microphones to the power unit as shown in the figure below.

Typical Power Connection

The 106B, 106B10, and 106B50 differ from the standard ICP[®] sensors in that the low noise, built-in amplifiers have a +3 to +5 V bias or turn-on voltage instead of the usual +11 V bias. Consequently, the bias monitor voltmeter located on the front panel of most PCB signal conditioners will indicate approximately 20% full scale under normal operating conditions, rather than the mid-scale reading associated with normal operation for other ICP[®] instruments.

A full-scale reading on the bias monitor meter indicates an open circuit between the signal conditioner and sensor.

A zero reading indicates a short circuit in cable, connections, or sensor.

5.0 INSTALLATION

Consult the applicable installation drawing at the front of this manual for details on the preparation of mounting ports. For best high-frequency response, flush mounting of the diaphragm is desirable.

The standard type of mounting arrangement for these microphones is by use of the hollow clamp nut supplied (refer to installation drawing), but other methods of mounting the units are acceptable.

Non-metallic mounting adaptors for off-ground installations are available. Consult factory with your specific installation problem.

6.0 CALIBRATION

The 106B, 106B10, and 106B50 are calibrated by dynamic means over the full range by subjecting the unit to a series of calibrated pneumatic pressure steps. In addition, the units are given a 124 dB sound pressure level calibration at 250 Hz with a pistonphone. An electrostatic calibration is used to verify the sensor's frequency response.

Recalibration service is offered by PCB. Consult the factory for details.

7.0 MEASURING SMALL PRESSURE FLUCTUATIONS ON A HIGH STATIC HEAD

It is possible to measure small dynamic pressure variations superimposed upon a high static (pneumatic or hydraulic) head, but care must be exercised during application and removal of the static pressure to avoid destroying the input MOSFET amplifier.

The important point is to apply and release the static head slowly to allow the resistor across the quartz crystal to bleed off the charge and avoid a voltage build-up that can punch through the gate structure of the MOSFET, rendering it inoperative. (Approximately 100 V maximum rating.)

Manual Number: 21083 Revision: A ECR Number: 24751

D-67

Bonded Pre-Stresse@CGBCATEQDSMADEdAL FORTesting (Final Report) HIGH INTENSITY MICROPHONES MODELS 106B, 106B10, 106B50

For the high sensitivity 106B50 (500 mV/psi), keep the rate of pressure application and removal below 200 psi/sec and do not exceed the maximum pressure rating of the unit. Remember that this rate must not be exceeded during removal of the static head as well as during application.

For the lower sensitivity 106B and 106B10, do not exceed a pressure application or removal rate of 300 psi/sec.

After the high static head is applied, allow time for all coupling capacitors in the readout circuit to fully charge (signified by an end to the apparent "drift" of the output signal), then proceed with the measurement.

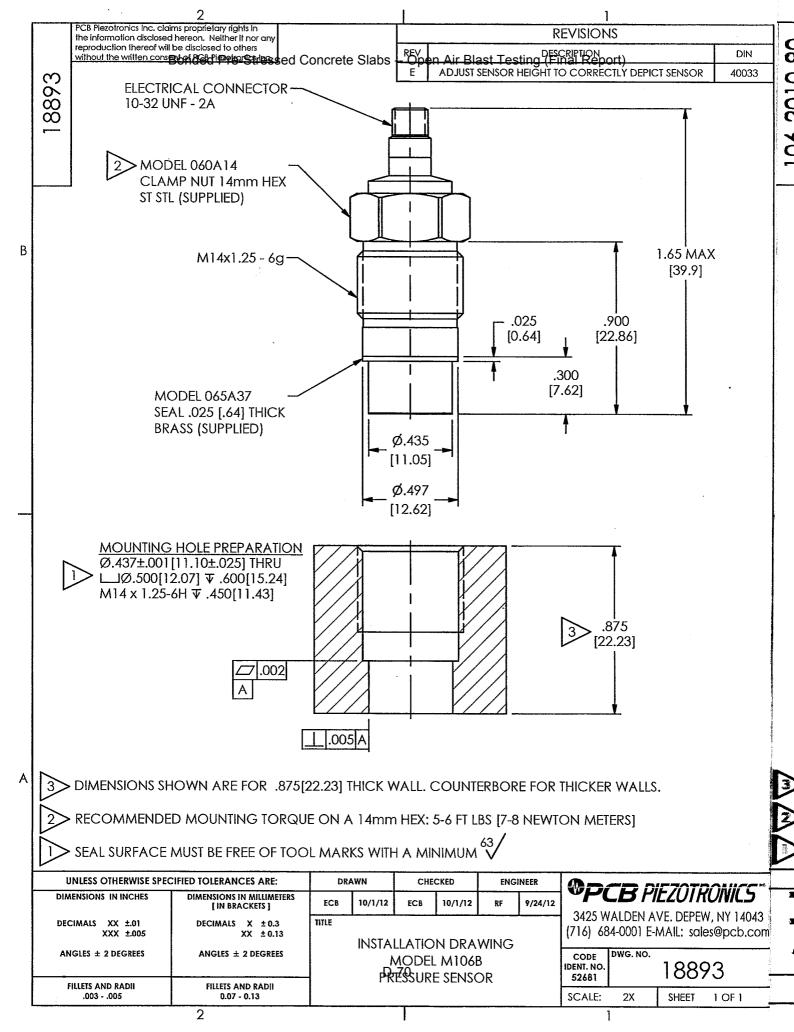
8.0 MAINTENANCE

The sealed construction of the 106B Series precludes field maintenance and repair.

Should the time constant degrade or should an abnormality appear in the normal bias voltage, bake the unit in a +250 °F oven for 1 to 2 hours, then retest.

If this does not remove the problem, or should other problems occur, contact the factory for assistance in tracing the problem or for instructions on returning the unit for repair or replacement.

9.0 **PRECAUTIONS**


- 1. Do not apply voltage to the units without a current-limiting device (20 mA maximum) in the line, such as is incorporated in all PCB signal conditioners. To do so will destroy the built-in amplifier.
- 2. Do not subject these sensors to temperatures exceeding 250 °F.
- 3. Use caution when applying and releasing high static pressures (as outlined in Section 7.0 of this guide) to avoid destroying built-in amplifier.
- 4. Do not exceed maximum pressure rating.


Manual Number: 21083 Revision: A ECR Number: 24751

®ICP is a registered trademark of PCB Piezotronics

1. III PARAMA

Medel Number		ICP@ PRESSURE SENSOR	SENSOR	
Performanuce Measurement Range(for ±2.5V output) Senstitvitvt ± 15 %)	ENGLISH 8.3 psl 300 mVbsi	S 57.2 kPa 43.5 mV/kPa	OPTIONAL VERSIONS Optional versions have identical specifications and accessories as listed for the standard model except where noted below. More than one option may be used.	ird model
Maximum Pressure(step)	200 psi	1379 kPa		
Maximum Pressure	2 kpsi	13,790 kPa	E - Emralon coating	
Resolution	0.1 mpsi	0,00069 kPa [1]	Coating Emralon Emralon	
Resonant Frequency	≥ 60 kHz	≥ 60 kHz	Electrical Isolation 10 ⁸ ohm 10 ⁸ ohm	
Rise Time	s 9 µ sec	s 9 µ sec	Supplied Accessory : Model 065A47 Seal ring 0.497 OD x 0.437 ID x 0.025 thk Delrin (3)	(3)
Low Frequency Response(-5 %)	0.5 Hz			
Non-Linearity	≤ 1 % FS	≤1%FS [2]	J - Ground Isolated	(4)
Environmental				
Acceleration Sensitivity	≤ 0.002 psi/g	≤ 0.0014 kPa/(m/s²)	f Digital Memory and Communication Compliant v	4
Temperature Range(Operating)	-65 to +250 °F	-54 to +121 °C	Output Bias Voltage 3.7 to 8.7 VDC 3.7 to 8.7 VDC 3.7 to 8.7 VDC	
Temperature Coefficient of Sensitivity	≤ 0.05 %/°F	≤ 0.09 %/°C		
Maximum Flash Temperature	3000	1649 °C	W - Water Resistant Cable	[2]
Maximum Shock	2000 g pk	19,600 m/s² pk	Supplied Accessory : Model 060A12 Clamp nut, 9/16-18-2A thd, 9/16" hex (1)	
	;	;		5
Output Polarity(Positive Pressure)	Positive	Positive	WM - Water Resistant Cable	0
Discharge Time Constant(at room temp)	≥ 1 sec	≥ 1 sec	Supplied Accessory : Model UoUA14 Metric clamp nut, M14 X [#20-09 und, 14 mm nex, stainless aton (1)	stainless
Excitation Voltage	12 to 30 VDC	12 to 30 VDC		
Constant Current Excitation	2 to 20 mA	2 to 20 mA		· · ·
Output Impedance	≤ 100 ohm	s 100 ahm		
Output Bias Voltage	3 to 8 VDC	3 to 8 VDC	[1] Typical.	
Physical				
Sensing Geometry	Compression	Compression		. 1.11
Sensing Element	Quartz	Quartz		
Housing Material	304/304L Stainless Steel	304/304L Stainless Steel	[5] Clamp nut installed prior to cable attachment	
Diaphragray	316L. Stainless Steel	316L Stainless Steel		
Sealing 00	Welded Hermetic	Welded Hermetic	SLIDDI JED ACCESSORIES.	
Electrical Connector	10-32 Coaxial Jack	10-32 Coaxial Jack	Model 060A12 Clamp nut: 9/16-18-2A thd: 9/16" hex (1)	
Weight	0.63 oz	18.0 gm	Model 060A14 Metric clamp nut, M14 x 1.25-69 thd, 14 mm hex, stainless steel (1)	
			Model 065A37 Seal ring 0.497 OD x 0.437 ID x 0.025 thk Brass (3)	
L			Entered: N < Engineer: M Sales: DW Mproved: DF Spec N	Sner Numher
· ・ ・ ・ ・ ・				
			Date: 101, 71/22 [Date: 10/9//72 [Date:10/3//02 [Date:10]-9/02] 106-20	106-2010-80
All specifications are at room temperature unless otherwise specified. In the interest of constant product improvement, we reserve the right to change specifications without notice.	is otherwise specified. , we reserve the right to change s	pecifications without notice.		
ICP [®] is a registered trademark of PCB Group, Inc.	ЦС.			
			Phone: 716-684-0001	
			3425 Walden Avenue, Depew, NY 14043	115355

APPENDIX E. TEST RESULTS DOCUMENTATION

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
<u>Project Number:</u>	1507-11	Charge Weight: 1300 lb
<u>Test Number:</u>	Test 1 - Panel 5	Charge Standoff: 30 ft to Center of Charge
<u>Test Date:</u>	January 7, 2016	Pre-Test Specimen Temperature: 36 °F

		Spe	cimen Description		
Height	Width	Thickness	Prestress Level	Conventional Reinf. Level	Compressive Strength
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	725 psi (5 MPa)	5.9 lb/ft ³ (95 kg/m ³)	9430 psi (65.0 MPa)

Specimen Response

Description: The blast load resulted in significant front face scabbing of the concrete cover. On the back face, the test panel showed prominent cracking/crushing along the vertical supports and the bottom horizontal support. Horizontal cracks up to 1/4-inch (6mm) thick occurred near, but below the panel midheight. Lighter cracking was visible over a wide region in the center of the panel. Cracking through the thickness of the slab was also observed.

The maximum inbound permanent deflection recorded was 2.7 inches (68 mm). No rebound deflection was noted post-test.

Damage to the steel frame was observed after testing completed, particularly along the welds at the upper corners. Significant deformation of the steel pedestals was also visible.

Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

Permanent Deflection (see deflection measurement table)

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

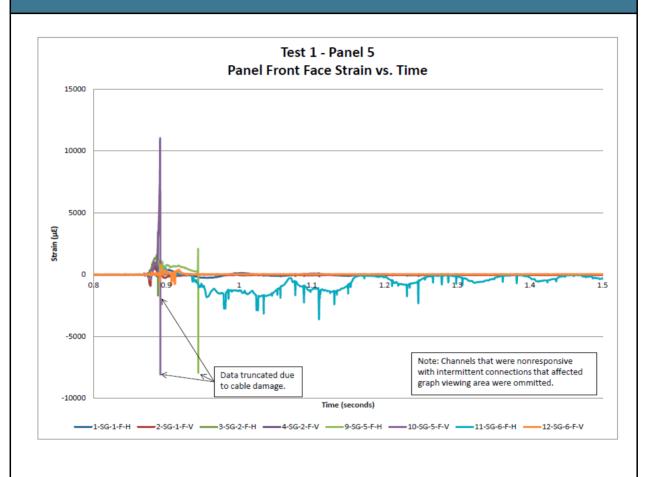
ASME PT Slab Testing 1507-11 Test 1 - Panel 5 January 7, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

EXTREME LOAD TESTING

Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes	
1	1-SG-1-F-H	849	0.8818		
2	2-SG-1-F-V	-914	0.8782	Broken wire after 3.86 seconds	
3	3-SG-2-F-H	3441	0.8885	Wire broken at 0.8886 seconds	
4	4-SG-2-F-V	669	0.8891		
5	5-SG-3-F-H	N/A	N/A	Intermittent connection	
6	6-SG-3-F-V	N/A	N/A	Intermittent connection and broken wire	
7	7-SG-4-F-H	N/A	N/A	Intermittent connection	
8	8-SG-4-F-V	N/A	N/A	Intermittent connection	
9	9-SG-5-F-H	1190	0.8864	Broken wire at 0.9432 seconds	
10	10-SG-5-F-V	11,056	0.8916	Broken wire at 0.8916 seconds	
11	11-SG-6-F-H	614	0.8907	Intermittent connection from 0.935 to 1.74 s	
12	12-SG-6-F-V	411	0.9172	Intermittent connection from 0.89 to 0.91 s	
13	13-SG-1-R-H	N/A	N/A	No sensor response	
14	14-SG-1-R-V	N/A	N/A	No sensor response	
15	15-SG-2-R-H	N/A	N/A	No sensor response	
16	16-SG-2-R-V	N/A	N/A	No sensor response	
17	17-SG-3-R-H	-317	0.8779		
18	18-SG-3-R-V	N/A	N/A	No sensor response	
19	19-SG-4-R-H	N/A	N/A	No sensor response	
20	20-SG-4-R-V	-2316	0.8806	Wire broken at 0.8810 seconds	
21	21-SG-5-R-H	N/A	N/A	No sensor response	
22	22-SG-5-R-V	N/A	N/A	No sensor response	
23	23-SG-6-R-H	N/A	N/A	No sensor response	
24	24-SG-6-R-V	N/A	N/A	No sensor response	
25	25-SG-7-R-H	-142	0.9071		
26	26-SG-7-R-V	N/A	N/A	No sensor response	
27	27-SG-8-R-H	N/A	N/A	No sensor response	
28	28-SG-8-R-V	N/A	N/A	No sensor response	
29	29-SG-9-R-H	N/A	N/A	No sensor response	
30	30-SG-10-R-V	N/A	N/A	No sensor response	

ng



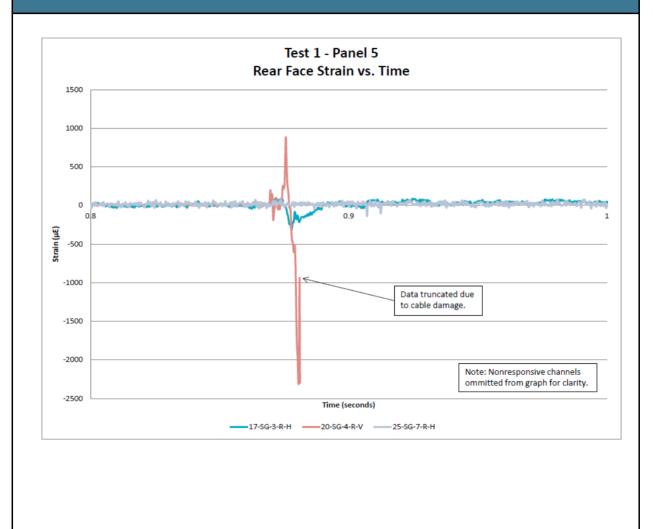
Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testi
1507-11
Test 1 - Panel 5
January 7, 2016

Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

ng

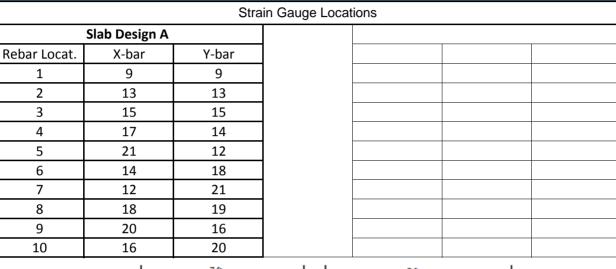


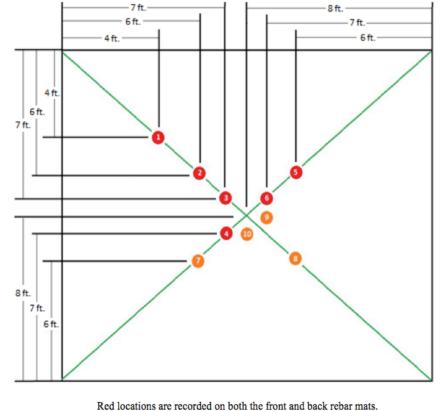
Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Test	i
1507-11	
Test 1 - Panel 5	
January 7, 2016	

Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge




Testing Data Sheet

Project Name:
<u> Project Number:</u>
<u>Test Number:</u>
Test Date:

ASME PT Slab Testing 1507-11 Test 1 - Panel 5 January 7, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

EXTREME LOAD TESTING

Orange locations are recorded on both the nont and back rebar mat.

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u> ASME PT Slab Testing 1507-11 Test 1 - Panel 5 January 7, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

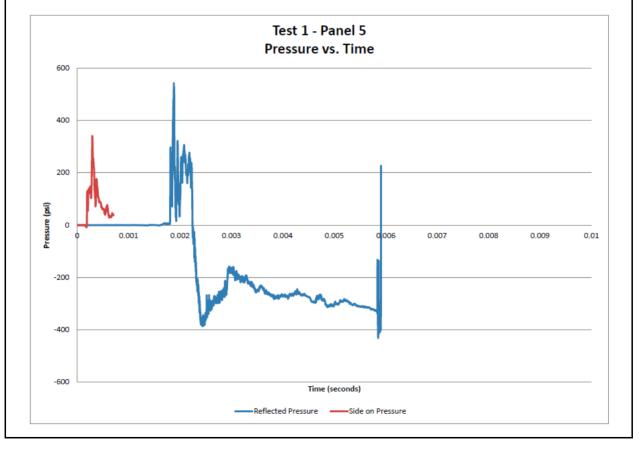
EXTREME LOAD TESTING

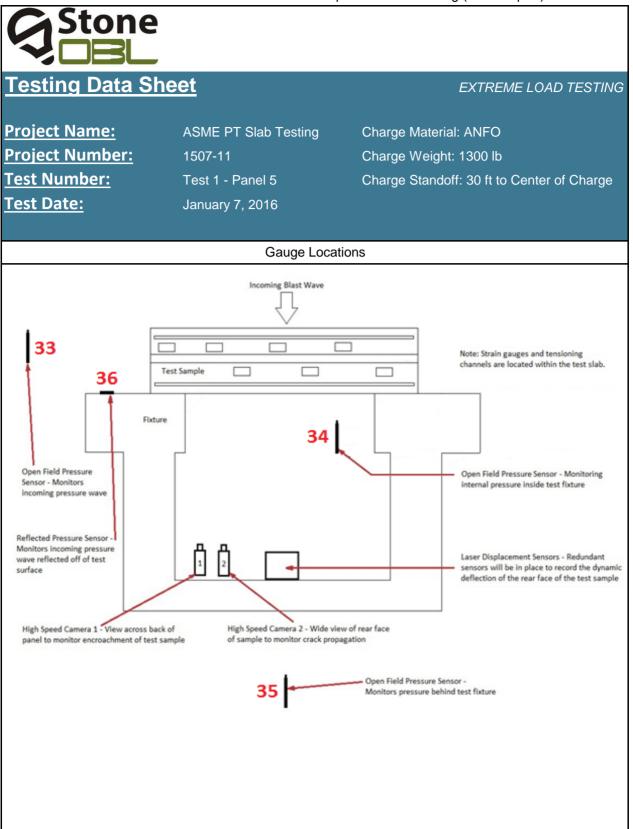
Displacement Gauge Information (see attached diagram for locations)

	Maximum	Time of	Permanent	
Gauge	Positve	Maximum	Positive	Notes
Number	Displacement	Positive Disp.	Displacement	noies
	(mm)	(s)	(mm)	
31	N/A	N/A	67	Sensor functional, broken wire between amplifier and data acquisition system
32	N/A	N/A	68	Sensor functional, broken wire between amplifier and data acquisition system

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

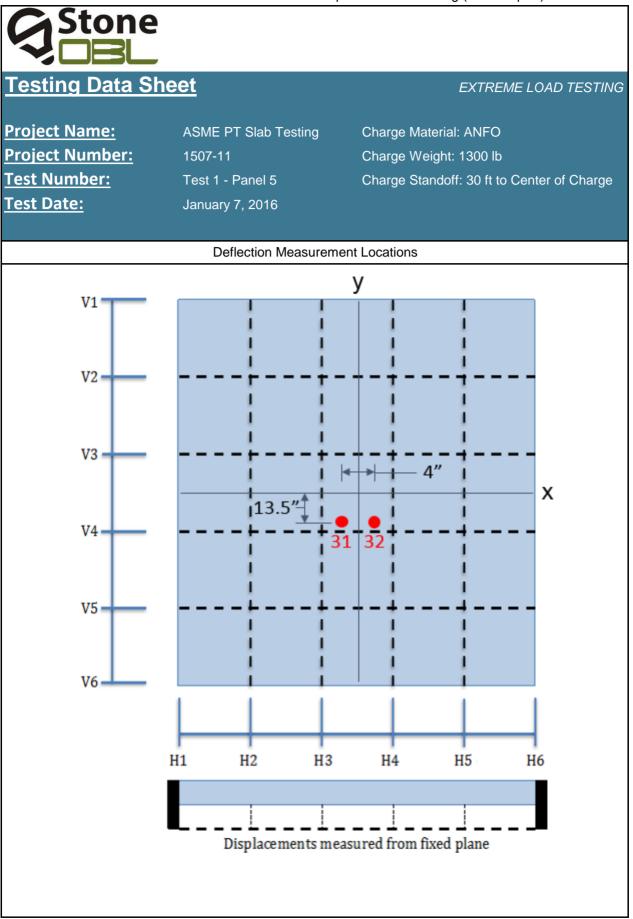

ASME PT Slab Testing 1507-11 Test 1 - Panel 5 January 7, 2016 Charge Material: ANFO Charge Weight: 1300 lb


EXTREME LOAD TESTING

Charge Standoff: 30 ft to Center of Charge

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes
33	341	52.3	N/A	N/A	Wire broken after 0.000705 s
34	5.7	7.8	-5.7	N/A	Located inside test fixture
35	14.8	94.2	N/A	N/A	Located behind test fixture
36	542	92.4	-387	N/A	Signal becomes noisy after 0.0058 seconds



EXTREME LOAD TESTING

Project Name:	
Project Number:	
<u>Test Number:</u>	
Test Date:	

ASME PT Slab Testing 1507-11 Test 1 - Panel 5 January 7, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

Deflection Measurements - Interior Face of Specimen						
Vertical	Horizontal	Initial	Final		Permanent	Permanent
Location	Location		Measurement		Deflection	Deflection (in)
		(in)	(in)		(mm)	Defiection (iii)
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2					
V2	H3					
V2	H4					
V2	H5					
V2	H6					
V3	H1					
V3	H2					
V3	H3					
V3	H4					
V3	H5					
V3	H6					
V4	H1	2.375	1.625		19.1	0.750
V4	H2	1.875				
V4	H3	1.75				
V4	H4	1.625				
V4	H5	1.625	0.875		19.1	0.750
V4	H6	2.25	1.75		12.7	0.500
V5	H1	2.375	2		9.5	0.375
V5	H2	1.8125	0.75		27.0	1.063
V5	H3	1.75				
V5	H4	1.6875				
V5	H5	1.625	1		15.9	0.625
V5	H6	2.25	1.75		12.7	0.500
V6	H1	2.375	2.5		-3.2	-0.125
V6	H2	2.25	1.625		15.9	0.625
V6	H3	2.25	1.375		22.2	0.875
V6	H4	2.25	1.25		25.4	1.000
V6	H5	2.125	1.25		22.2	0.875
V6	H6	2.25	2.25		0.0	0.000

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
<u>Project Number:</u>	1507-11	Charge Weight: 1300 lb
<u>Test Number:</u>	Test 2 - Panel 1	Charge Standoff: 30 ft to Center of Charge
<u>Test Date:</u>	January 8, 2016	Pre-Test Specimen Temperature: 17 °F

Specimen Description								
Height	Width	Thickness	Prestres Level	s Conventional Reinf. Level	Compressive Strength			
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	725 psi (5 MPa)		7830 psi (54.0 MPa)			

Specimen Response

Description: The blast load resulted in significant front face scabbing of the concrete cover. On the back face, the test panel showed prominent cracking/crushing along the vertical supports. Horizontal cracks up to 1/4-inch (6mm) thick occurred near, but below the panel mid-height. Lighter cracking was visible over a wide region in the center of the panel. Cracking through the thickness of the slab was also observed.

The maximum deflection recorded with the laser sensors was 5.8 inches (148 mm) a few inches above a horizontal crack located 18 inches (457 mm) below the slab mid-height. The manual displacement reader recorded a maximum deflection at this crack of 6.8 inches (171 mm). A maximum inbound permanent deflection of 4.6 inches (117 mm) was observed, while no rebound deflection was noted post-test.

Damage to the steel frame was observed after testing completed, particularly along the welds at the upper corners. Visible, but less prominent damage occurred at the weld at the bottom left corner of the frame.

Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

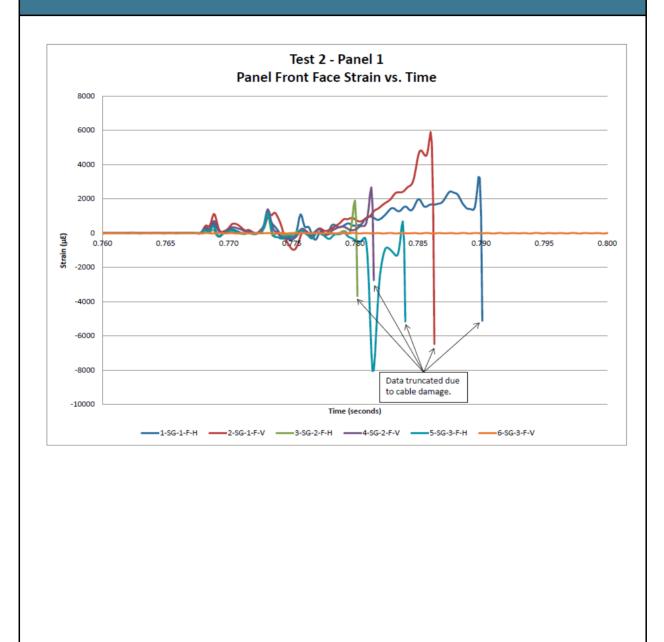
Permanent Deflection (see deflection measurement table)

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016 EXTREME LOAD TESTING

Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

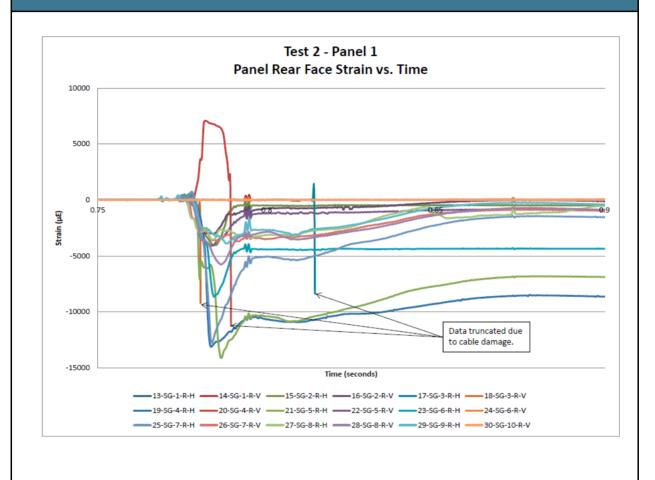
Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)


Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	3287	0.7898	4' down in center, Wire broken at 0.7900 s
2	2-SG-2-F-H	5911	0.7860	Center of panel, Wire broken at 0.7862 s
3	3-SG-3-F-H	1911	0.7800	12' down in center, Wire broken at 0.7801 s
4	4-SG-1-F-V	2679	0.7813	4' from left edge, Wire broken at 0.7815 s
5	5-SG-2-F-V	1221	0.7731	Center of panel, Wire broken at 0.7809 s
6	6-SG-3-F-V	N/A	N/A	12' from left edge, Sensor had no response
7	7-SG-4-F-H	N/A	N/A	No strain gauge installed
8	8-SG-4-F-V	N/A	N/A	No strain gauge installed
9	9-SG-5-F-H	N/A	N/A	No strain gauge installed
10	10-SG-5-F-V	N/A	N/A	No strain gauge installed
11	11-SG-6-F-H	N/A	N/A	No strain gauge installed
12	12-SG-6-F-V	N/A	N/A	No strain gauge installed
13	13-SG-1-R-H	465	0.7948	
14	14-SG-1-R-V	-4051	0.7843	
15	15-SG-2-R-H	-3013	0.7838	
16	16-SG-2-R-V	N/A	N/A	Noisy Connection
17	17-SG-3-R-H	-888	0.7798	Wire broken at 0.7804 s
18	18-SG-3-R-V	-13,134	0.7836	Permanent Strain: -8890 µE
19	19-SG-4-R-H	7081	0.7819	Wire broken at 0.7894 s
20	20-SG-4-R-V	-14,152	0.7866	Permanent Strain: -6910 µE
21	21-SG-5-R-H	-4093	0.7837	Permanent Strain: -1040 µE
22	22-SG-5-R-V	-8654	0.7845	Permanent Strain: -4435 µE
23	23-SG-6-R-H	209	0.7947	
24	24-SG-6-R-V	-12,791	0.7838	Permanent Strain: -1640 µE
25	25-SG-7-R-H	-3707	0.7918	Permanent Strain: -1100 µE
26	26-SG-7-R-V	-3535	0.7839	Permanent Strain: -800 µ8
27	27-SG-8-R-H	-5757	0.7865	Permanent Strain: -1100 µE
28	28-SG-8-R-V	-3899	0.7881	Permanent Strain: -600 µ8
29	29-SG-9-R-H	N/A	N/A	Strain gauge had no response
30	30-SG-10-R-V	-5313	0.7868	Permanent Strain: -2400 µE

Testing Data Sheet

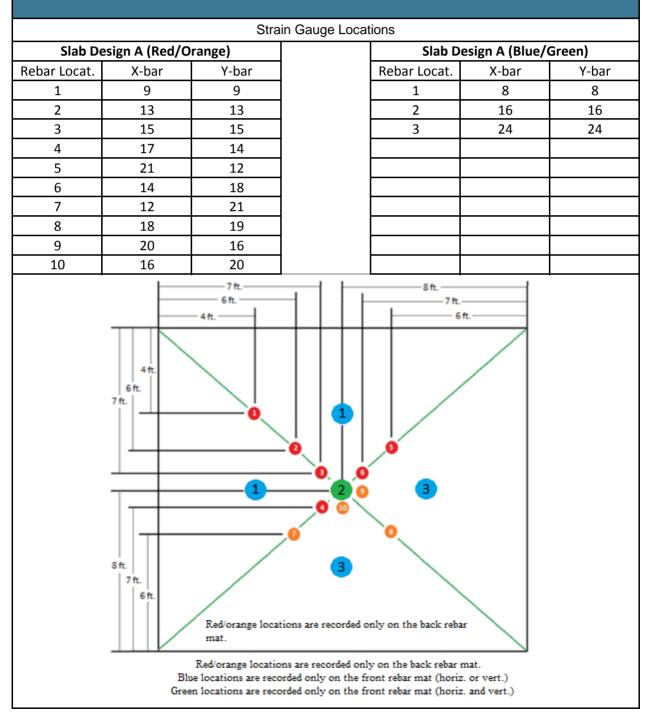
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u> ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016

Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge



Testing Data Sheet

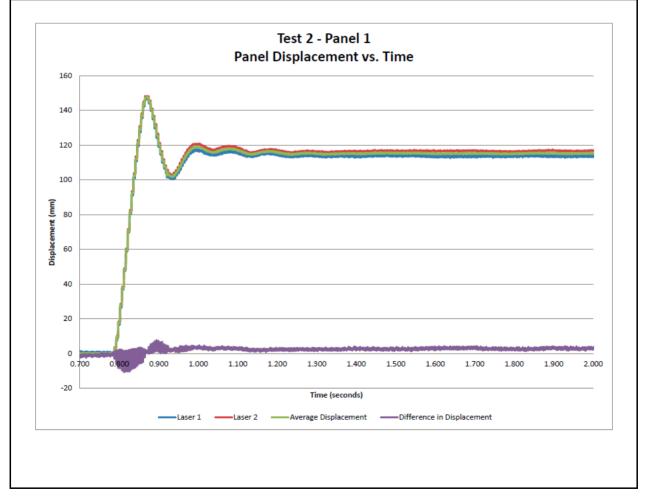
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u> ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016


Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

Project Name:	
Project Number:	
<u>Test Number:</u>	
Test Date:	

ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

Testing Data Sheet


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

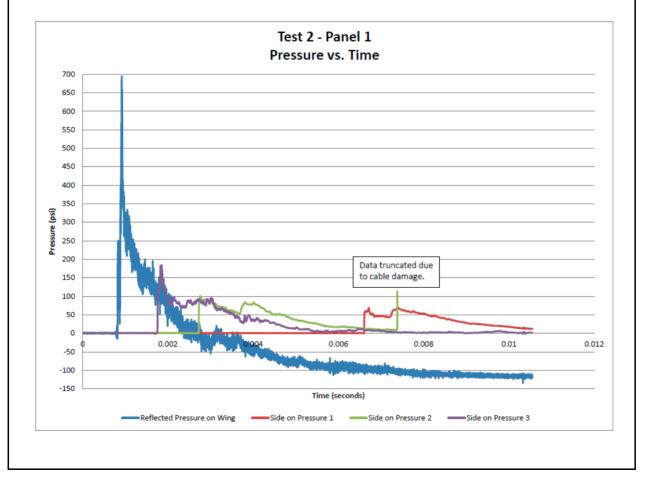
EXTREME LOAD TESTING

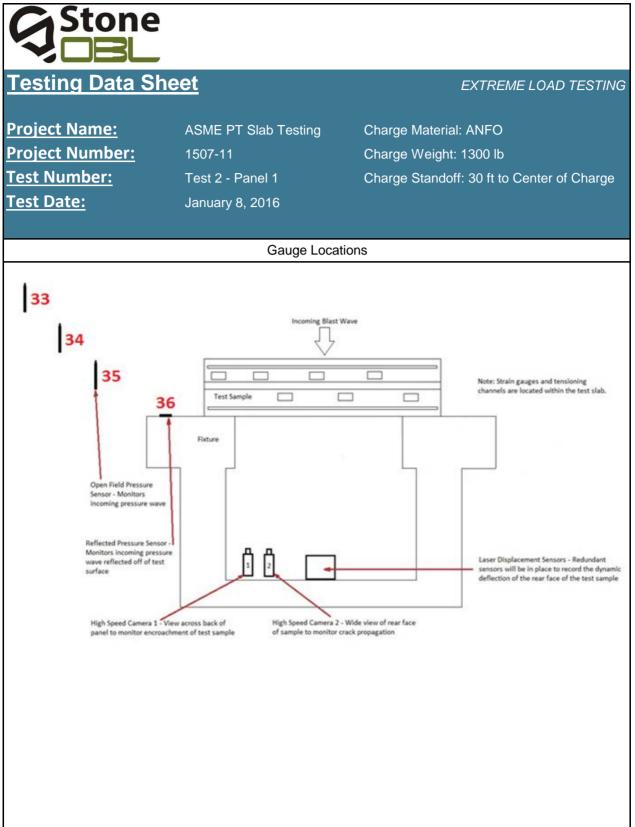
Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

ľ		Maximum	Maximum Time of Permanent Positve Maximum Positive		
	Gauge	Positve			Notes
	Number	Displacement	Positive Disp.	Displacement	Notes
		(mm)	(s)	(mm)	
	31	148	0.8715	113	Located 13.5 inches below slab centerline
	32	148	0.8721	117	Located 2.3 inches below slab centerline

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

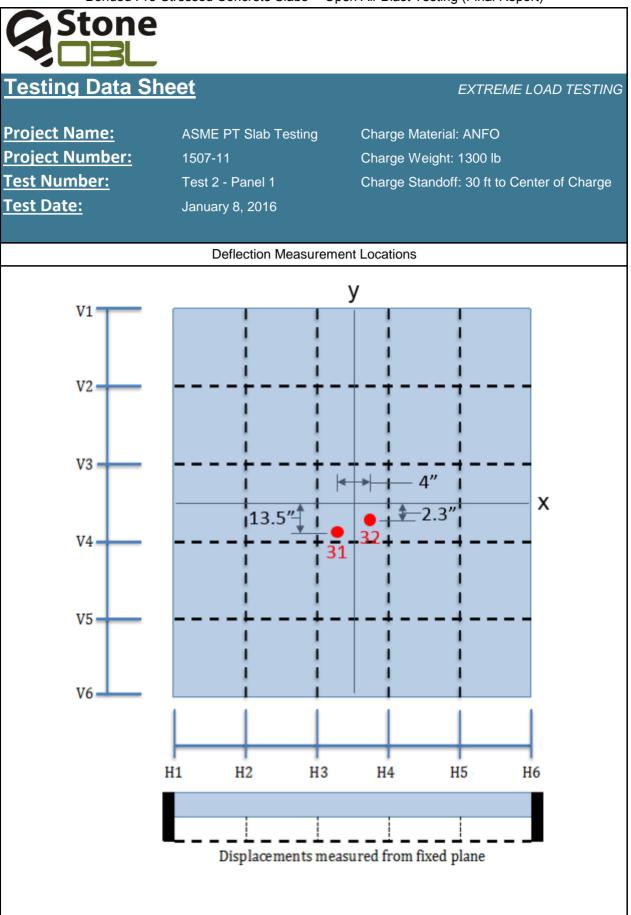

ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016 Charge Material: ANFO Charge Weight: 1300 lb


EXTREME LOAD TESTING

Charge Standoff: 30 ft to Center of Charge

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes
33	69.1	152	N/A	N/A	
34	101	195	N/A	N/A	
35	148	218	N/A	N/A	
36	695	239	-135	N/A	



EXTREME LOAD TESTING

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 2 - Panel 1 January 8, 2016 Charge Material: ANFO Charge Weight: 1300 lb Charge Standoff: 30 ft to Center of Charge

	Def	lection Measure	ements - Interio	r Face of Speci	men	
Vertical	Horizontal	Initial	Final		Permanent	Permanent
Location	Location	Measurement	Measurement		Deflection	Deflection (in)
		(ft)	(ft)		(mm)	Denection (in)
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.17	12.02		45.7	1.800
V2	H3	12.18	11.98		61.0	2.400
V2	H4	12.19	11.8		118.9	4.680
V2	H5	12.18	11.99		57.9	2.280
V2	H6					
V3	H1					
V3	H2	12.18	11.95		70.1	2.760
V3	H3	12.18	11.89		88.4	3.480
V3	H4	12.18	11.87		94.5	3.720
V3	H5	12.17	11.88		88.4	3.480
V3	H6					
V4	H1					
V4	H2	12.2	11.88		97.5	3.840
V4	H3	12.2	11.82		115.8	4.560
V4	H4	12.18	11.79		118.9	4.680
V4	H5	12.15	11.87		85.3	3.360
V4	H6					
V5	H1					
V5	H2	12.24	12.2		12.2	0.480
V5	H3	12.21	11.94		82.3	3.240
V5	H4	12.19	11.92		82.3	3.240
V5	H5	12.17	11.94		70.1	2.760
V5	H6					
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5					
V6	H6					

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
Project Number:	1507-11	Charge Weight: 2300 lb
<u>Test Number:</u>	Test 3 - Panel 2	Charge Standoff: 45 ft to Center of Charge
<u>Test Date:</u>	September 22, 2016	Pre-Test Specimen Temperature: 57 °F

Specimen Description								
Height	Width	Thickness	Prestress Level	Conventional Reinf. Level	Compressive Strength			
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	1450 psi (10 MPa)	5.9 lb/ft ³ (95 kg/m ³)	7620 psi (52.5 MPa)			

Specimen Response

Description: The blast load resulted in significant front face scabbing of the concrete cover. On the back face, the test panel showed light cracking over the entire surface. The most pronounced cracking occurred near the middle of the slab (0.05 inch or 1.3 mm wide) and along the bottom horizontal support (0.1 inch or 2.5 mm). No damage was observed to the stiffened steel frame.

The maximum deflection recorded with the laser sensors was 4.7 inches (120 mm) near the center of the slab. The permanent set near the slab center point was approximately 3.9 inches (100 mm).

Upon removal of the panel from the test fixture, cracking through the slab thickness was observed along the edges. Disengagement of the concrete layers above and below the PT strands was recorded. This disengagement generally ranged from 3/8-inch (9.5 mm) to ½-inch (13 mm).

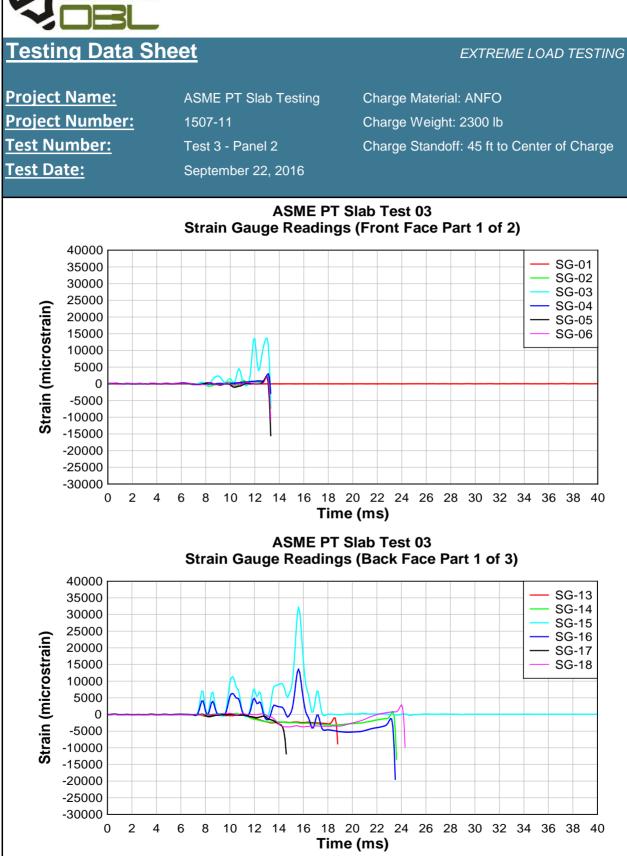
Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

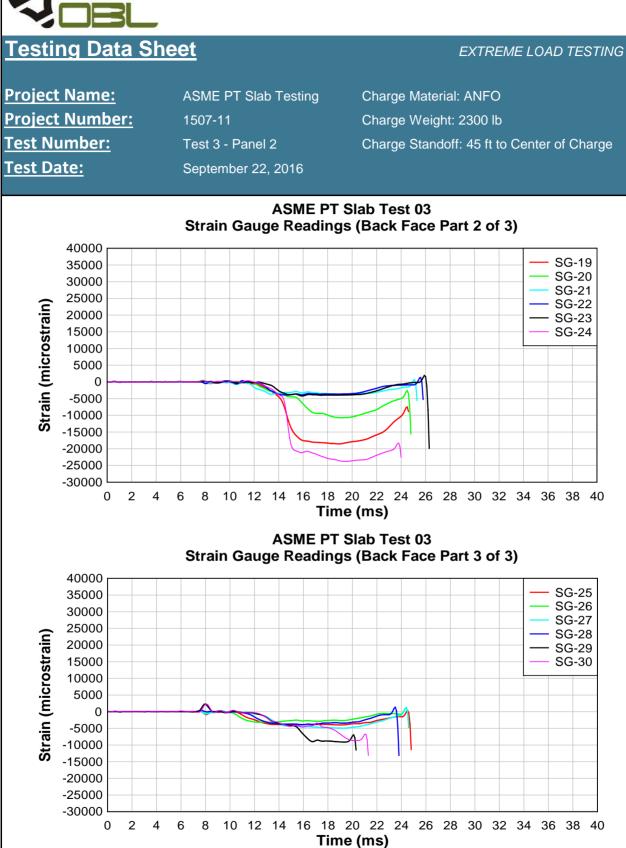
Pressure Gauge Information (see attached gauge summary)

Permanent Deflection (see deflection measurement table)

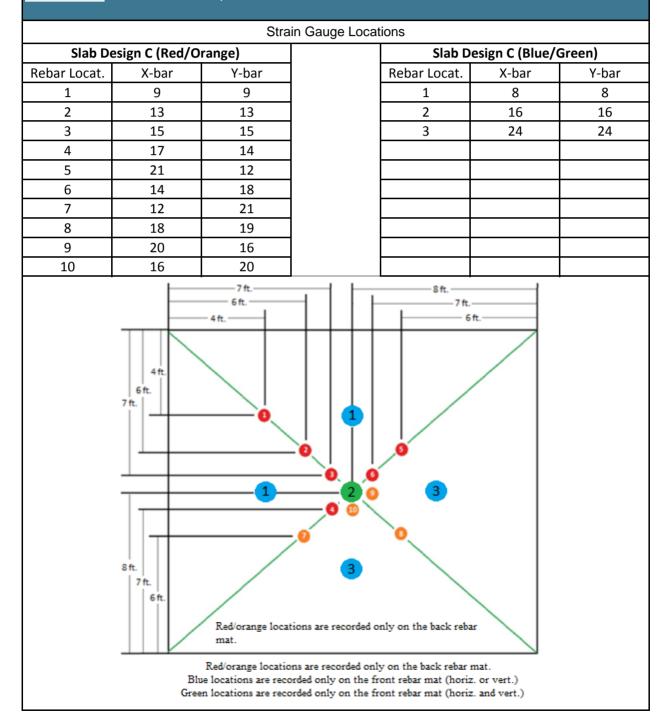
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>


ASME PT Slab Testing 1507-11 Test 3 - Panel 2 September 22, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING


Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

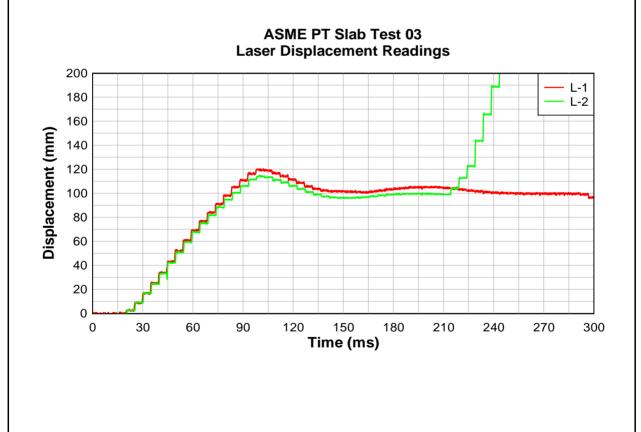
Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	N/A	N/A	4' down in center, Sensor had no response
2	2-SG-2-F-H	2369	0.0130	Center of panel, Wire broken at 0.013 s
3	3-SG-3-F-H	13,662	0.0130	12' down in center, Wire broken at 0.013 s
4	4-SG-1-F-V	3004	0.0131	4' from left edge, Wire broken at 0.0131 s
5	5-SG-2-F-V	2231	0.0130	Center of panel, Wire broken at 0.013 s
6	6-SG-3-F-V	N/A	N/A	12' from left edge, Sensor had no response
7	7-SG-4-F-H	N/A	N/A	No strain gauge installed
8	8-SG-4-F-V	N/A	N/A	No strain gauge installed
9	9-SG-5-F-H	N/A	N/A	No strain gauge installed
10	10-SG-5-F-V	N/A	N/A	No strain gauge installed
11	11-SG-6-F-H	N/A	N/A	No strain gauge installed
12	12-SG-6-F-V	N/A	N/A	No strain gauge installed
13	13-SG-1-R-H	-2835	0.0181	Wire broken at 0.0185
14	14-SG-1-R-V	-3166	0.0184	Wire broken at 0.0232
15	15-SG-2-R-H	32,241	0.0156	Possible noisy connection
16	16-SG-2-R-V	13,599	0.0156	Possible noisy connection
17	17-SG-3-R-H	-3767	0.0143	Wire broken at 0.0143 s
18	18-SG-3-R-V	-13,134	0.7836	Wire broken at 0.024 s
19	19-SG-4-R-H	-18,538	0.0189	Wire broken at 0.0245 s
20	20-SG-4-R-V	-10,735	0.0191	Wire broken at 0.0245 s
21	21-SG-5-R-H	-3709	0.0188	Wire broken at 0.0251 s
22	22-SG-5-R-V	-3896	0.0148	Wire broken at 0.0256 s
23	23-SG-6-R-H	-4199	0.0159	Wire broken at 0.0259 s
24	24-SG-6-R-V	-23,783	0.0194	Wire broken at 0.0238 s
25	25-SG-7-R-H	-3967	0.0191	Wire broken at 0.0245 s
26	26-SG-7-R-V	-3206	0.0133	Wire broken at 0.0244 s
27	27-SG-8-R-H	-4964	0.0193	Wire broken at 0.0244 s
28	28-SG-8-R-V	-3871	0.0159	Wire broken at 0.0235 s
29	29-SG-9-R-H	-9105	0.0194	Wire broken at 0.0201 s
30	30-SG-10-R-V	-8669	0.0203	Wire broken at 0.021 s



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 3 - Panel 2 September 22, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

Testing Data Sheet

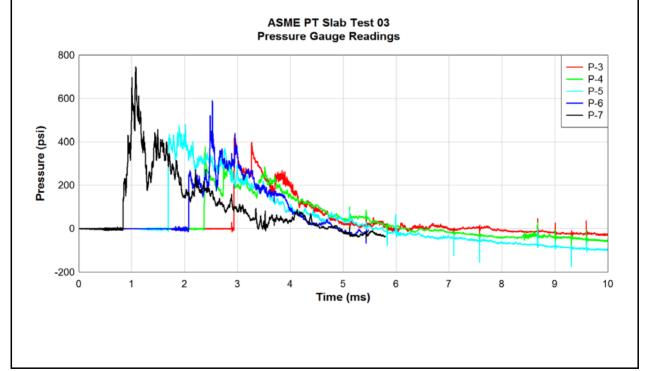

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

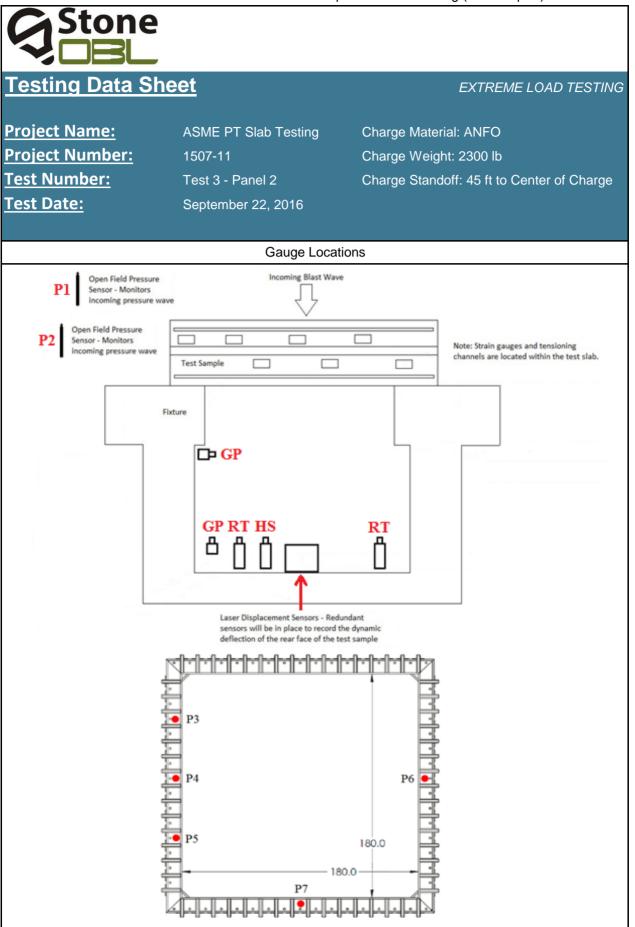
ASME PT Slab Testing 1507-11 Test 3 - Panel 2 September 22, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

	Maximum	Time of	Permanent	
Gauge	Positve	Maximum	Positive	Notes
Number	Displacement	nt Positive Disp. Displacement	110165	
	(mm)	(s)	(mm)	
31	120	0.1002	104	
32	115	0.1002	100	

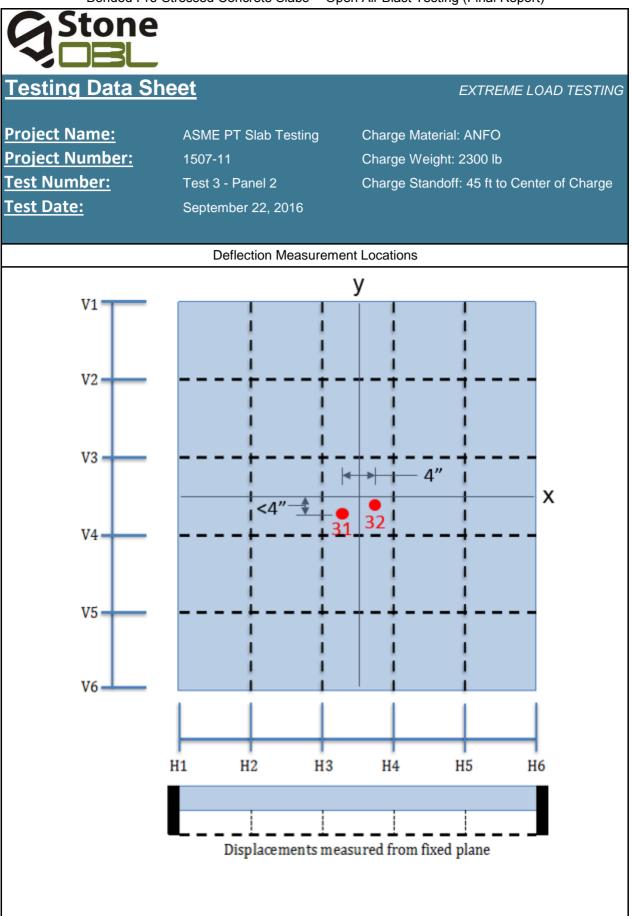

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>


ASME PT Slab Testing 1507-11 Test 3 - Panel 2 September 22, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

					-
Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes
P1	N/A	N/A	N/A	N/A	Located 45 ft from charge; data read error
P2	155	416	N/A	N/A	Located 54 ft from charge
P3	431	398	-97.6	N/A	
P4	379	481	-122	N/A	
P5	479	667	-178	N/A	
P6	590	482	-64.6	N/A	
P7	747	616	-46.2	N/A	
1					



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 3 - Panel 2 September 22, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

Def			r Face of Spec	imen	
Horizoptal				Permanent	Permanent
					Deflection (in)
	(ft)	(ft)		(mm)	Denection (iii)
					1.920
					3.000
H4	12.33	12.08		76.2	3.000
	12.33	12.08		76.2	3.000
H6					
H1					
H2	12.33	12.08		76.2	3.000
H3	12.33	12		100.6	3.960
H4	12.33	12		100.6	3.960
H5	12.33	12.08		76.2	3.000
H6					
H1					
H2	12.33	12.08		76.2	3.000
H3	12.33	12		100.6	3.960
H4	12.33	12		100.6	3.960
H5	12.33	12.08		76.2	3.000
H6					
H1					1
H2	12.33	12.17		48.8	1.920
H3	12.33	12.17		48.8	1.920
H4	12.33	12.08		76.2	3.000
H5	12.25	12.17		24.4	0.960
H6	Ī			Ī	1
H1	Ī			Ī	1
H2	Ī				1
H3					1
H4					1
H5					1
H6					1
	Horizontal Location H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H1 H2 H3 H4 H5 H6 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H3 H4 H5 H6 H1 H2 H5 H6 H1 H2 H3 H4 H4 H5 H5 H6 H1 H2 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H3 H4 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H3 H4 H5 H5 H6 H1 H1 H2 H5 H6 H1 H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4 H1 H1 H2 H3 H4 H1 H1 H2 H3 H4 H1 H1 H1 H2 H3 H4 H1 H1 H1 H1 H1 H1 H2 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1	Horizontal LocationInitial Measurement (ft)H1 (ft) H1 (ft) H2 (ft) H3 (ft) H4 (ft) H5 (ft) H6 (ft) H1 (ft) H2 12.33 H3 12.33 H4 12.33 H5 12.33 H6 (ft) H1 (ft) H2 12.33 H4 12.33 H5 12.33 H6 (ft) H1 (ft) H2 12.33 H5 12.33 H6 (ft) H1 (ft) H2 12.33 H5 12.33 H6 (ft) H1 (ft) H2 12.33 H4 12.33 H5 12.25 H6 (ft) H1 (ft) H2 (ft) H3 (ft) H4 (ft) H3 (ft) H4 (ft) H3 (ft) H4 (ft) H3 (ft) H4 (ft) H4 (ft) H3 (ft) H4 (ft) H3 (ft) H4 (ft) H4 (ft) H3 (ft) H4	$\begin{array}{c c c c c c c c } \mbox{Horizontal}\\ \mbox{Location} & \mbox{Measurement} \\ Measure$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Horizontal LocationMeasurement (ft)Deflection (mm)H1(ft)(mm)H2(ft)(mm)H3(ft)(ft)H4(ft)(ft)H5(ft)(ft)H6(ft)(ft)H1(ft)(ft)H212.3312.17H312.3312.08H412.3312.08H512.3312.08H6(ft)H1(ft)H212.3312.0312.08H6(ft)H1(ft)H212.3312.3312100.6H412.3312.08(ft)H512.3312100.6H412.3312100.6H412.3312100.6H412.3312100.6H512.3312100.6H412.3312100.6H512.3312.08(ft)H6(ft)H1(ft)H212.3312.1748.8H312.3312.1748.8H412.3312.1724.4H6(ft)H1(ft)H212.2512.1724.4H6(ft)H3(ft)H4(ft)H3(ft)H4(ft) <t< td=""></t<>

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
Project Number:	1507-11	Charge Weight: 1700 lb
<u>Test Number:</u>	Test 4a - Panel 6	Charge Standoff: 45 ft to Center of Charge
<u>Test Date:</u>	September 26, 2016	Pre-Test Specimen Temperature: 92 °F

Specimen Description							
Height	Width	Thickness	Prestress Level	Conventional Reinf. Level	Compressive Strength		
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	1450 psi (10 MPa)	5.9 lb/ft ³ (95 kg/m ³)	7520 psi (51.8 MPa)		

Specimen Response

Description: The blast load resulted in only minor damage to the front and back faces. The interior surface of the concrete slab had minor hairline cracks from the edges that extend to hairline cracks along mid-span region. No crushing or scabbing of concrete along the exterior surface was noticed. No through-thickness disengagement of concrete was seen. No damage was observed to the stiffened steel frame.

The maximum deflection recorded with the laser sensors was approximately 0.6 inch (16 mm). No permanent deformation was observed near slab center point.

Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

Permanent Deflection (see deflection measurement table)

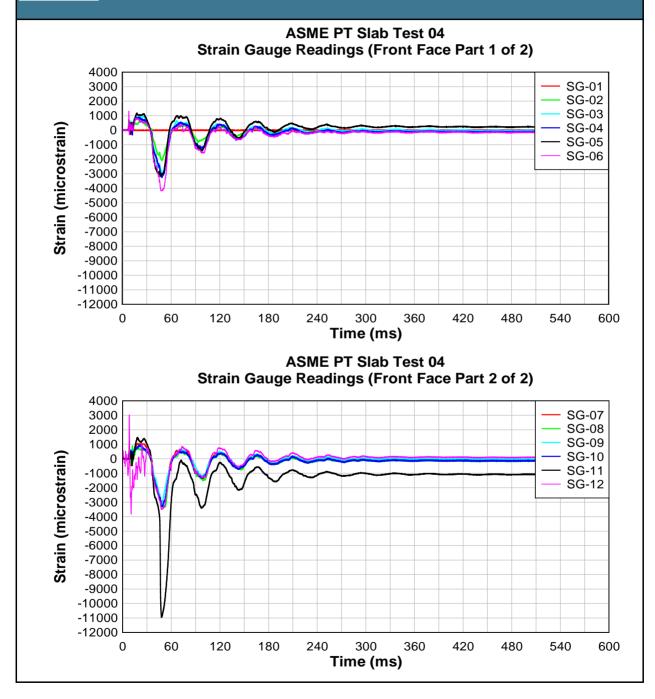
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 4a - Panel 6 September 26, 2016 Charge Material: ANFO Charge Weight: 1700 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

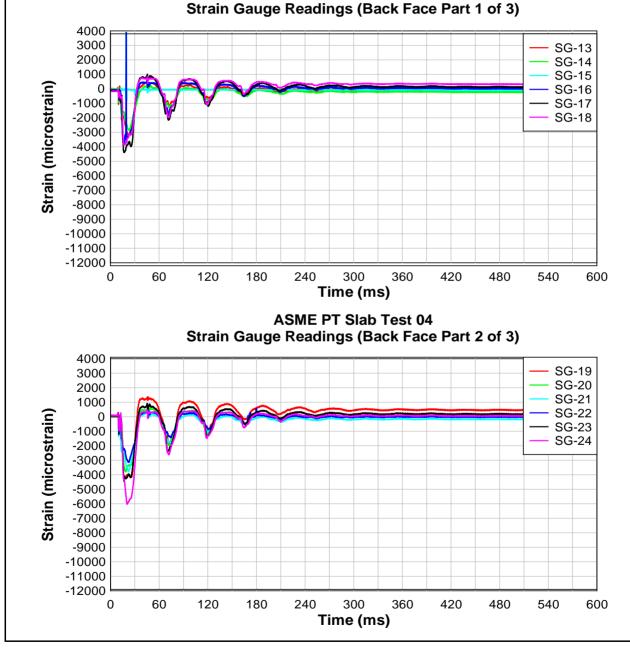
Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	N/A	N/A	Sensor had no response
2	2-SG-1-F-V	-2085	0.0486	Permanent strain: -70 με
3	3-SG-2-F-H	-2960	0.0497	
4	4-SG-2-F-V	-3248	0.0487	Permanent strain: -118 µ8
5	5-SG-3-F-H	-3167	0.0469	Permanent strain: 224 µ8
6	6-SG-3-F-V	-4174	0.0480	Permanent strain: -152 µ8
7	7-SG-4-F-H	-3034	0.0482	Permanent strain: -52 με
8	8-SG-4-F-V	-3323	0.0473	Permanent strain: -154 µE
9	9-SG-5-F-H	-3200	0.0475	
10	10-SG-5-F-V	-3319	0.0477	Permanent strain: -142 µE
11	11-SG-6-F-H	-10,940	0.0480	Permanent strain: -1087 με
12	12-SG-6-F-V	-3495	0.0479	Permanent strain: 94 µE
13	13-SG-1-R-H	-3156	0.0231	Permanent strain: -92 με
14	14-SG-1-R-V	-2813	0.0233	Permanent strain: -161 µE
15	15-SG-2-R-H	N/A	N/A	Sensor had no response
16	16-SG-2-R-V	-3743	0.0168	Permanent strain: 150 με
17	17-SG-3-R-H	-4242	0.0169	Permanent strain: 295 με
18	18-SG-3-R-V	-3699	0.0172	Permanent strain: 518 με
19	19-SG-4-R-H	-4230	0.0169	Permanent strain: 444 µ8
20	20-SG-4-R-V	-3803	0.0188	
21	21-SG-5-R-H	-3810	0.0225	Permanent strain: -224 µE
22	22-SG-5-R-V	-3191	0.0224	Permanent strain: -93 µE
23	23-SG-6-R-H	-4518	0.0168	Permanent strain: 100 με
24	24-SG-6-R-V	-6106	0.0205	Permanent strain: -42 µE
25	25-SG-7-R-H	-3135	0.0226	Permanent strain: -136 µE
26	26-SG-7-R-V	-3659	0.0236	Permanent strain: -192 µE
27	27-SG-8-R-H	-8932	0.0253	Permanent strain: -1686 µE
28	28-SG-8-R-V	-3792	0.0175	Permanent strain: 64 µE
29	29-SG-9-R-H	-4660	0.0244	Permanent strain: -86 µE
30	30-SG-10-R-V	-3519	0.0173	Permanent strain: 131 µ8

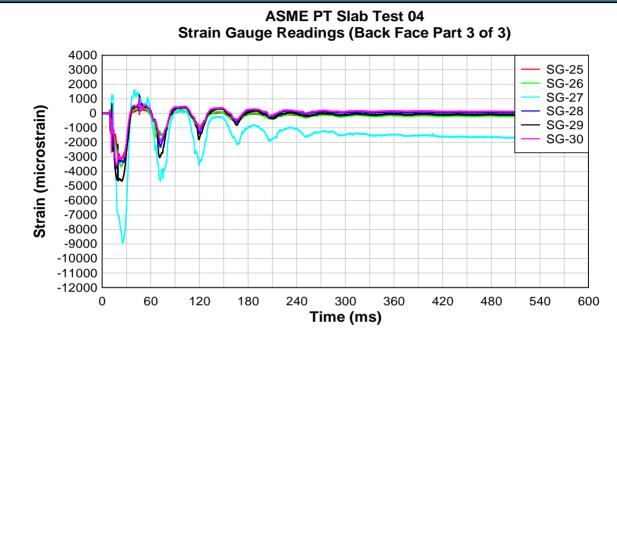

Test Date:

Testing Data Sheet EXTREME LOAD TESTING Project Name: ASME PT Slab Testing Charge Material: ANFO **Project Number:** Charge Weight: 1700 lb 1507-11 **Test Number:**

Test 4a - Panel 6

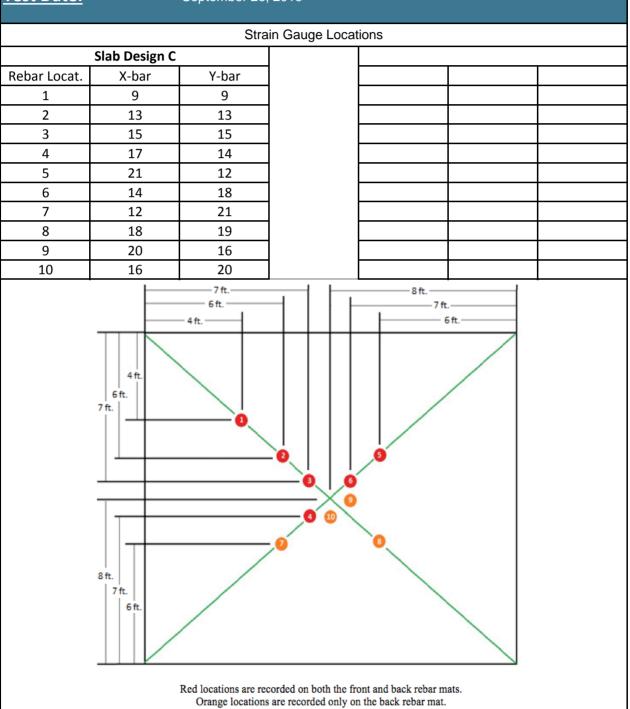

September 26, 2016

Charge Standoff: 45 ft to Center of Charge



Testing Data Sheet EXTREME LOAD TESTING Project Name: ASME PT Slab Testing Charge Material: ANFO Project Number: 1507-11 Charge Weight: 1700 lb Test Number: Test 4a - Panel 6 Charge Standoff: 45 ft to Center of Charge Test Date: September 26, 2016 September 26, 2016

Testing Data SheetEXTREME LOAD TESTINGProject Name:ASME PT Slab TestingCharge Material: ANFOProject Number:1507-11Charge Weight: 1700 lbTest Number:Test 4a - Panel 6Charge Standoff: 45 ft to Center of ChargeTest Date:September 26, 2016

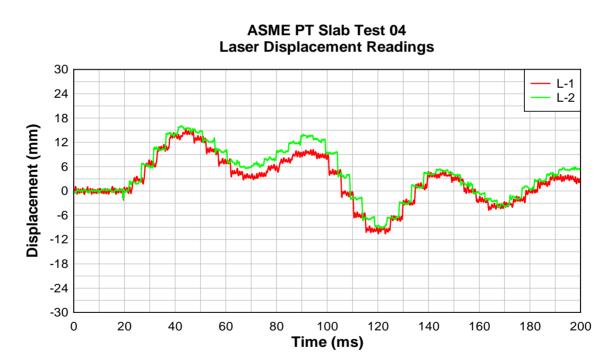


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 4a - Panel 6 September 26, 2016 Charge Material: ANFO Charge Weight: 1700 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Testing Data Sheet


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

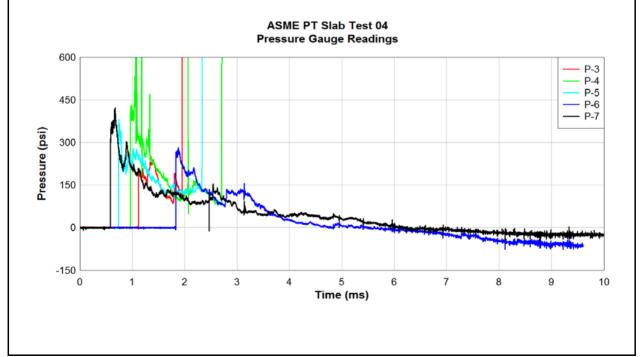
ASME PT Slab Testing 1507-11 Test 4a - Panel 6 September 26, 2016 Charge Material: ANFO Charge Weight: 1700 lb Charge Standoff: 45 ft to Center of Charge

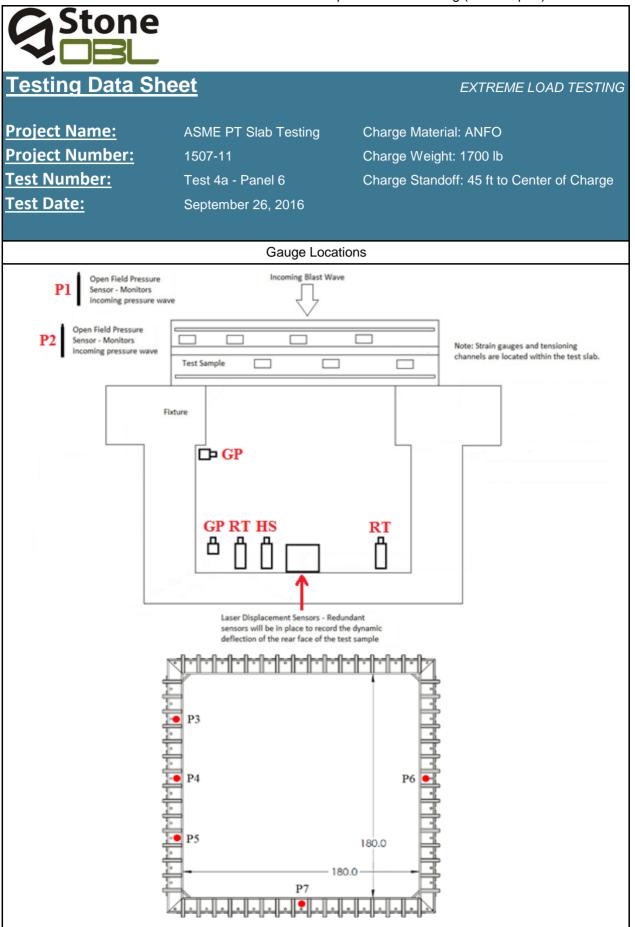
EXTREME LOAD TESTING

Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

	Maximum	Time of	Permanent	
Gauge	Positve	Maximum	Positive	Notes
Number	Displacement	acement Positive Disp. Displacement	Notes	
	(mm)	(s)	(mm)	
31	15.2	0.0442	0	
32	16.0	0.0426	0	

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

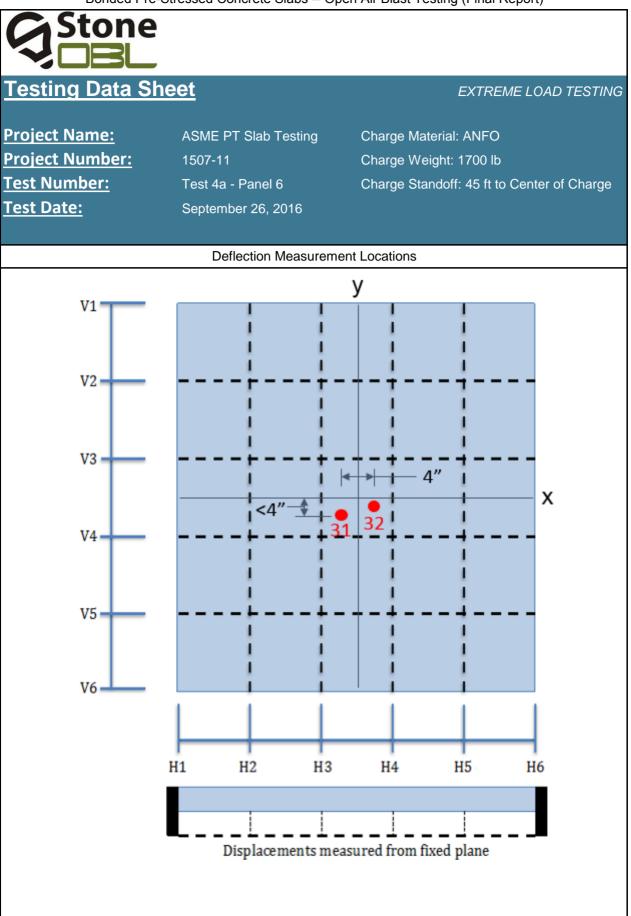

ASME PT Slab Testing 1507-11 Test 4a - Panel 6 September 26, 2016 Charge Material: ANFO Charge Weight: 1700 lb


EXTREME LOAD TESTING

Charge Standoff: 45 ft to Center of Charge

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes	
P1	99.5	174	N/A	N/A	Located 45 ft from charge; Impulse through 0.0077 s	
P2	119	279	N/A	N/A	Located 53 ft from charge; Impulse through 0.0083 s	
P3	242	132	N/A	N/A	Impulse through 0.0019 s	
P4	431	332	N/A	N/A	Impulse through 0.0027 s	
P5	382	285	N/A	N/A	Impulse through 0.0023 s	
P6	283	266	-75.0	N/A		
P7	423	469	-43.8	N/A		



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 4a - Panel 6 September 26, 2016 Charge Material: ANFO Charge Weight: 1700 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

	De	eflection Measure	ements - Interior	Face of Specin	nen	
Vertical Location	Horizontal Location	Initial Measurement	Final Measurement		Permanent Deflection	Permanent Deflection (in)
		(ft)	(ft)		(mm)	Defiection (III)
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.32	12.32		0.8	0.031
V2	H3	12.34	12.33		1.6	0.063
V2	H4	12.35	12.35		0.8	0.031
V2	H5	12.35	12.34		1.6	0.063
V2	H6					
V3	H1					
V3	H2	12.38	12.38		0.0	0.000
V3	H3	12.39	12.39		0.8	0.031
V3	H4	12.38	12.38		1.6	0.063
V3	H5	12.39	12.39		0.0	0.000
V3	H6					
V4	H1					
V4	H2	12.40	12.40		0.8	0.031
V4	H3	12.40	12.40		0.0	0.000
V4	H4	12.39	12.39		2.4	0.094
V4	H5	12.34	12.33		1.6	0.063
V4	H6					
V5	H1	40.44	40.44			0.000
V5	H2	12.41	12.41		0.0	0.000
V5	H3	12.40	12.40		0.0	0.000
V5	H4	12.38	12.37		0.8	0.031
V5	H5	12.34	12.33		1.6	0.062
V5	H6	ļ				
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5	ļ				
V6	H6					

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
<u>Project Number:</u>	1507-11	Charge Weight: 2000 lb
<u>Test Number:</u>	Test 4b - Panel 6	Charge Standoff: 45 ft to Center of Charge
<u>Test Date:</u>	September 27, 2016	Pre-Test Specimen Temperature: 80 °F

	Specimen Description							
Height	Width	Thickness	Prestres Level	Reinf. Level	Compressive Strength			
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	1450 ps (10 MPa		7520 psi (51.8 MPa)			

Specimen Response

Description: The blast load resulted in heavy scabbing on the front face of the panel. On the back face, cracking was observed along most of the slab surface, generally ranging from hairlines to cracks with widths of approximately 0.08 inches (2 mm). Major cracking, spalling, and bowing was noted along the left panel edge (when viewed from the interior). Cracks were also observed across the slab thickness, but to a lesser extent than the cracking and disengagement that was observed throughout the cross-section in Test 3. No damage was observed to the stiffened steel frame.

The maximum deflection recorded with the laser sensors was 4.3 inches (109 mm). The permanent set near the slab center point was approximately 3.5 inches (90 mm).

Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

Permanent Deflection (see deflection measurement table)

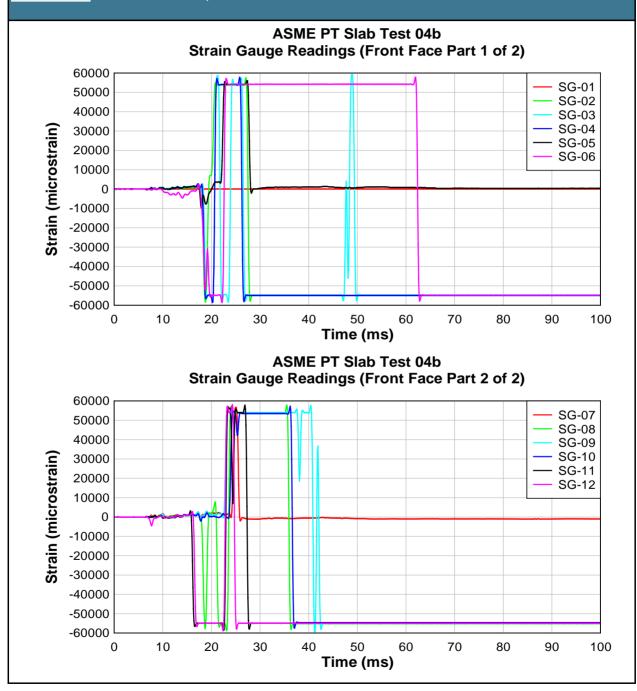
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 4b - Panel 6 September 27, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

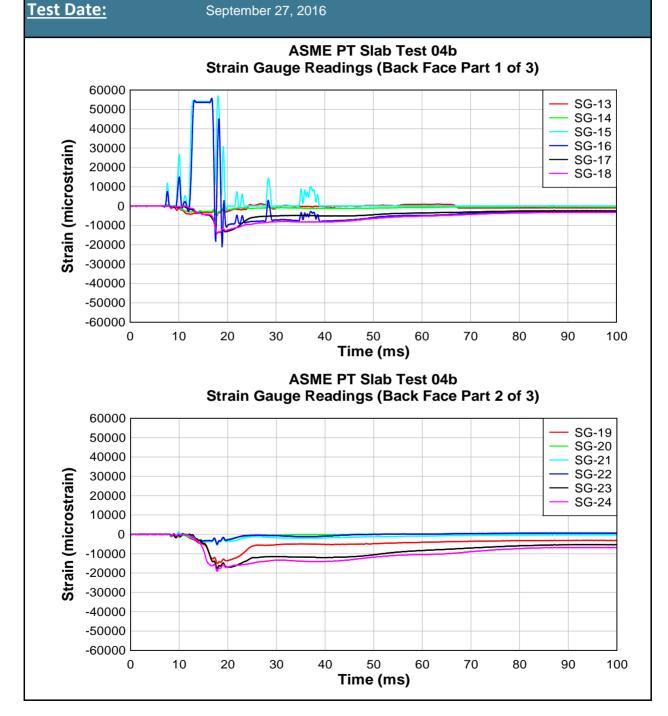
EXTREME LOAD TESTING

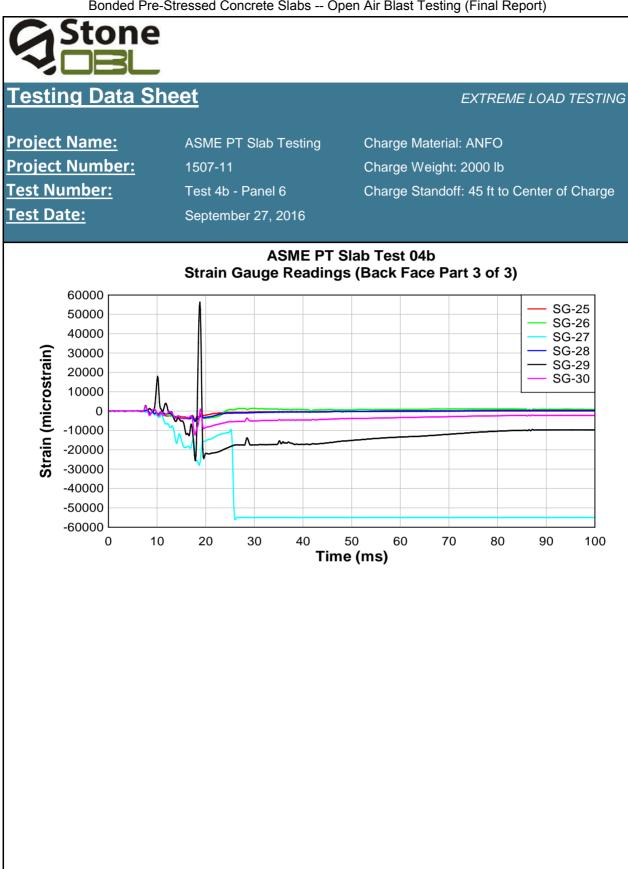
Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

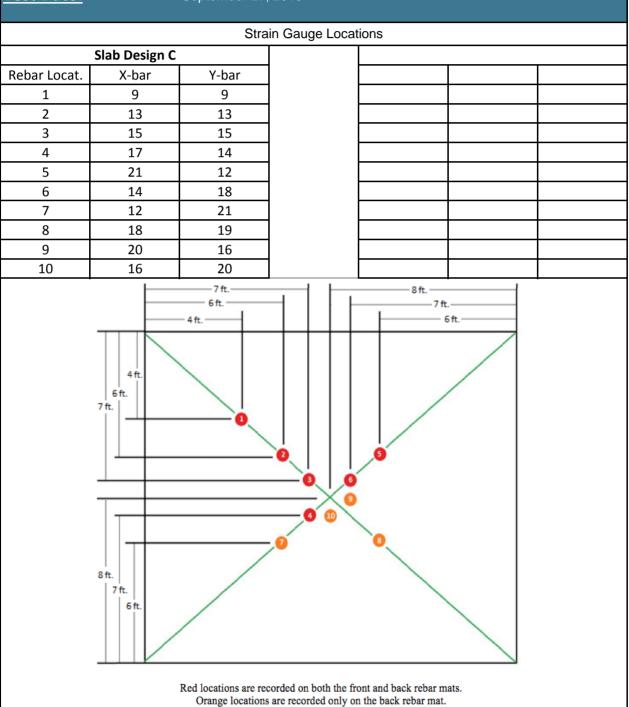
Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	N/A	N/A	Sensor had no response
2	2-SG-1-F-V	N/A	N/A	Wire broken at 0.019 s
3	3-SG-2-F-H	N/A	N/A	Wire broken at 0.019 s
4	4-SG-2-F-V	N/A	N/A	Wire broken at 0.019 s
5	5-SG-3-F-H	N/A	N/A	Wire broken at 0.019 s
6	6-SG-3-F-V	N/A	N/A	Wire broken at 0.019 s
7	7-SG-4-F-H	N/A	N/A	Sensor had no response
8	8-SG-4-F-V	N/A	N/A	Wire broken at 0.019 s
9	9-SG-5-F-H	N/A	N/A	Wire broken at 0.019 s
10	10-SG-5-F-V	N/A	N/A	Wire broken at 0.019 s
11	11-SG-6-F-H	N/A	N/A	Wire broken at 0.019 s
12	12-SG-6-F-V	N/A	N/A	Wire broken at 0.019 s
13	13-SG-1-R-H	-4904	0.0178	Permanent strain: -882 µ£
14	14-SG-1-R-V	-4446	0.0178	Permanent strain: -319 µE
15	15-SG-2-R-H	N/A	N/A	Noisy connection
16	16-SG-2-R-V	-10,815	0.0198	Noisy connection, Perm. strain: -2907 µE
17	17-SG-3-R-H	-14,170	0.0179	Permanent strain: -2414 µE
18	18-SG-3-R-V	-14,094	0.0179	Permanent strain: -3291 µE
19	19-SG-4-R-H	-15,137	0.0179	Permanent strain: -3128 µE
20	20-SG-4-R-V	-5134	0.0178	Permanent strain: 419 µE
21	21-SG-5-R-H	-5592	0.0178	Permanent strain: -292 µE
22	22-SG-5-R-V	-5141	0.0178	Permanent strain: -651 µE
23	23-SG-6-R-H	-17,646	0.0178	Permanent strain: -5380 µE
24	24-SG-6-R-V	-19,078	0.0178	Permanent strain: -6831 µE
25	25-SG-7-R-H	-4503	0.0178	Permanent strain: 74 µ8
26	26-SG-7-R-V	-5369	0.0178	Permanent strain: -947 µ8
27	27-SG-8-R-H	-27,925	0.0186	Noisy connection, Wire broken at 0.0252 s
28	28-SG-8-R-V	-5369	0.0178	Permanent strain: 272 µ8
29	29-SG-9-R-H	-25,581	0.0179	Noisy connection, Perm. strain: -9699 µE
30	30-SG-10-R-V	-12,393	0.0178	Noisy connection, Perm. strain: 2216 µ8



Testing Data Sheet


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u> ASME PT Slab Testing 1507-11 Test 4b - Panel 6 September 27, 2016


Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

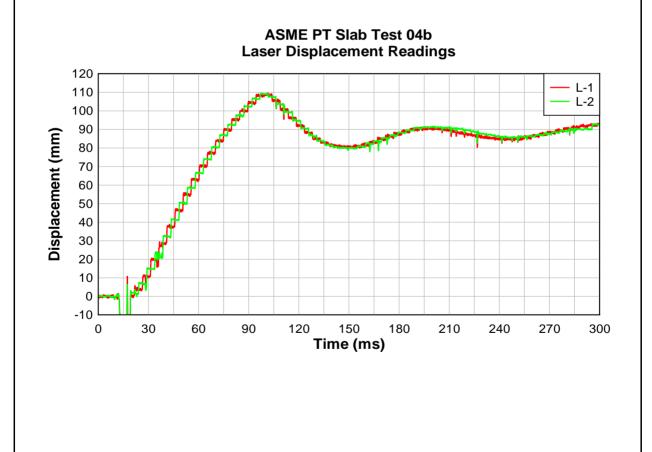


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 4b - Panel 6 September 27, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Testing Data Sheet

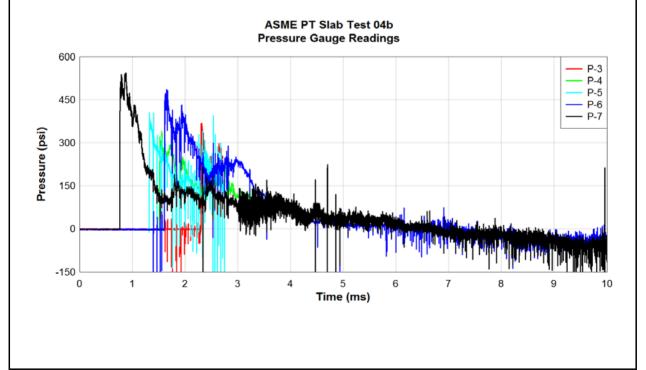

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

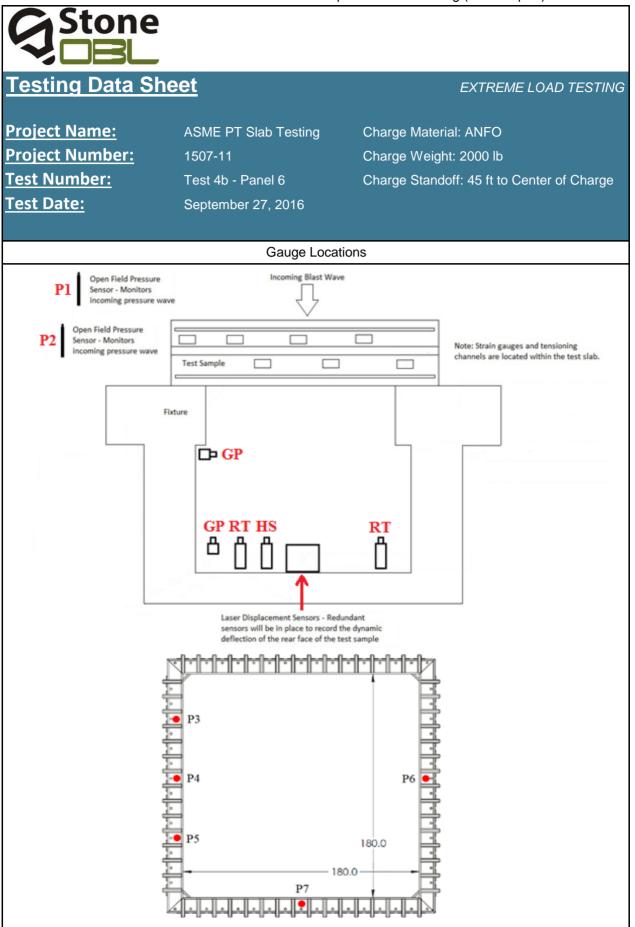
ASME PT Slab Testing 1507-11 Test 4b - Panel 6 September 27, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

	Maximum	Time of	Permanent	
Gauge	Positve	Maximum	Positive	Notes
Number	Displacement	Positive Disp.	Displacement	Noles
	(mm)	(S)	(mm)	
31	109	0.1014	90	
32	109	0.0982	91	

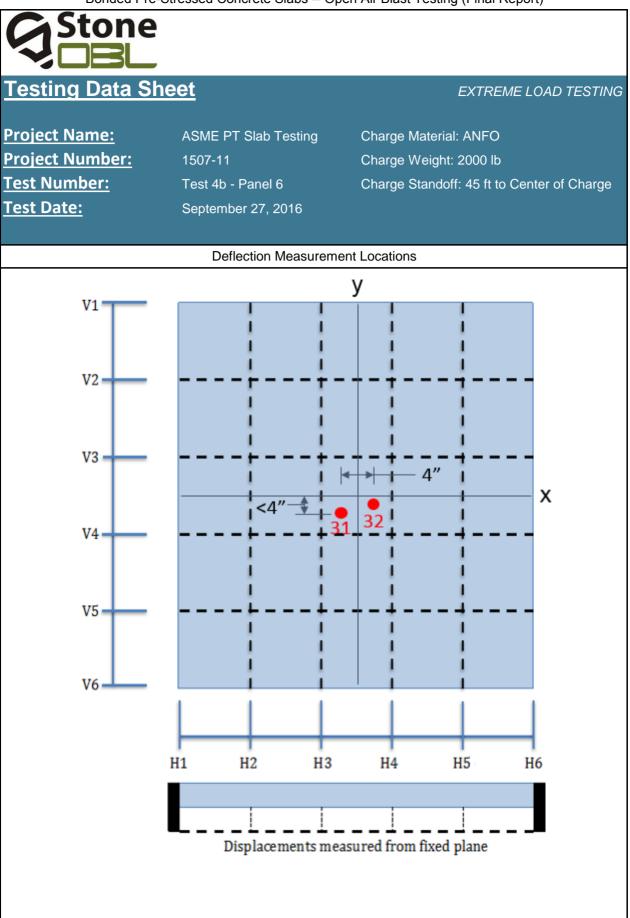

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>


ASME PT Slab Testing 1507-11 Test 4b - Panel 6 September 27, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes
P1	91.9	189	N/A	N/A	Located 45 ft from charge
P2	144	484	N/A	N/A	Located 53 ft from charge; Impulse through 0.0094 s
P3	369	118	N/A	N/A	Impulse through 0.0028 s
P4	340	315	N/A	N/A	Impulse through 0.0034 s
P5	406	295	-296	N/A	Impulse through 0.00275 s
P6	487	570	-509	N/A	
P7	545	564	N/A	N/A	



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 4b - Panel 6 September 27, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

	Def	flection Measure		r Face of Spec	imen	
Vertical	Horizontal	Initial	Final		Permanent	Permanent
Location	Location		Measurement		Deflection	Deflection (in)
		(ft)	(ft)		(mm)	Defiection (III)
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.32	12.18		43.7	1.719
V2	H3	12.33	12.11		65.9	2.594
V2	H4	12.35	12.16		58.7	2.313
V2	H5	12.34	12.21		42.1	1.656
V2	H6					
V3	H1					
V3	H2	12.38	12.16		65.9	2.594
V3	H3	12.39	12.06		100.0	3.938
V3	H4	12.38	12.08		90.5	3.563
V3	H5	12.39	12.13		79.4	3.125
V3	H6					
V4	H1					
V4	H2	12.40	12.18		68.3	2.687
V4	H3	12.40	12.14		80.2	3.156
V4	H4	12.39	12.15		73.0	2.875
V4	H5	12.33	12.12		64.3	2.531
V4	H6					
V5	H1					
V5	H2	12.41	12.30		33.3	1.313
V5	H3	12.40	12.26		41.3	1.625
V5	H4	12.37	12.24		40.5	1.594
V5	H5	12.33	12.22		34.1	1.344
V5	H6					
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5					
V6	H6					

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
Project Number:	1507-11	Charge Weight: 2300 lb
<u>Test Number:</u>	Test 5 - Panel 7	Charge Standoff: 45 ft to Center of Charge
<u>Test Date:</u>	September 29, 2016	Pre-Test Specimen Temperature: 73 °F

	Specimen Description						
Height	Width	Thickness	F	Prestress Level	Conventional Reinf. Level	Compressive Strength	
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)		725 psi (5 MPa)	13.7 lb/ft ³ (220 kg/m ³)	8290 psi (57.2 MPa)	

Specimen Response

Description: The blast load resulted in horizontal, vertical, and diagonal cracks on the front face of the panel, along with some concrete scabbing. On the back face, cracking was observed along most of the slab surface, generally ranging from hairlines to cracks with widths of approximately 0.03 inch (0.8 mm). Significant cracking, spalling, and/or bowing was noted along the left and right panel edges. Cracks were also observed across the slab thickness. No damage was observed to the stiffened steel frame.

The maximum deflection recorded with the laser sensors was 3.5 inches (88 mm). The permanent set near the slab center point was 2.2 inches (57 mm).

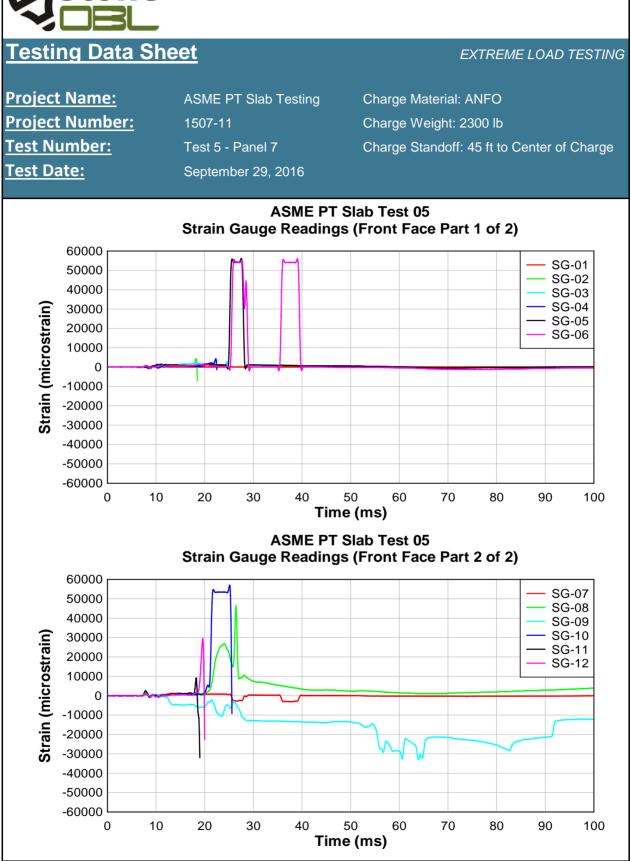
Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

Permanent Deflection (see deflection measurement table)

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>


ASME PT Slab Testing 1507-11 Test 5 - Panel 7 September 29, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	N/A	N/A	Sensor had no response
2	2-SG-1-F-V	N/A	N/A	Wire broken at 0.0182 s
3	3-SG-2-F-H	1872	0.0186	Wire broken at 0.0245 s
4	4-SG-2-F-V	N/A	N/A	Wire broken at 0.0223 s
5	5-SG-3-F-H	1528	0.0204	Noisy connection, Permanent strain: 65 µE
6	6-SG-3-F-V	1315	0.0188	Noisy connection, Permanent strain: -464 µE
7	7-SG-4-F-H	1184	0.0132	Noisy connection, Permanent strain: -119 $\mu\epsilon$
8	8-SG-4-F-V	26,826	0.0240	Noisy connection, Permanent strain: 2752 µE
9	9-SG-5-F-H	N/A	N/A	Noisy connection
10	10-SG-5-F-V	N/A	N/A	Wire broken at 0.021 s
11	11-SG-6-F-H	N/A	N/A	Wire broken at 0.0183 s
12	12-SG-6-F-V	N/A	N/A	Wire broken at 0.0196 s
13	13-SG-1-R-H	-3582	0.0205	Wire broken at 0.0268 s
14	14-SG-1-R-V	-3616	0.0180	Wire broken at 0.0691 s
15	15-SG-2-R-H	N/A	N/A	Sensor had no response
16	16-SG-2-R-V	-11,683	0.0194	Permanent strain: -3599 µ8
17	17-SG-3-R-H	-13,185	0.0188	Permanent strain: -2983 µ8
18	18-SG-3-R-V	-14,928	0.0189	Permanent strain: -3822 µ8
19	19-SG-4-R-H	-19,231	0.0169	Permanent strain: -4944 µ8
20	20-SG-4-R-V	-16,616	0.0184	Permanent strain: -5190 µ8
21	21-SG-5-R-H	N/A	N/A	Noisy connection, Perm. strain: -4080 µE
22	22-SG-5-R-V	-10,377	0.0185	Permanent strain: -1792 µ8
23	23-SG-6-R-H	-12,859	0.0199	Permanent strain: -1616 µ8
24	24-SG-6-R-V	-8771	0.0184	Permanent strain: -957 µE
25	25-SG-7-R-H	-4607	0.0185	Permanent strain: -513 µE
26	26-SG-7-R-V	-3639	0.0186	Permanent strain: -353 µ8
27	27-SG-8-R-H	-7503	0.0205	Permanent strain: -1627 με
28	28-SG-8-R-V	3277	0.0150	Permanent strain: -137 µE
29	29-SG-9-R-H	-15,922	0.0195	Permanent strain: -2972 µE
30	30-SG-10-R-V	-12,601	0.0183	Permanent strain: -3534 µ8

SG-13

SG-14

SG-15 SG-16

SG-17

SG-18

90

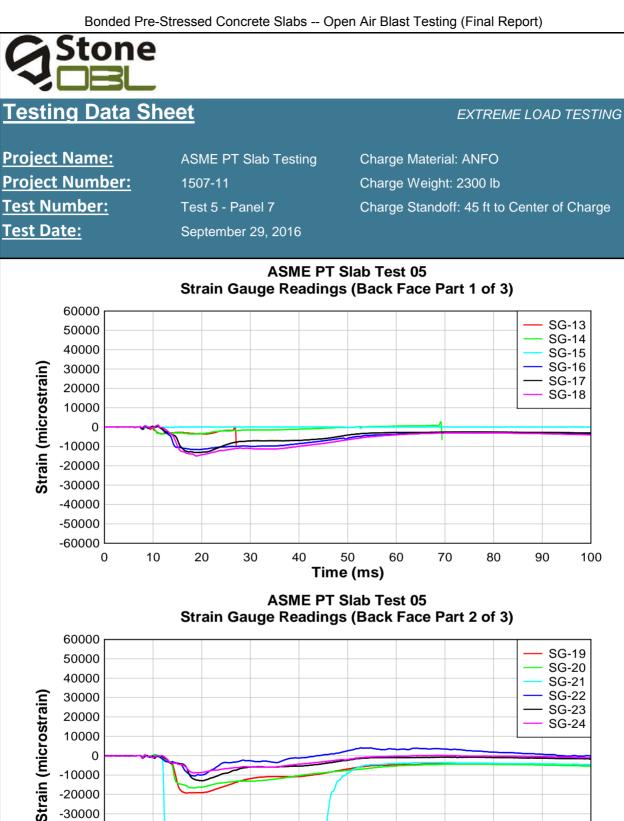
100

SG-19

SG-20

SG-21

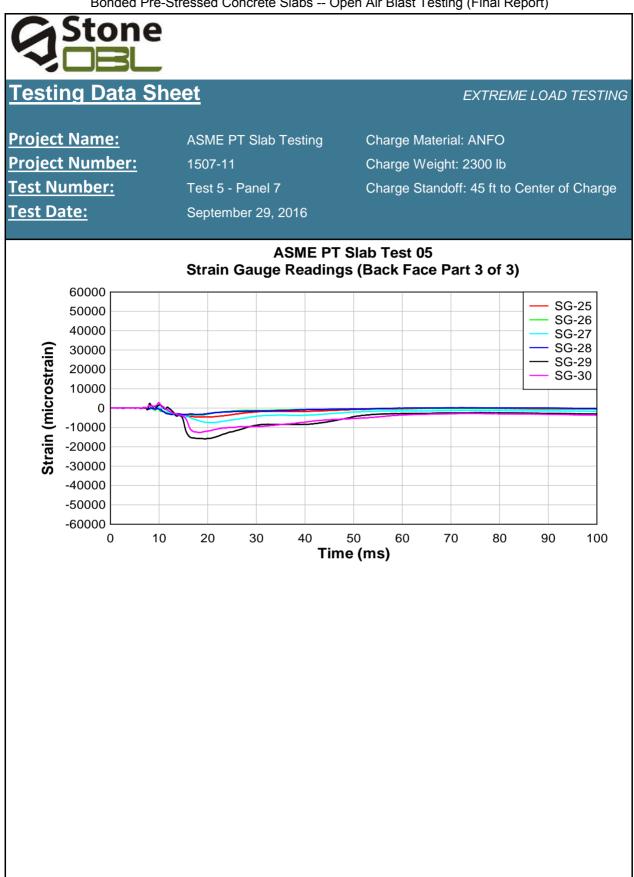
SG-22


SG-23

SG-24

80

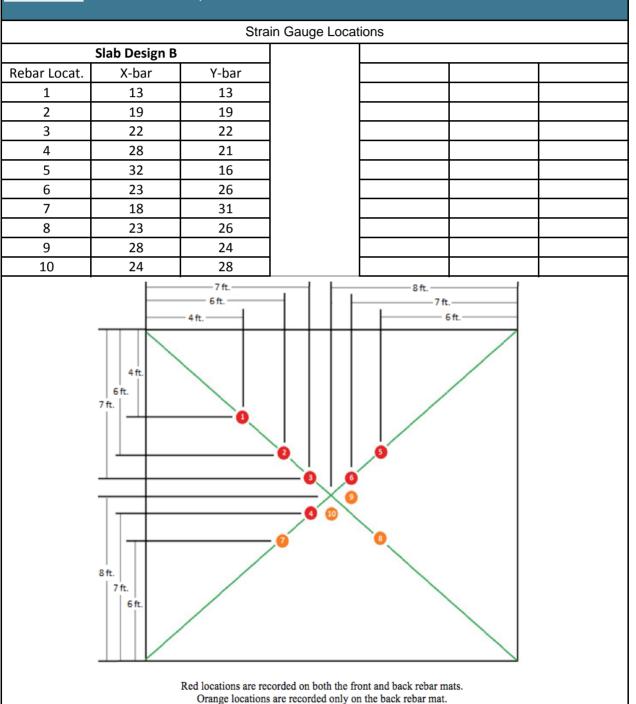
90


100

10 20 30 40 50 60 70 Time (ms)

-20000 -30000 -40000 -50000 -60000

0



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

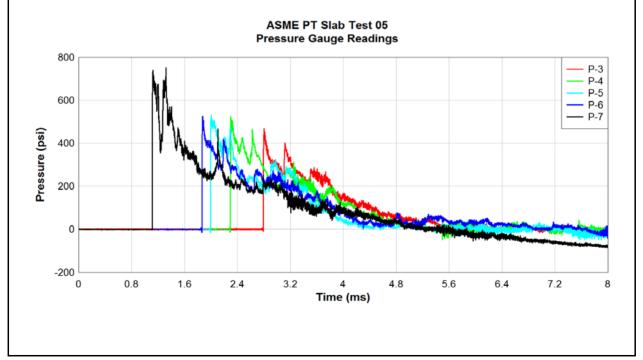
ASME PT Slab Testing 1507-11 Test 5 - Panel 7 September 29, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

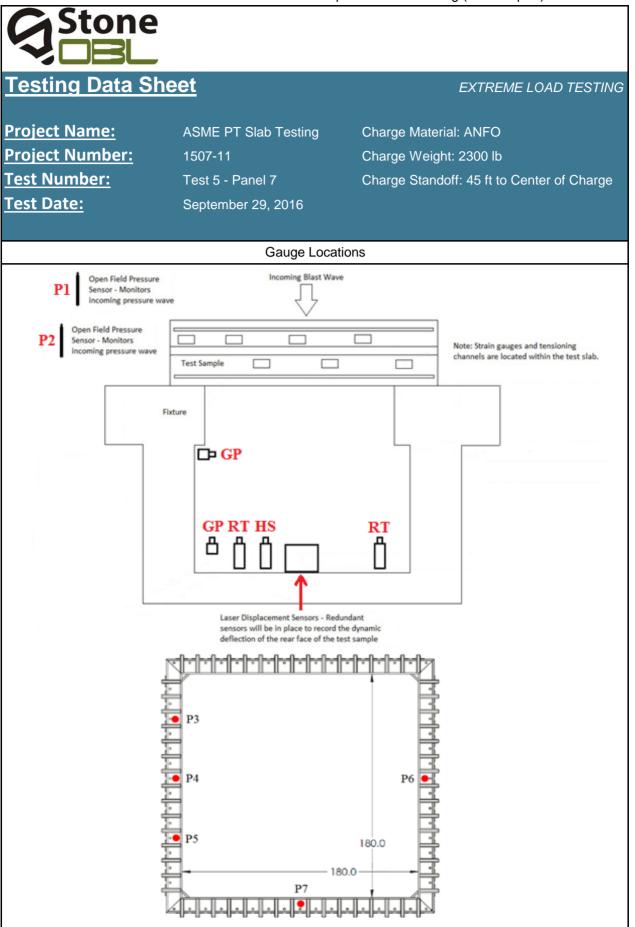
EXTREME LOAD TESTING

EXTREME LOAD TESTING

Project Name:		ASME PT Slab Testing		Charge Material: ANFO		
Project Number:		1507-11		Charge Weight: 2300 lb		
<u>Test Numb</u>	<u>er:</u>	Test 5 - Panel	7	Charge Standoff: 45 ft to Center of Charge		
Test Date:		September 29,	2016			
			ment Gauge Inf			
	(· ·	ned diagram for ot of displacem	ent time-history)		
	Maximum	Time of	Permanent	<i>,,</i>		
Gauge	Positve	Maximum	Positive	Notes		
Number	Displacement	Positive Disp.	Displacement	INDIES		
31	(mm) 83	(s) 0.0982	(mm) 59			
32	88	0.0959	57			
			SME PT Slab			
100		Laser	Displaceme	it Readings		
100				— L-1		
90				— L-2		
E 70			•			
-00 t						
19 50	لم		<u> </u>			
Displacement (mm)			M			
<u>ä</u> 30						

Time (ms)

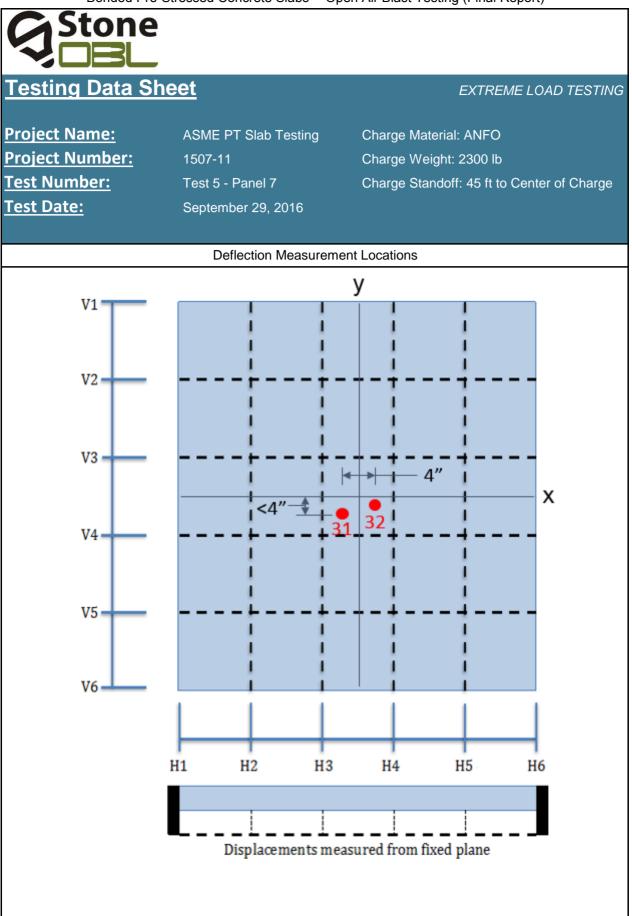

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>


ASME PT Slab Testing 1507-11 Test 5 - Panel 7 September 29, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes
P1	156	172	N/A	N/A	Located 53 ft from charge; Impulse through 0.008 s
P2	178	234	N/A	N/A	Located 46 ft from charge; Impulse through 0.0079 s
P3	470	434	-20.5	N/A	
P4	525	509	-46.4	N/A	Impulse through 0.008 s
P5	532	493	-47.4	N/A	
P6	527	580	-38.3	N/A	
P7	751	758	-86.5	N/A	



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 5 - Panel 7 September 29, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

	Def		un ente lateria		-:	
	Dei	flection Measure		Face of Spec		
Vertical Location	Horizontal Location	Initial Measurement (ft)	Final Measurement (ft)		Permanent Deflection (mm)	Permanent Deflection (in
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.32	12.23		27.8	1.094
V2	H3	12.33	12.21		36.5	1.437
V2	H4	12.35	12.22		38.9	1.531
V2	H5	12.34	12.23		34.9	1.375
V2	H6					
V3	H1					
V3	H2	12.37	12.24		39.7	1.563
V3	H3	12.38	12.20		54.0	2.125
V3	H4	12.35	12.18		53.2	2.094
V3	H5	12.36	12.20		48.4	1.906
V3	H6					
V4	H1					
V4	H2	12.39	12.27		36.5	1.437
V4	H3	12.38	12.22		47.6	1.875
V4	H4	12.36	12.21		46.8	1.844
V4	H5	12.31	12.19		38.1	1.500
V4	H6					
V5	H1					
V5	H2	12.42	12.33		26.2	1.031
V5	H3	12.40	12.31		27.8	1.094
V5	H4	12.38	12.29		27.0	1.062
V5	H5	12.33	12.27		19.8	0.781
V5	H6					
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5					
V6	H6					

EXTREME LOAD TESTING

arge

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
Project Number:	1507-11	Charge Weight: 2000 lb
<u>Test Number:</u>	Test 6 - Panel 3	Charge Standoff: 45 ft to Center of Cha
<u>Test Date:</u>	September 30, 2016	Pre-Test Specimen Temperature: 73 °F

Specimen Description						
Height	Width	Thickness	Presti Lev		Conventional Reinf. Level	Compressive Strength
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	725 (5 M		13.7 lb/ft ³ (220 kg/m ³)	6980 psi (48.1 MPa)

Specimen Response

Description: The blast load resulted in horizontal, vertical, and diagonal cracks on the front face of the panel, along with some concrete crushing/scabbing similar to that seen in Test 5. On the back face, cracking was observed along most of the slab surface. Cracks were mostly hairlines in a yield line pattern similar to previous tests. The main cracks were a central horizontal vertical crack with a width of approximately 0.03 inch (0.8 mm), as well as more significant cracking up to 0.1 inch (2.5 mm) that was noted along the left and right panel edges. Some cracking was also observed across the slab thickness in a similar pattern but to a lesser extent than in Test 5. No damage was observed to the stiffened steel frame.

The maximum deflection recorded with the laser sensors was 1.2 inches (31 mm). The permanent set near the slab center point was approximately 0.5 inch (13 mm).

Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

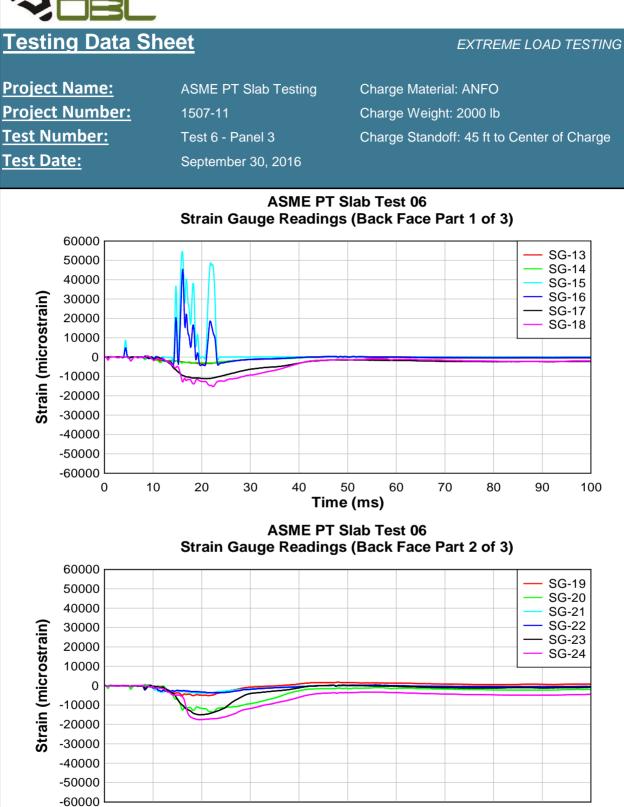
Permanent Deflection (see deflection measurement table)

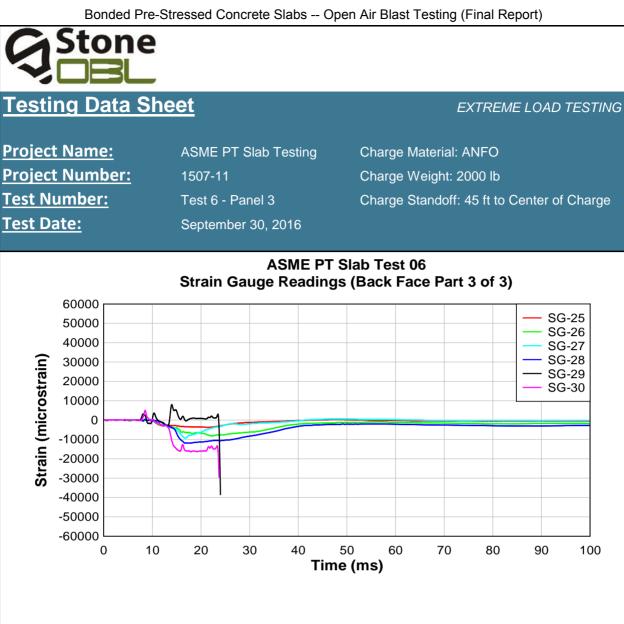
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 6 - Panel 3 September 30, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)


Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	N/A	N/A	Sensor had no response
2	2-SG-1-F-V	1258	0.0190	Permanent strain: 250 µE
3	3-SG-2-F-H	-1810	0.0490	Permanent strain: -125 με
4	4-SG-2-F-V	-2163	0.0546	Permanent strain: -513 με
5	5-SG-3-F-H	6811	0.0271	Wire broken at 0.0462 s
6	6-SG-3-F-V	N/A	N/A	Noisy connection
7	7-SG-4-F-H	-2202	0.0488	Permanent strain: 87 με
8	8-SG-4-F-V	-1933	0.0546	Permanent strain: 123 µ8
9	9-SG-5-F-H	N/A	N/A	Noisy connection
10	10-SG-5-F-V	N/A	N/A	Noisy connection
11	11-SG-6-F-H	N/A	N/A	Sensor had no response
12	12-SG-6-F-V	N/A	N/A	Sensor had no response
13	13-SG-1-R-H	-3375	0.0211	Permanent strain: -321 µE
14	14-SG-1-R-V	-3048	0.0212	Permanent strain: -154 με
15	15-SG-2-R-H	N/A	N/A	Noisy connection
16	16-SG-2-R-V	N/A	N/A	Noisy connection
17	17-SG-3-R-H	-11,154	0.0223	Permanent strain: -2133 µE
18	18-SG-3-R-V	-15,242	0.0223	Permanent strain: -2203 µE
19	19-SG-4-R-H	-5109	0.0214	Permanent strain: 787 µE
20	20-SG-4-R-V	-13,707	0.0223	Permanent strain: -1850 µE
21	21-SG-5-R-H	-3922	0.0198	Permanent strain: -248 µE
22	22-SG-5-R-V	-3651	0.0223	Permanent strain: -385 με
23	23-SG-6-R-H	-14,968	0.0197	Permanent strain: -991 με
24	24-SG-6-R-V	-17,413	0.0194	Permanent strain: -4281 µE
25	25-SG-7-R-H	-3715	0.0212	Permanent strain: -452 µE
26	26-SG-7-R-V	-8215	0.0223	Permanent strain: -1576 µE
27	27-SG-8-R-H	-9370	0.0168	Permanent strain: -180 µ8
28	28-SG-8-R-V	-11,918	0.0174	Permanent strain: -2731 µE
29	29-SG-9-R-H	N/A	N/A	Noisy connection, Wire broken at 0.0235 s
30	30-SG-10-R-V	N/A	N/A	Noisy connection, Wire broken at 0.0233 s


Testing Data Sheet EXTREME LOAD TESTING Project Name: ASME PT Slab Testing Charge Material: ANFO **Project Number:** Charge Weight: 2000 lb 1507-11 **Test Number:** Test 6 - Panel 3 Charge Standoff: 45 ft to Center of Charge Test Date: September 30, 2016 **ASME PT Slab Test 06** Strain Gauge Readings (Front Face Part 1 of 2) 60000 SG-01 50000 SG-02 40000 SG-03 SG-04 Strain (microstrain) 30000 SG-05 20000 SG-06 10000 0 -10000 -20000 -30000 -40000 -50000 -60000 10 20 40 50 60 70 0 30 80 90 100 Time (ms) **ASME PT Slab Test 06** Strain Gauge Readings (Front Face Part 2 of 2) 60000 SG-07 50000 SG-08 40000 SG-09 30000 SG-10 Strain (microstrain) SG-11 20000 SG-12 10000 0 -10000 -20000 -30000 -40000 -50000 -60000 0 10 20 30 40 50 60 70 80 90 100

Time (ms)

Time (ms)

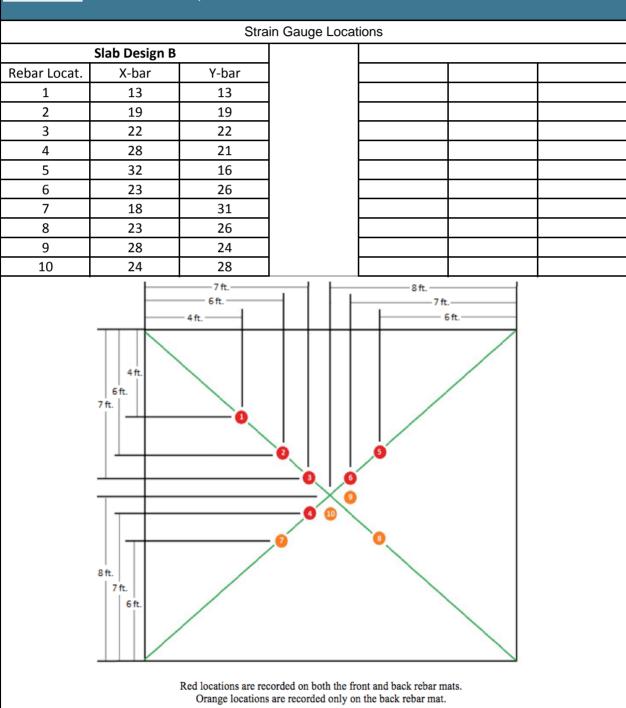
SG-25

SG-26

SG-27

SG-28

SG-29


SG-30

100

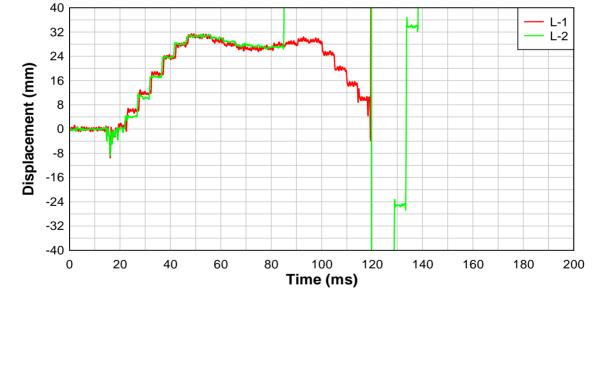
<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 6 - Panel 3 September 30, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 6 - Panel 3 September 30, 2016 Charge Material: ANFO Charge Weight: 2000 lb

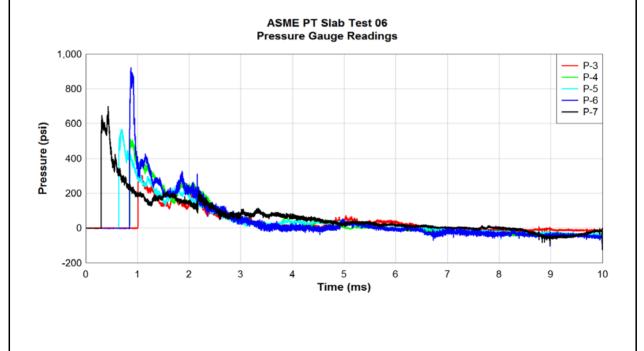

EXTREME LOAD TESTING

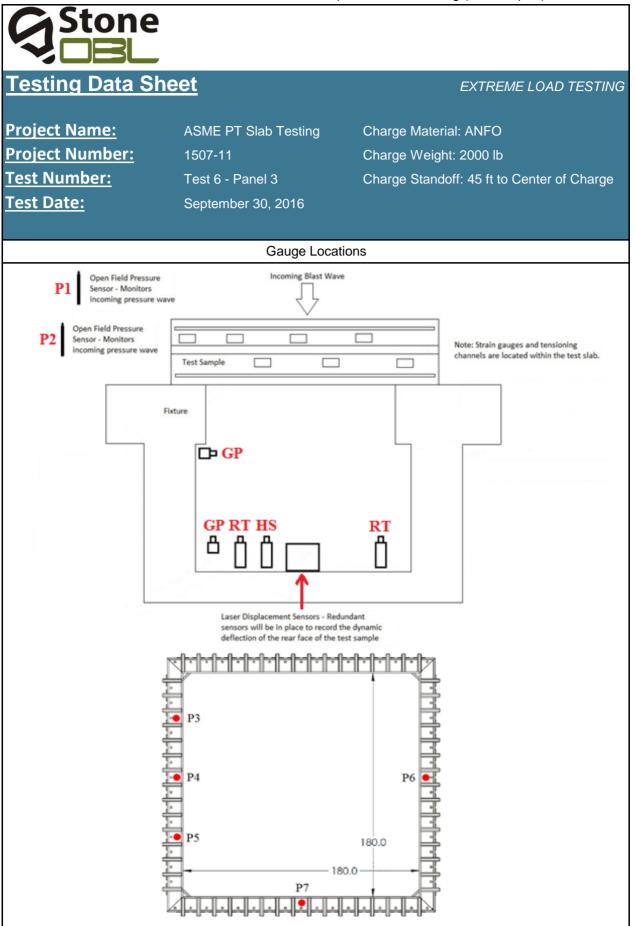
Charge Standoff: 45 ft to Center of Charge

Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

	Maximum	Time of	Permanent	
Gauge	Positve	Maximum	Positive	Notes
Number	Displacement	Positive Disp.	Displacement	Notes
	(mm)	(s)	(mm)	
31	31	0.0483	12	
32	31	0.052	13	

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

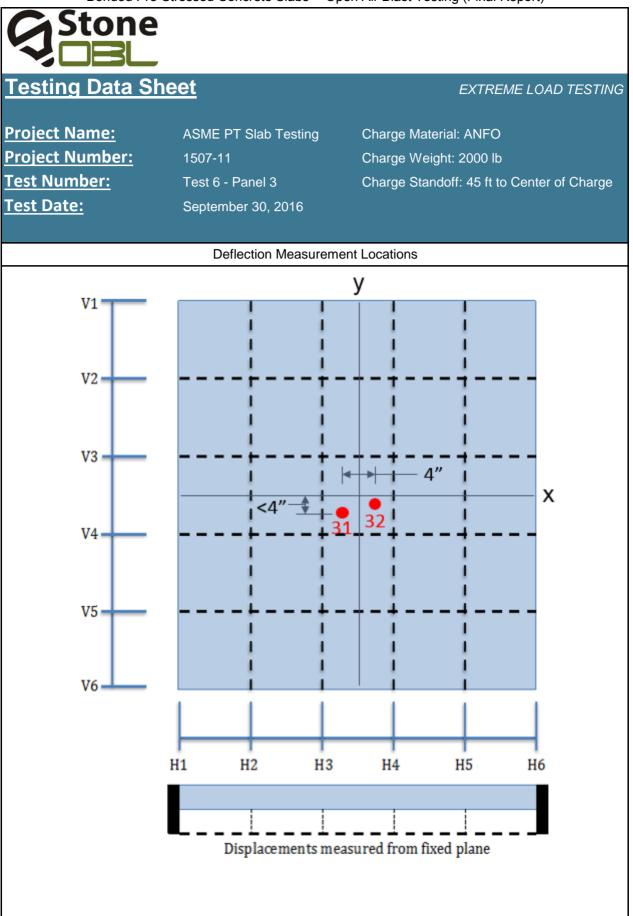

ASME PT Slab Testing 1507-11 Test 6 - Panel 3 September 30, 2016 Charge Material: ANFO


EXTREME LOAD TESTING

Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes	
P1	95.1	211	N/A	N/A	Located 46 ft from charge; Impulse through 0.0121 s	
P2	129	283	N/A	N/A	Located 55 ft from charge; Impulse through 0.0093 s	
P3	318	362	-63.1	N/A		
P4	511	526	-62.3	N/A		
P5	568	547	-62.1	N/A		
P6	922	526	-101	N/A		
P7	701	702	-89.8	N/A		



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 6 - Panel 3 September 30, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

	De	flection Measure		r Face of Spec		
Vertical	Horizontal	Initial	Final		Permanent	Permanent
Location	Location		Measurement		Deflection	Deflection (in
		(ft)	(ft)		(mm)	
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.34	12.32		5.6	0.219
V2	H3	12.34	12.32		5.6	0.219
V2	H4	12.35	12.33		6.4	0.250
V2	H5	12.35	12.32		7.9	0.312
V2	H6					
V3	H1					
V3	H2	12.36	12.33		8.7	0.344
V3	H3	12.36	12.33		10.3	0.406
V3	H4	12.35	12.31		11.1	0.438
V3	H5	12.35	12.32		7.9	0.312
V3	H6					
V4	H1					
V4	H2	12.38	12.35		7.9	0.313
V4	H3	12.39	12.35		9.5	0.375
V4	H4	12.37	12.34		9.5	0.375
V4	H5	12.33	12.29		11.9	0.469
V4	H6					
V5	H1					
V5	H2	12.40	12.38		7.1	0.281
V5	H3	12.37	12.34		7.1	0.281
V5	H4	12.34	12.31		7.1	0.281
V5	H5	12.33	12.30		8.7	0.344
V5	H6					
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5					
V6	H6					

EXTREME LOAD TESTING

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
Project Number:	1507-11	Charge Weight: 2000 lb
<u>Test Number:</u>	Test 7 - Panel 4	Charge Standoff: 45 ft to Center of Charge
<u>Test Date:</u>	October 5, 2016	Pre-Test Specimen Temperature: 53 °F

Specimen Description							
Height	Width	Thickness	Prestress Level	Conventional Reinf. Level	Compressive Strength		
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	1450 psi (10 MPa)	13.7 lb/ft ³ (220 kg/m ³)	8990 psi (62.0 MPa)		

Specimen Response

Description: Lesser cracks and concrete scabbing/crushing were observed on the front face of the panel in comparison with the previously tested slab designs. On the back face, hairline cracking was observed on the slab surface. Cracks were mostly hairlines in a yield line pattern similar to previous tests. The main crack was a central horizontal crack pattern with a width of approximately 0.016 inch (0.41 mm) Some cracking was also observed across the slab thickness. No damage was observed to the stiffened steel frame.

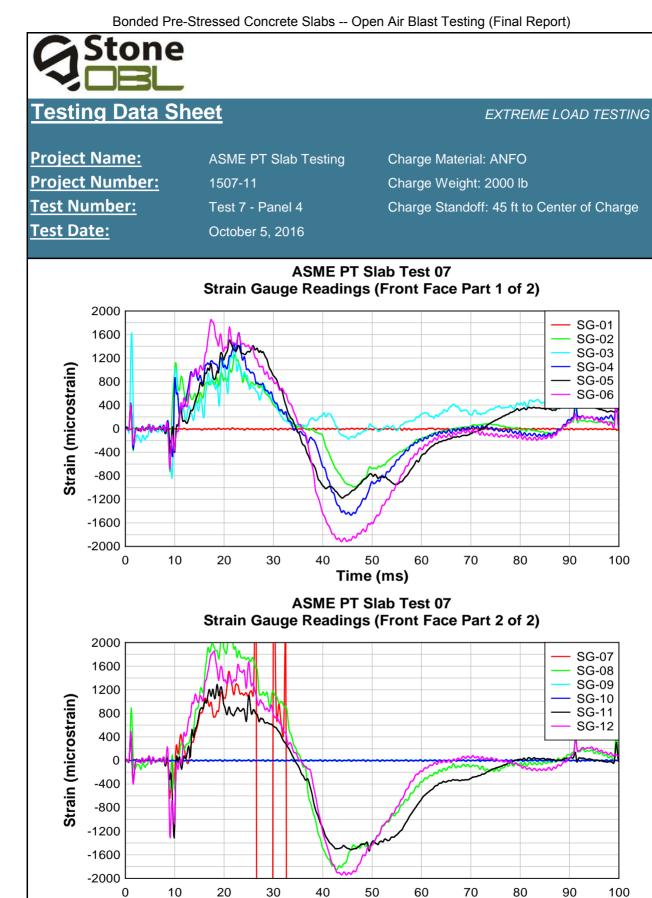
The maximum deflection recorded with the laser sensors was 0.8 inch (21 mm). A small permanent set of roughly 0.1 inch (2.5 mm) was sustained near the slab center point.

Strain Gauge Information (see attached gauge summary)

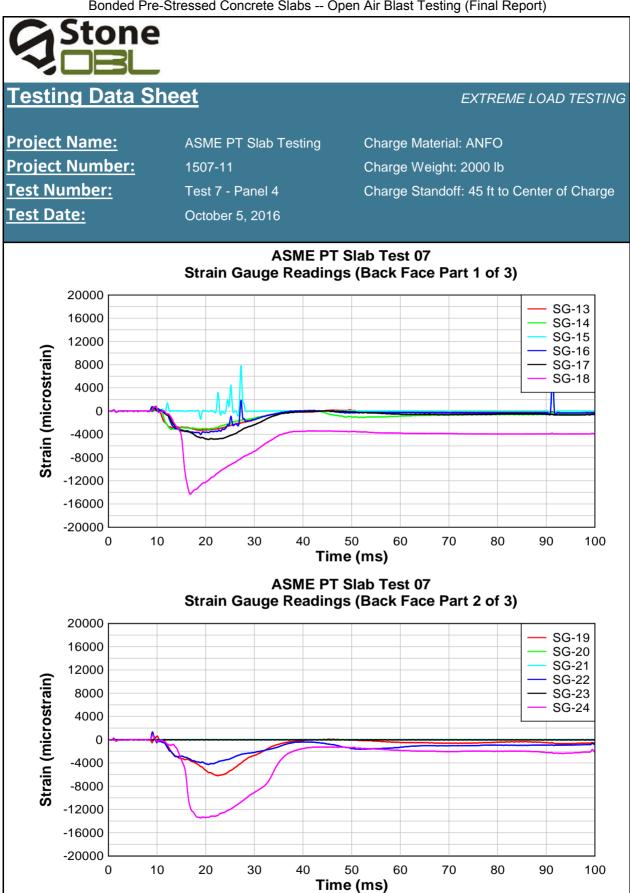
Displacement Gauge Information (see attached gauge summary)

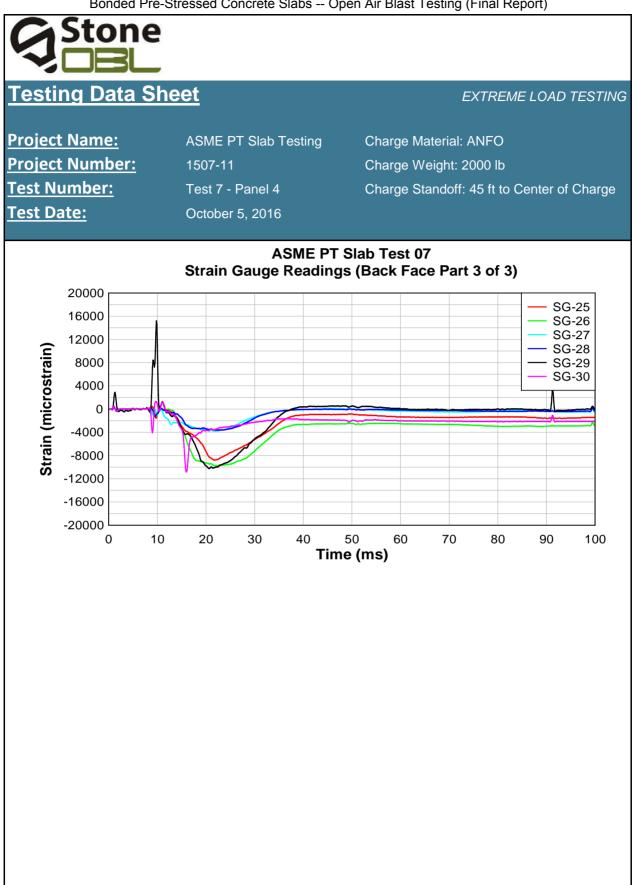
Pressure Gauge Information (see attached gauge summary)

Permanent Deflection (see deflection measurement table)


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

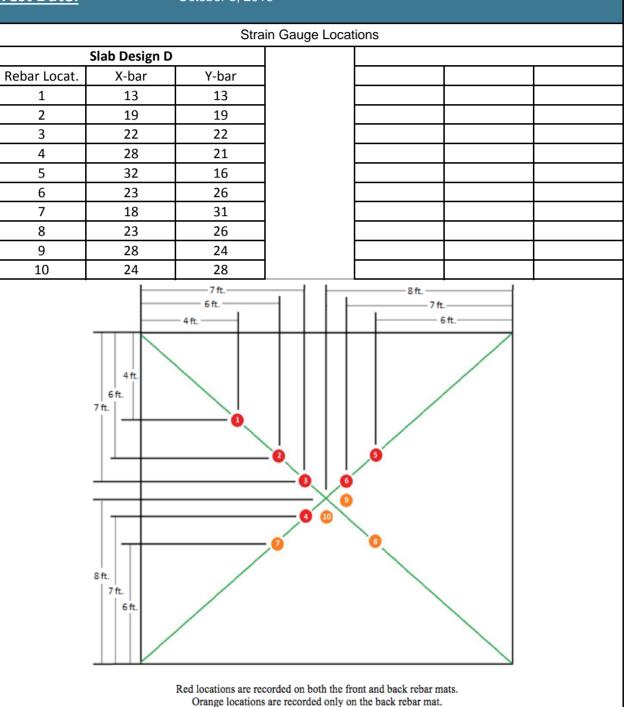
ASME PT Slab Testing 1507-11 Test 7 - Panel 4 October 5, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge


EXTREME LOAD TESTING


Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes
1	1-SG-1-F-H	N/A	N/A	Sensor had no response
2	2-SG-1-F-V	1255	0.0217	
3	3-SG-2-F-H	1384	0.0222	Noisy connection, Permanent strain: 353 μ E
4	4-SG-2-F-V	1626	0.0230	
5	5-SG-3-F-H	1507	0.0211	Permanent strain: 216 µE
6	6-SG-3-F-V	-1918	0.0174	Permanent strain: -57 με
7	7-SG-4-F-H	1511	0.0210	Noisy connection
8	8-SG-4-F-V	2326	0.0211	Permanent strain: -74 µ8
9	9-SG-5-F-H	N/A	N/A	Sensor had no response
10	10-SG-5-F-V	N/A	N/A	Sensor had no response
11	11-SG-6-F-H	-1535	0.0494	Permanent strain: -80 με
12	12-SG-6-F-V	-1940	0.0448	Permanent strain: -28 με
13	13-SG-1-R-H	-3346	0.0189	Permanent strain: -188 µE
14	14-SG-1-R-V	-3166	0.0129	Permanent strain: -612 µE
15	15-SG-2-R-H	N/A	N/A	Sensor had no response
16	16-SG-2-R-V	-4023	0.0190	Noisy connection
17	17-SG-3-R-H	-4866	0.0206	Permanent strain: -569 µE
18	18-SG-3-R-V	-14,295	0.0168	Permanent strain: -3957 µE
19	19-SG-4-R-H	-6206	0.0225	Permanent strain: -448 µE
20	20-SG-4-R-V	N/A	N/A	Sensor had no response
21	21-SG-5-R-H	N/A	N/A	Sensor had no response
22	22-SG-5-R-V	-4234	0.0206	Permanent strain: -894 με
23	23-SG-6-R-H	N/A	N/A	Sensor had no response
24	24-SG-6-R-V	-13,423	0.0189	Permanent strain: -1916 µE
25	25-SG-7-R-H	-8776	0.0218	Permanent strain: -1362 µE
26	26-SG-7-R-V	-9754	0.0224	Permanent strain: -2811 µE
27	27-SG-8-R-H	-3796	0.0217	Permanent strain: -329 µ8
28	28-SG-8-R-V	-3635	0.0225	Permanent strain: -308 µ8
29	29-SG-9-R-H	-10,224	0.0207	Noisy connection, Permanent strain: -54 μE
30	30-SG-10-R-V	N/A	N/A	Noisy connection, Perm. strain: -2251 µ8

Time (ms)



Testing Data Sheet

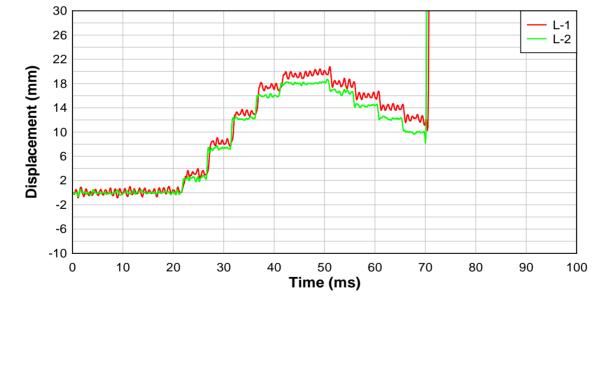
Project Name:	
<u> Project Number:</u>	
<u>Test Number:</u>	
Test Date:	

ASME PT Slab Testing 1507-11 Test 7 - Panel 4 October 5, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

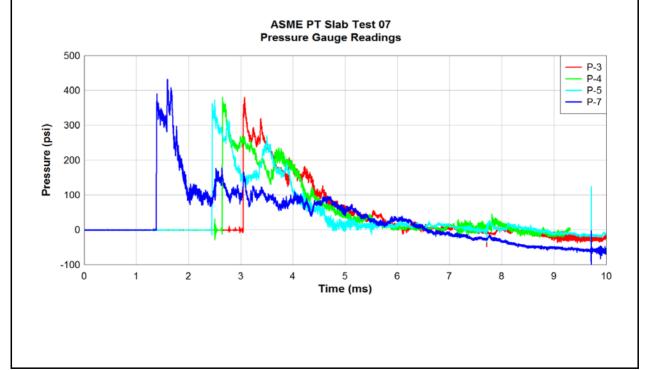
ASME PT Slab Testing 1507-11 Test 7 - Panel 4 October 5, 2016 Charge Material: ANFO

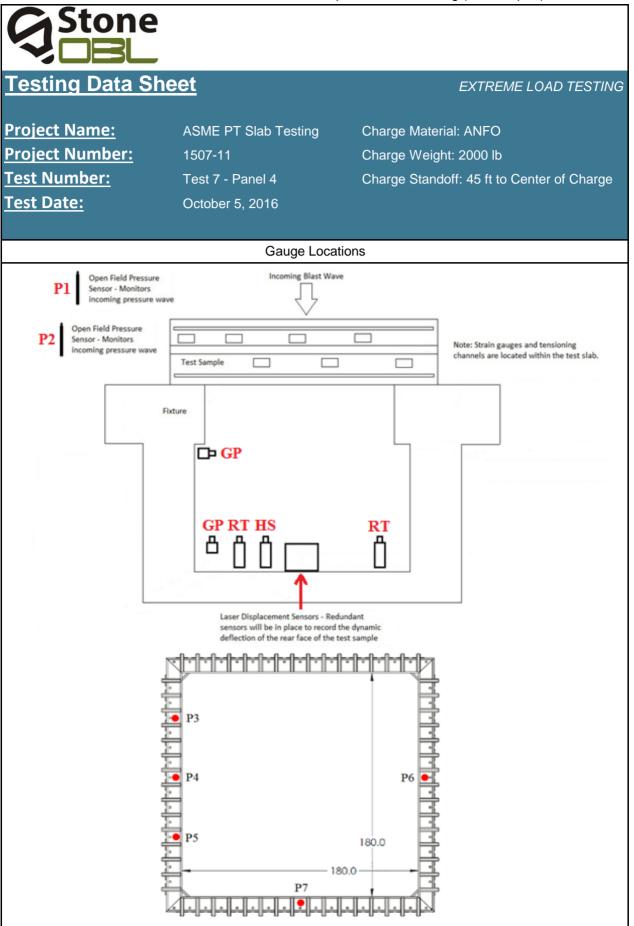

EXTREME LOAD TESTING

Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

ŀ		NA a subma suma	There a sh	Demaster	
		Maximum	Time of	Permanent	
	Gauge	Positve	Maximum	Positive	Notes
	Number	Displacement	Positive Disp.	Displacement	Notes
		(mm)	(s)	(mm)	
	31	20.7	0.051	2.4	
I	32	19	0.0506	2.5	

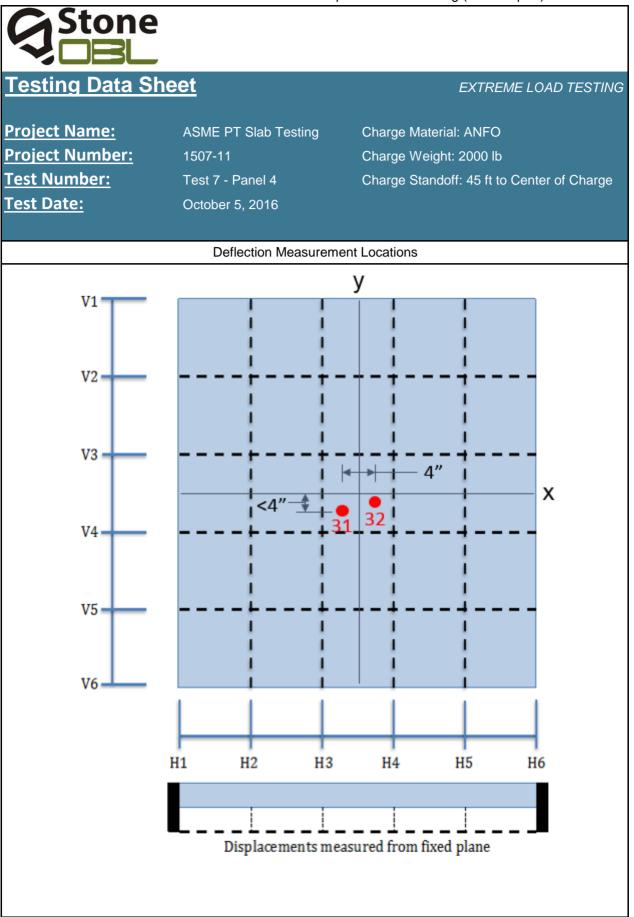

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>


ASME PT Slab Testing 1507-11 Test 7 - Panel 4 October 5, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes
P1	70.1	352	N/A	N/A	Located 53 ft from charge
P2	114	217	N/A	N/A	Located 46 ft from charge; Impulse through 0.010 s
P3	380	381	-50	N/A	
P4	381	434	N/A	N/A	Impulse through 0.0093 s
P5	373	404	-43	N/A	
P6	N/A	N/A	N/A	N/A	Data read error
P7	432	490	-90	N/A	



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 7 - Panel 4 October 5, 2016 Charge Material: ANFO Charge Weight: 2000 lb Charge Standoff: 45 ft to Center of Charge

	Def					
	De	flection Measure		r Face of Spec		
Vertical	Horizontal	Initial Measurement	Final Measurement		Permanent Deflection	Permanent
Location	Location	(ft)	(ft)		(mm)	Deflection (in
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.32	12.32		0.0	0.000
V2	H3	12.32	12.32		0.8	0.031
V2	H4	12.33	12.32		0.8	0.031
V2	H5	12.33	12.32		2.4	0.094
V2	H6					
V3	H1					
V3	H2	12.35	12.34		3.2	0.126
V3	H3	12.36	12.34		4.8	0.189
V3	H4	12.34	12.33		3.2	0.126
V3	H5	12.33	12.32		3.2	0.126
V3	H6					
V4	H1					
V4	H2	12.38	12.37		2.4	0.094
V4	H3	12.36	12.35		2.4	0.094
V4	H4	12.34	12.34		1.6	0.063
V4	H5	12.29	12.29		1.6	0.063
V4	H6					
V5	H1					
V5	H2	12.41	12.40		2.4	0.094
V5	H3	12.41	12.40		2.4	0.094
V5	H4	12.35	12.35		0.0	0.000
V5	H5	12.32	12.32		0.8	0.031
V5	H6					
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5					
V6	H6					

EXTREME LOAD TESTING

to Center of Charge

Project Name:	ASME PT Slab Testing	Charge Material: ANFO
Project Number:	1507-11	Charge Weight: 2300 lb
<u>Test Number:</u>	Test 8 - Panel 8	Charge Standoff: 45 ft to Center of Charg
Test Date:	December 8, 2016	Pre-Test Specimen Temperature: 18 °F

Specimen Description							
Height	Width	Thickness	Prestress Level	Conventional Reinf. Level	Compressive Strength		
16 ft (4.9 m)	16 ft (4.9 m)	10-5/8 in (270 mm)	1450 psi (10 MPa)	13.7 lb/ft ³ (220 kg/m ³)	7370 psi (50.8 MPa)		

Specimen Response

Description: The blast load resulted in horizontal, vertical, and diagonal cracks on the front face of the panel, along with a concrete crushing/scabbing pattern similar to previous tests. On the back face, cracking was observed along most of the slab surface. Cracks were mostly hairlines in a yield line pattern similar to previous tests. The main cracks on the interior face were central horizontal and vertical cracks with a width range of approximately 0.016 to 0.2 inch (0.41 to 0.5 mm). More significant cracking up to 0.1 inch (2.5 mm) and some minor spalling were noted along all edges of the panel. Heavier cracking was also observed across the slab thickness, which was in a similar pattern to previous tests. Moreover, disengagement of the concrete up to 1/2-inch (13 mm) along all the corner regions of the slab was recorded. No damage was observed to the stiffened steel frame.

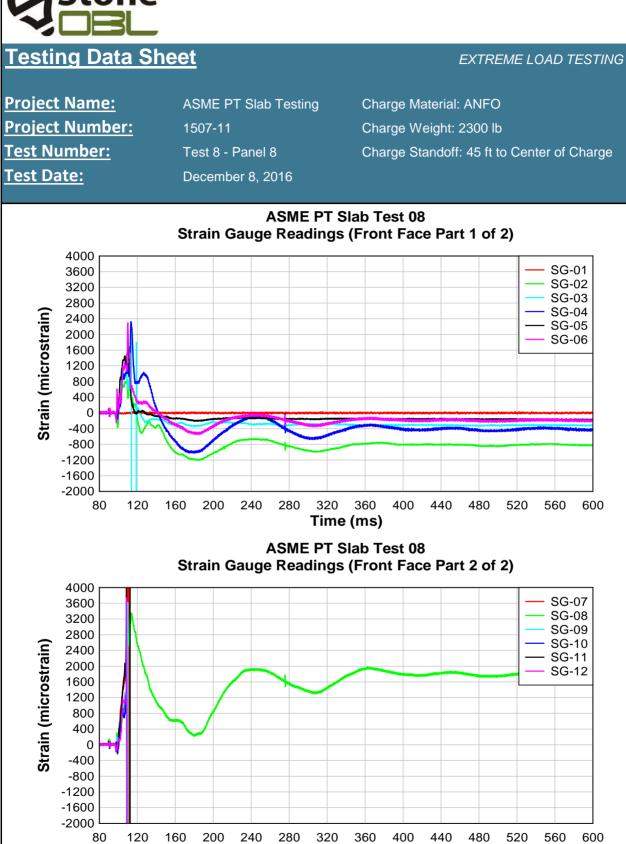
The maximum deflection recorded with the laser sensors was 3.3 inches (85 mm). The permanent set near the slab center point was approximately 2.0 inches (50 mm).

Strain Gauge Information (see attached gauge summary)

Displacement Gauge Information (see attached gauge summary)

Pressure Gauge Information (see attached gauge summary)

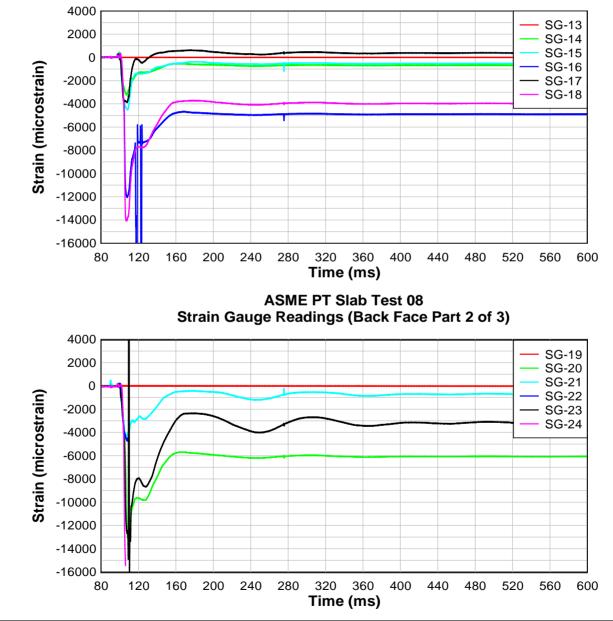
Permanent Deflection (see deflection measurement table)


<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u> ASME PT Slab Testing 1507-11 Test 8 - Panel 8 December 8, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING

Strain Gauge Information (see attached table for locations) (see attached plot of strain time-history)

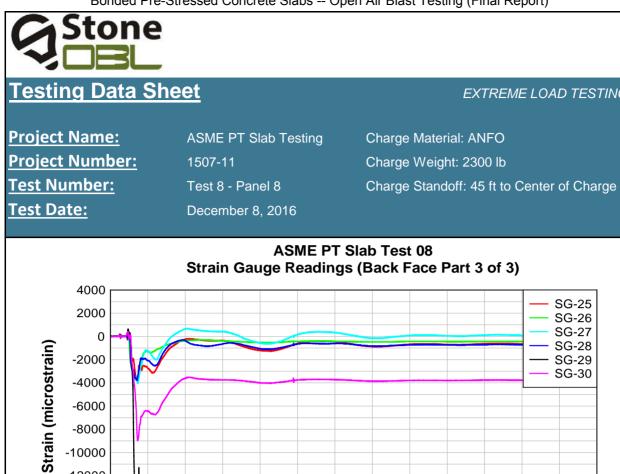
Channel	Sensor Designation	Maximum Strain (με)	Time of Maximum Strain (s)	Notes	
1	1-SG-1-F-H	N/A	N/A	Sensor had no response	
2	2-SG-1-F-V	-1202	0.1850	Permanent strain: -814 με	
3	3-SG-2-F-H	-339	0.1811	Noisy connection, Permanent strain: -315 µE	
4	4-SG-2-F-V	-1021	0.1795	Permanent strain: -419 µE	
5	5-SG-3-F-H	-206	1812.0000	Permanent strain: -183 µE	
6	6-SG-3-F-V	-546	0.1824	Permanent strain: -175 µ8	
7	7-SG-4-F-H	N/A	N/A	Wire broken at 0.1111 s	
8	8-SG-4-F-V	3347	0.1137	Permanent strain: 1796 με	
9	9-SG-5-F-H	N/A	N/A	Wire broken at 0.1099 s	
10	10-SG-5-F-V	N/A	N/A	Wire broken at 0.1086 s	
11	11-SG-6-F-H	N/A	N/A	Wire broken at 0.112 s	
12	12-SG-6-F-V	N/A	N/A	Wire broken at 0.1086 s	
13	13-SG-1-R-H	N/A	N/A	Sensor had no response	
14	14-SG-1-R-V	-3216	0.1071	Permanent strain: -674 με	
15	15-SG-2-R-H	-4505	0.1086	Permanent strain: -520 με	
16	16-SG-2-R-V	-12,047	0.1080	Noisy connection, Perm. strain: -4885 µE	
17	17-SG-3-R-H	-3869	0.1080	Permanent strain: 381 µE	
18	18-SG-3-R-V	-14,072	0.1076	Permanent strain: -3972 µ8	
19	19-SG-4-R-H	N/A	N/A	Sensor had no response	
20	20-SG-4-R-V	-13,145	0.1089	Permanent strain: -6039 µ8	
21	21-SG-5-R-H	-4318	0.1078	Permanent strain: -668 με	
22	22-SG-5-R-V	N/A	N/A	Wire broken at 0.1087 s	
23	23-SG-6-R-H	-12,645	0.1082	Noisy connection, Perm. strain: -3108 µE	
24	24-SG-6-R-V	N/A	N/A	Wire broken at 0.1064 s	
25	25-SG-7-R-H	-3658	0.1090	Permanent strain: -658 με	
26	26-SG-7-R-V	-3717	0.1070	Permanent strain: -445 µ8	
27	27-SG-8-R-H	-4051	0.1094	Permanent strain: 85 με	
28	28-SG-8-R-V	-3771	0.1086	Permanent strain: -768 µE	
29	29-SG-9-R-H	N/A	N/A	Wire broken at 0.1104 s	
30	30-SG-10-R-V	-8974	0.1091	Permanent strain: -3775 µ8	



Time (ms)

Testing Data Sheet EXTREME LOAD TESTING Project Name: ASME PT Slab Testing Charge Material: ANFO Project Number: 1507-11 Charge Weight: 2300 lb Test Number: Test 8 - Panel 8 Charge Standoff: 45 ft to Center of Charge Test Date: December 8, 2016 Charge Standoff: 45 ft to Center of Charge

EXTREME LOAD TESTING


SG-25

SG-26 SG-27

SG-28

SG-29 SG-30

600

240

200

280

320 360

Time (ms)

400

440

480

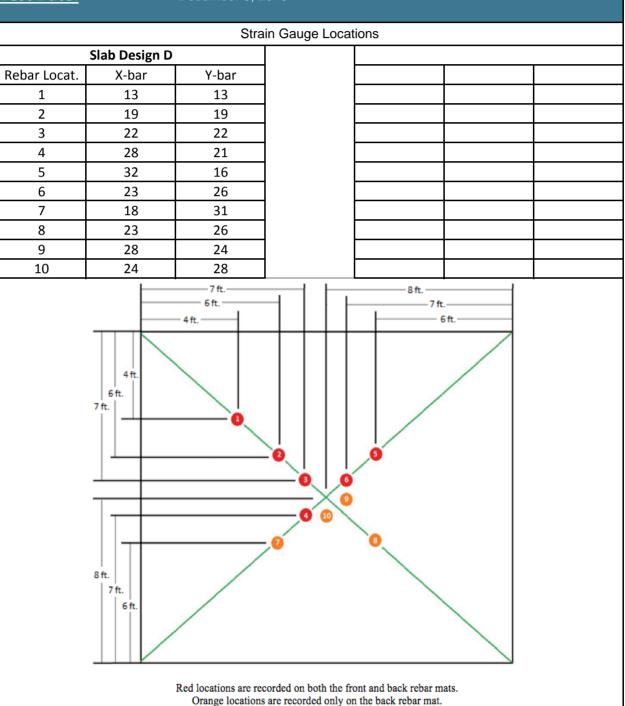
520

560

-6000 -8000 -10000 -12000 -14000 -16000

80

120


160

Testing Data Sheet

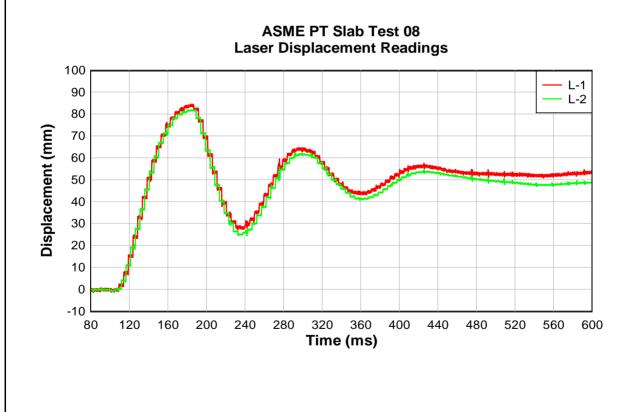
Project Name:
Project Number:
<u>Test Number:</u>
Test Date:

ASME PT Slab Testing 1507-11 Test 8 - Panel 8 December 8, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

Testing Data Sheet

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 8 - Panel 8 December 8, 2016 Charge Material: ANFO


EXTREME LOAD TESTING

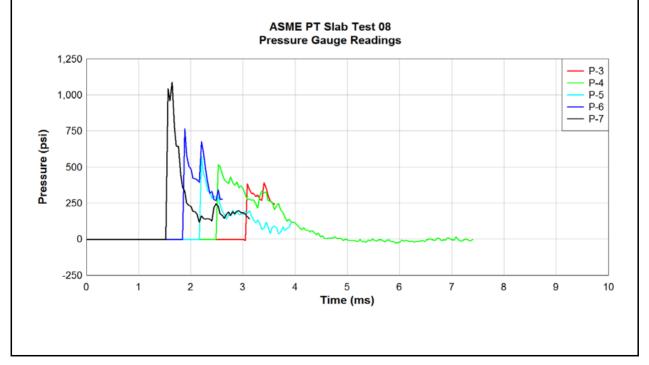
Charge Weight: 2300 lb

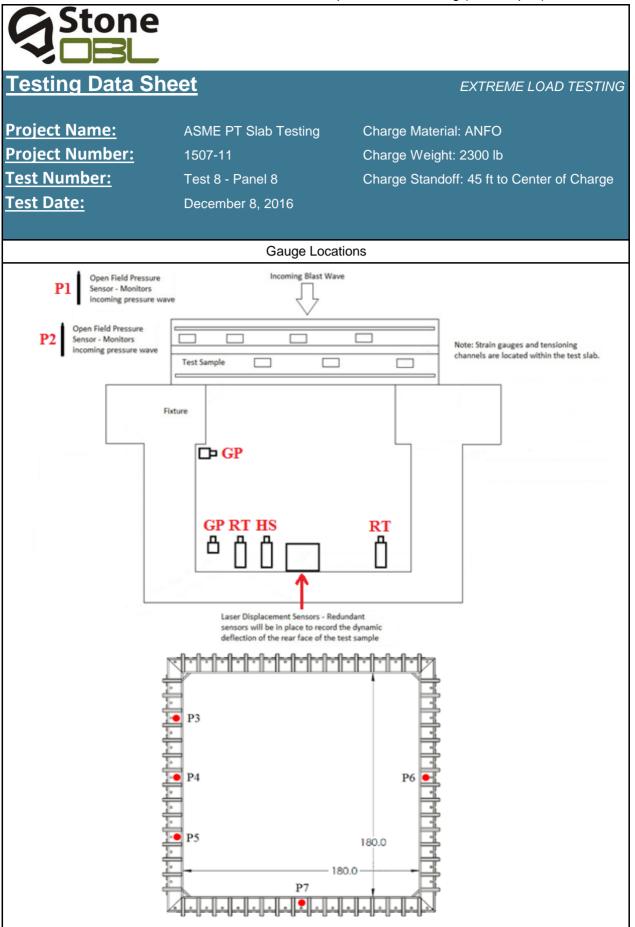
Charge Standoff: 45 ft to Center of Charge

Displacement Gauge Information (see attached diagram for locations) (see attached plot of displacement time-history)

	Maximum	Time of	Permanent	
Gauge	Positve	Maximum	Positive	Notes
Number	Displacement	Positive Disp.	sitive Disp. Displacement	NOICES
	(mm)	(S)	(mm)	
31	85	0.1848	51	
32	82	0.189	48	

<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

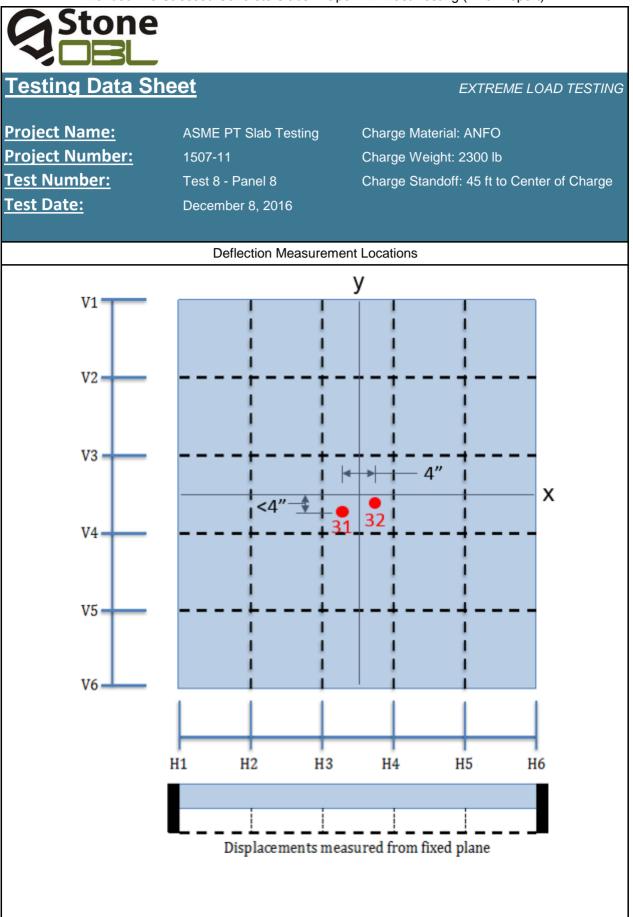

ASME PT Slab Testing 1507-11 Test 8 - Panel 8 December 8, 2016 Charge Material: ANFO


EXTREME LOAD TESTING

Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

Pressure Gauge Information (see attached diagram for locations) (see attached plot of pressure time-history)

Gauge Number	Peak Positive Pressure (psi)	Positive Impulse (psi-ms)	Peak Negative Pressure (psi)	Negative Impulse (psi-ms)	Notes	
P1	90.4	203	N/A	N/A	Located 53 ft from charge; Impulse through 0.0102 s	
P2	78.5	218	N/A	N/A	Located 45 ft from charge; Impulse through 0.0182 s	
P3	391	166	N/A	N/A	Impulse through 0.0036 s	
P4	519	474	N/A	N/A		
P5	572	309	N/A	N/A	Impulse through 0.004 s	
P6	766	323	N/A	N/A	Impulse through 0.0026 s	
P7	1088	470	N/A	N/A	Impulse through 0.0031 s	



<u>Project Name:</u> <u>Project Number:</u> <u>Test Number:</u> <u>Test Date:</u>

ASME PT Slab Testing 1507-11 Test 8 - Panel 8 December 8, 2016 Charge Material: ANFO Charge Weight: 2300 lb Charge Standoff: 45 ft to Center of Charge

	Def	lection Measure		r Face of Speci	men	
Vertical	Horizontal	Initial	Final		Permanent	Permanent
Location	Location		Measurement		Deflection	Deflection (in)
		(ft)	(ft)		(mm)	Denection (in)
V1	H1					
V1	H2					
V1	H3					
V1	H4					
V1	H5					
V1	H6					
V2	H1					
V2	H2	12.38	12.26		36.5	1.438
V2	H3	12.38	12.26		36.5	1.438
V2	H4	12.38	12.23		42.9	1.688
V2	H5	12.41	12.23		52.4	2.063
V2	H6					
V3	H1					
V3	H2	12.40	12.24		46.0	1.813
V3	H3	12.40	12.26		41.3	1.625
V3	H4	12.38	12.23		42.9	1.688
V3	H5	12.41	12.23		52.4	2.063
V3	H6					
V4	H1					
V4	H2	12.41	12.25		49.2	1.938
V4	H3	12.40	12.23		49.2	1.938
V4	H4	12.38	12.23		44.5	1.750
V4	H5	12.34	12.23		33.3	1.313
V4	H6					
V5	H1					
V5	H2	12.42	12.29		39.7	1.563
V5	H3	12.41	12.27		42.9	1.688
V5	H4	12.39	12.26		41.3	1.625
V5	H5	12.35	12.26		28.6	1.125
V5	H6					
V6	H1					
V6	H2					
V6	H3					
V6	H4					
V6	H5					
V6	H6					

