

Report, General

PHENOMENA IDENTIFICATION AND RANKING TABLE FOR A SEVERE ACCIDENT IN A CANDU IRRADIATED FUEL BAY

COMPANY WIDE

CW-126800-REPT-001

Revision 0

Prepared by Rédigé par

Pames perdel

Baschuk Jeffrey - Manager, Material Sciences Branch Reviewed by

Nitkemandan

Nitheanandan Thambiayah -Manager - Engineering

Approved by Approuvé par

Vérifié par

I. Nitherwandan

Nitheanandan Thambiayah -Manager - Engineering

2017/10/10 UNRESTRICTED 2017/10/10 Illimité

©Canadian Nuclear Laboratories

286 Plant Road Chalk River, Ontario Canada KOJ 1JO ©Laboratoires Nucléaires Canadiens

286, rue Plant Chalk River (Ontario) Canada KOJ 1J0

CNSC Ref# RSP-602.2

Report, General

Phenomena Identification and Ranking Table for a Severe Accident in a CANDU Irradiated **Fuel Bay**

Company-Wide

CW-126800-REPT-001 **Revision 0**

2017 October

UNRESTRICTED

© Canadian Nuclear Laboratories

286 Plant Road Chalk River, Ontario Canada KOJ 1JO

octobre 2017

ILLIMITÉE

© Laboratoires Nucléaires Canadiens

286, rue Plant Chalk River (Ontario) Canada KOJ 1JO

Revision History Liste de révisions

CW-511300-FM-168 Rev. 2

UNRESTRICTED

ILLIMITÉE

Page 1 of /de 1

Ref. Procedure CW-511300-PRO-161

Document No. / Numéro de document:	CW	126800	REPT	001
	Doc. Collection ID ID de la collection de doc.	SI Répertoire du sujet	Section	Serial No. N° de série
Document Details / Détails sur le document				

Title	Total no. of pages
Titre	N ^{bre} total de pages
Phenomena Identification and Ranking Table for a Severe Accident in a CANDU Irradiated Fuel Bay	155

For Release Information, refer to the Document Transmittal Sheet accompanying this document. / Pour des renseignements portant sur la diffusion, consultez la feuille de transmission de documents ci-jointe.

Revision H	istory / Liste de rév	isions			
Revisi	on / Révision				
No./N°	Date (yyyy/mm/dd)	Details of Rev. / Détails de la rév.	Prepared by Rédigé par	Reviewed by Examiné par	Approved by Approuvé par
D1	2017/08/01	Issue for "Review and Comment".	J.J. Baschuk	T. Nitheanandan	
0	2017/10/10	Issue as "Approved for Use".	J.J. Baschuk	T. Nitheanandan	T. Nitheanandan

CW-126800-REPT-001 Page i

Rev. 0

TABLE OF CONTENTS

SECTION

PAGE

1.	INTRODUCTION1-1
2.	METHODOLOGY2-1
2.1	General PIRT Process2-1
2.1.1	Issues2-1
2.1.2	Objectives2-2
2.1.3	Hardware and Scenario2-2
2.1.4	Database2-2
2.1.5	Figure of Merit2-2
2.1.6	Identify Phenomena2-3
2.1.7	Importance Ranking2-3
2.1.8	Knowledge Level2-3
2.1.9	Documentation2-4
2.2	PIRT Process Application: Severe Accident in a CANDU IFB2-4
2.2.1	Issues2-4
2.2.2	Objectives2-4
2.2.3	Hardware and Scenario2-5
2.2.4	Database2-5
2.2.5	Figure of Merit2-6
2.2.6	Identify Phenomena2-6
2.2.7	Importance Ranking2-6
2.2.8	Knowledge Level2-7
2.2.9	Documentation2-7
2.3	PIRT Panel
3.	SYSTEMS, STRUCTURES, AND COMPONENTS3-1
4.	ACCIDENT SCENARIO4-1
5.	PIRT RESULTS5-1
6.	SUMMARY AND CONCLUSIONS6-1
7.	REFERENCES7-1
8.	LIST OF ACRONYMS8-1

CW-126800-REPT-001 Page ii

Rev. 0

TABLE OF CONTENTS

SECTION

PAGE

TABLES

Table 1 Members for the PIRT Panel	T-1
Table 2 Hardware (Systems, Structures and Components) Chosen for the PIRT Panel	T-2
Table 3 Gap Identification and Distribution of Rank and Knowledge of Phenomena	
Assessed	T-4

FIGURES

Figure 1	General PIRT Process	I-1
Figure 2	Fuel Storage Trays and Modules for a Pickering, Darlington (not labeled in	
	figure) and Bruce GS. Fuel Storage Trays for PLNGS and Bruce GS are	
	Similar	I-2
Figure 3	Stack of Fuel Storage Trays	I-3
Figure 4	Accident Progression	I-4
Figure 5	Accident Progression and Phenomena with High Importance	I-5
Figure 6	Accident Progression and Phenomena with Medium Importance	I-6
Figure 7	Computer Program Development and Usage Process	I-7

APPENDICES

Appendix A	Phenomena Identification and Ranking Summary	4-1
Appendix B	Phenomena Assessment Worksheets	B-1

1. INTRODUCTION

The purpose of this report is to describe the methods, assumptions, analysis and the results of a Phenomena Identification and Ranking Table (PIRT) process [1] to a severe accident in a CANDU Irradiated Fuel Bay (IFB)¹. The PIRT process was conducted over two meetings:

- Meeting #1, held on 2016 May 10, and
- Meeting #2, held on 2016 June 23-24.

The PIRT process was sponsored by the Canadian Nuclear Safety Commission (CNSC), and executed by Canadian Nuclear Laboratories (CNL). CNSC staff have been tasked to develop independent code capabilities in estimating the consequences (source term) of severe accidents. The current codes developed do not model CANDU fuel bay severe accidents. In order to develop a code, the accident phenomena and key parameters need to be identified, the accident progression understood and credible models chosen. Hence, the ultimate objective of the PIRT process described in this report is to inform the development of a computer code to model severe accidents in a CANDU fuel bay.

The methodology used during the PIRT process is described in Section 2. The systems, structures, and components that were considered in the PIRT process are described in Section 3. The accident scenario considered is described in Section 4. The results of the PIRT process are presented in Section 5, with a summary presented in Section 6.

¹ In this document, Irradiated Fuel Bay (IFB), Spent Fuel Bay (SFB), and Spent Fuel Pool (SFP) are used interchangeably.

2. METHODOLOGY

In order to manage the risks associated with nuclear facilities, the consequences of potential accidents must be estimated. In some limited cases, the consequences can be quantified by experiments, but, in general, evaluation models (EMs) are required. To develop and use the EMs, a strong knowledge of the physical phenomena occurring within the system is required. Nuclear-related systems typically involve numerous phenomena, and without a method to rationalize the phenomena, the analysis of the system could become intractable.

The United States Nuclear Regulatory Commission (US NRC) provides a regulatory guide on transient and accident analysis methods [2], in which six basic principles have been identified for developing and assessing evaluation models. The first principle is [2]:

Determine requirements for the evaluation model. The purpose of this principle is to provide focus throughout the evaluation model development and assessment process (EMDAP). An important outcome should be the identification of mathematical modeling methods, components, phenomena, physical processes, and parameters needed to evaluate the event behavior relative to the figures of merit described in the SRP² and derived from the general design criteria (GDC) in Appendix A to 10 CFR Part 50. The phenomena assessment process is central to ensuring that the EM can appropriately analyze the particular event and that the validation process addresses key phenomena for that event.

The PIRT process satisfies many of the components of the first principle, such as identifying the components, phenomena, physical processes, parameters and the figures of merit. Thus, the PIRT process is an important step in the development of an EM. The general PIRT process is described in Section 2.1, with the details of the application of the process for severe accidents in a CANDU IFB given in Section 2.2. A key component of the PIRT process is the panel of experts, or PIRT panel; the PIRT panel is described in Section 2.3.

2.1 General PIRT Process

The PIRT process used for this work was adapted from References [1] and [3] and is illustrated in Figure 1. The process consists of nine steps, which are described in Sections 2.1.1 to 2.1.9.

Note that the PIRT process shown in Figure 1 cascades from Step 1 to Step 9. Iteration can occur between steps. For example, at Step 7, additional information may be needed to evaluate the importance of a phenomena; this would result in revisiting the knowledge database (Step 5) to add new information.

2.1.1 Issues

The issues that are driving the need for a PIRT are identified. These issues may be licensing, operational, or programmatic. The definition may evolve as a hierarchy starting with federal

² Standard Review Plan

regulations or design or safety goals and descending to a consideration of key physical processes.

2.1.2 Objectives

The specific objectives of the PIRT are identified in the second step. The PIRT objectives are usually specified by the sponsoring agency. A clear statement of PIRT objectives is important because it defines the focus, content, and intended applications of the PIRT product. The PIRT objectives should include a description of the final products to be prepared.

2.1.3 Hardware and Scenario

The hardware, equipment and scenario that is considered during the PIRT process is identified in the third step. Generally, a specific hardware configuration and specific scenario are defined. Usually, but not always, the scenario is divided into phases. This is done because the importance of a phenomenon often varies during the course of a scenario. In addition, some system components may not be activated throughout the scenario.

Experience obtained from previous PIRT efforts indicates that any consideration of multiple hardware configurations or scenarios impedes PIRT development. After the baseline PIRT is completed for the specified hardware and scenario, the applicability of the PIRT to related hardware configurations and scenarios can be assessed.

2.1.4 Database

The fourth step of the process involves compiling and reviewing the contents of a database that captures the relevant experimental and analytic knowledge relative to the physical processes and hardware for which the PIRT is being developed. Each Panel member should review and become familiar with the information in the database.

2.1.5 Figure of Merit

The Figure of Merit (FOM) is the primary evaluation criterion used to judge the relative importance of each phenomenon. Therefore, it must be identified before proceeding with the ranking portion of the PIRT effort. It is extremely important that all PIRT Panel members come to a common and clear understanding of the FOM and how it will be used in the ranking effort. The characteristics of a well-defined FOM are that it is: (1) directly related to the issue(s) being addressed; (2) directly related to the phenomena expected to occur during the scenario; (3) easily comprehended, (4) explicit; (5) measurable, and (6) continuous (i.e., not a threshold effect). For design basis accident scenarios, the FOM is generally derived from regulatory requirements. For beyond design basis accident scenarios, the FOM may be derived from regulatory or design goals. As the PIRT process has rarely been applied to beyond design basis accidents, FOM development for such scenarios is evolving.

2.1.6 Identify Phenomena

In the sixth step, all plausible phenomena are identified. A primary objective of this step is completeness. In addition to preparing the list of phenomena, precise definitions of each phenomenon should be developed and made available to the PIRT Panel to ensure that Panel members have a common understanding of each phenomenon. Within the context of this PIRT, the term "phenomenon" encompasses phenomena, processes, conditions, characteristics, and state variables. In each PIRT effort, there is a phenomenological hierarchy beginning at the system level and proceeding in turn through the component level, local level, microscopic level, atomic levels and so on. Each PIRT Panel must determine the appropriate phenomenological levels to include in its list of identified phenomena. Insights into the levels to be included can often be derived by considering the data needs for analytic methods and the level at which data from experiments are collected. Usually, there is no need to proceed further down the phenomenological hierarchy than (a) the level at which physical processes are modelled with analytic methods or (b) the level at which data, either direct or indirect, are acquired.

2.1.7 Importance Ranking

After the phenomena are identified, they are ranked. Importance is ranked relative to the FOM adopted in Step 5. Several ranking scales have been used in the past. However, consistent application of the scale is of equal importance as the specifics of the scale. A word-based scale, e.g., High, Medium, Low or Inactive / Insignificant importance, has proven useful. Numerical scales, e.g., 1-5, have also been used. Outcomes are closely associated with the ranking process and the members of the PIRT Panel should understand the outcomes as they embark on the ranking effort. For example, a phenomenon assigned an importance-rank of High must be simulated with a high degree of accuracy in both experiments and analysis tools while a phenomenon with an importance rank of Low requires significantly less accuracy in both experimental and analytic simulations.

2.1.8 Knowledge Level

In addition to importance, the level of knowledge associated with each phenomenon is assessed. As with importance ranking, several scales have been used in the past. Again, a consistent application of the scale is of equal importance to the specifics of the scale. A numerical scale, e.g., 1-4, which includes in its definitions a statement on uncertainty, has been used. A word-based scale, e.g., Known, Partially Known or Unknown, has also been used. By explicitly addressing uncertainty due to a lack of knowledge, an observed defect of earlier PIRT efforts has been addressed, namely, the tendency of PIRT Panel members to assign high importance to a phenomenon for which Panel members concluded that there was significantly less than full knowledge and understanding.

A consistent outcome of PIRT efforts has been that phenomena found to be highly important relative to the FOM, but for which the knowledge level is insufficient, are carefully examined to determine if additional experiments or analytic efforts are warranted.

2.1.9 Documentation

The primary objective of this step is to provide sufficient coverage and depth that a knowledgeable reader can understand what was done (process) and the outcomes (results). The essential results to be documented are the phenomena considered and their associated definitions, the importance of each phenomena and associated rationale for the judgment of importance, the level of knowledge or uncertainty regarding each phenomenon and associated rationale, and the results and rationales for any assessments of extended applicability for the baseline PIRT. Other information may be included as determined by the Panel or requested by the Sponsor.

2.2 PIRT Process Application: Severe Accident in a CANDU IFB

The general PIRT process, outlined in Section 2.1, was followed for analyzing a severe accident in the CANDU IFB. The key results from each step are summarized in Sections 2.2.1 to 2.2.9.

2.2.1 Issues

The issues supporting the need for the PIRT process were outlined by the sponsor, the CNSC. The CNSC position on accidents involving a CANDU IFB is that, for design basis accidents (DBA), the CANDU IFBs are safe. Adequate time is available for operator action to return the IFBs to a stable state, resulting in no public dose. Furthermore, the safety case for CANDU IFBs during a beyond design basis accident (BDBA) is also adequate. Even without operator intervention, there would not be systematic fuel failures for a few days after the accident initiation. Safety margins exist, although the margins are not well quantified. Public doses are not expected, but minor land contamination could occur.

However, there is no computer code available that can model the consequences of a severe accident in a CANDU IFB. This is considered a gap, as the lack of a computer code makes safety margins difficult to quantify. As well, extreme events are more difficult to analyze. CNSC staff wish to develop a computer code to close this analysis gap, because there is a desire to develop independent code capabilities in estimating the consequences (source term) of severe accidents.

2.2.2 Objectives

The objective of the PIRT process is to inform the development of a computer code to analyze severe accidents in a CANDU IFB. To develop a computer program, the important phenomena must be identified so that appropriate models can be chosen. The PIRT process is an ideal starting point for code development, as it identifies the key phenomena involved in the accident scenario. As well, the importance of the phenomena is also established by the PIRT process, which will inform the level of detail needed for the modelling. Finally, the PIRT process identifies the level of knowledge associated with the phenomena, which will highlight areas in which further research and development is required for either code development or validation.

2.2.3 Hardware and Scenario

The hardware considered was based on the CANDU-6 station of the Point Lepreau Nuclear Generating Station (PLNGS), owned and operated by New Brunswick Power (NBPower). The reason for basing the PIRT process on this design was that it has many key features:

- No auxiliary storage,
- An exposed side-wall, and
- Above the water table

However, some additional hardware was considered, chiefly:

- Both epoxy and stainless steel liners, and
- All types of bundle storage racks used in Canadian CANDU stations.

With this hardware choice, it is expected that the PIRT process would encompass all the key features of Canadian CANDU stations. The hardware is described in additional detail in Section 3.

The accident scenario was one in which the IFB loses cooling and coolant for an extended period. The main assumptions of the accident were:

- A severe environmental event, such as a hurricane, earthquake or ice storm occurs.
- Both the nuclear power plant and the IFB cooling system is damaged.
- Class IV power is unavailable for the duration of the accident.
- Operators are busy or unable to access the IFB for a long period of time.
- The core has been recently discharged (e.g. for reactor refurbishment).
- The fuel is completely uncovered for a period of 7 days.

Additional details on the accident scenario is provided in Section 4.

2.2.4 Database

A literature review was conducted for information relevant for the accident scenario, and the relevant papers were supplied to the PIRT panel members electronically (DVD). The literature reviewed included the following items:

- 1. Open-literature from Canadian sources (35 references). The subject matter from these sources included:
 - a. Fission product release in an air environment,
 - b. Behaviour of defected fuel elements,
 - c. Fuel bundle deformation,
 - d. Fuel oxidation, and
 - e. Modelling.

- 2. Open-literature from International sources (13 references). The subject matter from these sources included:
 - a. Overview of spent fuel pool accidents,
 - b. Fission product release, and
 - c. Sheath oxidation kinetics in air, nitrogen, air/steam mixtures.
- 3. Open-literature specifically on Light Water Reactors (11 references). These consist of select key papers on the subject of light water reactor spent fuel pool accidents.

2.2.5 Figure of Merit

During the 1st PKPIRT meeting, the sheath temperature was chosen as the FOM. During the second meeting, it was noted that the use of sheath temperature as the FOM could result in some phenomena that are important to fission product/radiological releases to be ranked too low. Thus, during the PKPIRT process, the primary assessments were performed with sheath temperature while a secondary assessment was performed using "Fission product/radiological release, leading to a dose to workers or the public" as a second criteria. Therefore, two FOM were considered:

- 1. Sheath temperature
- 2. Fission product/radiological release, leading to a dose to workers or the public

2.2.6 Identify Phenomena

The PIRT panel considered the hardware and scenario, and developed a list of phenomena. The list of phenomena was based on previous PIRT processes (such as CANDU LLOCA), international fuel bay PIRT experience (OECD/NEA), and expert judgement. A total of 86³ phenomena were identified. The phenomena are summarized in Appendix A.

2.2.7 Importance Ranking

The importance rank of each phenomena was identified for each stage of the accident scenario. The ranking scheme used was:

• High (H)

Phenomenon has a controlling impact on the Figure-Of-Merit. Simulation of experiments and analytic modelling with a reasonable degree of accuracy (major/minor trends reasonably within range of data (includes scaling)) is required.

Medium (M)

Phenomenon has a moderate impact on the Figure-Of-Merit. Simulation of experiments

³ During the PIRT panel deliberations, 92 phenomena were initially identified. However, 6 of these phenomena were found to be duplicates or not relevant to CANDU IFB severe accidents. In this report, only the unique and relevant phenomena are listed; for the original phenomena list refer to the summary memorandum of the 2nd PIRT panel meeting.

CW-126800-REPT-001 Page 2-7

Rev. 0

and/or analytic modelling with a moderate degree of accuracy (major trends generally within range of data) is required.

• Low (L)

Phenomenon has a minimal impact on the Figure-Of-Merit. Modelling must be present to preserve functional dependencies.

• Inactive (I)

Phenomenon has no impact on or is insignificant with respect to the Figure-Of-Merit. Modelling must be present if the functional dependencies are required.

The phenomena importance ranking is summarized in Appendix A, with the phenomena listed in the order of decreasing importance. As well, the rationale for the importance ranking was recorded in the phenomena assessment worksheets, which are provided in Appendix B.

2.2.8 Knowledge Level

The knowledge level on the phenomena was assessed for each stage of the accident as:

- 4 Fully known, small uncertainty
- 3 Known, moderate uncertainty
- 2 Partially known, large uncertainty
- 1 Very limited knowledge, uncertainty cannot be characterized
- N/A Not applicable, used if the phenomena importance is inactive (I)

The phenomena knowledge level are summarized in Appendix A. The rationale for the knowledge level assessment was recorded in the phenomena assessment worksheets, which are provided in Appendix B.

2.2.9 Documentation

The PIRT panel met on two occasions:

- 2016 May 10
- 2016 June 23-24

The outcomes of both meetings were summarized in a minutes of meeting (for the first meeting) and a memorandum (for the second meeting). The final results of the PIRT panel, including the ranking tables, are summarized in this report.

2.3 PIRT Panel

The PIRT panel consisted of 8 members, and are listed in Table 1. The panel chair was Jeffrey Baschuk. The other panel members were chosen for their expertise in fields relevant to the accident scenario. These fields were:

• Fuel/fission product behaviour (Ray Dickson, CNL),

CW-126800-REPT-001 Page 2-8

Rev. 0

- Pool boiling, fluid flow, thermal-hydraulics in a severe accident (Nithy Nitheanandan, CNL),
- Containment behaviour (thermal-hydraulics, gas-mixing, hydrogen) (Sammy Chin, CNL), and
- Concrete behaviour (Shahzma Jaffer, CNL).

In order to ensure a diversity of experience within the panel, additional members were added:

- Industry experience with CANDU fuel and IFB systems (Jonathan Judah, J. Judah & Associates, retired OPG),
- Academic experience in fuel behaviour (Brent Lewis, Royal Military College, Retired), and
- International expert on severe accidents (Robert Henry, Fauske & Associates).

In addition to the 8 members, the sponsors of the PIRT processes participated as observers. The following staff of the CNSC attended the panel meetings as observers:

- Wade Grant (CNSC)
- Quanmin Lei (CNSC)
- Kevin Dulhanty (CNSC, 2nd meeting only)

The role of the observers was to clarify the issues and objectives during the PIRT panel deliberations.

UNRESTRICTED CW-126800-REPT-001 Page 3-1 Rev. 0

3. SYSTEMS, STRUCTURES, AND COMPONENTS

The hardware considered was based on the CANDU-6 station of the Point Lepreau Nuclear Generating Station (PLNGS), owned and operated by New Brunswick Power (NBPower). The IFB is located in the service building, adjacent to the reactor building. New fuel starts in the service building and, as needed, enters the reactor building and is loaded into the fueling machine. The fueling machine inserts the fuel into the reactor (fuel channels). After the fuel is spent, it is discharged into the fuelling machine, and then into the spent fuel discharge room. The fuel then travels from the spent fuel discharge room, out of the reactor building, and into the reception bay. Fuel is typically stored in the reception bay for one to two weeks before being transferred to the main spent fuel bay. For the purposes of the PIRT process, only the spent fuel storage pools in the service building are considered, as they are outside of containment and thus fuel failure leading to fission product release would have a pathway to the outside environment. Defected fuel can also be present in the bays. The defected bundles can be stored in the same locations as intact bundles, segregated in separate area after inspection, or stored in sealed canisters. Some CANDU reactors produce medical isotopes (⁶⁰Co), which are also placed in the storage bay prior to shipping.

The fuel bays are constructed of reinforced concrete and have a double wall. One of the walls of the PLNGS fuel bay is exposed (not buried). This is one reason why the PLNGS design was chosen for the PIRT process, as the exposed wall could be breached by an extreme event, leading to loss-of-coolant. The base slab of the bays is lined with stainless steel and the walls are coated with fibreglass reinforced epoxy. However, other Canadian plants have full stainless steel liners or epoxy liners. As a result, both stainless steel and epoxy liners were considered during the PIRT process, in order to have the results applicable to all Canadian reactors.

When the fuel is discharged into the reception bay, it is loaded into trays, baskets or modules, depending on the reactor. Bundles in PLNGS are placed into trays (similar to the Bruce GS as shown in Figure 2), which are then arranged in racks, as shown in Figure 3. In order to have the PIRT be applicable to all Canadian power reactors, the fuel storage systems of Pickering, Bruce and Darlington were also considered during the PIRT process. The storage trays and modules for Pickering, Darlington and Bruce GS are also shown in Figure 2.

A summary of the systems, structures and components (hardware) considered for the PIRT panel is given in Table 2. The hardware is considered in 4 levels, with level 4 being the smallest components (such as the fuel pellets) and level 1 being the larger components (such as the service building).

4. ACCIDENT SCENARIO

The accident scenario was briefly described in Section 2.2.3, and the main assumptions were:

- A severe environmental event, such as a hurricane, earthquake or ice storm occurs.
- Both the nuclear power plant and the IFB cooling system are damaged.
- Class IV power is unavailable for the duration of the accident.
- Operators are busy or unable to access the IFB for a long period of time.
- The reactor core worth of fuel has been recently discharged (as might happen at the beginning of a refurbishment outage).
- The fuel is completely uncovered for a period of 7 days.

With these assumptions, the accident progression becomes as shown in Figure 4. The accident can be divided into 4 phases and it is assumed that the accident progresses to all 4 phases. In the first phase, after the initiating event, the IFB water level decreases, but the fuel remains covered (the shield water depth is a minimum of 4.5 m [4]). The level of the bay could be decreasing either due to a loss-of-coolant (such as a breach in an exposed wall); a loss-of-cooling which leads to the heat up, evaporation, or boiling of the water in the IFB; or a combination of loss-of-coolant and loss-of-cooling.

Once the fuel begins to become uncovered, the second phase of the accident begins. This phase is characterized by the fuel being partially uncovered, which is expected to initiate some fuel failures. After some time, the fuel will become completely uncovered and phase 3 of the accident begins. It is assumed that the entire inventory of fuel in the IFB is uncovered for a period of 7 days. The time period of 7 days was chosen to bound the range of applicability for the IFB computer code to be developed and not because this is a credible accident scenario. Additional fuel failures are expected during this phase, due to either fuel overheating or through-wall oxidation of the sheath. Finally, recovery of the IFB water inventory is initiated in Phase 4 of the accident. Operator action, potentially using portable pumps, refills the fuel bay such that the fuel becomes covered and cooling is restored.

5. PIRT RESULTS

A total of 86 phenomena were considered during the phenomena identification and ranking exercise. The phenomena, importance rank, and knowledge assessment are summarized in Appendix A, with the detailed justification of the ranking and knowledge assessment provided in Appendix B. Of the 86 phenomena, 37 were ranked as high (H) in at least one phase of the accident. These phenomena are:

- 1. Decay Heat
- 2. Geometry and configuration of the SFP building (dimensions, open/closed building)
- 3. Conduction in solid components (fuel, racks/modules, concrete, ...)
- 4. Turbulent flow (gas space, liquid)
- 5. Epoxy liner degradation and failure
- 6. Stainless steel liner degradation and failure
- 7. Location, design, burnup, decay heat of individual spent fuel assemblies and locations and configurations of storage racks/modules
- 8. Sheath strain and failure
- 9. Heat transfer in sheath, pellets and through the gap, which affects distribution of temperature, strain and stresses
- 10. UO_2 oxidation
- 11. Concrete aging (including temperature and radiation effects)
- 12. Concrete cracking (thermally induced, stress-induced, creep, quench)
- 13. Convective heat transfer
- 14. Rack type (Pickering basket, CANDU 6/Bruce tray, Darlington module)
- 15. Single and two phase natural circulation (by convection) within the pool at large scale
- 16. Deflagration
- 17. Flame acceleration
- 18. Deflagration to detonation transition (DDT)
- 19. Detonation
- 20. Transport of released fission products
- 21. Fission product deposition
- 22. Fission product chemistry
- 23. Water evaporation at the pool surface
- 24. Fuel fragmentation and relocation (during ballooning, before and after sheath rupture)
- 25. Environment conditions (e.g., air temperature, humidity, pressure, wind speed, ground temperature)
- 26. Thermal Radiation Heat Transfer

CW-126800-REPT-001 Page 5-2

- 27. Return of condensate to pool
- 28. Zircaloy oxidation in air-steam mixtures (including breakaway of pre-existing oxide layer)
- 29. Radionuclide releases from leaking fuel pins into the pool
- 30. Release of retained fission gases due to fuel fragmentation
- 31. Oxidation and releases from previously defected fuel into the pool
- 32. Behaviour of defected fuel
- 33. Deformation and integrity of structures (racks/modules/fuel bundle)
- 34. Fission product release from the fuel
- 35. Fuel cooling by sprays and makeup
- 36. Fuel particle entrainment in the gas outflow (during rewet)
- 37. Delayed ettringite formation

If phenomena that have at least a medium (M) importance rank are considered significant, then there are an additional 21 phenomena that should be considered:

- 1. SFP auxiliary systems status (ventilation, cooling, filters, strainers, pumps, heat exchangers)
- 2. Pool structure parameters, e.g., concrete composition, reinforcing design, liners, exterior interface (in-ground or above-ground)
- 3. Stratification in the gas space
- 4. Buoyancy induced mixing in the gas space
- 5. Building leakage of gases and aerosols
- 6. Hydrogen pick-up under steam + air + hydrogen
- 7. Liquid-phase transport of fission products to environment
- 8. Condensation heat transfer
- 9. Thermal expansion (mismatch between aggregate and cement paste, rebar and concrete, etc.)
- 10. Other pool contents (other than fuel stored in standard locations, like cobalt, scrap module, bundles and elements stored from fuel inspections, shield plugs)
- 11. Laminar flow (gas space, liquid)
- 12. Irradiation annealing and sheath recrystallization
- 13. Pool water radionuclide inventory and activity (including dissolved tritium)
- 14. Siphoning/leakage effects (e.g., leaking flow effect on established natural circulation patterns)
- 15. Initial atmospheric condition in the SFP building
- 16. Pool scrubbing of aerosols and gases from bubbles
- 17. Radioactive aerosol formation due to boiling at the free surface
- 18. Sheath Melt

- 19. Stainless steel oxidation
- 20. Water level swell
- 21. Effect of sea, river, lake, ground (impure) water injection

Thus, 58 of the 86 phenomena are at least of medium importance to the accident scenario.

With the high and medium importance phenomena identified, the accident scenario described in Section 4 can be expanded. This following discussion focuses on the 58 phenomena which are ranked as at least of medium importance (Figure 5 and Figure 6)). The numbers provided in {brackets} are the phenomena identification numbers provided in Appendix A and Appendix B.

During Phase 1 of the accident, the water level in the SFP slowly decreases. The reason for this decrease is not specified as it depends on the specific design of the fuel bay {9}, but it could be due to damage of the SFP liner {91}{92} and the concrete wall {84}{86}. Failure of the SFP cooling system and water make-up systems {8} or syphoning effects {20} could also result in decreasing water levels as the pool water evaporates away {13}. The rate of water level decrease may be reduced as some water will condense {44} in the higher elevations of the SFP building and will return to the pool {18}, and the volume of water in the pool may swell {24}. However, swelling and condensation will not be sufficient to maintain pool water inventory. As the quantity of water in the pool decreases, the fuel decay heat {1} will continue to add thermal energy to a decreasing quantity of water, and water temperature will increase, as will the rate of evaporation {13}. The decay heat load stored in the SFP will be an important factor. Associated with this will be the recent history of fuel transfer to the pool {4}. For example, recent full core discharge due to refurbishment or decommissioning activities will increase the heat load above that which is normal, perhaps to the point of pool license limits. Also important will be the status of SFP auxiliary systems such as the heat transfer systems {8}. For example, cooling systems are generally more efficient in the winter, so an accident in the summer will have more serious consequences.

As Phase 1 evolves, some fission products will begin to be released from the pool water {31}. Cooling of the bundles in the pool by turbulent {48} convection and natural circulation {16}{15} (even in the absence of forced cooling) will be sufficient to prevent fuel sheath failure; however, the pool water might already contain fission and activation products which were released from previously defected fuel bundles which were discharged to the pool. The release to the environment will be dependent on the structure and configuration of the SFP building {6}, on the initial and evolving atmospheric conditions within the building {5}{10} and on the history of fuel defect discharges prior to the SFP accident.

In the final assessment, Phase 1 of the accident will not result in additional fuel damage of any significance, because the fuel bundles are immersed in liquid water and therefore sufficiently cooled to prevent sheath failures. Releases of radioactive fission and activation products will be limited {3}.

The beginning of Phase 2 signifies the decrease in pool water level to the point at which the first fuel bundles begin to become uncovered. Phase 2 is defined to end when virtually all

UNRESTRICTED CW-126800-REPT-001 Page 5-4 Rev. 0

water has been lost from the SFP and all fuel bundles are exposed. The locations, burnups, discharge times and decay heats of individual fuel bundles and the storage locations and configurations of fuel bundles now become important {4}. Storage of a large number of recently discharged fuel bundles at the upper levels of the storage stacks will increase the severity of the consequences of this accident. Similarly, storage of irradiated fuel bundles in non-standard configurations such as scrap baskets and boxes (for damaged fuel bundles) should factor into any assessment of consequences. Other contents of the pool, such as stored adjusters for radio-nuclide processing would also require consideration {12}. Damage to SFP liners {91}{92} and concrete walls {84}{86} due to intense radiation fields and temperature

Many of the factors discussed for Phase 1 will continue to be important for Phase 2, however the importance and consequences would accelerate as the quantity of available pool water decreases and as increasing numbers of spent fuel bundles lose water cooling altogether {15}. The design of the storage structures will become important because with loss of water, the remaining cooling will now be via conduction {39} through metal components, turbulent {48} air convection {16} through these structures, and thermal radiative heat transfer {26}.

gradients {83} would need to be considered.

As fuel bundles overheat {62}, the Zircaloy fuel cladding will begin to degrade {55}{57}, oxidize {27} and eventually rupture {56}{68}. In fuel elements with sheath ruptures (either due to the accident or fuel defected in-reactor {64}), fuel pellets inside the fuel sheaths will now become exposed to air and will oxidize {66} at the high temperatures which result from decay heats {1} and loss of cooling. Oxidation will result in the degradation of the structure of fuel pellets with the consequential release of fission products which had been contained within the matrix of the fuel pellet {69}{77}. Fission products will now be released from the ruptured fuel pins ${31}{34}{60}{61}$. Releases to the environment will increase as the remaining pool water and cover air become highly contaminated {73}{74}{75}{78}. Note: in the CANDU safety framework the Zircaloy fuel cladding and the matrix of the UO₂ fuel pellet are considered to be two of the credited barriers to fission product release. So, rupture of fuel cladding and degradation of the success in the evolution of this accident.

As water levels decrease and local temperatures increase due to decay heats, the structures supporting the fuel bundles such as modules, trays, baskets and stacking frames {4}{11} may lose some of their strength and their integrity might be compromised {41}.

High heat in the presence of water and Zircaloy will provide the conditions for the release of Hydrogen gas. This gas will be highly flammable and will require venting or recombination to mitigate the risk of deflagration and/or detonation {42}{50}{51}{52}{53}.

Phase 3 begins when the SFP is virtually dry and the fuel is completely uncovered. Irradiated fuel bundles are still resident in their normal storage locations/devices, such as baskets, trays and modules {4}, and these are still stacked in frames in the SFP {11}, however, there is now no water cooling at all. Convective cooling by air still continues {16}{45}{47}, as does conduction through the metal storage devices and stacking frames {39}.

UNRESTRICTED CW-126800-REPT-001 Page 5-5 Rev. 0

The degradation of fuel will now accelerate because of the higher fuel and sheath temperatures and the availability of oxygen in the SFP atmosphere {27}{60}{61}. Fission and activation products will be released into the atmosphere of the SFP building {6} and from there, into the atmosphere outside the building {49}. Fuel storage components in the SFP will continue to degrade {41}{71}, as will components of the structure of the SFP {91}{92}.

Phase 3 is assumed to continue for 7 days until refilling of the SFP is attempted.

Phase 4 begins with attempts to refill the SFP and ends when these attempts are successful and the SFP now has the required inventory of water {59}.

The source of refill water is assumed to be local {70}, and this water could be as cold as zero degrees Celsius in winter. The sudden influx of large volumes of cold water on the SFP inventory of hot, irradiated and damaged fuel bundles can be expected to generate a large steam cloud. Significant amounts of fission and activation products can be expected to be entrained in this cloud {33}{34}{80}. The environmental release will depend on many factors such as the geometry and structure of the SFP {6} and on environmental conditions {10}. Degradation of the concrete structure of the SFP will continue {84}{86}{90}. The thermal shock due to the sudden influx of very cold water onto hot fuel, structural components and the SFP structure can be expected to accelerate the degradation of all of these. The accident will be considered terminated when the SFP has been refilled, which will provide sufficient cooling to prevent further fuel failures.

The phenomena identification and ranking process can also identify phenomena that require additional research. These phenomena are ranked high or medium in importance, and are assessed to have a low level of knowledge. Eighteen phenomena were identified as having an importance rank of either high or medium, with a low knowledge level of 1 or 2. These phenomena are listed below, along with their importance rank and knowledge level within parenthesis:

- 1. Epoxy liner degradation and failure (H-2)
- 2. Stainless steel liner degradation and failure (H-2)
- 3. Concrete aging (including temperature and radiation effects) (H-2)
- 4. Concrete cracking (thermally induced, stress-induced, creep, quench) (H-2)
- 5. Convective heat transfer (H-2)
- 6. Single and two phase natural circulation (by convection) within the pool at large scale (H-2)
- 7. Flame acceleration (H-2)
- 8. Deflagration to detonation transition (DDT) (H-2)
- 9. Fission product chemistry (H-2)
- 10. Zircaloy oxidation in air-steam mixtures (including breakaway of pre-existing oxide layer) (H-2)
- 11. Deformation and integrity of structures (racks/modules/fuel bundle) (H-2)

CW-126800-REPT-001 Page 5-6

- 12. Fission product release from the fuel (H-2)
- 13. Fuel particle entrainment in the gas outflow (during rewet) (H-2)
- 14. Building leakage of gases and aerosols (M-2)
- 15. Liquid-phase transport of fission products to environment (M-2)
- 16. Other pool contents (other than fuel stored in standard locations, like cobalt, scrap module, bundles and elements stored from fuel inspections, shield plugs) (M-2)
- 17. Radioactive aerosol formation due to boiling at the free surface (M-2)
- 18. Stainless steel oxidation (M-2)

A detailed gap assessment was performed with the 86 phenomena identified in the four phases. In developing the gap assessment, each phenomenon/phase combination is considered an application point. For example, the phenomenon of sheath melt during the first phase (early phase) of the accident scenario is considered one application point, while the phenomenon of sheath melt during the second phase (mid phase) of the accident scenario is considered as a different application point. The total number of phenomena/accident phase combinations in the prolonged loss-of-coolant accident in the irradiated fuel bay provided 344 application points. The distribution of these application points is shown in Table 3 to illustrate the areas identified to have gaps in knowledge. Areas shaded red indicate that gaps in knowledge exist, and would benefit from further research and development (R&D) activities. There are no high or medium ranked phenomena with very limited knowledge; however, two phenomena application points ranked as high in importance and 16 ranked as medium importance, with partially known, large uncertainty. The PKPIRT process indicates that additional R&D is required to close the knowledge gap in these areas.

UNRESTRICTED CW-126800-REPT-001 Page 6-1 Rev. 0

6. SUMMARY AND CONCLUSIONS

A PIRT was developed for a severe accident consisting of a prolonged loss-of-cooling/loss-ofcoolant in CANDU IFB. The PIRT process mainly considered the PLNGS design, but included both stainless steel and epoxy liners, as well as all fuel storage schemes (modules, trays), to make the PIRT applicable to all Canadian CANDU reactors. The PIRT identified 86 phenomena, of which 58 were at least of medium importance in the accident scenario. As well, the PIRT indicates that additional R&D effort could be beneficial for 18 phenomena, because the phenomena had either high or medium importance, but a low level of knowledge.

The objective of the PIRT exercise was to inform the development of a computer code to model the behaviour and consequences of a severe accident in a CANDU IFB. The PIRT can form part of the reference material for code development and can be used as input to three phases of the code development process, as shown in Figure 7:

- 1. Problem Definition,
- 2. Theoretical Background, and
- 3. Requirements Specification.

The accident scenario considered by the PIRT panel will likely form the basis of the problem definition of a future computer code. The PIRT will provide key input to the development of the theoretical background. The PIRT identifies all phenomena associated with the accident. But, more significantly, the PIRT identifies the importance of the phenomena. This is significant because it is impractical to model all phenomena, to a fine level of detail, in a computer model. The PIRT provides a rationale for excluding phenomena, or reducing the level of detail needed to consider phenomena in the computer model. The requirements of the computer code will be derived from the problem definition and theoretical background, both of which will be influenced by the PIRT.

7. REFERENCES

- G.E. Wilson and B.E. Boyack, 1998, "The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis", Nucl. Eng. Des. 186, 23-37
- [2] US Nuclear Regulatory Commission, "Regulatory Guide 1.203: Transient and Accident Analysis Methods", 2005 December
- [3] B.E. Boyack and G.E. Wilson, "Lessons Learned in Obtaining Efficient and Sufficient Applications of the PIRT Process", Best Estimate 2004, Washington, D.C., 2004 November 14-18
- [4] H.Z. Fan, R. Aboud, E. Choy, W. Zhu and H. Liu, "Spent Fuel Response after a Postulated Loss of Spent Fuel Bay Cooling Accident", Proc. 33rd CNS Annual Conference, Saskatoon, SK, Canada, 2012 June 10–13

CW-126800-REPT-001 Page 8-1

Rev. 0

8.	LIST OF ACRONYMS
BDBA	Beyond Design Basis Accident
CANDU	CANada Deuterium Uranium
CFR	Code of Federal Regulations (United States)
CNL	Canadian Nuclear Laboratories
CNSC	Canadian Nuclear Safety Commission
DBA	Design Basis Accident
EM	Evaluation Model
EMDAP	Evaluation Model Development and Assessment Process
FMDB	Fuelling Machine Discharge Bay
FOM	Figure Of Merit
GDC	General Design Criteria
GS	Generating Station
HAZ	Heat Affected Zone
HEPA	High Efficiency Particulate Arresting
IFB	Irradiated Fuel Bay (used interchangeably with Spent Fuel Bay)
MSB	Main Storage Bay
NBPower	New Brunswick Power
NEA	Nuclear Energy Agency
OECD	Organisation for Economic Co-operation and Development
PIRT	Phenomena Identification and Ranking Table
PLNGS	Point Lepreau Nuclear Generation Station
R&D	Research and Development
RB	Reception Bay
SFB	Spent Fuel Bay (used interchangeably with Irradiated Fuel Bay and Spent Fuel Pool)
SFP	Spent Fuel Pool (used interchangeably with Irradiated Fuel Bay and Spent Fuel Pool)
SRP	Standard Review Plan
SS	Stainless Steel

UNRESTRICTED CW-126800-REPT-001 Page T-1 Rev. 0

Member	Role	Name
Number		
1	Chair	Jeffrey Baschuk (CNL)
2	Fuel/fission product behaviour	Ray Dickson (CNL)
3	Pool boiling, fluid flow, severe accidents	Nithy Nitheanandan (CNL)
4	Containment behaviour (thermal- hydraulics, gas-mixing, hydrogen)	Sammy Chin (CNL)
5	Concrete behaviour	Shahzma Jaffer(CNL)
6	Industry fuel behaviour expert	Jonathan Judah (J. Judah & Associates, retired OPG)
7	Academic fuel behaviour expert	Brent Lewis (Royal Military College of Canada, Retired)
8	International expert on severe accidents	Robert (Bob) Henry (Fauske & Associates)

Table 1Members for the PIRT Panel

UNRESTRICTED CW-126800-REPT-001 Page T-2 Rev. 0

Table 2Hardware (Systems, Structures and Components) Chosen for the PIRT Panel4

System/Structure	Components	
Level 1		
Fuelling Machine Discharge Bay (FMDB)	Spent Fuel Port, Elevator, Spray Cooling System, Transfer Cart, Transfer Conveyor, Fuel Bundle, Defected Fuel Handling System, Defected Fuel Cans, Concrete Bay Walls, SS Liner, Epoxy Liner, SFB Cooling and Purification System, Containment Gate, FMDB Air Space, Room Structure	
Reception Bay (RB) (and flask loading area)	Transfer Conveyor, Tray, Tray Conveyor, Fuel Bundle, Defected Fuel Cans, Fuel Handling Tools, Concrete Bay Walls, SS Liner, Epoxy Liner, SFB Cooling and Purification System, RB Air Space	
Main Storage Bay (MSB)	Concrete Bay Walls, SS Liner, Epoxy Liner, SFB Cooling and Purification System, Stack Locking System and Seal, Tray, Fuel Bundle, Fuel Handling Tools, MSB Air Space, Man-bridge	
Service Building	Service Building Structure, SFB Ventilation System, Area Radiation Monitors	
	Level 2	
Spent Fuel Port	Ball Valve	
Elevator	Ladle, Elevator Carriage, Elevator Track, Rack Indexer	
Spray Cooling System	Discharge Bay Water, Pump, Piping, Headers	
Transfer Cart		
Transfer Conveyor	Indexer, Conveyor, Control System	
Fuel Bundle	End Plate, Fuel Element	
Defected Fuel Handling System	Carousel, Bundle Canning Device, Defected Fuel Cans	
Concrete Bay	Concrete, Reinforcing Bar	
Stainless Steel Liner	Sheet, Weld Zones	
Epoxy Liner	Epoxy, Adhesion to Concrete	

⁴ Components with this highlighter color handle a maximum of two (freshly discharged) or twelve fuel bundles at a time. Some of these systems may have too much detail, because they don't actually figure in the accident scenario unless fuel is being discharged at the time of the accident.

CW-126800-REPT-001 Page T-3

Rev. 0

System/Structure	Components
SFB Cooling and Purification System	Demineralized Water Supply, Cooling Water Supply, Makeup Valves, Emergency Makeup Water Supply, Emergency Makeup Valves, Heat Exchanger, DB Skimmer, RB Skimmer, MSB Skimmer, Circulation Pumps, Loop Separation Valves, Particulate Filters, Ion Exchangers, Cold Water Return Pipes, Siphon Breaks, Water Temperature Indicators, Level Indicators, Low Level Alarm, Flow Indicators
Containment Gate	Canal Gate Assembly, Actuator Assembly, Actuator Control, Seal Leak Testing System
FMDB Air Space	
Room Structure	Ceiling, Walls
Tray, Basket and Module for Fuel Bundle Storage	The trays are used for PLNGS and Bruce GS (Figure 2). A stack of trays is shown in Figure 3. The Pickering GS basket and Darlington module are shown in Figure 2.
Tray Conveyor	Similar to Transfer Conveyor
RB Air Space	(similar to FMDB Air Space)
MSB Air Space	(similar to FMDB Air Space)
Stack Locking System and Seal	Mesh Walls, Top and Lock
Man-bridge	
Service Building Structure	
Area Radiation Monitors	
SFB Ventilation System	RB Air Space, MSB Air Space, Prefilter, HEPA Filter 1, Activated Carbon Filter, HEPA Filter 2, Exhaust Fans, Stack, Bypass Duct, Dampers, (Injection Ports, Sample Ports?)
	Level 3
Fuel Element	CANLUB, End-Cap, Fuel Sheath, Internal Gas, Fuel Pellet
	Level 4
Fuel Pellet	Chamfer, Dish, UO ₂
Fuel Sheath	Bearing Pad, Spacer Pad, Be Braze Alloy, Zircaloy-4, HAZ Zircaloy-4

UNRESTRICTED CW-126800-REPT-001 Page T-4 Rev. 0

Table 3
Gap Identification and Distribution of Rank and Knowledge of Phenomena Assessed

Knowledge Base Gap Determination				
Adequacy of Knowledge	Rank of Phenomenon			
	н	М	L	I
(4) Fully known; small uncertainty	18	21	35	
(3) Known; moderate uncertainty	37	30	45	89
(2) Partially known; large uncertainty	28	16	23	
(1) Very limited knowledge; uncertainty cannot be characterized	0	0	2	

CW-126800-REPT-001 Page I-1

Rev. 0

Figure 1 General PIRT Process

CW-126800-REPT-001 Page I-2

Rev. 0

Figure 2 Fuel Storage Trays and Modules for a Pickering, Darlington (not labeled in figure) and Bruce GS. Fuel Storage Trays for PLNGS and Bruce GS are Similar.

CW-126800-REPT-001 Page I-3

Rev. 0

Figure 3 Stack of Fuel Storage Trays

CW-126800-REPT-001 Page I-4

Rev. 0

	Rapid Loss of Pool Coolant					Level Recovery
Pool Water Status	Pool	Pool	Partial Water Loss		Complete Loss of Water	
	Water	Evaporation or				
	Heat up	Boiling				
Eucl Status	Fuel Covered		P	artial Fuel		Partial Fuel Uncovery
Fuel Status				Uncovery	Full Fuel Offcovery	→ Fuel Covered
Accident	Phase 1			Phase 2	Phase 3	Phase 4
Progression (Early Phase)		(N	/lid Phase)	(Late Phase)	(Recovery)	

Figure 4 Accident Progression

CW-126800-REPT-001 Page I-5

Rev. 0

Rapid Loss of Pool Coolant				
Pool Water Heat up	Pool Evaporation or Boiling	Partial Water Loss	Complete Loss of Water	Level Recovery
Fuel Covered		Partial Fuel Uncovery	Full Fuel Uncovery	Partial Fuel Uncovery → Fuel Covered
Phase 1		Phase 2	Phase 3	Phase 4
(Early Phase)		(Mid Phase)	(Late Phase)	(Recovery)

Decay Heat {1}					
	Geometry and configuration of the SFP building {6}				
	Conduction in soli	d components {39}			
	Turbulent	: flow {48}			
	Epoxy liner degrada	tion and failure {91}			
	Stainless steel liner deg	radation and failure {92}			
	Location, design, burn	up, decay heat of individual spe	ent fuel assemblies{4}		
		Sheath strain and failure {56}			
	Heat transfer	in sheath, pellets and through	the gap{62}		
		UO2 oxidation {66}			
Concrete a	ging {84}		Concrete aging {84}		
Concrete cra	cking {86}		Concrete cracking {86}		
	Convective he	at transfer {16}			
		Rack type {11}			
	Single and two phase nat	ural circulation (by convection) within	the pool at large scale{15}		
		Deflagration {50}			
		Flame Acceleration {51}			
		DDT {52}			
Detonation {53}					
	Transport of released fission products {73}				
Fission product deposition {74}					
Fission product chemistry {75}					
Water evaporation at t	he pool surface {13}		Water evap {13}		
	Fuel	fragmentation and relocation	{60}		
	Environment	conditions {10}			
	Thermal Radiatio	n Heat Transfer {26}			
Return of condens	ate to pool {18}				
	Zircaloy o	xidation {27}			
	Radionuc	lide releases from leaking fuel	pins {31}		
	Release of retained fission gases due to fuel fragmentation (61)				
		Oxidation and releases from previou	ly defected fuel into the pool {64}		
	Behaviour of c	efected fuel {69}			
Deformation and integrity of structures {41}					
Fission product release from the fuel {77}					
			Fuel cooling by sprays		
			and makeup {59}		
			Fuel particle entrainment in		
			the gas outflow {80}		
			Delayed ettringite		
			Tormation (90)		

Medium Importance

Figure 5 Accident Progression and Phenomena with High Importance

ſ

CW-126800-REPT-001 Page I-6

Rev. 0

ſ	Rapid Loss of Pool Coolant				Level Recovery
	Pool Water Heat up	I Pool Partial Water Loss er Evaporation up or Boiling		Complete Loss of Water	
	Fuel Covered		Partial Fuel Uncovery	Full Fuel Uncovery	Partial Fuel Uncovery → Fuel Covered
Phase 1 (Early Phase)		Phase 1 arly Phase)	Phase 2 (Mid Phase)	Phase 3 (Late Phase)	Phase 4 (Recovery)

Figure 6 Accident Progression and Phenomena with Medium Importance

CW-126800-REPT-001 Page I-7

Rev. 0

NOTE: ITERATIONS AMONG STEPS ARE NOT SHOWN

Figure 7 Computer Program Development and Usage Process
UNRESTRICTED CW-126800-REPT-001 Page A-1 Rev. 0

Appendix A

Phenomena Identification and Ranking Summary

A total of 86 phenomena were identified during the identification and ranking exercise. The phenomena, importance rank, and knowledge assessment are summarized in this appendix. The importance was ranked as:

• High (H)

Phenomenon has a controlling impact on the Figure-Of-Merit. Simulation of experiments and analytic modelling with a reasonable degree of accuracy (major/minor trends reasonably within range of data (includes scaling)) is required.

• Medium (M)

Phenomenon has a moderate impact on the Figure-Of-Merit. Simulation of experiments and/or analytic modelling with a moderate degree of accuracy (major trends generally within range of data) is required.

• Low (L)

Phenomenon has a minimal impact on the Figure-Of-Merit. Modelling must be present to preserve functional dependencies.

• Inactive (I)

Phenomenon has no impact on or is insignificant with respect to the Figure-Of-Merit. Modelling must be present if the functional dependencies are required.

The knowledge level on the phenomena was assessed as:

- 4 Fully known, small uncertainty
- 3 Known, moderate uncertainty
- 2 Partially known, large uncertainty
- 1 Very limited knowledge, uncertainty cannot be characterized
- N/A Not applicable is used if the phenomena importance is inactive (I)

In this appendix, the phenomena are listed in order of importance. The importance was determined with a numerical score, based on summing the importance rank from each stage of the accident (Phases 1 to 4). The numerical values were set as: L=1, M=5, and H=21. As a result, a phenomenon that ranks high in one phase of the accident would be considered more important (have a higher total importance) than a phenomenon that ranks M for all four phases of the accident.

The PIRT panel initially identified 92 phenomena, and each phenomenon was given a unique identification number (ID#). Upon further review, 6 of the phenomena were identified as duplicates and removed from consideration. As a result, the phenomena ID# 35, 37, 38, 40, 54, and 65 are not included in this appendix.

CW-126800-REPT-001 Page A-2

1	Importance		e	Knowledge Level		evel				
1	2	3	4	1	2	3	4	Phenomena	Description	ID
Н	Н	Н	Η	4	4	4	4	Decay Heat	Outside of the reactor, irradiated fuel will continue to generate heat due to the radioactive decay of fission products.	1
Н	Н	Н	H	4	4	4	4	Geometry and configuration of the SFP building (dimensions, open/closed building)	This phenomenon is defined as the influence of the dimensions, construction and operational configuration of the building containing the Spent Fuel Pool (SFP) on releases to the environment in an accident scenario.	6
Н	н	Н	Η	3	3	3	3	Conduction in solid components (fuel, racks/modules, concrete,)	The transfer of heat in solid components due to conduction. Scope includes transient conduction and contact between components	39
H	H	Η	H	3	3	3	3	Turbulent flow (gas space, liquid)	A turbulent flow is a fluid flow that includes rapid variations in the velocity and pressure in time and space, and generally has stochastic components. Turbulence involves eddy formation at many different length scales, with the largest related to geometry and the smallest to viscosity. Turbulent flow is expected for all phases of the accident. Spacer pads (appendages) will induce turbulence. Even natural convective flows in the gas space will be turbulent.	48
Н	н	Н	Η	2	2	2	2	Epoxy liner degradation and failure	Epoxy is used as a liner material in spent fuel bays. This phenomenon includes all mechanisms that could breach the liner.	91
Н	н	Н	Η	2	2	2	2	Stainless steel liner degradation and failure	Stainless steel is used as a liner material in spent fuel bays. This phenomenon includes all mechanisms that could breach the liner.	92
L	Н	Н	Η	4	4	4	3	Location, design, burnup, decay heat of individual spent fuel assemblies and locations and configurations of storage racks/modules	How bundles are arranged (hot, cold). Placement of racks in relation to each other, bay walls and bay floors.	4

CW-126800-REPT-001 Page A-3

Importance				Kn	owled	dge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
L	H	Н	Η	3	3	3	3	Sheath strain and failure	At high temperatures and under internal pressure from fill gas and released fission gas, the sheath will strain. The strain rate is affected by irradiation damage, Zircaloy crystallite size and texture, and by oxidation. At strains greater than the limit of plastic stability (~5%), excessive plastic deformation occurs and the sheath can fail (ballooning). Failures can also occur by cracking of oxide, stress corrosion cracking induced by released fission products, beryllium braze assisted crack penetration, fretting, or mechanical or thermal shock of embrittled sheath on quench. The sheath can also fail by through-wall oxidation (see Phenomenon 27), because the oxide has very poor structural integrity.	56
L	Н	н	Н	3	3	3	3	Heat transfer in sheath, pellets and through the gap, which affects distribution of temperature, strain and stresses	The decay heat generated within the fuel is conducted through the fuel material, through the fuel/sheath interface or fuel/sheath gap, and though the sheath. The sheath can be coated by oxide layers or CRUD, which would reduce the effectiveness of heat transfer through the sheath.	62
L	Η	Н	Η	3	3	3	3	UO ₂ oxidation	When UO_2 fuel in a breached fuel element is exposed to a water, steam or air environment especially at elevated temperatures the fuel can oxidize to other phases (in accordance with a Pourbaix diagram for aqueous corrosion or with the uranium-oxygen phase diagram for steam or air oxidation).	66
H	Η	Ι	Η	2	2	N/A	2	Concrete aging (including temperature and radiation effects)	The structural integrity of concrete might degrade with time, with elevated temperature and radiation fields accelerating the aging process. This phenomenon includes initial condition of the bay and degradation during the accident	84
Н	Н	I	Η	2	2	N/A	2	Concrete cracking (thermally induced, stress-induced, creep, quench)	Concrete can crack due to thermal gradients, stresses, creep, and thermal shock from quenching.	86

CW-126800-REPT-001 Page A-4

1	mpo	rtand	ce	Kn	owled	dge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
М	н	Η	М	2	2	2	2	Convective heat transfer	Convection heat transfer is the energy transfer between a surface and a fluid moving over the surface. It occurs in both the liquid and vapour/gas phases. In the liquid phase, it occurs between the SFP water and the liner/concrete walls of the SFP structure, and the fuel surface and the SFP water. In the gas space, it occurs between the vapour-gas mixture and surfaces (fuel surface and surfaces inside the SFP).	16
L	н	Н	Μ	4	4	4	4	Rack type (Pickering basket, CANDU 6/Bruce tray, Darlington module)	The fuel bundles are stored in structures while in the spent fuel bay. There are three types of structures: the Pickering basket, the CANDU- 6/Bruce tray, and the Darlington Module.	11
L	Н	н	М	4	2	2	3	Single and two phase natural circulation (by convection) within the pool at large scale	The decay heat from the spent fuel bundles will induce single phase, or potentially two phase, natural circulation within the spent fuel pool.	15
L	H	H	Μ	3	3	3	3	Deflagration	Deflagration deals with combustion with flame speeds on the order of several meters per second to several hundred meters per second. The burning rate can be affected by initial conditions (mixture compositions, pressure, and temperature), geometry of the confinement, location of ignition, and turbulence level. For slow flames, the maximum deflagration pressure is bounded by the adiabatic isochoric complete combustion (AICC) pressure.	50
L	н	н	м	2	2	2	2	Flame acceleration	In the presence of obstructions or confinement, a slow flame (several meters per second) can be accelerated and the burning rate can be significantly increased.	51
L	Н	Η	Μ	2	2	2	2	Deflagration to detonation transition (DDT)	In the presence of obstructions or confinement, a slow flame (several meters per second) can accelerate to a fast flame (hundred meters per second), and, under certain circumstances, lead to a transition to detonation (a few kilometers per second).	52
L	Н	Н	Μ	3	3	3	3	Detonation	A supersonic compression wave, with typical velocities on the order of a few kilometers per second, can be initiated via a strong ignition source or by sequential acceleration of a slow flame.	53

CW-126800-REPT-001 Page A-5

Ir	mportance Knowledg					lge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
L	Μ	H	H	3	3	3	3	Transport of released fission products	Transport of fission products in the bay volume and building will determine the amounts and nature of release of fission products to the environment. Fission products can be transported as gases or vapours (mainly noble gases and iodine, with the possible addition of ruthenium), or as aerosols (most other fission products).	73
L	Μ	Н	Н	3	3	3	3	Fission product deposition	Fission products can be deposited on solid or liquid surfaces as aerosols or by condensation or dissolution of vapours.	74
L	Μ	I	I	3	2	2	2	Fission product chemistry	lodine in the pool undergoes a wide variety of chemical reactions with water radiolysis products and organic materials (including epoxy liners, paint and adventitious organic chemicals), some of which produce volatile forms of iodine (including molecular iodine and organic iodides). Chemical reactions of ruthenium deposits with air radiolysis products may also produce volatile ruthenium oxides.	75
Η	I	Ι	Μ	4	4	N/A	4	Water evaporation at the pool surface	Water evaporation at the pool surface acts as a heat sink, transferring the latent heat of evaporation to the escaping water vapour. This process is the main heat removal mechanism to transport decay heat from the water pool before boiling occurs. Also, the loss of water due to evaporation could lead to fuel uncovery.	13
1	Μ	H	H	N/A	3	3	3	Fuel fragmentation and relocation (during ballooning, before and after sheath rupture)	Due to sheath embrittlement from oxidation and hydriding, fuel-element fragmentation can occur, especially on rewet/quench. Fuel ballooning/element failure may also result from significant sheath strain, which could allow for an ingress of water or air into the element. With subsequent oxidation of the fuel under the breached site, element deterioration can further occur with localized conversion of UO_2 to U_3O_8 that can split and crack the embrittled sheath due to a volume expansion of the underlying fuel.	60
L	Η	Η	L	4	4	4	4	Environment conditions (e.g., air temperature, humidity, pressure, wind speed, ground temperature)	The environmental conditions outside of the reactor building that have a direct influence on fission product transport from the containment boundary to offsite are defined by this phenomenon.	10
L	Η	Η	L	3	3	3	3	Thermal Radiation Heat Transfer	Radiative heat transfer from uncovered bundles to other bundles or structures and participating media	26

CW-126800-REPT-001 Page A-6

Rev. 0

	mpo	rtand	e	Kn	owlee	dge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
Н	Н	I	L	3	3	N/A	3	Return of condensate to pool	Water that evaporates or boils can condense on surfaces and then rain/drain or be pumped (from the sump) back into the bay.	18
Ι	Н	Н	L	N/A	4	2	4	Zircaloy oxidation in air-steam mixtures (including breakaway of pre-existing oxide layer)	Steam and air reaction with the Zircaloy sheath can lead to sheath oxidation with the liberation of chemical heat with a release of either hydrogen (in steam) or nitrogen (in air).	27
L	М	Η	Μ	4	4	4	4	Radionuclide releases from leaking fuel pins into the pool	A number of fuel elements may be defective during operation as subsequently stored in SFP so that fission products could leach into the pool water. During degraded cooling conditions in the pool, intact elements may also fail due to possible localized sheath strain resulting in a gap release, with possible leaching of fission products in aqueous conditions or vapour release at higher temperatures. The underlying fuel in contact with water, steam or air could also oxidize resulting in enhanced fission product release from the fuel matrix if fuel temperatures are sufficiently high.	31
I	М	М	Н	N/A	4	4	3	Release of retained fission gases due to fuel fragmentation	Fission gases in fuel at the grain boundaries and in large intragranular bubbles may be released by cracking of the fuel, mainly along grain boundaries. Fuel fragmentation may occur during fuel oxidation in air, rapid heating, or rapid cooling.	61
L	L	Н	М	3	3	3	3	Oxidation and releases from previously defected fuel into the pool	Previously defected fuel can oxidize during the temperature transient, causing fuel degradation, and release fission products and fuel particulate into the pool.	64
L	Μ	Н	L	3	3	3	3	Behaviour of defected fuel	Fuel oxidation, fission product release, thermal performance. Defected fuel will behaviour different than an intact fuel. Includes both pre- defected fuel (defected in the reactor) and defects during the accident	69
Ι	М	Н	L	N/A	2	2	2	Deformation and integrity of structures (racks/modules/fuel bundle)	At elevated temperatures, the fuel elements, bundles, and supporting structures such as the racks or modules will deform due to thermal expansion, elastic, plastic, or creep processes. In the case of excessive deformation, the structures may fail.	41

_

CW-126800-REPT-001 Page A-7

	mpo	rtand	e	Kn	owled	dge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
I	М	Н	L	N/A	3	2	3	Fission product release from the fuel	Fission products will be released from the fuel elements after the sheath fails. The fractional release of each fission product element is determined by fuel temperature, extent of oxidation of the fuel and sheath, and fuel degradation (e.g., fracturing of fuel and sheath), among other variables.	77
Ι	Ι	Ι	Н	N/A	N/A	N/A	3	Fuel cooling by sprays and makeup	Heat will be transferred to cold water from hot fuel when water is returned to the fuel bays. By definition, if makeup is present then the accident has progressed to stage 4.	59
I	I	Ι	н	N/A	N/A	N/A	2	Fuel particle entrainment in the gas outflow (during rewet)	Fine fuel particles formed during the transient or during the rewet can be entrained by the high flows of steam that would result from cooling the fuel. Dispersal of fuel particles could lead to very high radiation fields in the vicinity of the fuel pool and possible suspension and transport of fuel particles off site.	80
I	I	Ι	Н	N/A	N/A	N/A	3	Delayed ettringite formation	Ettringite is a needle-like crystal that may form in concrete upon cooling, and can cause cracking.	90
М	Μ	М	М	4	4	4	4	SFP auxiliary systems status (ventilation, cooling, filters, strainers, pumps, heat exchanges)	The operating status and capacities of SFP auxiliary systems may impact the evolution of an accident scenario.	8
М	М	М	Μ	4	4	4	4	Pool structure parameters, e.g., concrete composition, reinforcing design, liners, exterior interface (in-ground or above-ground)	The concrete and steel components forming part of the pool structure is defined as pool structure parameters.	9
L	М	М	Μ	3	3	3	3	Stratification in the gas space	Stratification of gases arising from density differences due to temperature and molar mass differences of gas compositions.	42
L	М	Μ	М	3	3	3	3	Buoyancy induced mixing in the gas space	Gas/vapour can be mixed by buoyancy induced motion due to pressure gradients created by local gas density differences in a gravitational field. These density differences are due to composition differences and/or temperature differences, induced by local mass and/or heat transport processes (e.g., gas injection, convection and condensation).	45

CW-126800-REPT-001 Page A-8

h	Importance Knowledge 1 2 3 4 1 2 3					dge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
L	M	M	M	2	2	2	2	Building leakage of gases and aerosols	The Spent Fuel Pool (SFP) is housed in an industrial building, not a containment building. Leakage will occur as the building atmosphere starts to be pressurized by the addition of steam (and to a lesser extent by hydrogen). The hot gases inside the SFP will tend to leak through the higher elevation openings, with an accompaniment of in-flow of cold air from the outside. This is especially enhanced if the leakage is through a large open doorway. The concern with the leakage is that the gas/vapour mixture will carry fission products (gases or aerosol) out of the spent fuel pool building.	49
L	М	М	М	3	3	3	3	Hydrogen pick-up under steam + air + hydrogen	During Zircaloy oxidation in environments containing steam and/or hydrogen, a fraction of the hydrogen generated during the oxidation is absorbed into the Zircaloy under the oxide layer. Precipitation of this hydrogen as hydrides can lead to embrittlement of the Zircaloy sheath, which may cause sheath failure during later stages of the accident.	57
L	Μ	Μ	Μ	2	2	2	2	Liquid-phase transport of fission products to environment	Fission products dissolved or suspended in water can go through cracks in the bay wall. Both wall layers (the liner and the structural wall) must be cracked to allow significant release to the environment by this path. If the bay wall faces the ground, some of the fission products will be sorbed on the soil particles. If the bay wall faces the air, the dissolved FP will flow down the outside face of the bay and onto the ground or the paved surface near the bay.	78
Μ	М	Ι	М	4	4	N/A	4	Condensation heat transfer	The pool water that is boiled or evaporated off is expected to condense on the building heat sinks (walls, ceiling,).	44
м	м	Ι	М	3	3	N/A	3	Thermal expansion (mismatch betweer aggregate and cement paste, rebar and concrete, etc.)	The different materials of the fuel bay and liner have different coefficients of thermal expansion. As the fuel bay structure heats-up, non-uniform expansion between aggregate and cement paste, rebar and concrete, and other components is expected and can contribute to cracking.	83

CW-126800-REPT-001 Page A-9

Rev. 0

Ir	Importance			Kn	owled	lge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
L	Μ	Μ	L	3	2	2	3	Other pool contents (other than fuel stored in standard locations, like cobalt, scrap module, bundles and elements stored from fuel inspections, shield plugs)	Many years of operations and operational trouble-shooting may result in off-normal storage configurations for some SFP contents. Fuel bundles and elements are known to be sometimes stored in configurations other than the baskets, trays or modules assumed in the SFP design. Also, the SFP has at times become the storage location of choice for a number of items other than irradiated fuel bundles (example: shield plugs, adjusters).	12
L	М	Μ	L	3	3	3	3	Laminar flow (gas space, liquid)	Laminar flow occurs when a fluid flows in parallel layers without disruption of these layers.	47
L	М	М	L	3	3	3	3	Irradiation annealing and sheath recrystallization	When Zircaloy is irradiated the strength increases and ductility decreases. Both of these property changes anneal out as sheath temperature increases.	55
М	М	Ι	I	4	4	N/A	N/A	Pool water radionuclide inventory and activity (including dissolved tritium)	The amount of radionuclides, including tritium, in the water of the spent fuel pool water prior to the accident. As the pool water evaporates or boils off, the activity in the pool water will be released and would contribute to the dose of workers and/or the public.	3
M	I	Ι	Μ	3	N/A	N/A	3	Siphoning/leakage effects (e.g., leaking flow effect on established natural circulation patterns)	The SFP water level control, circulation, temperature control and purification systems will have water inlet and outlet structures below the normal operating levels of the SFP but above the highest level of fuel storage. Damage to these auxiliary systems, either during the accident scenario or due to an abnormal operational occurrence (some sort of mechanical damage) could lead to siphoning water from the SFP until the locations of these water inlet/outlet pipes have been reached.	20
М	L	L	L	4	4	4	4	Initial atmospheric condition in the SFP building	The initial condition in the spent fuel pool building atmosphere includes, but is not limited to, air flows (forced convection due to ventilation system and natural convection), air space temperature, gas composition in the air space, air pressure, and activity in the air space.	5

_

CW-126800-REPT-001 Page A-10

h	npo	rtano	e	Kn	owled	lge Le	vel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
L	L	I	М	3	3	N/A	3	Pool scrubbing of aerosols and gases from bubbles	Aerosols and gases may be removed from bubbles by deposition on the surrounding water surface and dissolution in the surrounding water. Conversely, if the vapour pressure of a gas dissolved in the water is higher than its partial pressure in the bubble, there may be net vaporization of gas from the water to the bubble.	33
L	L	Ι	Μ	3	3	N/A	2	Radioactive aerosol formation due to boiling at the free surface	Fission product compounds may be resuspended from the pool as droplets formed by breaking of bubbles or by surface spray induced by rapid gas flows passing over the surface. Particulate material suspended in the water can also be resuspended by this mechanism.	34
Т	L	М	L	N/A	3	3	3	Sheath Melt	At high temperatures (1850°C), the sheath will melt.	68
I	L	М	L	N/A	2	2	2	Stainless steel oxidation	The storage racks and modules are made of stainless steel (304L), which can oxidize at high temperatures in steam or air. Oxidation could threaten the integrity of the racks or modules and in the case of steam oxidation, would produce hydrogen.	71
М	L	Ι	Т	4	4	N/A	N/A	Water level swell	Change in water level due to steam generation.	24
I	Ι	Ι	м	N/A	N/A	N/A	3	Effect of sea, river, lake, ground (impure) water injection	If water sources are utilized that have either dissolved or entrained materials, over time, these could eventually result in the accumulation of the materials within the SFP.	70
L	L	L	L	4	4	4	4	Thermal Conduction in fluid	Heat transfer by thermal conduction in gases and liquids.	43
L	L	L	L	4	4	4	4	Mass diffusion in vapour space	Mass diffusion is the relative motion of species in a vapour/gas mixture due to the presence of a concentration gradient. Mass diffusion will move a species down the concentration gradient, and tends to reduce the concentration gradient to result in a uniform concentration (well mixed) conditions. The diffusion mass transfer rate depends on the gas component diffusion coefficients for the multi-component mixture.	46
L	L	L	L	3	3	3	3	Hydride dissolution & precipitation	The formation of zirconium hydrides (deuterides for CANDU) is a secondary effect of fuel sheath failures and can lead to exposure of the fuel pellets. Hydrides have also been known to accumulate in the assembly welds, embrittling them when cold and causing some to break if loaded abnormally.	58

CW-126800-REPT-001 Page A-11

h	Importance			Kn	owle	dge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
L	L	L	L	2	2	2	2	Fission product (gas phase aerosol) removal in leakage paths	Fission product in the form of aerosols will be carried with the gas flow through leak paths out of the SFP building. Depending on the aerosol characteristics, flow conditions and the geometry of the leak path, aerosols (fission products) may be retained in the leak path.	82
L	L	Ι	L	4	4	N/A	4	Nucleate boiling on the spent fuel pins	Nucleate boiling is characterized by vapour generation as isolated bubble or jets and columns, and high heat transfer rates.	14
L	L	Ι	L	4	4	N/A	4	Leakage out of pool (operational leakage)	Leakage through small cracks in the pool/liner. Some amount of leakage is expected during normal operating conditions (operational leakage).	17
L	L	I	L	3	3	N/A	3	Hydrogen production (radiolysis)	Radiolysis of water generates H_2 and oxidizing species including H_2O_2 and $O_2^{2^2}$. This can add to the hydrogen production in the course of an accident. The radiolysis of water will be affected by impurities dissolved or suspended in the bay water.	29
I	L	L	L	N/A	2	2	2	Fission product re-suspension (note this generally relates to dry depositions)	Fission products deposited on surfaces are re-suspended, due to a depressurization event or hydrogen burn.	76
I	L	L	L	N/A	3	3	3	Fuel volatilization	If the UO_2 fuel is exposed to an oxidizing environment, hyperstoichiometric UO_{2+x} or higher oxides will be produced. The vapour pressure of the uranium-bearing species is high, such that the solid phase can be vaporized at a high rate through incongruent vaporization. The loss of uranium will also result in the release of fission products. This phenomenon is also referred to as matrix stripping.	79
I	L	L	L	N/A	4	4	4	Heat generation from released fission products	Fission products released from the fuel will decay and generate heat.	81
L	L	I	L	2	2	N/A	2	Flow in cracks (erosion)	Crack enlargement due to erosion from the flow within the crack.	85
L	L	I	L	2	2	N/A	2	Corrosion of rebar	Processes and phenomenon related to corrosion of the rebar in the concrete structure of the spent fuel bay.	87
L	L	Ι	L	3	3	N/A	3	Leaching of calcium hydroxide	Calcium hydroxide is a constituent of concrete, and can be leached out.	88
L	L	Ι	Ι	4	4	N/A	N/A	Bubble swarm rise within the pool (dynamics, condensation process, etc.) - vapor behavior	Bubble dynamics in liquid water.	21

CW-126800-REPT-001 Page A-12

h	npoi	rtand	e	Kn	owled	lge Le	evel			
1	2	3	4	1	2	3	4	Phenomena	Description	ID
I	L	L	I	N/A	1	1	N/A	Flow blockage in bundles due to ballooning and rupture	Due to the development of a differential pressure between the fuel-to- sheath gap and ambient pressure outside of the sheath in the spent fuel pool, the sheath may experience localized ballooning and possible sheath rupture (i.e., with sufficient strain from possible fission gas release during high-temperature conditions experienced during the event).	23
L	L	I	I	4	4	N/A	N/A	Degassing of hydrogen by water temperature increase	Hydrogen gas can dissolve in water, but the gas solubility decreases with increasing water temperature. As the temperature of the fuel bay water increases, dissolved hydrogen will be released.	30
I	L	L	I	N/A	2	2	N/A	Radionuclide releases from eroded CRUD into the pool	Magnetite deposits on fuel sheath are called CRUD and as these deposits form they are likely to capture fission products in the heat transport fluid.	32
L	L	Ι	Ι	4	4	N/A	N/A	Tritiated steam (DTO) releases by water evaporation	Leakage of heavy water from the heavy water side of the irradiated fuel handling system to the SFP allows some tritiated heavy water (DTO) into the SFP. Allowing for some chemical recombination, very small quantities of both HTO and DTO will be available for release from the SFP during the loss of water inventory accident.	36
L	I	I	I	3	N/A	N/A	N/A	Initial dissolved hydrogen concentration	Hydrogen gas dissolved in the bay water may come out of solution as the water temperature rises and particularly when the bay water boils. Hydrogen will be generated in the liquid water during the accident	2
L	Ι	Ι	Ι	4	N/A	N/A	N/A	Water chemistry	The chemistry parameters of interest include pH, temperature, dissolved O_2 concentration, concentration of organic chemicals, and, if groundwater ingress or seawater addition has occurred, sodium, magnesium, calcium and chloride concentrations. Fuel behaviour effects of seawater addition are covered under Phenomenon 70.	7
I	I	L	I	N/A	N/A	2	N/A	Radiolysis of water in concrete	The decomposition of water under radiation is called radiolysis. Both interstitial water and water in the pore structure of concrete may participate in the radiolysis process. The two main outcomes resulting from water radiolysis are: (1) buildup of internal overpressure that may lead to cracking of the concrete, and (2) the production of hydrogen gas.	89

CW-126800-REPT-001 Page A-13

Rev. 0

Ir	npor	tanc	e	Kn	Knowledge Level					
1	2	3	4	1	2	3	4	Phenomena	Description	ID
Ι	Ι	Ι	Ι	N/A	N/A	N/A	N/A	Flow instabilities within the spent fuels at low liquid level (flow reversal, flow excursions, etc.)	The flow instabilities created by liquid flow in the spent fuel bay as the water level decreases due to leakage is the domain of interest to this phenomenon.	19
I	Ι		Ι	N/A	N/A	N/A	N/A	Impact of cold water injection on the efficiency of natural circulation cooling	The injection of cold water into a hot spent fuel bay will disrupt the natural circulation cooling, especially if the injection location is at the bottom of the spent fuel pool. The cold water injection can cause local flow oscillations or flow reversals in LWR spent fuel assemblies, but is not applicable to CANDU spent fuel pools.	22
I	-		Ι	N/A	N/A	N/A	N/A	Air/steam inflow into the rack (including effect of rack deformation)	In the absence of liquid water, the flow of air and/or steam into the spent fuel racks of a LWR will have a significant effect on the peak clad temperature, and the onset of cladding ignition due to oxidation. The inflow will be highly influenced by the form and friction loss coefficients, which depend on the geometry of the rack.	25
I	Ι	Ι	I	N/A	N/A	N/A	N/A	Oxidation of debris	If severe fuel damage occurs, debris could be generated from the sheath (cladding), fuel, and/or rack disintegration. This debris could oxidize, generating additional heat loads.	28
Ι	Ι	Ι	Ι	N/A	N/A	N/A	N/A	Axial gas flow in rod after cladding rupture	The dynamics of axial gas-flow along the fuel rod, from the plenum to the clad ballooning location, can have a significant effect on the timing of fuel cladding rupture. Flow restriction will delay cladding rupture, due to a decrease in the pressure in the vicinity of the ballooning cladding.	63
Ι	Ι	Ι	Ι	N/A	N/A	N/A	N/A	Fuel Melt	The fuel (UO_2) turns to the liquid phase (melts) at high temperature.	67
I	I	Ι	I	N/A	N/A	N/A	N/A	Melting of fuel rack/module material	The fuel racks or modules are made of stainless steel (304L), which melts between 1400 and 1455°C.	72

_

_

UNRESTRICTED CW-126800-REPT-001 Page B-1 Rev. 0

Appendix **B**

Phenomena Assessment Worksheets

This appendix contains the detailed Phenomena Assessment Worksheets (total of 86 worksheets). These worksheets document the definition, importance rank, and knowledge assessment for each phenomenon considered for the accident scenario. The importance was ranked as:

• High (H)

Phenomenon has a controlling impact on the Figure-Of-Merit. Simulation of experiments and analytic modelling with a reasonable degree of accuracy (major/minor trends reasonably within range of data (includes scaling)).

• Medium (M)

Phenomenon has a moderate impact on the Figure-Of-Merit. Simulation of experiments and/or analytic modelling with a moderate degree of accuracy (major trends generally within range of data) is required.

• Low (L)

Phenomenon has a minimal impact on the Figure-Of-Merit. Modelling must be present to preserve functional dependencies.

Inactive (I)
 Phenomenon has no impact on or is insignificant with respect to the Figure-Of-Merit.
 Modelling must be present if the functional dependencies are required.

The knowledge level on the phenomena was assessed as:

- 4 Fully known, small uncertainty
- 3 Known, moderate uncertainty
- 2 Partially known, large uncertainty
- 1 Very limited knowledge, uncertainty cannot be characterized
- N/A Not applicable is used if the phenomenon importance is inactive (I)

The PIRT panel initially identified 92 phenomena, and each phenomenon was given a unique identification number (ID# in the phenomena assessment worksheets). Upon further review, 6 of the phenomena were identified as duplicates and removed from consideration. As a result, the phenomena assessment worksheets corresponding to ID# 35, 37, 38, 40, 54, and 65 are not included in this appendix.

Note that proprietary references are highlighted in the worksheet, and should be redacted prior to distribution of this memorandum to third parties.

CW-126800-REPT-001 Page B-1

Rev. 0

					ID #	Phenom	enon Synopsis Title			
					1	Decay Heat				
Phenomenon						Defin	ition			
Decay Heat Outside of the re					tor, irradiated	fuel will continue to generate h	neat due to the radioactive	decay of fission products.		
	Importa	nce Rank				Importance Ra	ank Rationale			
	(by sub-	scenario)				(by sub-s	cenario)			
1	2	3	4	1		2	3	4		
Н	Н	Н	Н	Decay heat will be	the major sour	ce of thermal load (heat) for th	e accident scenario.			
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale					
(by sub-scenario)					(by sub-scenario)					
1	2	3	4	1 2 3 4						
4	4	4	4	Decay heat is a boundary condition, or input to the accident scenario. The decay heat can be calculated with existing codes or						
				methods. For exan	nethods. For example, the average decay heat for a typical CANDU-6 is given in [1].					

Detailed description and rationale:

The decay heat is the major source of thermal load (heat generation) and will drive the accident progression. The decay heat can be considered at several levels: the total decay heat for the entire spent fuel bay, the decay heat for a single stack/rack of bundles, the decay heat of single fuel bundle, the decay heat of a single fuel element, or even the volumetric heat generation within the fuel material due to decay heat. The decay heat is known as in input to the accident analysis (see [1]).

Reference:

H.Z. Fan, R. Aboud, E. Choy, W. Zhu and H. Liu, "Spent Fuel Response after a Postulated Loss of Spent Fuel Bay Cooling Accident", Proc. 33rd CNS [1] Annual Conference, Saskatoon, SK, Canada, 2012 June 10–13

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-2

Rev. 0

				ID #	Phenor	nenon Synopsis Title			
				2	Initial dissolved hydrogen co	ncentration			
	Pheno	menon			Defir	nition			
Initial d	lissolved	hydrogei	า	Hydrogen gas dissolved in the b	ay water may come out of soluti	on as the water temperature rise	es and particularly when the		
concen	tration			bay water boils. Hydrogen will	be generated in the liquid water	during the accident			
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-s	scenario)			(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
L	I.	I	I		Almost all of the hydrogen	The amount of water	The newly added bay water		
					would be released during the	remaining in the bay is small,	would not have any initial		
					initial heating and boiling in	so the hydrogen in it can be	dissolved hydrogen.		
					Phase 1.	neglected.			
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale				
	(by sub-s	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
3	N/A	N/A	N/A	The initial condition is not	Almost all of the hydrogen	The amount of water	The newly added bay water		
				measured as part of	would be released during the	remaining in the bay is small	would not have any initial		
				monitoring of the fuel bay	initial heating and boiling in		dissolved hydrogen.		
				chemistry, but can be	Phase 1.				
				estimated by modelling					

Detailed description and rationale:

This is an initial condition. Dissolved hydrogen in the bay water can be released during heating and boiling of the bay water (mainly during Phase 1). A rough calculation indicates that the hydrogen concentration is too small to be significant by itself, but it could contribute as much as 2% to the hydrogen concentration in the building above the pool. This has no effect on the fuel sheath temperature figure of merit, but may affect the FP release figure of merit if an explosion occurs.

Champion: Ray Dickson

CW-126800-REPT-001 Page B-3

Rev. 0

				ID #	Phenor	menon Synopsis Title			
				3	Pool water radionuclide inve	entory and activity (including diss	olved tritium)		
	Pheno	menon			Defi	nition			
Pool wa	ater radio	onuclide		The amount of radionuclides, ir	ncluding tritium, in the water of t	the spent fuel pool water prior to	the accident. As the pool		
invento	ory and a	ctivity		water evaporates or boils off, the	he activity in the pool water will	be released and would contribute	e to the dose of workers and/or		
(includi	ing dissol	ved tritiu	um)	the public.					
	Importa	nce Rank	(Importance Rank Rationale				
	(by sub-s	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
М	М	I	I	In the first stage, about 1/3 of	After the start of fuel	The pool water is assumed to	The recovery water is		
				the pool water inventory will	uncovery, approximately 2/3	be gone during this stage of	assumed to be free of		
				evaporate or boil off (before	of the pool water remains to	the accident	radionuclides and dissolved		
				the fuel begins to be	be boiled-off or evaporated		tritium.		
				uncovered).	until complete uncovery of				
					the fuel.				
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale			
(by sub-scenario)						scenario)			
1	2	3	4	1 2 3 4					
4 4 N/A N/A The pool water radionuclie			N/A	The pool water radionuclide inv	entory and activity (including	Not applicable.	•		
	dissolved tritium) is known as it is measured during station				is measured during station				
				operation.	Ū.				

Detailed description and rationale:

The water in the spent fuel pool will have an initial inventory of radionuclides, including dissolved tritium, prior to the start of the accident. As the pool water is vaporized, due to boiling or evaporation, the radionuclides can be released to the atmosphere and would contribute to the dose to workers and/or the public. The radionuclide inventory and activity would be an initial condition and input to the accident analysis, and is known from measurements. **Champion: Jeffrey Baschuk**

CW-126800-REPT-001 Page B-4

				Γ	ID #	Phenor	nenon Synopsis Title				
					4	Location, design, burnup, de	cay heat of individual spent fuel	assemblies and locations and			
						configurations of storage rac	cks/modules				
	Pheno	menon				Defir	nition				
Locatio	n, design	(e.g., loi	ng	How bundles are ar	arranged (hot, cold). Placement of racks in relation to each other, bay walls and bay floors.						
bundle	s), decay	heats an	d								
burnup	of indivi	dual spei	nt fuel								
assemblies											
Importance Rank				Importance Rank Rationale							
	(by sub-s	cenario)				(by sub-	scenario)				
1	2	3	4	1		2	3	4			
L	н	Н	н	Location will not aff	fect the	High power (decay heat)	As for stage 2 but now with	As water is returned to the			
				sheath temperature until fuel		bundle locations will affect	all water coolant lost, and	bay, decay heats and storage			
				becomes uncovered. Sheath		the sheath temperature and	only convective air (and some	geometries will remain of			
				temperature expected to be		subsequent FP release	steam) cooling operative, the	high importance. High decay			
				near constant or tra	ack the	(location relative to heat	locations of high decay heat	heat (hot) fuel bundles which			
				bay water temperat	ture until	sinks). Configurations and	bundles remains important or	were dry during Phases 2 and			
				fuel is uncovered		locations of storage systems	may increase in importance.	3, are at risk to have failed			
						will the availability of cooling	Also of continued importance	fuel sheaths, and will			
				in degraded conditions.	will be the configuration of	potentially release fission					
							bundle storage and the	products, activation products			
							clearances between modules	and fuel material when cold			
							and storage racks, and the	water is added to the bay			
							walls and floor of the bay.	during recovery.			

CW-126800-REPT-001 Page B-5

Rev. 0

Kn	Knowledge Assessment			Knowledge Assessment Rationale							
	(by sub-s	scenario)		(by sub-scenario)							
1	2	3	4	1	2	3	4				
4	4	4	3	Everything is well known. Fuel sheaths are not expected to fail during Phase 1.	Fuel sheath behaviour in condit steam and dryout in air has bee well known. Oxidation models also well developed.	ions of degraded cooling, n extensively studied and is for exposed fuel pellets are	Although behaviour of damaged fuel during quenching has been studied, the impact of large scale quenching of damaged fuel elements while resident in storage racks and modules is not as well understood. The importance of geometries and positioning of storage racks may need to be assessed.				

Detailed description and rationale:

Fuel bundle geometry, element design and particularly decay heat are all of importance in assessing the figure of merit (sheath temperature) in the assessment of a bay loss of coolant accident scenario. Also of importance will be the devices used for fuel bundle storage (trays, baskets or modules) and the design and positioning of the storage racks for these storage devices. The clearances between these storage racks and the bay sides and floor may become important during later stages of the accident when water levels are low or when all water has been lost.

The impact of full core discharges at the beginning of refurbishment outages will require assessment. In such a scenario, the bay content will not reflect the usual steady state fuelling of the reactors and discharge of well burnt fuel. A full core discharge has the potential to distort the normal distributions of decay heat and burnups in the irradiated fuel bay. After such a full core discharge the bay will contain a larger number of lower burnup fuel bundles with possibly higher decay heats and off-normal fission product and activation product inventories. Also note that recently discharged fuel bundles (higher decay heats) are often in upper (most accessible) storage locations, and may dry-out first.

Champion: Jon Judah

CW-126800-REPT-001 Page B-6

Rev. 0

				ID #	Phenor	menon Synopsis Title				
				5	Initial atmospheric condition	n in the SFP building				
	Pheno	menon			Definition					
Initial a	tmosphe	eric condi	tion in	The initial condition in the spent fuel pool building atmosphere includes, but is not limited to, air flows (forced convection due						
the SFF	, building			to ventilation system and natu	ral convection), air space temper	ature, gas composition in the air s	space, air pressure, and activity			
				in the air space.						
	Importa	nce Rank	:		Importance R	Rank Rationale				
	(by sub-s	scenario)			(by sub-	scenario)				
1	2	3	4	1	2	3	4			
M L L L			L	The pool evaporation rate is dependent on the temperature and humidity above the pool. Active ventilation system can help reduce the humidity and cool the gas above the pool to increase evaporation. Initial activity in the air space will also contribute to fission- product release as the building is pressurized by steaming and heat up.	By the time the fuel has been uncovered (1/3 of the water has evaporated), the gas space has essentially be replaced with whatever has been generated during the accident. The only initial condition that may have an effect is a continually operating ventilation system.	Late in the accident, the gas spa with whatever has been genera only initial condition that may h operating ventilation system.	ace has essentially be replaced ited during the accident. The nave an effect is a continually			
Kn	owledge	Assessm	ent		Knowledge Asse	ssment Rationale				
	(by sub-s	scenario)			(by sub-	scenario)				
1	2	3	4	1	2	3	4			
4	4	4	4	I Initial condition is well known.						

Detailed description and rationale:

The initial condition, required for accident analysis, of the spent fuel pool building atmosphere includes, but not limited to air flows (forced convection due to ventilation system and natural convection), air space temperature, gas composition in the air space, air pressure, and activity in the air space. The initial condition mainly affects the initial accident progression in the first phase. By the time Phase 1 has ended, the gas space of the SFP building has essentially been replaced by steam (and the degassed hydrogen that was initially in the pool water). The only initial condition that will affect Phases 2 to 4 is the operation of the ventilation system. Also, the amount of hydrogen that enters the gas phase in Phase 1 due to degassing of the initial hydrogen in the water pool becomes insignificant as compared to the hydrogen that can be produced in Phases 2 and 3. Likewise, the initial activity becomes minor as compared to what can be produced in Phases 2 to 4.

Champion: Sammy Chin

CW-126800-REPT-001 Page B-7

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					6	Geometry and configuration	of the SFP building (dimens	ions, open/closed building)	
Phenomenon						Defin	ition		
Geometry and configuration of the SFP building (dimensions, open/closed building) This phenomenor containing the Sp				This phenomenon containing the Spe	is defined as the influence of the dimensions, construction and operational configuration of the building Int Fuel Pool (SFP) on releases to the environment in an accident scenario.				
	Importa (by sub-s	nce Rank scenario)				Importance R (by sub-s	ank Rationale scenario)		
1	2	3	4	1		2	3	4	
Н	Н	Н	Н	The walls and roof impact releases to	of the SFP bui the environm	Iding constitute a barrier to rele ent in all phases of the accident	eases to the environment. T scenario.	he "openness" of the building can	
Kno	owledge	Assessm	ent			Knowledge Asses	ssment Rationale		
(by sub-scenario)						(by sub-s	scenario)		
1	2	3	4	1		2	3	4	
4	4	4	4	The geometry, configuration and construction parameters are well known (drawings, measurements). Operating procedures would require review.					

Detailed description and rationale:

The configuration will affect the air flow, environment and ultimately the releases. Also important are the operating procedures related to the SFP building. The SFP buildings are at times opened either to adjacent buildings or sometimes directly to the environment to allow receipt and shipment of long term fuel storage dry casks. Other shipments also occur from the fuel bays such as the shipment of irradiated fuel for post-irradiation examinations, shipment of flasks containing Cobalt and routine equipment transfers. Although these activities are a part of normal operations, the extent to which operating procedures enforce the "normally shut" condition for all bay doors would need to be also assessed.

Champion: Jon Judah

CW-126800-REPT-001 Page B-8

Rev. 0

				ID #	Phenon	nenon Synopsis Title			
				7	Water chemistry				
	Pheno	menon			Defir	ition			
Water	chemistry	/ (e.g., pl	١,	The chemistry parameters of in	terest include pH, temperature,	dissolved O ₂ concentration, con	centration of organic chemicals,		
temper	ature)			and, if groundwater ingress or s	r ingress or seawater addition has occurred, sodium, magnesium, calcium and chloride concentrations. Fuel				
•	,			behaviour effects of seawater a	ddition are covered under Pheno	omenon 70.			
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-s	cenario)			by sub-	scenario)			
1	2	3	4	1	2	3	4		
L	I	I	Ι	May affect dissolution of	Effect is only significant as an ir	itial condition.	·		
				deposits on the fuel. Can also					
				affect the clad oxidation					
				during boildown, and					
				conceivably liner integrity.					
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale			
	(by sub-scenario) (by sub-scenario)								
1	2	2	4	1	2 3 A				
1	Z NI/A		+ NI/A	The initial condition is	2	3	4		
4	N/A	N/A	N/A	measured as part of	IN/A				
				measured as part of					
				monitoring of the fuel bay					
				chemistry.					

Detailed description and rationale:

This is an initial condition. The main conditions that are monitored are temperature, conductivity and turbidity, with secondary monitoring of radionuclide concentrations and total anion concentration. Bicarbonate from atmospheric carbon dioxide is expected to be the dominant anion. Addition of seawater or ground water would be noticeable through the conductivity and total anion measurements. Degradation of the liner would lead to the dissolution of cement components, increasing the conductivity and the calcium, carbonate and hydroxide concentrations.

Champion: Ray Dickson

CW-126800-REPT-001 Page B-9

Rev. 0

				ID #	Phenon	nenon Synopsis Title			
				8	SFP auxiliary systems status	ventilation, cooling, filters, stra	iners, pumps, heat exchanges)		
	Pheno	menon			Defin	ition			
SFP auxiliary systems status The operating status and capacities of SFP auxiliary systems may impact the evolution of an accident scenario. (ventilation, cooling, filters, strainers, pumps, heat exchanges)					ident scenario.				
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-	scenario)			(by sub-s	scenario)			
1	2	3	4	1	2	3	4		
М	М	М	М	Auxiliary systems could have a si	gnificant impact. If they work, t	hey may mitigate the conseque	nces of the accident. However,		
				the auxiliary systems would not SFP wall).	have the capabilities to stop all	potential accident progressions	(such as a rupture in an exposed		
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale					
	(by sub-	scenario)			(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
4	4	4	4	The design descriptions and ope	ne design descriptions and operating capabilities of the auxiliary systems will be available in station records. Maintenance				
				histories and system health reco	rds will be available at all opera	ting stations.			

Detailed description and rationale:

This is an initial condition. Depending on the scenario, the design, capacities and operating condition of the auxiliary systems may be of consequence to the evolution of the accident. The design of the auxiliary systems would be of importance as would be the maintenance histories and system health records. However, the importance is Medium, rather than High, because auxiliary systems for the SFPs would not normally have the capability to stop all types of accidents. Process capacities would be inadequate to stop many scenarios and there would be no design capability at all to stop the most severe scenarios such as a rupture in the SFP wall.

Champion: Jon Judah

CW-126800-REPT-001 Page B-10

Rev. 0

				ID #	Pheno	omenon Synopsis Title		
				9	Pool structure parameters, interface (in-ground or abo	e.g., concrete composition, reinfo we-ground)	rcing design, liners, exterior	
	Pheno	menon			Def	inition		
Pool st concre reinfor exteric above-	ructure p te compc cing desig or interfac ground)	baramete osition, gn, liners ce (in-gro	ers, e.g., 5, ound or	The concrete and steel compo	pnents forming part of the pool st	tructure is defined as pool structur	e parameters.	
	Importa	nce Ranl	(Importance	Rank Rationale		
	(by sub-	scenario)		(by sub	o-scenario)		
1	2	3	4	1	2	3	4	
М	М	М	М	Need to know configuration ir	n order to model the accident (ca	lculate sheath temperature)		
Kn	owledge	Assessm	nent		Knowledge Assessment Rationale			
	(by sub-	scenario)		(by sub	o-scenario)		
1	2	3	4	1 2 3 4				
4	4	4	4	he design of the bay is well known (design drawings, measurements,).				

Detailed description and rationale:

This is an initial condition.

The spent fuel storage pool is a reinforced concrete structure usually built above ground or at least at ground elevation. The details of the spent fuel pools for the OPG and BP reactors are given in Table 1. There can be two types of spent fuel storage facilities available on site to the unit: a spent fuel pool and an interim spent fuel storage facility. The spent fuel pool is usually located in the containment or in the reactor building next to the reactor to facilitate the transport of fuel from the reactor to the pool by a refuelling machine. The spent fuel pool is partially filled with water and the bundles are left in the water for several years to allow the fuel activity (decay heat) to decrease. After that, it may be transported to an on-site interim storage facility, where it can be stored for several decades before it is placed in a permanent repository.

The concrete and the reinforcement designs are required to conform to CSA standards [1]. The concrete composition is specified in CSA standards describing the temperature and environmental conditions the concrete is expected to sustain. The reinforced concrete structure of the pool, including the covering building, have been seismically qualified. Most pools are stainless steel lined [2], some are coated with epoxy resin based paint. However, there has been experience with degradation of the latter after a number of years. The pools are filled with deionized water with or without additive addition depending on the type of fuel to be stored and the adopted method of treatment. The water is either a fixed quantity or a once through pond purge. Water activity levels are maintained ALARA (as low as reasonably achievable) by either in-pool or external ion exchange systems or by limiting activity release to the bulk pool water. Leakage from the pool is monitored, either by means of an integrated leakage collection system or via the interspace in pools with two walls. In both cases any recovered pool water may be cleaned up and returned to the main pool. Maintenance of good water chemistry provides good water clarity and usually prevents the growth of micro-biological organisms.

The pool structure parameters are moderately important phenomena for spent fuel bay accidents and therefore the importance ranking of Medium is justified.

CW-126800-REPT-001 Page B-11

Rev. 0

The knowledge level of pool structure parameters is very good because of the experience gathered over 50+ years of spent fuel pool construction. Therefore the rank of "4" indicating fully known with small uncertainty is justified.

References:

- [1] CSA (2014), National Standard of Canada, Design of Concrete Structures, A23.3-14 Canadian Standards Association, Toronto, ON, Canada
- [2] C.R. Frost and S.J. Naqvi, "Design Considerations for Water Pool Storage of Irradiated Fuel by Ontario Hydro", International Conference on CANDU Fuel, Canadian Nuclear Society, Chalk River laboratories, Chalk River, ON, Canada, 1986 October 6-8
- [3] Survey of Wet and Dry Spent Fuel Storage, IAEA-TECDOC-1100, 1999 July

Champion: Nithy Nitheanandan

CW-126800-REPT-001 Page B-12

Rev. 0

Station	Туре	Dimensions** (m)	Capacity 000's of Bundles	In-Service Date	Bay Fill* Date	Liner Material
NPD	PIFB	4.3Wx7.3Lx5.5D	2	1962	***	All stainless steel (S/S)
Douglas Point****	PIFB(a) PIFB(b)	3.4Wx7.3Lx7.2D 7.6Wx20.9Lx7.2D	50	1966	****	All stainless steel (S/S)
Pickering A	PIFB*****	16.3Wx29.3Lx8.1D	93	1972	1995	All epoxy
	AIFB	17Wx34Lx8.1D	214	1978	1995	All epoxy
Pickering B	PIFB	16.3Wx29.3Lx8.1D	158	1983	1995	Receiving bay - all S/S Storage bay, all epoxy
Bruce A	PIFB	10Wx41Lx6D	21	1977	1994	S/S floor, epoxy walls
	AIFB	18Wx46Lx9D	352	1979	1994	S/S floor, epoxy walls
Bruce B	PIFB	10Wx46Lx6D	36	1983	2002	All S/S
	AIFB	18Wx46Lx9D	330	1987	2002	All S/S
Darlington*****	PIFB	<pre>(a) 9.65Wx20.6Lx5D (b) 17Wx32Lx9.2D (c) 17Wx4Lx9.2D</pre>	212	1987	1996	All S/S

 \star Based on combined capacity of all bays on-site.

大大 W = width, L = length, D = depth

*** Irradiated fuel is transported to AECL/CRNL for storage after six months cooling at NPD

**** PIFB consists of an IF receiving bay (a) and an IF storage bay (b). As unit was shut down in 1984, the PIFB will never fill.

**** Based on storage using baskets. Transfer of bundles to higher density module storage would increase the capacity and extend the bay fill date to the year 2000.

****** Darlington will have two identical PIFB's, the second (east) one will be in-service in 1991, with the fill date about 2007. Each PIFB consists of an IF receiving bay(a), an IF storage bay (b) and an IF cask handling bay (c).

Table 1

CW-126800-REPT-001 Page B-13

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					10	Environment conditions (e.g	., air temperature, humidity, pre	essure, wind speed, ground	
						temperature)			
	Pheno	menon			Definition				
Enviror	nment co	onditions	(e.g.,	The environmental	conditions out	tside of the reactor building the	at have a direct influence on fiss	ion product transport from the	
air tem	air temperature, humidity, containment bou				dary to offsite a	are defined by this phenomeno	on.		
pressur	pressure, wind speed, ground								
temper	temperature)								
	Importance Rank					Importance R	ank Rationale		
	(by sub-scenario)					(by sub-s	scenario)		
1	2	3	4	1		2	3	4	
L	Н	Н	L	Release to environr	nent is Ir	mportant for dose	Important for dose	If appropriate guidelines are	
				small during evapor	ration.			followed, then there should	
								be minimal release during the	
							rewet.		
Kno	Knowledge Assessment					Knowledge Asses	ssment Rationale		
	(by sub-	scenario)			(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
4	4	4	4	See description belo	ow S	ee description below	See description below	See description below	

Detailed description and rationale:

This is an initial condition/boundary condition.

Basic meteorological variables such as: 1. Wind speed and direction; 2. Air temperature; 3. Precipitation; 4. Humidity; 5. Atmospheric pressure; and 6. Temperature inversions are monitored at the stations or from Environment Canada stations nearby. A program for meteorological measurements is typically prepared and carried out at or near the site with the use of instrumentation capable of measuring and recording the main meteorological variables at appropriate elevations, locations, and durations [1]. This program initially provides data for site evaluation, and then provides ongoing data for use in revisions to basis documents in response to safety analysis results during future phases of the Nuclear Power Plant life cycle.

The environment conditions (e.g., air temperature, humidity, pressure, wind speed, ground temperature) are an important phenomenon for radionuclide transport from the containment boundary to offsite locations. Since this phenomenon is the primary medium for dose, the rank of "High" is justified. The knowledge level on the measurement of environmental conditions is generally well developed and therefore the ranking of "1" to indicate fully known with small uncertainty is justified.

Reference:

[1] RD-346: Site Evaluation for New Nuclear Power Plants, Canadian Nuclear Safety Commission

Champion: Nithy Nitheanandan

CW-126800-REPT-001 Page B-14

Rev. 0

				ID #	ID # Phenomenon Synopsis Title				
				11	Rack type (Pickering basket,	CANDU 6/Bruce tray, Darlington	module)		
	Pheno	menon			Defi	nition			
Rack ty CANDU Darling	pe (Picke 6/Bruce ton mod	ering bas tray, ule)	ket,	The fuel bundles are stored in s the CANDU-6/Bruce tray, and t	structures while in the spent fuel he Darlington Module.	bay. There are three types of st	ructures: the Pickering basket,		
	Importa	nce Rank	(Importance F	ank Rationale			
	(by sub-s	scenario)	1	(by sub-scenario)					
1	2	3	4	1	2	3	4		
L	н	Н	М	While in the bay water, good heat transfer is expected for any rack/module.	Rack type will have a significant effect on the sheath temperature (natural convection will be less for module type)	Rack type will have a significant effect on the sheath temperature (natural convection will be less for module type)	Type of rack may affect rewet behaviour		
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale				
	(by sub-s	scenario)	1		(by sub-scenario)				
1	2	3	4	1	2	3	4		
4	4	4	4	The geometry of the racks/modules are known from drawings and/or measurements.					

Detailed description and rationale:

This is an input. There are significant differences in the three rack designs and these differences would influence the manner in which the spent fuel bundles could be cooled in the accident situations of interest. These differences are known (hence, the value of 4 for the knowledge assessment) and are input to the computer code and the phenomenological models in the code need to represent the influence of these differences.

Champion: Bob Henry

CW-126800-REPT-001 Page B-15

					ID #	Phenon	nenon Synopsis Title		
					12	Other pool contents (other t	Other pool contents (other than fuel stored in standard locations, like cobalt, scrap module,		
						bundles and elements stored	d from fuel inspections, shield plu	ıgs)	
	Phenor	menon				Defin	iition		
Other p	ool cont	ents (oth	er	Many years of ope	rations and op	erational trouble-shooting may	result in off-normal storage con	figurations for some SFP	
than fu	el stored	in stand	ard	contents. Fuel bur	dles and elem	ents are known to be sometime	es stored in configurations other	than the baskets, trays or	
locations, like cobalt, scrap modules assume					in the SFP desi	gn. Also, the SFP has at times b	become the storage location of c	hoice for a number of items	
module,) other than irradiat					ed fuel bundle	s (example: shield plugs, adjus	ters).		
	Importar	nce Rank				Importance R	ank Rationale		
	(by sub-s	cenario)		(by sub-scenario)					
1	2	з	4	1		2	3	4	
L	М	Μ	L	Minor	I	Non-standard storage is often	The cobalt may be significant	Refilling the SFP will restore	
					ä	at the higher elevations in the	when the bay has no water.	cooling, however hot	
					9	SFP (to allow easier access),	It could produce gamma	defected bundles may be	
					9	so these might be among the	damage to the concrete. It	expected to release a plume	
					f	first to be uncovered as SFP	will also cause a dose to	when cold water first	
				N	water level decreases.	people, concrete, liner.	contacts the exposed fuel.		
					1	Irradiated fuel stored in non-	Could also loose integrity.		
					5	standard ways could be less	Fuel bundles stored in non-		
					e	exposed to convective flows	standard ways may be among		
					ā	and may heat up faster.	the first to overheat and		
							defect.		

CW-126800-REPT-001 Page B-16

Rev. 0

Knowledge Assessment (by sub-scenario)				Knowledge Assessment Rationale (by sub-scenario)					
1 2 3 4		4	1	2	3	4			
3	2	2	3	In liquid water, the alternate storage containers are well- cooled; uncertainty on the film coefficients would have a minor effect on the temperature of the contents.	In air/steam environments, cooling conditions are not well known for the alternate storage containers.	Cooling conditions are not well known for the alternate storage containers.	After refill, the cooling of the alternate storage containers would be as for Phase 1.		

Detailed description and rationale:

This is an input.

Significant entities in the bay will be known (cobalt, scrap bins). Anything not well tracked will be too small to affect the analysis.

Storage configuration and cooling conditions are not well known for the unusual storage containers such as scrap modules and site-specific storage methods for broken bundles & loose elements which result from fuel inspection programs. This is really a configuration management issue. The normal (per-design) storage configuration should be restored as soon as possible. The importance is Medium for Phases 2 and 3 because, although the non-standard-stored fuel bundles or elements may heat up and fail, the number of non-standard items is small compared to the spent fuel bundles in the racks/modules. Also, the location of the non-standard will be known, but the coolability will have uncertainty when exposed to water vapour or air; hence, the knowledge level is 3 for Phases 2 and 3.

Champion: Jon Judah

CW-126800-REPT-001 Page B-17

Rev. 0

				ID	#	Phenor	menon Synopsis Title		
				13		Water evaporation at the po	ool surface		
	Pheno	menon			Definition				
Water	evaporat	ion at th	e pool	Water evaporation at the p	at the pool surface acts as a heat sink, transferring the latent heat of evaporation to the escaping water				
surface vapour. This proce					main l	heat removal mechanism to tra	ansport decay heat from the wa	ater pool before boiling occurs.	
				Also, the loss of water due	to eva	poration could lead to fuel und	covery.		
	Importa	nce Rank	۲.			Importance R	ank Rationale		
	(by sub-	scenario)				(by sub-	scenario)		
1	2	3	4	1		2	3	4	
Н	Н	I	М	Before boiling, evaporation	is E	Before boiling, evaporation is	No water is left in the SFP.	Less significant because	
				the main mechanism to lose	e t	he main mechanism to lose		cooling water is recovered in	
				cooling water.	C	cooling water.		the SFP.	
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale				
	(by sub-	scenario)			(by sub-scenario)				
1	2	3	4	1		2	3	4	
4	4	N/A	4	Phenomenon is well known	F	henomenon is well known		Phenomenon is well known	
				and experimental data, at	а	and experimental data, at		and experimental data, at	
				reactor conditions, are	r	eactor conditions, are		reactor conditions, are	
				available from the TOSQAN	a	vailable from the TOSQAN		available from the TOSQAN	
				sump tests [1].	s	ump tests [1].		sump tests [1].	

Detailed description and rationale:

Water evaporation at the pool surface is limited to liquid evaporation only at the free surface of a pool that is, without vapor bubble formation in and release from the liquid pool. The free surface of a liquid pool is under a total pressure of the partial pressures of the noncondensable gases and water vapor in the atmosphere. The driving force is the density difference of water vapor between the gas mixture just above the water surface and the ambient surroundings. Evaporation increases the steam concentration at the pool surface, which must be moved away by diffusion or convection to permit further evaporation. The conditions, under which water evaporation occurs, may be categorized according to the flow regime of the system (laminar/turbulent conditions in free or forced convection), and correlations that describe evaporation based on either empirical or heat and mass transfer analogy. The latter are more general and not restricted by experimental conditions.

This phenomenon is well known and experimental data, at reactor conditions, are available from the TOSQAN sump tests [1].

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May Champion: Sammy Chin

CW-126800-REPT-001 Page B-18

Rev. 0

				ID #	Phenon	nenon Synopsis Title			
				14	Nucleate boiling on the spen	t fuel pins			
	Pheno	menon			Defin	ition			
Nuclea	te boiling	; on the s	pent	Nucleate boiling is characterize	d by vapour generation as isolate	d bubble or jets and colu	mns, and high heat transfer rates.		
fuel pir	าร								
	Importa	nce Rank	Σ.		Importance Rank Rationale				
	(by sub-s	scenario)			(by sub-scenario)				
1	2	3	4	1	2	3	4		
L	L	I	L	With nucleate boiling, the	With nucleate boiling, the	No water	With nucleate boiling, the		
				sheath temperature would be	sheath temperature would be		sheath temperature would be		
				basically fixed; independent	basically fixed; independent		basically fixed; independent		
				of correlation used.	of correlation used.		of correlation used.		
Knowledge Assessment					Knowledge Asses	sment Rationale			
	(by sub-s	scenario)			(by sub-s	scenario)			
1	2	3	4	1	2	3	4		
4	4	N/A	4	Nucleate boiling	Nucleate boiling	Dry fuel bundles	Nucleate boiling		

Detailed description and rationale:

When submerged in water, the decay heat will be removed by natural convection and nucleate boiling. As a result, the sheath temperature would be limited by the temperature needed to support nucleate boiling, and the nucleate boiling heat flux varies approximately as the cube of the temperature difference between the sheath and the water. Since the surface heat flux (order of 10^3 to 10^4 W/m²) would be well below the maximum (critical) pool boiling heat flux (order of 10⁶ W/m²), the fuel element energy generated would be removed and the sheath temperature would be only slightly greater than the saturation temperature.

Reference:

[1] F. Kreith and M.S. Bohn, 2001, Principles of Heat Transfer, Brooks/Cole, Thomson Learning, Australia

Champion: Bob Henry

CW-126800-REPT-001 Page B-19

Rev. 0

					ID #		Phenor	menon Synopsis Title		
					15		Single and two phase natura	al circulation (by convection) with	in the pool at large scale	
	Pheno	menon					Defi	nition		
Single and two phase natural The decay heat friction (by convection) spent fuel pool.					decay heat from the spen It fuel pool.	t fuel l	bundles will induce single pl	hase, or potentially two phase, na	tural circulation within the	
	Importa	nce Rar	nk				Importance R	Rank Rationale		
	(by sub-s	scenario	c)				(by sub-	scenario)		
1	2	3	4		1		2	3	4	
L	Н	Н	М	Whe	n the fuel is fully covered	Nat	ural circulation would	Natural circulation would	Recovery rate would	
				by w	ater, temperature	det	ermine the maximum	determine the maximum	determine the controlling	
				diffe	rences in the bay will be	tem	perature of the fuel	temperature of the fuel	heat transfer process	
				sma	II.	elei	ments	elements		
	Knowled	ge Asse	essment				Knowledge A	ssessment Rationale		
	(by su	ıb-scen	ario)				(by s	ub-scenario)		
1	1 2 3 4		1		2	3	4			
4	2		2	3	Nucleate boiling		Knowledge level depends	on the rack/module type. For	Likely nucleate boiling	
							PLNGS and Bruce storage trays, the knowledge level would			
							be 3. For the Darlington a	nd Pickering modules, the		
							knowledge level would be	less. 2.		

Detailed description and rationale: Temperature differences within the gaseous/steam region would cause density differences than would start global convection. When the fuel is partially or fully uncovered, the natural circulation will be the dominant heat transfer mechanism; hence the importance is high in Phases 2 and 3. The nature of the convection cells (flow velocities and directions), as well as how decay heat is extracted from the fuel elements would be influenced by the differences in the rack designs. For the open rack designs (CANDU-6 and Bruce), the knowledge level is higher, 3, than for the closed module designs (Darlington and Pickering), 2. The open rack designs have some modelling of convection; hence, the higher knowledge level [1]. **Reference:**

[1] C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

Champion: Bob Henry

CW-126800-REPT-001 Page B-20

			ID # Phenomenon Synopsis Title							
						16	Convective Heat Transfer			
	Phe	nome	enon				D	efinition		
Con	vectiv	e Hea	t Trar	nsfer	Convection heat transfer	is the energy	transfer between a surface	and a fluid moving over the surface.	It occurs in both the liquid and	
					vapour/gas phases. In th	e liquid phas	e, it occurs between the SFP	water and the liner/concrete walls of	the SFP structure, and the fuel	
					surface and the SFP wate	er. In the gas	space, it occurs between the	e vapour-gas mixture and surfaces (fu	el surface and surfaces inside the	
					SFP).					
Im	portar	nce Ra	ank				Importance R	ank Rationale		
(by	sub-s	scena	rio)				(by sub-	scenario)		
1	2	3	4		1		2	3	4	
Μ	H	H	Μ	Conve fuel a main nuclea predic faster The co SFP w becau condu walls therm betwe concre tempe 100°C at 1 b poten	ective heat transfer between the of the SFP water will be the mode of heat transfer until ate boiling occurs. If it is undered, fuel will be heated up	the In this p convecti between and vap- importa until nuc uncover heat by the stea phenom to the fig h F The com SFP wall because conduct er walls an thermal fer. between concrete tempera (boiling bar), wh for conv	hase of the accident, we heat transfer occurs the fuel and both the liquid bur/gas phases, but the nee of liquid phase, is high leate boiling starts. The ed fuel will mainly loose its convective heat transfer to m-air mixture. Thus, this enon has a high importance gure of merit. Vective heat transfer to the s are expected to be low of the low thermal wity of the thick concrete d also the possibility of high conductivity gap resistance the liner material and the s. Also, the SFP water ture is maximized at 100°C comperature of water at 1 ich limits the driving potential ective heat transfer.	The fuel is uncovered in this phase of the accident. Heat transfer from the inner pins of the fuel (where thermal radiation with the cold surroundings is not possible), so convection is the major method to cool the fuel, thus its importance to the figure of merit is high. No significant amount of water in the pool (there may be some water remaining below the bottom of the fuel, less than 12 inches).	For the covered fuel, convective heat transfer with the water becomes important when the fuel is sufficient cooled and boiling ceases. Thus, the importance is moderate. The convective heat transfer to the SFP walls are expected to be low because of the low thermal conductivity of the thick concrete walls and also the possibility of high thermal conductivity gap resistance between the liner material and the concrete. During this phase, cold water is expected to be added to the pool. The hot walls would then slowly transfer heat back to the water pool, until the water temperature exceeds the liner surface temperature.	

CW-126800-REPT-001 Page B-21

Rev. 0

(by	Know Asses sub-s	rledge sment scenar	t rio)		Knowledge Assessment Rationale (by sub-scenario)							
1	2	3	4	1	2	3	4					
2	2	2	2	The most important convective heat transfer is between the fuel and the surrounding fluid. The main uncertainty is in regards to the natural								
				convective heat transfer coefficients for the fuel as stored in the racks.								

Detailed description and rationale:

Convection heat transfer is the energy transfer between a surface and a fluid moving over the surface. The fluid motion can be due to "free" or "natural" convection whereby the fluid motion results from density differences within the fluid arising from the temperature differences or fluid components (i.e., lighter gases). The fluid motion can also be forced convection, whereby the flow is driven by an external force. Diffusion can also result in fluid motion, but is dominated by natural or forced convection flows. Convective heat transfer occurs in both the liquid and vapour/gas phases. In the liquid phase, convective heat transfer occurs between the SFP water and walls of the SFP. The wall of the SFP consists of a thick concrete wall, lined with an epoxy film or a stainless steel layer. The convective heat transfer to the SFP wall is limited by thermal conduction through the concrete wall which has a low thermal conductivity and also the potentially high thermal conductivity gap resistance between the concrete and the liner material. When the fuel is covered, convective heat transfer occurs between the fuel and the pin, but if the fuel heats up sufficiently, nucleate boiling will become the main mode of heat transfer between the fuel and the water. As the fuel becomes uncovered, convective heat transfer with the air-steam mixture becomes the dominant mode of heat loss for the fuel, as thermal radiation is only effective for the outer fuel pins which sees the cold surroundings (inner fuel pins only radiate to its neighboring fuel pins). Convective heat transfer will also occur between the gas/vapour mixture and surfaces.

Convective heat transfer coefficients for fuel bundles are available for axial forced flow conditions. Free convection heat transfer coefficients for a fuel bundle (in air or water) may not be available from experimental data, especially for the various rack configurations used to hold the fuel bundle. Instead, they will have to be estimated based on existing theoretical or correlations for free convection from horizontally oriented tube and tube bundle arrangements, or experiments on the rack/module geometry. Heat transfer coefficients should be readily available for a stainless steel surface in a water pool. However, heat transfer coefficients for an epoxy surface may not be available. Other unknowns include fluid conditions, such as local temperature distribution and local velocities.

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May Champion: Sammy Chin

CW-126800-REPT-001 Page B-22

Rev. 0

				ID #		Phenomenon Synopsis Title				
				17	Leakage out of pool (operational leakage)				
	Pheno	menon			I	Definition				
eakag	e out of	looc		Leakage through small cracks in	n the pool/liner. Some am	ount of leakage is expected	during normal operating conductions			
	, i			(operational leakage).		0 1	5 1 5			
	Importa	nce Rank	<u>(</u>		Impor	ance Rank Rationale				
	(by sub-	scenario)			()	oy sub-scenario)				
1	2	3	4	1	2	3	4			
L	L	I	L	There will be some leakage	As for Phase 1.	N/A	As for Phase 1.			
				(operational leakage). The						
				amount of leakage is low.						
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale					
	(by sub-	scenario)			(by sub-scenario)					
1	2	3	4	1	2	3	4			
4	4	N/A	4	Operational data on leakage	As for Phase 1.	N/A	As for Phase 1.			
				rates will be known.						
				Remedial actions will have						
				been taken to locate and						
				repair leaks if operational						
				limits are approached.						
				Amount, location and cause						
				of any limiting leaks will have						
				been investigated.						

Detailed description and rationale:

This phenomenon is focused on "normal" leakage which can occur during operation of structures the size and capacity of SFPs. The operating stations would normally have good knowledge of the amount of such leakage and also possibly of the source of the leaks. This leakage will have been quantified and assessed with respect to design and operational limits. Remedial actions will have been taken if action or operational limits had been approached. Operational leakage will not be of consequence to the loss of water inventory accident scenario, as the amount of leakage is small.

Champion: Jon Judah
CW-126800-REPT-001 Page B-23

Rev. 0

					-			
				ID #	Phenor	nenon Synopsis Title		
				18	Return of condensate to poo	bl		
	Dhana				Defin			
	Pheno	menon			Defin	nition		
Return of condensate to pool Water that evapo				Water that evaporates or boils	can condense on surfaces and th	en rain/drain or be pumped (fro	m the sump) back into the bay.	
Importance Rank			:		Importance R	ank Rationale		
	(by sub-s	cenario)			(by sub-	scenario)		
1	2	3	4	1	2	3	4	
Н	Н	Ι	L	Return of evaporated water	Return of evaporated water	Fuel is assumed uncovered.	Small compared to pumped	
				to the bay will delay uncovery	to the bay will delay uncovery		water.	
Kno	owledge	Assessm	ent		Knowledge Asses	ssment Rationale		
	(by sub-s	cenario)			(by sub-scenario)			
1	2	3	4	1	2	3	4	
3	3	N/A	3	There is uncertainty on the hea	t sinks, paths for steam flow, whe	ere is the water going to flow on	ce it hits the floor. Uncertainty	
				on where the water will collect.	· · · · ·			

Detailed description and rationale:

It is likely that some, or perhaps most, of the lost water would return to the bay (the building is large). If the water would fill the inter-space between the concrete walls, any subsequent condensation would flow back into the spent fuel pool. This recirculation of water is called refluxing and could be the result of rain from condensation on the building ceiling and/or condensation on the vertical building walls. Refluxing is a natural aspect of the pool reaching temperatures that approach, or reach the saturation temperature, and the return of water to the SPF pool would extend the interval before the fuel bundles would experience uncovering. This phenomenon could also potentially be returning water to the pool, albeit at a lower rate, during the interval that the water level is decreasing in the pool. It is important to note that the heat losses from the building that would promote condensation are likely to be different for the different stations/building designs.

Champion: Bob Henry

CW-126800-REPT-001 Page B-24

Rev. 0

					ID #	Phenomenon Synopsis Title				
					19	Flow instabilities within the etc.)	e spent fuels at low liquid level (flo	ow reversal, flow excursions,		
	Pheno	menon				Def	inition			
Flow instabilities within the The flow insta spent fuels at low liquid level interest to this (flow reversal, flow excursions, etc.)				The flow instabilities cr interest to this phenom	eated by lic nenon.	quid flow in the spent fuel ba	ay as the water level decreases du	e to leakage is the domain of		
	Importa	nce Ranl	(Importance Rank Rationale					
	(by sub-	scenario			(by sub-scenario)					
1	2	3	4	1		2	3	4		
I	I	- 1	I	Flow instabilities are or	nly significa	nt for forced flow. Not relev	ant for CANDU SFP			
Knowledge Assessment (by sub-scenario)				Knowledge Assessment Rationale (by sub-scenario)						
1	2	3	4	1		2 3 4				
N/A	N/A	N/A	N/A	See description below						

Detailed description and rationale:

The high-velocity coolant flow is a source of energy that can induce component vibration and instability. There are three major excitation sources namely turbulent buffeting, vortex shedding and acoustoelastic vibration for tube banks in cross flow. These sources of excitation become significant at high flow velocities. The coolant flow inside spent fuel pools have low velocities (<1 m/s). At these low velocities viscous forces dominate over inertial forces. Flow instabilities that can apply structurally significant force on spent fuel bundles and racks must accompany high inertial forces well above the viscous forces. The spent fuel bundles and racks are structurally rigid, with the fuel bundles designed to withstand the forces associated with the flow velocities generated by a 25 kg/s liquid coolant flow existing in a fuel channel. Flow instabilities generated at low liquid level are unlikely to be significant to impart adequate force to cause mechanical damage on fuel racks, bundles, or sheaths. Therefore the effect of flow instabilities within the spent fuels at low liquid level will be insignificant on the Figure of Merit in all four phases of the accident.

As per the discussion given above the ranking of "Insignificant" to flow instabilities within the spent fuels at low liquid level (flow reversal, flow excursions, etc.) is justified.

Champion: Nithy Nitheanandan

CW-126800-REPT-001 Page B-25

Rev. 0

				ID #	Phenor	nenon Synopsis Title		
				20	Siphoning/leakage effects (e	.g., leaking flow effect on es	tablished natural circulation	
					patterns)			
	Pheno	menon			Defir	nition	1	
Siphon	ing/leaka	ge effect	:s (e.g.,	The SFP water level control, cir	culation, temperature control an	d purification systems will h	ave water inlet and outlet	
leaking flow effect on structures below				structures below the normal o	perating levels of the SFP but abo	ve the highest level of fuel s	torage. Damage to these auxiliary	
established natural circulation systems, either du				systems, either during the acci	dent scenario or due to an abnori	mal operational occurrence	(some sort of mechanical damage)	
patterns) could lead to sipho				could lead to siphoning water	rom the SFP until the locations o	f these water inlet/outlet pi	pes have been reached.	
Importance Rank					Importance R	ank Rationale		
	(by sub-s	scenario)			(by sub-	scenario)		
1	2	3	4	1	2	3	4	
М	I	Ι	М	Significant amount of water	Siphoning will cease before	N/A	Damaged auxiliary systems which	
				could be siphoned out – but	the highest fuel storage		allowed siphoning may still allow	
				cannot uncover the fuel.	locations are reached.		leakage during recovery. This may	
							either hamper, delay or prevent	
							full refill.	
Knowledge Assessment					Knowledge Assessment Rationale			
	(by sub-s	scenario)			(by sub-scenario)			
1	2	3	4	1	2	3	4	
3	N/A	N/A	3	Siphoning could aggravate	N/A	N/A	Leakage through auxiliary system	
				the rate of water loss.			piping will hamper recovery.	

Detailed description and rationale:

Although the design of the auxiliary systems piping is such that fuel uncovery due to siphoning is prevented, siphoning can aggravate the loss of coolant inventory accidents and can hamper recovery. The initiating event for the accident scenario may also damage or break auxiliary system piping, leading to siphoning of water out of the SFP (during Phase 1). The rate of water loss could be significantly increased until water levels decrease to the levels of intake/outlet pipes of these systems. If undetected, the existence of such a break will impair attempts to refill the SFP during Phase 4. Phases 2 and 3 will be unaffected by siphoning. Although the design of the auxiliary systems is well known, the vulnerability of these systems to breaks during the accident scenario will need to be assessed. Hence, a knowledge level of 3 is justified.

Champion: Jon Judah

CW-126800-REPT-001 Page B-26

Rev. 0

				ID #	Pheno	omenon Synopsis Title			
				21	Bubble swarm rise within the	he pool (dynamics, condens	sation process, etc.) - vapor behavior		
	Pheno	menon			Defi	inition			
Bubble swarm rise within the Bubble				Bubble dynamics in liquid wat	ter.				
pool (dynamics, condensation			ation						
process, etc.) - vapor behavior			navior						
Importance Rank					Importance	Rank Rationale			
	(by sub-s	scenario)		(by sub-scenario)					
1	2	3	4	1	2	3	4		
L	L	I	I	Limited water level swell	Very small water level swell	No liquid water	Recovery will use cold water		
							 little or no boiling 		
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale				
(by sub-scenario)				(by sub-scenario)					
1	2	3	4	1	2	3	4		
4	4	N/A	N/A	The level swell can be estimation	ted with sufficient uncertainty				
				(see Phenomenon 24)					

Detailed description and rationale:

Influence of level swell would be low. Boiling within the bundle stacks with higher decay heat will cause some water level swell. As evaluated in Phenomena Assessment Work Sheet #24, this is a second order effect, i.e., the collapsed water level is essentially the same as that with swell.

Champion: Bob Henry

CW-126800-REPT-001 Page B-27

Rev. 0

Detailed description and rationale:

The panel consensus was that this phenomenon did not apply to CANDU spent fuel bays. The geometry of the LWR spent fuel assemblies (vertical orientation) is significantly different than for CANDU assemblies (horizontal orientation). As well, the significantly lower decay heat for CANDU fuel bundles means that flow reversals or oscillations will not have a significant effect on sheath or bundle temperature, as long as the bundle is immersed in liquid water.

Reference:

[1] M. Blaha and J. Freilich, "Multidimensional Modelling of Temperature Distribution in Spent Fuel Pools of VVER-1000 and VVER-440 Using FLUENT CFD Code", Proceedings of the 15th Symposium of Atomic Energy Research, 2005 October

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-28

Rev. 0

				ID #	Phenor	nenon Synopsis Title		
				23	Flow blockage in bundles du	e to Ballooning and Rupture		
	Pheno	menon			Defir	nition		
Flow b	lockage ii	n bundle:	s due	Due to the development of a di	fferential pressure between the	fuel-to-sheath gap and ambient p	pressure outside of the sheath	
to Ballo	ooning ar	nd Ruptu	re	in the spent fuel pool, the shea	th may experience localized ballo	ooning and possible sheath ruptu	re (i.e., with sufficient strain	
				from possible fission gas releas	e during high-temperature condi	tions experienced during the eve	nt).	
Importance Rank					Importance R	ank Rationale		
	(by sub-	scenario))		(by sub-	scenario)		
1	2	3	4	1	2	3	4	
I	L	L	1	Ballooning/rupture will not	Low because it will affect only a	a small number of the fuel	With cooling restored,	
				occur as fuel elements well	bundles (high powered, freshly	discharged bundles).	ballooning/rupture will not	
				cooled prior to uncovery.			occur.	
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale			
	(by sub-	scenario))		(by sub-scenario)			
1	2	3	4	1	2	3	4	
N/A	1	1	N/A	Ballooning/rupture will not	High uncertainty on the	High uncertainty on the	Ballooning/rupture will not	
				occur at low sheath	effect of a ballooned element	effect of a ballooned element	occur at low sheath	
				temperatures (~100°C) –	on bundle coolability in	on bundle coolability in	temperatures (~100°C) –	
				supported by experiments	air/water vapour.	air/water vapour.	supported by experiments	
				and computer codes.			and computer codes.	

Detailed description and rationale:

Significant only for freshly discharged fuel (need high temperature). With localized degraded heat transfer, sheath ballooning may occur resulting in localized sheath strain. Ballooned fuel elements may restrict natural convective cooling in subchannels thereby degrading the coolability of the bundle. Deformed/strained fuel elements may rupture. For knowledge level, predicting the actual geometry of a ballooned/ruptured fuel element would have a large uncertainty and require a three-dimensional analysis, which is not within the capability of the current computer codes (ELOCA). No experiments on the coolability of bundles with ballooned elements in air/water vapour are available.

Champion: Brent Lewis

CW-126800-REPT-001 Page B-29

Rev. 0

				ID #	Pheno	Phenomenon Synopsis Title			
				24	Water level swell	i			
	Pheno	menon			Defi	nition			
Water	level swe	II		Change in water level due to st	eam generation.				
Importance Rank					Importance F	Rank Rationale			
	(by sub-s	cenario)		(by sub-scenario)					
1	2	3	4	1	2	3	4		
М	L	—	I	Small water level swell	Very small water level swell	Dry	Depends on the recovery rate		
Knowledge Assessment			ent		Knowledge Assessment Rationale				
(by sub-scenario)					(by sub-scenario)				
1	2	3	4	1	2	3	4		
4	4	N/A	N/A	Nucleate boiling	Nucleate boiling/gas flow	Single phase gas circulation	No large effect on the level		

Detailed description and rationale:

Not expected to be significant, as it is a localized phenomenon. Influence of level swell will be low. When the SFP approaches saturation, the resulting steam production would generate a level swell over the high power fuel stacks. However, the level swell would be minimal, or non-existent for the low power bundle stacks, so the level swell would spread radially. Following the approach proposed by Grolmes et al. [1], a bundle stack with a power level of 0.4 MW would develop an average void fraction of about 0.3, which in a one-dimensional pool would produce a level swell of almost 0.8 m. However, including radial flow into adjacent low power stacks would reduce this to about 0.08 m

Reference:

[1] M.A. Grolmes et al., 1985, "Large-Scale Experiments of Emergency Relief Systems", Chemical Engineering Progress, August issue, pp. 57-62 Champion: Bob Henry

CW-126800-REPT-001 Page B-30

Rev. 0

					ID #	Phenoi	nenon Synopsis Title			
					25	Air/steam inflow into the ra	ck (including effect of rack de	formation)		
							. 2			
Phenomenon						Dofi	aitian			
Phenomenon						Delli				
Air/steam inflow into the rack In the absence of I			In the absence of li	quid water, the	e flow of air and/or steam into	the spent fuel racks of a LWF	will have a significant effect on			
(including effects of rack the peak clad temp			the peak clad temp	erature [1], an	d the onset of cladding ignitio	n due to oxidation [2]. The in	flow will be highly influenced by			
deformation) the form and friction			the form and friction	on loss coefficie	ents, which depend on the geo	ometry of the rack.				
	Importa	nce Ranl	(Importance Rank Rationale					
	(by sub-	scenario)		(by sub-scenario)					
1	2	3	4	1		2	3	4		
Ι	I	I	I	Not important for (CANDU spent f	uel bays.		·		
Knowledge Assessment				Knowledge Assessment Rationale						
(by sub-scenario)				(by sub-scenario)						
1	2	3	4	1		2 3 4				
N/A Not important for CANDU spent fuel bays.										

Detailed description and rationale:

The consensus of the panel was that this phenomenon was applicable to LWR spent fuel pool accidents, but not significant for CANDU spent fuel bay accidents. The long, vertical orientation of LWR racks makes the air or steam flow significant if the pool is void of liquid water, and air/steam flow warrants a separate and distinct phenomena. However, the CANDU spent fuel bay fuel storage is horizontal and the air/steam flow is already captured in Phenomena 15 (Single and two phase natural circulation (by convection) within the pool at large scale), 16 (convective heat transfer), and 23 (Flow blockage in bundles due to Ballooning and Rupture).

References:

- [1] D.H.P. Nourbakhsh, G. Miao and Z. Cheng, "Analysis of Spent Fuel Heatup Following Loss of Water in a Spent Fuel Pool A User's Manual for the Computer Code SHARP", NUREG/CR-6441, 2001 February
- [2] E.R. Lindgren and S.G. Durbin, "Characterization of Thermal-Hydraulic and Ignition Phenomena in Prototypic, Full-Length Boiling Water Reactor Spent Fuel Pool Assemblies After a Postulated Complete Loss-of-Coolant Accident", NUREG/CR-7143, 2013 March

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-31

Rev. 0

				ID #	Phenor	menon Synopsis Title		
				26	Thermal Radiation Heat Trar	nsfer		
	Pheno	menon		Definition				
Therma	al Radiati	on Heat		Radiative heat transfer from un	ncovered bundles to other bundle	es or structures and participating	media	
Transfe	er							
	Importar	nce Rank	Σ.		Importance R	ank Rationale		
	(by sub-s	scenario)			(by sub-	scenario)		
1	2	3	4	1	2	3	4	
L	H	Η	L	Fuel surface temperatures remain low as the fuel is fully covered with water. However, thermal radiation in the steam can affect the temperature distribution and gas mixing in the vapour space.	As the fuel is uncovered, the fuel temperature will rise. The thermal radiation increases with the forth power of the absolute temperatures. However, thermal radiation is only effective for the outer fuel pins, as the inner pins will only exchange thermal radiation with neighboring pins. Thermal radiation in the steam can affect the temperature distribution and	As the fuel is uncovered, the fuel temperature will rise. The thermal radiation increases with the forth power of the absolute temperatures. However, thermal radiation is only effective for the outer fuel pins, as the inner pins will only exchange thermal radiation with neighboring pins. Thermal radiation in the steam can affect the temperature distribution and	Fuel is covered, reducing the surface temperature and thus the importance of radiation heat transfer from the fuel surface. Thermal radiation in the steam can affect the temperature distribution and gas mixing in the vapour space.	
					gas mixing in the vapour space.	gas mixing in the vapour space.		

CW-126800-REPT-001 Page B-32

Rev. 0

Kno	owledge	Assessm	ent	Knowledge Assessment Rationale					
	(by sub-s	scenario)			(by sub-s	scenario)			
1	2	3	4	1	2	3	4		
3	3	3	3	Uncertainties arise from the characterization of the optical properties (emissivity, absorptivity and reflectivity of the surfaces and participating medium). As well, another source of uncertainty can be with the simplified models used to estimate thermal radiation (instead of solving the complete transport equations).	Uncertainties arise from the characterization of the optical properties (emissivity, absorptivity and reflectivity of the surfaces and participating medium). As well, another source of uncertainty can be with the simplified models used to estimate thermal radiation (instead of solving the complete transport equations). Another source of uncertainty lies in the evaluation of view factors for surface to surface thermal radiation.	Uncertainties arise from the characterization of the optical properties (emissivity, absorptivity and reflectivity of the surfaces and participating medium). As well, another source of uncertainty can be with the simplified models used to estimate thermal radiation (instead of solving the complete transport equations). Another source of uncertainty lies in the evaluation of view factors for surface to surface thermal radiation.	Uncertainties arise from the characterization of the optical properties (emissivity, absorptivity and reflectivity of the surfaces and participating medium). As well, another source of uncertainty can be with the simplified models used to estimate thermal radiation (instead of solving the complete transport equations).		

Detailed description and rationale:

Thermal radiation is a form of electromagnetic radiation, which is detected as heat or light, and is generally composed of infrared and/or visible radiation. The intensity of thermal radiation heat transfer between two bodies is proportional to the difference between the fourth powers of the absolute temperatures. Therefore, the importance of radiation increases with the temperature levels. No medium needs to be present between the two bodies for radiant exchange to occur. If a medium exists between radiating surfaces, it can interact with radiative heat transfer, and is called a "participating" medium. In general, a medium absorbs, scatters and emits energy. Its capability to attenuate the radiation depends on the sum of the absorption and scattering coefficients, which is called extinction coefficient.

Thermal radiation heat transfer from the fuel pins to the cold surrounding surfaces (e.g., pool walls or other surfaces) is limited to only the outer fuel pins. The inner pins will have limited views of the cold surrounding surfaces and will only exchange thermal radiation heat transfer with the surrounding pins. So, this will limit the importance of thermal radiation on the figure of merit.

Thermal radiation heat transfer is governed by a nearly exact transport equation, but is computationally intensive to solve, especially for thermal radiation in a participating medium. A major source of uncertainty is the characterisation of the thermal radiation properties of surfaces and gases. For example, the emissivity of metallic surfaces varies with the age of the structure (oxidation, wear, etc.). Another source of uncertainty is in the evaluation of view factors, which are highly geometry dependent, for modelling surface to surface thermal radiation.

References:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

[2] <u>https://en.wikipedia.org/wiki/Electromagnetic absorption by water</u>

CW-126800-REPT-001 Page B-33

Rev. 0

				ID #	Phenor	nenon Synopsis Title			
				27	Zircaloy oxidation in air-stea	m mixtures (including breakaway	of pre-existing oxide layer)		
	Pheno	menon		Definition					
Zircalo	y oxidatio	on in air-s	steam	Steam and air reaction with the Zircaloy sheath can lead to sheath oxidation with the liberation of chemical heat with a release					
mixture	es (includ	ling breal	kaway	of either hydrogen (in steam) or nitrogen (in air).					
of pre-	existing c	oxide laye	er)						
Importance Rank					Importance R	ank Rationale			
	(by sub-	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
I	Н	Н	L	The temperature of the	Can be significant depending	Can be significant depending	Temperature is decreasing		
				sheaths is too low for	on the scenario. If the sheath	on the scenario. If the sheath	rapidly. The temperature of		
				oxidation when the bundle is	gets hot enough (>800°C for	gets hot enough (>800°C for	the sheaths is too low for		
				covered with liquid water.	as received, >750°C for Heat	as received, >750°C for Heat	oxidation when the bundle is		
					Affected Zone) then air	Affected Zone) then air	covered with liquid water.		
					oxidation rates will be	oxidation rates will be			
					significant.	significant.			
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale					
	(by sub-	scenario)		(by sub-scenario)					
1	2	3	4	1	2	3	4		
N/A	4	2	4		Expected to be in a steam	If it is an air environment,	Expected to be in steam (or		
					environment during uncovery	then the uncertainty on the	be a low temperature).		
						oxidation rate, transition to			
						breakaway, can be high.			

Detailed description and rationale:

At temperatures above the $(\alpha + \beta)\beta$ transformation temperature for zirconium alloys, steam reacts with the β -Zr in accordance with parabolic kinetics to form a superficial layer of zirconium oxide (ZrO_2) and an intermediate layer of oxygen-stabilized α -Zr. A discontinuity in the rate of growth of the combined $(ZrO_2 + \alpha - Zr)$ layer can be attributed to a change in the oxide microstructure at the discontinuity temperature consistent with the zirconium-oxygen phase diagram. In particular, as the protective oxide forms in steam, it can spall away due to a decreased density exposing the underlying metal. Moreover, in the reaction between Zircaloy-4 and air and in steam and nitrogen-containing atmospheres at temperatures above 800°C, there is a degradation of the cladding material with the formation of zirconium nitride and its re-oxidation. Although parabolic correlations may be applied for oxidation in air, this is only appropriate for high temperatures (>1400°C) and for pre-oxidized cladding (≥1100°C), i.e., under all other conditions, faster kinetics are observed to occur with an enhanced breakaway with a less protective oxide layer caused by the crystallographic mismatch between zirconia and zirconium nitrides. This is consistent with similar behaviour reported for Zircaloy oxidation in environmental mixtures of steam and nitrogen. The transition point for such breakaway in air or in air/steam mixtures is not well understood at a mechanistic level so that it can be physically modelled in a code; hence the low knowledge level for Phase 2. Zr/steam oxidation kinetics is well known, and can be calculated by existing codes (for example, CATHENA, ELOCA).

Champion: Brent Lewis

CW-126800-REPT-001 Page B-34

Rev. 0

				ID #	Phen	omenon Synopsis Title			
				28	Oxidation of debris				
	Pheno	menon			De	finition			
Oxidat	ion of de	bris		If severe fuel damage occurs, de	bris could be generated from	the sheath (cladding), fuel, and/or	rack disintegration. This debris		
				could oxidize, generating addition	onal heat loads.				
	Importa	nce Rank	ĩ		Importance	e Rank Rationale			
	(by sub-	scenario)			(by sub-scenario)				
1	2	3	4	1	2	3	4		
Ι	I	I	I	Not important for CANDU spent	fuel bays.				
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale				
(by sub-scenario)				(by sub-scenario)					
1	2	3	4	1	2	3	4		
N/A Not important f				Not important for CANDU spent	fuel bays.		•		

Detailed description and rationale:

The consensus of the panel was that this phenomenon is not applicable to CANDU spent fuel bay accidents. Due to the low decay heat, the expected temperatures of the fuel bundles would be too low for severe fuel damage to occur (max sheath temperature ~933°C) [1,2]. Oxidation of the components of the system (fuel, sheath, module/rack material) are included under other phenomena.

References:

[1] C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

[2] C.J. Krasnaj and W. Grant, "Finite Element Analysis of Heat Transfer Between Spent CANDU Fuel Bundles in Spent Fuel Pools", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-35

Rev. 0

				ID #	Phenor	nenon Synopsis Title			
				29	Hydrogen production (radiol	ysis)			
	Pheno	menon			Definition				
Hydrog	gen produ	uction		Radiolysis of water generates	generates H ₂ and oxidizing species including H ₂ O ₂ and O ₂ ²⁻ . This can add to the hydrogen production in the				
(radioly	ysis)			course of an accident. The rad	liolysis of water will be affected b	y impurities dissolved or suspend	led in the bay water.		
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-	scenario)			(by sub-scenario)				
1	2	3	4	1	2	3	4		
L	L	I	L	The generation rate is low, co	npared to other hydrogen	The amount of liquid water	The newly added bay water		
				production mechanisms.		remaining in the bay is small,	would not have any initial		
						so the hydrogen in it can be	dissolved hydrogen, but		
						neglected.	radiolysis would continue to		
							generate hydrogen.		
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale			
	(by sub-scenario)				(by sub-	scenario)			
1	2	3	4	1	2	3	4		
3	3	N/A	3	Almost all of the hydrogen wo	uld be released during the initial	The amount of liquid water			
				heating and boiling.		remaining in the bay is small,			
						so hydrogen production in it			
						can be neglected.			

Detailed description and rationale:

Hydrogen produced by radiolysis is expected to be a minor in comparison to the hydrogen produced by the high temperature Zr/steam reaction [1]; hence the importance is Low. The phenomenon of radiolysis is well known, but moderate uncertainty in calculating the rate of radiolysis exists because of dose gradients near the fuel and potentially complex pool water flow patterns. Additional uncertainty is introduced if impure water is used for the recovery phase; hence, the knowledge level is assessed as 3.

Reference:

[1] Status Report on Spent Fuel Pools under Loss-of-Cooling and Loss-of-Coolant Accident Conditions, Nuclear Safety NEA/CSNI/R(2015)2, 2015 May Champion: Ray Dickson

CW-126800-REPT-001 Page B-36

Rev. 0

				ID #	Phenomenon Synopsis Title			
				30	Degassing of hydrogen by w	ater temperature increase		
	Pheno	menon			Defir	nition		
Degass	ing of hy	drogen b	у	Hydrogen gas can dissolve in w	lissolve in water, but the gas solubility decreases with increasing water temperature. As the temperature of			
water temperature increase the fuel bay water increase					issolved hydrogen will be release	d.		
	Importa	nce Rank			Importance R	ank Rationale		
	(by sub-	scenario)			(by sub-scenario)			
1	2	3	4	1	2	3	4	
L	L	-	I	Possible gas release	Gas already released	Dry	Steam released to the SFP	
Knowledge Assessment			ent		Knowledge Asse	ssment Rationale		
(by sub-scenario)					(by sub-	scenario)		
1	2	3	4	1	2 3 4			
4 4 N/A N/A Hydrogen solubil				Hydrogen solubility is known a	nd can be calculated.			

Detailed description and rationale:

A bounding analysis results in a hydrogen concentration of 2% hydrogen, below the 4% threshold required for combustion in dry air. Hydrogen gas can dissolve in water, but the gas solubility decreases with increasing water temperature such that essentially nothing is dissolved if the water temperature reaches the saturation value. According to the U.S. National Institute of Standards and Technology (NIST), the Henry's Law constant for hydrogen dissolution is 0.00078 mol/(kg bar) at 298 K. Conservatively assuming that the Spent Fuel Pool is fully saturated with the gas at this temperature and that the pool is 38 m x 20 m x 11 m deep, the water volume would be 8360 m³, with a mass of 8.36 x 10^6 kg and the dissolved hydrogen mass would be 13 kg. Further assuming that the building volume above the pool has the same volume as the SFP, if all of the dissolved hydrogen was accumulated in the building gas space at a temperature of 300 K, the hydrogen concentration would be 2%. The minimum hydrogen concentration for any type of combustion in dry air is 4%. **Champion: Bob Henry**

CW-126800-REPT-001 Page B-37

Rev. 0

					ID #	Phenom	enon Synopsis Title			
					31	Radionuclide releases from leaking fuel pins into the pool				
	Pheno	menon		L	Definition					
Radion	uclide rel	eases fro	om	A number of fuel elem	lements may be defective during operation as subsequently stored in SFP so that fission products could leach					
eaking	fuel pins	into the	pool	into the pool water. D	During degra	ded cooling conditions in the p	ool, intact elements may also	o fail due to possible localized		
sheath strain re					g in a gap rel	ease, with possible leaching of	fission products in aqueous of	conditions or vapour release at		
higher temperat					The underly	ving fuel in contact with water,	steam or air could also oxidi	ze resulting in enhanced fission		
product release fr					the fuel mat	rix if fuel temperatures are suff	iciently high.	-		
	Importa	nce Rank				Importance Ra	nk Rationale			
	(by sub-s	scenario)			(by sub-scenario)					
1	2	3	4	1		2	3	4		
L	М	Н	М		Le	eaching from existing defects		Leaching from existing		
								defects, and additional		
								defects induced from		
					accident progression.					
Knowledge Assessment					Knowledge Assessment Rationale					
	(by sub-s	scenario)			(by sub-scenario)					
1	2	3	4	1		2	3	4		
4	4	4	4	Operational experience	e and exper	iments exist.				

Detailed description and rationale:

Fission product release/leaching from failed fuel in aqueous conditions during pool storage conditions is well known with many years of operational experience and a knowledge of fuel/fission product chemistry. In addition, there have been numerous annealing experiments conducted with fuel fragments and mini elements at CRL over 35 years at high-temperature under various environmental conditions in argon, steam and air.

Champion: Brent Lewis

CW-126800-REPT-001 Page B-38

Rev. 0

					ID #	Phenon	nenon Synopsis Title			
					32	Radionuclide releases from e	eroded CRUD into the pool			
	Pheno	menon			Definition					
Radion	uclide rel	eases fro	om	Magnetite deposits	ts on fuel sheath are called CRUD and as these deposits form, they are likely to capture fission products in the					
eroded CRUD into the pool heat transport flui				heat transport fluid	uid.					
Importance Rank						Importance R	ank Rationale			
	(by sub-s	scenario)				(by sub-	scenario)			
1	2	3	4	1		2	3	4		
Ι	L	L	I		F	Releases from CRUD	Releases from CRUD			
					e	expected to be minor	expected to be minor			
Kno	owledge	Assessm	ent	t Knowledge Assessment Rationale						
(by sub-scenario)						(by sub-	scenario)			
1	2	3	4	1		2	3	4		
N/A	2	2	N/A		S	Species are known. See description below.	See description below			

Detailed description and rationale:

Crud deposition can occur on the fuel sheaths of CANDU fuel under normal operating conditions. If this deposition were sufficiently large, it could affect the thermal response or mechanical behaviour of the fuel during a postulated accident. Crud is primarily magnetite which deposits on the fuel sheath. Precipitation fouling is one of the main fouling mechanisms taking place at high temperature whenever precipitating material has inverse solubility curve with temperature. Radionuclide capture in the crud material is significantly lower than the radionuclide release following fuel failures. The amount of radionuclide releases from eroded Crud into the pool is therefore insignificant to low.

The Importance ranking of "Low" for sub-scenarios 2 and 3 is justified because of the low level of contribution radionuclide releases from eroded Crud. The sub-scenarios 1 and 4 at low temperatures and therefore the contribution will be much lower and becomes insignificant. The knowledge level "2" indicating that the phenomenon is partially known with large uncertainty. The level of literature on CRUD is extremely low and the CRUD from one reactor may show different characteristics compared to another reactor. Hence the ranking given to this phenomenon is justified.

Champion: Nithy Nitheanandan

CW-126800-REPT-001 Page B-39

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					33	Pool scrubbing of aerosols ar	nd gases from bubbles		
	Pheno	menon			Definition				
Pool sc	rubbing o	of aeroso	ls and	Aerosols and gases may	may be removed from bubbles by deposition on the surrounding water surface and dissolution in the				
gases f	rom bubb	oles		surrounding water. Con-	Conversely, if the vapour pressure of a gas dissolved in the water is higher than its partial pressure in the				
bubble, there ma					et vaporiza	ation of gas from the water to	the bubble.		
	Importance Rank					Importance R	ank Rationale		
	(by sub-scenario)				(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
L	L	Ι	Μ	FP releases are small dur	ıring U	Instable flow (sloshing, level	No water is covering any fuel,	Fuel is being covered with	
				this phase	S	welling) could partially cover	so scrubbing will be	liquid water again, so pool	
					re	eleasing fuel with liquid	negligible.	scrubbing will occur in the	
					w	vater.		bubbles during the cooldown	
Kno	owledge	Assessm	ent			Knowledge Asses	ssment Rationale		
(by sub-scenario)						(by sub-s	scenario)		
1	2	3	4	1	1 2 3 4				
3	3	N/A	3	Models exist, but moder	rate S	ee Phase 1		See Phase 1	
				uncertainty and modelling	ing				
				gaps exist.					

Detailed description and rationale:

The importance is low for Phases 1 and 2, as FP releases will be small. Only for Phase 4, recovery, will the phenomenon have a medium importance, as the fuel becomes covered by the reflood and pool scrubbing will occur. Most models and codes for pool scrubbing [1] [2] have been developed for bubbles passing through a pool, rather than for gas streams passing over the surface of a pool. Some aerosol and vapour deposition mechanisms will be affected by the non-zero liquid velocity parallel to the liquid surface in the boundary layer [1] (caused by water circulation within the pool or at the bubble interface). There may be net vaporization or condensation of water/steam, causing significant diffusiophoresis and Stefan flow effects within the bubble. Thus, the knowledge level is 3, as some uncertainty and modelling gaps exist for application to spent fuel pools.

References:

- [1] A.T. Wassel, A.F. Mills, D.C. Bugby and R.N. Oehlberg, "Analysis of Radionuclide Retention in Water Pools", Nucl. Engin. Design 90 (1985) pp. 87-104
- [2] P.C. Owczarski, R.I. Schreck and A.K. Postma, "Technical Bases and User's Manual for the Prototype of a Suppression Pool Aerosol Removal Code", USNRC, Report NUREG/CR-3317, 1985 May

Champion: Ray Dickson

CW-126800-REPT-001 Page B-40

Rev. 0

				ID #	Phenomenon Synopsis Title				
				34	Radioactive aerosol formation	on due to boiling at the free sur	face		
	Pheno	menon			Definition				
Radioa	ctive aer	osol form	nation	Fission product compounds ma	product compounds may be resuspended from the pool as droplets formed by breaking of bubbles or by surface spray				
due to	bubble b	reakup		induced by rapid gas flows pass	ing over the surface. Particulate	material suspended in the wat	er can also be resuspended by		
proces	ses at the	e free sur	face	this mechanism.					
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
L	L	I	М	This is the only mechanism	See Phase 1.	No bubbles in water pool.	Water will dissolve		
				that could release some of			radioactive substances from		
				the starting inventory of			the bay wall and suspend fine		
				dissolved Cs from the pool, if			fuel particulate and other		
				boiling occurs. However,			materials. Significant boiling		
				releases are expected to be			may occur at the guench		
				low.			front.		
Kn	owledge	Assessm	ent		Knowledge Asse	ssment Rationale			
	(by sub-	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
3	3	N/A	2	Experimental data under	See Phase 1.	N/A	Uncertainty on the type of		
		-		representative conditions are			boiling experienced at the		
				available [1] [2] [3] [5] and			rewet front makes estimation		
				the physics of the process is			of the resuspended fraction		
				reasonably well understood			difficult.		
				[3] [4] [5].					

Detailed description and rationale:

Resuspension factors in representative conditions were between 4×10^{-6} and 7×10^{-5} for soluble tracers [5], between 5×10^{-6} and 5×10^{-4} for alumina particles [5], and about 5×10^{-4} for BaSO₄ particles at high concentration in non-condensing atmosphere [1]. Resuspension factors are lower in condensing atmospheres by a factor of about 10.

References:

- [1] W. Schöck and M. Wagner-Ambs, "Aerosol generation by bubble bursting from a boiling pool", J. Aerosol Sci. 20 (1989) 1405-1408
- [2] H. Bunz, M. Koyro, B. Propheter, W. Schöck and M. Wagner-Ambs, "Resuspension of fission products from sump water", European Commission Report EUR-14635, 1992
- [3] N. Reinke, A. Voßnacke, W. Schütz, M.K. Koch and H. Unger, "Aerosol Generation by Bubble Collapse at Ocean Surfaces", Water, Air and Soil Pollution: Focus, 1 (2001) pp. 333-340
- [4] L. Duchemin, S. Popinet, C. Josserand and S. Zaleski, "Jet formation in bubbles bursting at a free surface", Phys. Fluids 14 (2002) 3000–3008

CW-126800-REPT-001 Page B-41

Rev. 0

[5] J.O. Cosandey, A. Günther and Ph. Rudolph von Rohr, "Transport of salts and micron-sized particles entrained from a boiling water pool", Experimental Thermal and Fluid Science 27 (2003) 877–889

Champion: Ray Dickson

CW-126800-REPT-001 Page B-42

Rev. 0

				ID #	Phenor	nenon Synopsis Title			
				36	Tritiated steam (DTO) releas	es by water evaporation			
	Pheno	menon			Defir	nition			
Tritiate	d steam	(DTO) re	eases	Leakage of heavy water from the	ne heavy water side of the irradia	ted fuel handling system to	the SFP allows some tritiated heavy		
by wate	er evapor	ration		water (DTO) into the SFP. Allow	e SFP. Allowing for some chemical recombination, very small quantities of both HTO and DTO will be				
				available for release from the S	FP during the loss of water inven	tory accident.			
Importance Rank					Importance R	ank Rationale			
	(by sub-s	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
L	L	I	I	DTO in the SFP will be	DTO in the SFP will be	N/A	N/A		
				released during loss of water	released during loss of water				
				inventory.	inventory.				
Knowledge Assessment		ent	Knowledge Assessment Rationale						
	(by sub-s	scenario)	enario) (by sub-scenario)						
1	2	3	4	1	2	3	4		
4	4			It is measured during	As for Phase 1.	N/A	N/A		
				operation					

Detailed description and rationale:

Irradiated fuel discharge mechanisms are designed to separate the heavy water side of the fuel handling system from the light water in the SFP. Irradiated fuel bundles are discharged through an air chamber which separates the heavy water in the fuelling machine from the light water in the SFP. This is important for both economic reasons and safety reasons. Heavy water is very expensive, and CANDU operations will work hard to minimize loss and maximize recovery. Minimizing the loss of heavy water is also a safety concern. Heat transport D₂O can become activated in reactor and will contain high levels of Tritium. The release of Tritium (Tritiated heavy water, DTO) is an environmental hazard.

Despite elaborate efforts to minimize loss, some Heavy water will be carried on fuel bundle surfaces into the irradiated fuel transfer mechanism and possibly into the SFP. DTO in the SFP will be released to the environment by evaporation or during loss of the SFP water inventory during an accident. CANDU operators will monitor pathways for heavy water loss to the SFP. Also, chemistry testing of SFP water is used to monitor heavy water and DTO content. Champion: Jon Judah

CW-126800-REPT-001 Page B-43

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					39	Conduction in solid compone	ents (fuel, racks/modules, concre	te,)	
	Pheno	menon			Definition				
Conduc	ction in s	olid		The transfer of hea	neat in solid components due to conduction. Scope includes transient conduction and contact between				
compo	nents (fu	el,		components					
racks/modules, concrete,)									
Importance Rank					Importance Rank Rationale				
	(by sub-scenario)				(by sub-scenario)				
1	2	3	4	1		2	3	4	
Н	Н	Н	Н	Heat conduction ca	an be the limitir	ng factor of the heat transfer.			
Kn	Knowledge Assessment Knowledge Assessment Rationale								
(by sub-scenario) (by sub-scenario)									
1	2	3	4	1 2 3 4					
3	3 3 3 Gap and contact conductance is an uncertainty (fuel/sheath, gaps in concrete)								

Detailed description and rationale:

Thermal conduction is the transfer of heat thorough microscopic collisions of molecules, atoms, and electrons within and through the body itself [1]. The rate of heat transfer within a solid body is a function of the temperature difference (temperature gradient) between two locations within the solid and the thermal conductivity of the conductive medium through which the heat is transferred. The rate of heat transfer between two bodies through contacting surfaces is also a function of the temperature difference (heat transfer coefficient).

The decay heat generated within the fuel will be conducted through the ceramic fuel to the fuel-to-sheath gap. The heat energy is then transferred through the gap via the contact conductance process to the sheath. Heat may then find its way to the coolant through molecular conduction (relatively small contribution) and convection (relatively large contribution). From the coolant or via direct contact, decay heat dissipation to components like racks, modules, and concrete may occur depending on the sub-scenario of the event.

Thermal conduction is a very well-known phenomenon for most of the materials within the spent fuel pool. The contact conductance in the gap is a less understood phenomenon. For the type of applications in the spent fuel pool, the bounding heat transfer coefficients are available, but the uncertainty may be higher.

Since the Spent Fuel Pool accidents due to loss-of-cooling or loss-of-coolant contribute to escalating temperatures and component failures, the primary mode of heat transfer that propels temperature escalation is conduction heat transfer and contact heat transfer. On this basis, the "High" ranking given to the phenomenon of Conduction in solid components (fuel, racks/modules, concrete, ...) is justified. There is reasonable amount of knowledge on conduction, however, the knowledge level in the contact heat transfer area is less than sufficient requiring prototypic experiments to measure the contact heat transfer coefficient. On this basis, a knowledge ranking of "3" denoting adequate knowledge with moderate uncertainty in the knowledge is justified. **Reference:**

[1] Vedat S. Arpaci, "Conduction Heat Transfer", Addison-Wesley Publishing Company, Reading Massachusetts, 1966 Champion: Nithy Nitheanandan

CW-126800-REPT-001 Page B-44

Rev. 0

				I	ID #	Phenor	nenon Synopsis Title			
					41	Deformation and integrity of	f structures (racks/modules/fuel	bundle)		
	Pheno	menon			Definition					
Deform	nation an	d integri	ty of	At elevated temperatures	temperatures, the fuel elements, bundles, and supporting structures such as the racks or modules will deform due					
structu	res (rack	s/module	es/fuel	to thermal expansion, ela	ermal expansion, elastic, plastic, or creep processes. In the case of excessive deformation, the structures may fail.					
bundle)									
	Importa	nce Rank	Σ.			Importance R	ank Rationale			
	(by sub-s	scenario)	_			(by sub-s	scenario)			
1	2	3	4	1		2	3	4		
I	М	Н	L	Prior to fuel uncovery, th	e A	s the fuel uncovers, the	With all of the fuel	During reflood, the		
		temperatures of the uncovered fuel will attain a uncovered, the fue					uncovered, the fuel and	components cool and		
				structural components is	not h	igher temperature,	racks/modules will be at	deformation due to elevated		
				high enough for significar	nt p	otentially resulting in	elevated temperature and	temperatures is no longer		
				deformation.	b	undle sag and dimension	will deform in excess of the	active.		
					С	hanges.	initial condition.			
Kno	owledge	Assessm	ent			Knowledge Asses	ssment Rationale			
	(by sub-s	scenario)				(by sub-s	scenario)			
1	2	3	4	1		2	3	4		
N/A	2	2	2		C	Change in geometry can affect flow through rack and sheath temperature. Knowledge level for				
					b	bundle deformation is supported by experiments, but the system is complex and difficult to				
					р	predict with a high level of certainty. Deformation and failure mechanisms of racks/modules				
					under the accident conditions is not available.					

Detailed description and rationale:

If the fuel becomes uncovered, then the reduced cooling will increase the temperature of the fuel bundles and the supporting structures (racks or modules). Elevated temperatures can cause excessive deformation, because the yield stress decreases with increasing temperature and creep rates increase with increasing temperature. At the temperatures expected for a spent fuel bay accident, creep could be significant. Experiments on bundle deformation are available, but creep rates are subject to uncertainty and the current experiments do not consider bundle integrity over the longer time periods of the spent fuel bay accident. The knowledge level of rack/module deformation and failure mechanisms are not known at this time. **Champion: Jeffrey Baschuk**

CW-126800-REPT-001 Page B-45

Rev. 0

					ID #	Phenor	nenon Synopsis Title	
					42	Stratification in the gas spac	e	
	Pheno	menon				Defin	ition	
Stratific	cation in	the gas s	pace	Stratification of gas	ses arising fro	m density differences due to te	mperature and molar mass differ	ences of gas compositions.
	Importa	nce Rank				Importance Ra	ank Rationale	
	(by sub-s	scenario)				(by sub-s	cenario)	
1	2	3	4	1		2	3	4
L	M	Μ	Μ	Very little hydrogen However, this phas to establish a stean in the ceiling which inhibit hydrogen tr the later stages of t accident.	n present. e can help n rich layer i can ansport in the	If the fuel is uncovered and heats up, Zr oxidation with steam will occur, producing hydrogen. However, the importance is ranked as medium because of the quantity of hydrogen that can be produced and a hydrogen deflagration will only damage the walls and roof of the spent fuel pool bay building. In a worst case scenario, all of the walls and roof are gone, causing a faster evaporation rate. Also, some of the debris may fall into the pool, reducing the amount of water available for boil-off. Presence of high concentrations of steam would serve to inert the atmosphere. However, leakage of hot steam could draw in cold air into the building.	In this stage, all of the fuel is uncovered. There is less than 1 foot of water below the bottom of the fuel. So, the amount of available steam is limited to what may evaporate due to thermal radiation absorbed by the water. Steam condensation could result in air ingress, which could Air infiltration could cause problems if you still have the hydrogen. As well, leakage of hot gases from the spent fuel pool building could result in an inflow of cold air.	Reflooding of the spent fuel pool could result in the production of hydrogen on re-wet because of the generation of steam. However, atmosphere could become steam inerted.
Knowledge Assessment						Knowledge Asses	sment Rationale	<u>I</u>
(by sub-scenario)					(by sub-scenario)			
1	2	3	4	1		2	3	4
3	3	3	3	Uncertainty lies with stratification layer.	th the ability of	of computer codes to predict st	ratification due to density differe	nces and the breakup of the

CW-126800-REPT-001 Page B-46

Rev. 0

Detailed description and rationale:

Fluid density differences can lead to stratification into layers. Density variation may be due to differences in temperature or composition. Stratification occurs when the driving forces to cause forced mixing are weaker than natural buoyancy forces. For an accident in a SFP, several stratification scenarios are possible:

- 1. The initial steaming will cause form of a steam rich layer in the upper gas space of the SFP building. This hot steam rich layer can inhibit or slow down the upward migration of hydrogen in the later stages of the accident.
- 2. Condensation of steam in the ceiling will lead to richer non-condensable gases (including air and hydrogen) near the ceiling.

What is most important for the FOM is the stratification (concentration) of hydrogen (with air) near the ceiling because of the threat of hydrogen combustion. A lot of experiments have been done to study stratification of hydrogen (or helium as a simulant) under postulated reactor accident conditions. Recent experiments are looking into the dissolution of an established hydrogen rich layer due to a steam jet or a buoyant steam plume. As well, a number of computer code validation/benchmark exercises have been done. In general, the prediction of a hydrogen stratification is well predicted by the codes, but there are sensitivities due to user effects and 3D modelling capabilities of the codes. What has more uncertainty is the prediction of the dissolution of a hydrogen rich layer, with on-going international experiments and benchmark exercises (OECD HYMERES project).

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

CW-126800-REPT-001 Page B-47

Rev. 0

				ID #	Phenom	enon Synopsis Title		
				43	Thermal Conduction in fluid			
	Phenoi	menon		ł	Defini	ition		
Thermal Conduction in fluid Heat transfer by th				Heat transfer by thermal condu	ction in gases and liquids.			
	Importar	nce Rank			Importance Ra	ink Rationale		
	(by sub-s	cenario)			(by sub-scenario)			
1	2	3	4	1	2	3	4	
L	L	L	L	Heat transfer within the fluid is	dominated by mixing, either force	ed or natural convection.		
Knowledge Assessment					Knowledge Assessment Rationale			
(by sub-scenario)					(by sub-se	cenario)		
1	. 2 3 4 1 2 3 4					4		
4 4 4 Theory is well established and fluid properties are known.								

Detailed description and rationale:

This phenomenon covers thermal conduction in a fluid (water and vapour/gas), which is a mode of heat transfer due to a temperature gradient and is governed by the fluid's thermal conductivity, density and specific heat. The theory is identical to that for solids and is well known (governed by exact transport equations), along with the relevant properties for water and gases (steam, air and hydrogen). For water and vapour/gases, the main mode of heat transfer is by mixing, whether it is by forced or natural convection. Thus, conduction in fluids is expected to play a small role, as even under stagnant conditions, the temperature gradient needed for thermal conduction would also induce natural convection flows.

Reference:

"Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May [1]

CW-126800-REPT-001 Page B-48

Rev. 0

				ID #	Phenor	menon Synopsis Title				
				44	Condensation heat transfer					
Conder	nsation h	eat trans	fer	The pool water that is boiled o	water that is boiled or evaporated off is expected to condense on the building heat sinks (walls, ceiling,).					
	Importa	nce Rank	(•	Importance Rank Rationale					
	(hy sub-	scenario)	-		(by sub-scenario)					
1	2	3	4	1	2	3	4			
M	M	M I M The amount of water returning through condensation is expected to be small, but it can delay the accident. The amount of condensation can be affected by the weather (cold) Even if some fuel bundles are uncovered, some condensate condensate pool. At this stage of the accident, all liquid water in the pool has evaporated or boiled-off. The injection water expected to be condensate pool.				The injection water is expected to be cold and the rate of evaporation/boiling would be low.				
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale					
	(by sub-s	scenario)			(by sub-	scenario)				
1	2	3	4	1	2	3	4			
4	4	N/A	4	Rainout due condensation on the SFP ceiling would return to the pool directly and condensate film drainage could return to the pool if the building sump becomes full of water.	Any return of water to the pool would slow the accident progression.					

Detailed description and rationale:

Condensation on the building heat sinks if evaporation or boiling of the SFP should occur would be expected and if this water could return to the pool by either rainout or drainage of condensate films, this would delay, or prevent the uncovering of the spent fuel bundles. If the condensate could fill the water sump (the region between the inner and outer walls of the SFP, then the condensate would be returned to the pool. The phenomena of rainout and condensate drainage need to be modeled by the computer code. Depending on the accident and the building configuration, this could change from MEDIUM to HIGH. **Champion: Bob Henry**

CW-126800-REPT-001 Page B-49

Rev. 0

					ID #	Phenor	nenon Synopsis Title	
				-	45	Buoyancy induced mixing in	the gas space	
	Pheno	menon		Definition				
Buoyar	ncy induc	ed mixin	g in the	Gas/vapour can be	mixed by buo	yancy induced motion due to p	pressure gradients created by loca	al gas density differences in a
gas spa	ice			gravitational field.	These density	differences are due to compos	sition differences and/or tempera	ature differences, induced by
				local mass and/or h	neat transport	processes (e.g., gas injection, c	convection and condensation).	
Importance Rank			ζ.			Importance R	ank Rationale	
	(by sub-s	scenario)				(by sub-	scenario)	
1	2	3	4	1		2	3	4
L	М	М	М	Effect on FOM (she	ath I	It has a secondary effect on	It has a secondary effect on	It has a secondary effect on
				temperature) is mir	nimal, as 🔤 t	the FOM, as the evaporation	the FOM, as the evaporation	the FOM, as the evaporation
				its effect on the FO	M is only	rate is limited by the steam	rate is limited by the steam	rate is limited by the steam
				to help remove stea	am from	concentration at the pool	concentration at the pool	concentration at the pool
				the pool surface an	d replace s	surface and the potential for	surface and the potential for	surface and the potential for
				it with air (this will	help the	energetic hydrogen	energetic hydrogen	energetic hydrogen
				evaporation proces	is).	combustion is also affected	combustion is also affected	combustion is also affected
					1	by the mixing of the steam,	by the mixing of the steam,	by the mixing of the steam,
					i	air and hydrogen.	air and hydrogen.	air and hydrogen.
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale				
(by sub-scenario)				(by sub-scenario)				
1	2	3	4	1		2	3	4
3	3	3	3	Knowledge level is high, but there is still on-going research into buoyancy induced gas mixing in multi-volume/room				
				configurations. As	well, there is s	some spread in the code bench	marks results leading to some ur	icertainty.

Detailed description and rationale:

Gas/vapour can be mixed by buoyancy induced motion due to pressure gradients created by local gas density differences in a gravitational field. These density differences are due to composition differences and/or temperature differences, induced by local mass and/or heat transport processes (e.g., gas injection, convection and condensation). For an accident in a SFP, the concern is the mixing of the steam, air and hydrogen above the pool surface. If the ventilation system is off, the main mode of mixing will be due to buoyancy induced mixing. Its importance is ranked as medium mainly because it has a secondary effect on the FOM, as the evaporation rate is limited by the steam concentration at the pool surface and the potential for energetic hydrogen combustion is also affected by the mixing of the steam, air and hydrogen.

The knowledge level is quite high for this phenomenon with many experiments and code benchmarks. However, experimental work and the associated code benchmarks are still on-going, especially for buoyancy induced gas mixing in multi-volume/room configurations.

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

CW-126800-REPT-001 Page B-50

Rev. 0

				ID #	ŧ	Phenon	nenon Synopsis Title			
				46		Mass diffusion in vapour spa	се			
Phenomenon						Definition				
Mass d	iffusion i	n vapour	space	Mass diffusion is the relative	relative motion of species in a vapour/gas mixture due to the presence of a concentration gradient. Mass					
			•	diffusion will move a species	ove a species down the concentration gradient, and tends to reduce the concentration gradient to result in a					
				uniform concentration (well	mixed	l) conditions. The diffusion ma	ass transfer rate depends on t	the gas component diffusion		
				coefficients for the multi-cor	mpone	ent mixture.	•	5		
	Importa	nce Rank	K		Importance Rank Rationale					
	(by sub-s	scenario))	(by sub-scenario)						
1	2	3	4	1		2	3	4		
L	L	L	L	Diffusion will be less significa	ant tha	an convective transport. Very	little impact on the figure-of-	merit.		
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale					
(by sub-scenario)					(by sub-scenario)					
1	2	3	4	1		2	3	4		
4	4	4	4	Theory is known and transport equations can be solved numerically. Diffusion coefficients for steam. air and hydrogen						
				mixtures can be evaluated.						

Detailed description and rationale:

The gas space above the spent fuel pool (and also the rest of the spent fuel pool building) will consist of steam, air and hydrogen. The mixing of these gases will mainly be driven by mixing due to forced or natural convection. However, in stagnant regions, diffusion can play a role to reduce the gas concentrations. The theory is well known and the transport equation can be solved numerically. The kinetic theory of gases can be used to derive formulas for the binary diffusion coefficients. Which can then be used to evaluate the gas diffusion coefficient for a single species in a gas mixture.

References:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

[2] R.B. Bird, W.E. Stewart and E.N. Lightfoot, "Transport phenomena", Wiley, 1965

CW-126800-REPT-001 Page B-51

Rev. 0

				ID #	Phenon	Phenomenon Synopsis Title		
				47	Laminar flow (gas space, liqu	iid)		
Lamina	r flow (g	as space,	liquid)	Laminar flow occurs when a flu	id flows in parallel layers without	disruption of these layers.		
	Importa	nce Rank			Importance Rank Rationale			
	(by sub-	scenario)			(by sub-s	scenario)		
1	2	3	4	1	2	3	4	
L	М	М	L	Impact on FOM (sheath	Uncovered fuel will mainly loos	e its heat by convection heat	Fuel has been re-covered	
				temperature) is low because	transfer with the air (cooling by	thermal radiation is not	with water and heat transfer	
				the fuel is fully covered and	possible for the inner fuel pins)	. If laminar flow is occurring in	to the water is high.	
				with high heat transfer to the	the uncovered fuel, it will have	a lower convective heat loss,		
				water.	as compared to if the flow was	turbulent.		
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale			
	(by sub-	scenario)		(by sub-scenario)				
1	2	3	4	1	2	3	4	
3	3	3	3	Some uncertainty in modelling laminar flow				

Detailed description and rationale:

Laminar flow occurs when a fluid flows in parallel layers without disruption of these layers. Close to a wall, there is a thin layer (called viscous sublayer) where the flow is laminar. In the water pool itself, small sub-channel flows may have laminar flow. Other areas where laminar flow may occur are in the gas space in the transition between convection dominant zone and the stratified zone (zone without velocity where temperature or gas concentration gradients exists). In this transition, the flow can be laminar before the flow stops. This transition can also occur at the edges of dead end zones.

In CFD computer code models, this zone is usually not computed but modeled by the use of wall functions. Low Reynolds turbulence models address also this zone but they are presently not used at reactor scale.

The theory of laminar flow is well established and documented in the open literature. In CFD computer code models, this zone is usually not computed but modeled by the use of wall functions. Low Reynolds turbulence models address also this zone but they are presently not used at reactor scale. Thus, there are still some uncertainty in modelling laminar flow.

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

CW-126800-REPT-001 Page B-52

Rev. 0

				ID #	D # Phenomenon Synopsis Title					
				48	Turbulent flow (gas space, lid	quid)				
	Pheno	menon			Definition					
Turbul	ent flow (gas spac	e,	A turbulent flow is a fluid flow t	hat includes rapid variations in th	ne velocity and pressure in time a	and space, and generally has			
liquid)				stochastic components. Turbule	ients. Turbulence involves eddy formation at many different length scales, with the largest related to					
. ,				geometry and the smallest to vi	scosity. Turbulent flow is expect	ed for all phases of the accident.	Spacer pads (appendages)			
				will induce turbulence. Even na	tural convective flows in the gas	space will be turbulent.				
	Importa	nce Rank			Importance Rank Rationale					
	(by sub-s	scenario)		(by sub-scenario)						
1	2	3	4	1	2	3	4			
Н	Н	Н	Н	Turbulence increases mixing and	d reduces thermal and concentra	ation gradients in the fluids. It als	so increases convective heat			
				transfer.						
Kn	owledge	Assessm	ent		Knowledge Asses	ssment Rationale				
	(by sub-s	scenario)			(by sub-scenario)					
1	2	3	4	1	2 3 4					
3	3	3	3	Uncertainty arises from modelling turbulence.						

Detailed description and rationale:

Turbulent flow has a high impact on the figure of merit (sheath temperature) as it also increases convective heat transfer from the fuel to the surrounding fluid. It is also responsible for mixing the fluid, thereby reducing any thermal or concentration gradients.

The theory is well known, but there are many turbulence models available for CFD modelling and numerical benchmarks against experiments demonstrate that there is not a single one that works for all situations.

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

CW-126800-REPT-001 Page B-53

Rev. 0

				ID #	Phenomenon Synopsis Title				
				49	Building leakage of gases an	d aerosols			
	Pheno	menon			Defir	nition			
Buildin	g leakage	e of gases	and	The Spent Fuel Pool (SFP) is housed in an industrial building, not a containment building. Leakage will occur as the building					
aeroso	ls			atmosphere starts to be pressurized by the addition of steam (and to a lesser extent by hydrogen). The hot gases inside the SFP					
				will tend to leak through the hig	/ill tend to leak through the higher elevation openings, with an accompaniment of in-flow of cold air from the outside. This is				
				especially enhanced if the leaka	ige is through a large open doorv	vay. The concern with the leaka	ge is that the gas/vapour		
				mixture will carry fission produc	y fission products (gases or aerosol) out of the spent fuel pool building.				
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-	scenario)		(by sub-scenario)					
1	2	3	4	1	2	3	4		
L	Μ	М	М	Leakage will define the SFP	Leakage will define the SFP	Leakage will define the SFP	Leakage will define the SFP		
				vapour space pressure and	vapour space pressure and	vapour space pressure and	vapour space pressure and		
				steam, which affects the FOM	steam, which affects the FOM	steam, which affects the FOM	steam, which affects the FOM		
				(sheath temperature)	through the evaporation rate.	through the convection heat	through the convection heat		
				through the evaporation rate.	However, once fuel is	transfer between the fuel and	transfer between the fuel and		
				As well, in this phase, there is	exposed, then there will be	the vapour-gas mixture.	the vapour-gas mixture.		
				only a small amount of fission	more defects and more	However, the fuel is now fully	However, the fuel is now fully		
				gas and Tritium present.	potential for release of FP.	exposed and there is a high	exposed and there is a high		
						potential for release of fission	potential for release of fission		
						products.	products due to reflooding.		
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale					
(by sub-scenario)				(by sub-scenario)					
1	2	3	4	1	2	3	4		
2	2	2	2	The building is just an industrial	building and is not a pressure b	oundary. As such, leakage can be	e calculated assuming a		
				maximum building pressure W	hat is a larger source of uncertain	inty is the amount of cold air that	n can leak into the building		

Detailed description and rationale:

The importance with respect to the figure of merit (FOM), sheath temperature, is medium as leakage will only affect the vapour space pressure (but this is minimal as the building is not a pressure boundary) and steam concentration (at the pool surface), which affects the evaporation rate and also the convective heat transfer between the exposed fuel and the vapour-gas mixture. However, it is the pathway by which fission products are released to the environment. There is some uncertainty on the actual leakage paths, but the total amount of leakage can be calculated. A larger source of uncertainty is the amount of air that can leak back into the building. Air would contribute to the hydrogen combustion hazard.

Although this phenomenon does not have a significant effect on sheath temperature, it is an important factor for worker safety, and dose to the public.

CW-126800-REPT-001 Page B-54

Rev. 0

			ID	ŧ	Phenon	nenon Synopsis Title			
				50		Deflagration			
	Phenor	menon			Definition				
Deflagr	ation			Deflagration deals with com	with combustion with flame speeds on the order of several meters per second to several hundred meters				
				per second. The burning ra	te can	be affected by initial condition	ns (mixture compositions, pressu	re, and temperature),	
				geometry of the confineme	nt, loc	ation of ignition, and turbulen	ce level. For slow flames, the ma	ximum deflagration pressure is	
				bounded by the adiabatic is	ochor	ic complete combustion (AICC)	pressure.		
	Importar	nce Rank		Importance Rank Rationale					
	(by sub-s	cenario)				(by sub-s	scenario)		
1	2	3	4	1		2	3	4	
L	Н	Н	М	As fuel is covered with wate	r, A	As fuel is uncovered but with	As SFP experiences total loss	As cooling is recovered, Zr-	
				H ₂ production would be	c	continuous cooling, H ₂ can be	of coolant, the steam source	steam reaction can be	
				primarily from water	p	produced from Zr-steam	is reduced to evaporation	quenched, but the sheath	
				radiolysis. Due to low H_2	r	eaction. H_2 can mix with air	from the limited amount of	temperature remains high, so	
				production rate and active	a	and become flammable. If	water underneath the fuel	some H ₂ may still be	
				ventilation in the SFP	iį	gnited, deflagration may	and hydrogen production	produced from Zr-steam	
				building, the likelihood for I	l ₂ p	oose a danger to the SFP	may continue. As well, with	reaction, but the total H_2	
				accumulation and	b	ouilding. The continuous	the reduced steam supply,	should be low and the risk for	
				deflagration is low.	S	upply of steam from the	the steam inerting effect is	combustion is reduced.	
					p	bool will tend to inert the	reduced and condensation		
					a	atmosphere. However,	will increase the local		
					C	condensation may increase	hydrogen concentration.		
					t	he local hydrogen			
					C	concentration.	Damage to the SFP building		
							will increase the evaporation		
						Damage to the SFP building	rate (increase loss of steam		
					v	vill increase the evaporation	and inflow of air to the		
					r	ate (increase loss of steam	building), re-suspension of		
					а	and inflow of air to the	deposited radionuclides and		
					þ	building), re-suspension of	reduced capability of building		
					C	leposited radionuclides and	to retain radionuclides.		
					r	educed capability of building			
					t	o retain radionuclides.			

CW-126800-REPT-001 Page B-55

Rev. 0

Knowledge Assessment (by sub-scenario)				Knowledge Assessment Rationale (by sub-scenario)					
1	2	3	4	1	2	3	4		
3	3	3	3	Uncertainties may arise from the H_2 production from water radiolysis at elevated water temperature.	Uncertainties may arise from the H ₂ production from Zr-steam reaction and H ₂ distribution in the SFP building.	ertainties may arise from H2 production from team reaction and H2 ribution in the SFPUncertainties may arise from the level of obstructions and tonfinement and H2 distribution in the SFPUncertainties may arise from the level of obstructions and the level of obstructions and 	Uncertainties may arise from the H ₂ production during the quenching.		

Detailed description and rationale:

A deflagration, also referred to as a flame, is an expansion wave, with both pressure and density decreasing across the reaction front. The propagation of deflagration is caused by the diffusion of heat and intermediate reaction species from the flame into the unburned gas. In an accident involving a deflagration of pre-mixed flammable hydrogen-air mixture, if ignited, the flame starts as a slow flame with a velocity between several centimeters to several meters per second. In the absence of turbulence and confinement, the burning rate is slow and the overpressure generated will be small. The expansion of the gas generates a turbulent flow field, and feedback from this in turn increases the effective burning rate, as well as the rate of expansion. The burning rate can be affected by initial conditions (mixture compositions, pressure, and temperature), geometry of the confinement, location of ignition, and turbulence level. For instance, internal structures of a building can produce obstructions and confinement to the flame. When the flame passes obstacles, the intensity of the turbulent flow field will be increased, so the burning rate increases dramatically, which then increases both the flow velocity and turbulence ahead of the flame. An accelerated flame can reach a velocity on the order of several hundreds of meters per second. The strength of an accelerated flame depends on many different factors, but generally, mixture composition and uniformity. For deflagrations, the maximum deflagration pressure is bounded by the adiabatic isochoric complete combustion (AICC) pressure.

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

Champion: Sammy Chin (written by Zhe (Rita) Liang)

CW-126800-REPT-001 Page B-56

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					51	Flame acceleration			
	Pheno	menon			Definition				
Flame	accelerat	ion (FA)		In the presence of obstr	obstructions or confinement, a slow flame (several meters per second) can be accelerated and the burning				
				rate can be significantly	cantly increased.				
	Importa	nce Rank			Importance Rank Rationale				
	(by sub-s	scenario)			(by sub-scenario)				
1	2	3	4	1		2	3	4	
L	Н	Н	М	As fuel is covered with w	vater, A	As fuel is uncovered but with	As SFP experiences total loss	As cooling is recovered, Zr-	
				H ₂ production would be	C	continuous cooling, H ₂ can be	of coolant, the steam source	steam reaction can be	
				primarily from water	þ	produced from Zr-steam	is reduced to evaporation	quenched, but the sheath	
				radiolysis. Due to low H	2 r	eaction. H_2 can mix with air	from the limited amount of	temperature remains high, so	
				production rate, the risk	fora	and become flammable. If	water underneath the fuel	some H_2 may still be	
				FA is low.	i	gnited, deflagration may	and hydrogen production	produced from Zr-steam	
					P P	pose a danger to the SFP	may continue. As well, with	reaction, but the total H_2	
					k	ouilding. The continuous	the reduced steam supply,	should be low and the risk for	
					S	supply of steam from the	the steam inerting effect is	FA is reduced.	
					r	bool will tend to inert the	reduced and condensation		
					a	atmosphere. However,	will increase the local		
					c	condensation may increase	hydrogen concentration. A		
					t	he local hydrogen	slow flame may accelerate to		
					c	concentration. A slow flame	a fast flame due to		
					r	may accelerate to a fast	obstructions in the SFP		
					f	lame due to obstructions in	building.		
					t	he SFP building.			
							Damage to the SFP building		
					1	Damage to the SFP building	will increase the evaporation		
					v	will increase the evaporation	rate (increase loss of steam		
					r	ate (increase loss of steam	and inflow of air to the		
					a	and inflow of air to the	building), re-suspension of		
					t	ouilding), re-suspension of	deposited radionuclides and		
					c	leposited radionuclides and	reduced capability of building		
					r	educed capability of building	to retain radionuclides.		
					t	o retain radionuclides.			

CW-126800-REPT-001 Page B-57

Rev. 0

Knowledge Assessment (by sub-scenario)				Knowledge Assessment Rationale (by sub-scenario)				
1	2	3	4	1	2	3	4	
2	2	2	2	Uncertainties may arise from th The knowledge for deflagration defined, particularly for non-uni	e H_2 production from water rac and detonation are well knowr form mixtures.	n. However, criterion for flame	perature. e acceleration and DDT are not well	

Detailed description and rationale:

The process immediately following a weak ignition in a combustible gas mixture is characterized as deflagration (Phenomenon 50), where the combustion propagates at subsonic speed into the unburned mixture. The initially smooth flame surface can be wrinkled due to the Landau-Darrieus instability, which can be stabilized or destabilized by thermal-diffusion effects. This can result in the formation of a cellular flame leading to an increase of the flame surface and the acceleration of the flow generated by the expansion of the combustion products. In addition, turbulence and the obstacles located along of the flame path (i.e., girders in the ceiling) can cause further increase in the flow velocity. Depending on the mixture properties and boundary conditions, the interaction of the flame with turbulence in the unburned gas can lead to either weak flame acceleration within relatively slow, unstable, turbulent flame regimes, or strong flame acceleration resulting in fast flames that propagate at supersonic speeds. The mixture expansion ratio is a key parameter that separates the potential for development of fast flames. With a sufficiently large run-up distance, supersonic combustion regimes can be developed as well.

References:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

[2] "Flame Acceleration and Deflagration to Detonation Transition in Nuclear Safety", NEA/CSNI/R(2000)7, 2000 August

Champion: Sammy Chin (written by Zhe (Rita) Liang)

CW-126800-REPT-001 Page B-58

Rev. 0

				ID #	Phenomenon Synopsis Title				
				52	Deflagration to detonation t	ransition (DDT)			
	Pheno	menon		Definition					
DDT				In the presence of obstruction	the presence of obstructions or confinement, a slow flame (several meters per second) can accelerate to a fast flame				
				(hundred meters per second),	and, under certain circumstances	s, lead to a transition to detonation	on (a few kilometers per		
				second).					
	Importa	nce Rank	2	Importance Rank Rationale					
(by sub-scenario)				(by sub-scenario)					
1	2	3	4	1	2	3	4		
L	н	Н	М	As fuel is covered with water,	As fuel is uncovered but with	As SFP experiences total loss	As cooling is recovered, Zr-		
				H ₂ production would be	continuous cooling, H ₂ can be	of coolant, the steam source	steam reaction can be		
				primarily from water	produced from Zr-steam	is reduced to evaporation	quenched, but the sheath		
				radiolysis. Due to low H_2	reaction. H_2 can mix with air	from the limited amount of	temperature remains high, so		
				production rate, the risk for	and become flammable. If	water underneath the fuel	some H_2 may still be		
				DDT is low.	ignited, deflagration may	and hydrogen production	produced from Zr-steam		
					pose a danger to the SFP	may continue. As well, with	reaction, but the total H_2		
					building. The continuous	the reduced steam supply,	should be low and the risk for		
					supply of steam from the	the steam inerting effect is	DDT is reduced.		
					pool will tend to inert the	reduced and condensation			
					atmosphere. However,	will increase the local			
					condensation may increase	hydrogen concentration. A			
					the local hydrogen	slow flame may accelerate to			
					concentration. A slow flame	DDT due to obstructions in			
					may accelerate to DDT due to	the SFP building.			
					obstructions in the SFP	Damage to the SFP building			
					building.	will increase the evaporation			
					Damage to the SFP building	rate (increase loss of steam			
					will increase the evaporation	and inflow of air to the			
					rate (increase loss of steam	building), re-suspension of			
					and inflow of air to the	deposited radionuclides and			
					building), re-suspension of	reduced capability of building			
					deposited radionuclides and	to retain radionuclides.			
					reduced capability of building				
					to retain radionuclides.				
CW-126800-REPT-001 Page B-59

Rev. 0

Kno	owledge (by sub-:	Assessm scenario)	ent	Knowledge Assessment Rationale (by sub-scenario)				
1	2	3	4	1	2	3	4	
2	2	2	2	Uncertainties may arise from the The knowledge for deflagration defined, particularly for non-un	ne H ₂ production from water radio and detonation are well known. iform mixtures.	olysis at elevated water tempera However, criterion for flame ac	iture. celeration and DDT are not well	

Detailed description and rationale:

Deflagration to detonation transition (DDT) refers to an abrupt change in the mode of combustion from deflagration to detonation in the absence of a high energy source. An expanding deflagration wave resulting from a gas explosion is intrinsically unstable, susceptible to flame acceleration. As the flame speed increases, a compression wave (commonly referred to as a precursor shock) can be generated ahead of the combustion front as a result of the thermal expansion of the combustion products. The strength of this precursor shock depends on the speed of the deflagration wave. As the flame speed continues to increase, the precursor shock strength also increases. For a highly accelerated flame, or supersonic flame (speed greater than the speed of sound in the unburned gas), this precursor shock can be very strong, comparable to detonation peak pressures. Under suitable conditions, strong flame acceleration can sequentially lead to a detonation.

The dynamic pressure loads induced by propagating flames increase with the flame speed. The destructive potential of sonic deflagrations, DDT and detonations is substantial and pose a significant challenge to the integrity of structures.

Direct accidental initiation of detonation (the most energetic form of combustion) is very unlikely inside a post-accident SFP building, because it requires high energy ignition sources such as solid explosives, but DDT is likely to be the mechanism to initiate a detonation.

References:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

[2] "Flame Acceleration and Deflagration to Detonation Transition in Nuclear Safety", NEA/CSNI/R(2000)7, 2000 August

Champion: Sammy Chin (written by Zhe (Rita) Liang)

CW-126800-REPT-001 Page B-60

Rev. 0

				ID #		Phenor	nenon Synopsis Title			
				53		Detonation				
	Pheno	menon				Defir	nition			
Detona	ntion			A supersonic compression way	ve, v	vith typical velocities on the o	rder of a few kilometers per seco	nd, can be initiated via a strong		
				ignition source or by sequentia	n source or by sequential acceleration of a slow flame.					
	Importar	nce Rank				Importance R	ank Rationale			
	(by sub-s	scenario)				(by sub-	scenario)			
1	2	3	4	1		2	3	4		
L	Н	Н	М	As fuel is covered with water,	A	s fuel is uncovered but with	As SFP experiences total loss	As cooling is recovered, Zr-		
				H ₂ production would be	C	ontinuous cooling, H ₂ can be	of coolant, the steam source	steam reaction can be		
				primarily from water	р	roduced from Zr-steam	is reduced to evaporation	quenched, but the sheath		
				radiolysis. Due to low H_2	re	eaction. H_2 can mix with air	from the limited amount of	temperature remains high, so		
				production rate, the risk for	a	nd become flammable. If	water underneath the fuel	some H ₂ may still be		
				detonation is low.	ig	nited, deflagration may	and hydrogen production	produced from Zr-steam		
					р	ose a danger to the SFP	may continue. As well, with	reaction, but the total H ₂		
					b	uilding. The continuous	the reduced steam supply,	should be low and the risk for		
					รเ	upply of steam from the	the steam inerting effect is	detonation is reduced.		
					р	ool will tend to inert the	reduced and condensation			
					at	tmosphere. However,	will increase the local			
					C	ondensation may increase	hydrogen concentration.			
					tł	ne local hydrogen	Detonation may be initiated			
					C	oncentration. Detonation	from a slow flame by FA and			
					m	hay be initiated from a slow	DDT.			
					fl	ame by FA and DDT.	Damage to the SFP building			
					D	amage to the SFP building	will increase the evaporation			
					w	vill increase the evaporation	rate (increase loss of steam			
					ra	ate (increase loss of steam	and inflow of air to the			
					a	nd inflow of air to the	building), re-suspension of			
					b	uilding), re-suspension of	deposited radionuclides and			
					d	eposited radionuclides and	reduced capability of building			
					re	educed capability of building	to retain radionuclides.			
					to	o retain radionuclides.				

CW-126800-REPT-001 Page B-61

Rev. 0

Knowledge Assessment (by sub-scenario)				Knowledge Assessment Rationale (by sub-scenario)					
1	1 2 3 4		4	1	2	3	4		
3	3	3	3	Uncertainties may arise from the H_2 production from water radiolysis at elevated water temperature.	Uncertainties may arise from the H ₂ production from Zr- steam reaction and H ₂ distribution in the SFP building.	Uncertainties may arise from the level of obstructions and confinement and H ₂ distribution in the SFP building.	Uncertainties may arise from the H ₂ production during the quenching.		

Detailed description and rationale:

A detonation, the most energetic form of combustion, is a supersonic wave, with typical velocities on the order of a few kilometers per second. It is a compression shock wave with pressure and density increasing across the wave. The detonation is caused by heating of the unburned gas via a shock wave (created by the energy release in the reaction zone) to temperatures capable of causing ignition in the unburned gas. As a result, the propagation mechanism for a detonation is "kinetic-controlled" and the reaction front is coupled to the shock wave and they propagate at the same velocity. Due to the much larger over-pressures generated in a detonation front, detonations can cause damages that are much more severe as compared to those associated with the blast waves produced by deflagrations. Detonation of hydrogen mixtures inside a SFP building can result in ultimate dynamic mechanical loads to the building structure.

There are two modes to initiate detonation in combustible gas mixtures: a fast mode and a slow mode. In the fast mode, detonation is formed instantaneously due to rapid deposition of a large amount of energy in a small volume of the combustible mixture, such as high energy explosive, strong shock waves and high voltage discharge. In the slow mode, detonation is initiated from a slow flame, but followed by FA and DDT.

In an accident situation, direct initiation of detonation in a SFP building is very unlikely because it requires strong shock source. However, transition from deflagration to detonation may be possible depending on both the initial conditions (such as mixture composition, pressure, temperature) and the boundary conditions (such as size of the enclosure, obstacle configuration and obstacle spacing).

References:

- [1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May
- [2] "Flame Acceleration and Deflagration to Detonation Transition in Nuclear Safety", NEA/CSNI/R(2000)7, 2000 August

Champion: Sammy Chin (written by Zhe (Rita) Liang)

CW-126800-REPT-001 Page B-62

Rev. 0

					ID #	Phenor	menon Synopsis Title		
					55	Irradiation annealing and sh	eath recrystallization		
	Pheno	menon				Defi	nition		
Irradiat	ion anne	aling and	ł	When Zircaloy is in	radiated the s	trength increases and ductility	decreases. Both of these p	roperty changes anneal out as sheath	
claddin	g recryst	allization	l	temperature increa	ases.				
Importance Rank Importance Rank Rationale						Rank Rationale			
(by sub-scenario)						(by sub-	scenario)		
1	2	3	4	1		2	3	4	
L	М	Μ	L	Low temperature		Temperature of sheath	Same as 2	Sheath temperatures drop on	
						increases as it is uncovered		rewet.	
Knowledge Assessment					Knowledge Assessment Rationale				
(by sub-scenario)					(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
3	3	3	3	See details below		See details below	See details below	See details below	

Detailed description and rationale:

Codes exist for modelling and calculating this phenomenon (ELESTRES, ELOCA).

Irradiation increases the strength of zirconium alloys and reduces their ductility. The change in property is related to the neutron exposure at fast flux. Irradiation temperature, metallurgical condition (heat treatment and cold work) and the alloy composition each affect the change in properties with irradiation. As sheath temperature rises the effects of irradiation strengthening anneals out.

At low temperatures (<700 K), Zircaloy fuel sheathing exhibits low ductility due to work hardening during the manufacturing process followed by irradiation hardening while in use. At Normal Operating Condition temperatures, the dislocations formed by the irradiation damage continually anneal out, and a steady-state is reached at which the rate of formation of the dislocations match the rate of annealing. This equilibrium is reached within the first few hours of irradiation, and at Normal Operating Condition temperatures it is such that the sheath is significantly strengthened and embrittled.

In Sub-Scenarios 2 and 3 the sheath temperature (FOM) is likely to rise and the influence of Irradiation annealing and sheath recrystallization is likely to anneal out, if the temperature rise is high and the time at temperature is sufficiently long. Therefore the Importance of this phenomenon ranked as Medium is justified. The knowledge level of "3" is also justified because adequate knowledge exists with moderate uncertainty.

Champion: Nithy Nitheanandan

CW-126800-REPT-001 Page B-63

Rev. 0

				ID #	Phenor	Phenomenon Synopsis Title				
				56	Sheath strain and failure					
	Pheno	menon			Defi	nition				
Sheath	strain an	id failure		At high temperatures and unde	er internal pressure from fill gas a	ind released fission gas, the shea	th will strain. The strain rate is			
				affected by irradiation damage,	, Zircaloy crystallite size and text	ure, and by oxidation. At strains	greater than the limit of plastic			
				stability (~5%), excessive plastic deformation occurs and the sheath can fail (ballooning). Failures can also occur by cracking of						
				oxide, stress corrosion cracking	; induced by released fission proc	lucts, beryllium braze assisted cra	ack penetration, fretting, or			
				mechanical or thermal shock of	f embrittled sheath on quench. 1	The sheath can also fail by throug	h-wall oxidation (see			
				Phenomenon 27), because the	oxide has very poor structural in	tegrity.				
	Importa	nce Rank	ζ.		Importance R	ank Rationale				
	(by sub-s	scenario))	(by sub-scenario)						
1	2	3	4	1	2	3	4			
L	Н	Н	Н	No failures expected	Failures will begin occurring	Failures expected in exposed	Failures can occur on quench			
						fuel.	if the sheath has been			
							embrittled by oxidation or			
							hydriding.			
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale	•			
	(by sub-s	scenario)			(by sub-	scenario)				
1	2	3	4	4 1 2 3 4						
3	3	3	3	Models for sheath deformation	exist, but uncertainty can be hig	h, especially at high temperature	25.			

Detailed description and rationale:

Sheath deformation (strain) can be modelled (ELOCA) and sheath failure criteria have been identified. However, moderate uncertainty exists in predicting failure locations and timing (sheath failure criteria tend to be conservative). If the pellet-to-sheath gap opens, heat transfer from the pellet to the sheath (Phenomenon 62) is affected.

CW-126800-REPT-001 Page B-64

Rev. 0

				ID #	Phenoi	Phenomenon Synopsis Title			
				57	Hydrogen pick-up under ste	am + air +hydrogen			
	Pheno	menon			Defi	nition			
Hydrog	en pick-u	ıp under	steam	During Zircaloy oxidation in env	vironments containing steam and	d/or hydrogen, a fraction of the h	ydrogen generated during the		
+ air +h	ydrogen			oxidation is absorbed into the 2	Zircaloy under the oxide layer. P	recipitation of this hydrogen as h	ydrides can lead to		
				embrittlement of the Zircaloy s	brittlement of the Zircaloy sheath, which may cause sheath failure during later stages of the accident.				
Importance Rank					Importance F	Rank Rationale			
(by sub-scenario)					(by sub-	scenario)			
1	2	3	4	1	2	3	4		
L	Μ	Μ	М	Pickup of hydrogen in boiling	Sheath oxidation, with	Although the pool water is	Hydrogen content and		
				water at or near room	hydrogen production, will	assumed to have evaporated	hydride formation are		
				pressure is a fraction of the	provide additional hydrogen	or boiled-off, some steam	significant for embrittlement		
				rate of sheath oxidation,	for pickup.	may still be present to	failure on rewet.		
				which is slow.		produce hydrogen.			
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale				
	(by sub-s	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
3	3	3	3	Pickup of hydrogen under these	e conditions is related to the rate	e of oxidation. Experiments and r	models exist, with moderate		
				uncertainty.					

Detailed description and rationale:

Pickup of hydrogen under BWR and PWR normal operating conditions is well documented, and indicate a pickup fraction of about 15%. Cladding with spalled oxide (75 µm to 110 µm thick) has higher hydrogen concentrations in the vicinity of the spallation, because the spalled area is cooler and hydrogen diffuses there from other regions of the cladding. Hydrogen content and hydride formation are significant for embrittlement failure on rewet in Phase 4. However, dissolution of the hydrides into the matrix of the Zircaloy is rapid at temperatures above 500°C [1], so the hydride embrittlement decreases during Phase 3 until the time of quenching.

Reference:

[1] P. Vizcaíno, A.D. Banchik and J.P. Abriata, "Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4", Journal of Nuclear Materials 336 (2005) 54–64

CW-126800-REPT-001 Page B-65

Rev. 0

				ID #	Pheno	Phenomenon Synopsis Title				
				58	Hydride dissolution & preci	pitation				
	Pheno	menon			Defi	inition				
lydrid	e dissolut	ion &		The formation of zirconium hyd	n hydrides (deuterides for CANDU) is a secondary effect of fuel sheath failures and can lead to					
recipi	tation			exposure of the fuel pellets. H and causing some to break if lo	ydrides have also been known to aded abnormally.	o accumulate in the assembly we	lds, embrittling them when cold			
	Importa	nce Rank	ζ.		Importance Rank Rationale					
	(by sub-s	scenario)			(by sub	-scenario)				
1	2	3	4	1	2	3	4			
L	L	L	L	Of limited concern and only in a small number of fuel bundles.	Of limited concern and only in a small number of fuel bundles.	Of lower concern. Hydrides will dissolve at higher temperatures. Assembly welds will be stronger.	Only of concern if storage structures (racks/baskets/modules) have lost integrity and element become abnormally loaded. Even so, only a small number of bundles would be at risk.			
Kn	owledge	Assessm	ent		Knowledge Asse	essment Rationale				
	(by sub-s	scenario)	n		(by sub	-scenario)	1			
1	2	3	4	1	2	3	4			
3	3	3	3	OPEX and mechanisms for fuel defects are well documented and well known. OPEX for brittle assembly welds is available but the phenomenon has not been sufficiently studied and is not well understood.	As for Phase 1.	Of lower concern.	As for Phase 1.			

Detailed description and rationale:

The formation of zirconium hydrides (deuterides for CANDU) is a secondary effect of fuel sheath failures. Large concentrations of Zr hydrides will result in fuel sheath embrittlement, breaking off of hydrided fuel sheath and exposure of the fuel pellets. Hydrides have also been known to accumulate in the assembly welds which are used to join fuel elements to the fuel bundle endplates (intact and defected elements). These dissolved hydrides will precipitate when the assembly welds become cool, embrittling them and causing some to break if loaded abnormally (transverse loads).

The dissolution and precipitation of Zirconium hydrides (deuterides) will not factor significantly in a SFP loss of water inventory accident scenario. The number

n

CW-126800-REPT-001 Page B-66

Rev. 0

of defected fuel elements in the SFP is small, and the impact of these on releases to the environment are discussed in other more relevant phenomena. Also, the embrittlement of assembly welds due to hydride precipitation is a high burnup phenomenon and so is restricted to only a small percentage of bundles. Assembly weld weakness has only been experienced in situations of transverse (non-axial) loading. These welds have not experienced problems at normal discharge burnups, during normal storage and if only axial loading forces are applied. **Champion: Jon Judah**

CW-126800-REPT-001 Page B-67

Rev. 0

					ID #	Phenomenon Synopsis Title				
					59	Fuel cooling by sprays and m	akeup			
	Pheno	menon				Defin	ition			
Fuel cooling by sprays and Heat will be trans					erred to cold wa	ater from hot fuel when water	is returned to the fuel bay	s. By definition, if makeup is present		
makeu	makeup then the accident					t has progressed to stage 4.				
Importance Rank						Importance Ra	ank Rationale			
	(by sub-s	cenario)				(by sub-s	cenario)			
1	2	3	4	1		2	3	4		
I	I	Ι	Н	Inactive by definiti	on.			Makeup water will cool the		
								fuel bundles, returning the		
								sheath to a low temperature.		
Knowledge Assessment					Knowledge Assessment Rationale					
(by sub-scenario)						(by sub-s	cenario)			
1	2	3	4	1		2	3	4		
N/A	N/A	N/A	3					Experiments exist with		
								moderate uncertainty		

Detailed description and rationale:

Water may be returned to the fuel bays by portable pumps and fire hoses available at the sites, or via the makeup water system. The Canadian multi-unit CANDU stations only have makeup water systems in the main fuel bays, rather than engineered spray systems as found in the CANDU 6 fuel discharge bay. Heat transfer experiments with a bundle of electrical heaters were performed in spray cooling and with the lower region of the bundle immersed in water. Moderate uncertainty exist as the experiments are for single bundles, and the effect of multiple bundles or stack/rack/module arrangement is unknown. **Champion: Ray Dickson**

CW-126800-REPT-001 Page B-68

Rev. 0

				II	D #	Pheno	menon Synopsis Title		
					60	Fuel fragmentation and relo	ocation (during ballooning, bef	ore and after sheath rupture)	
Fuel fra	gmental	tion and		Due to sheath embrittlem	nent fron	n oxidation and hydriding, fue	el-element fragmentation can	occur, especially on rewet/quench.	
relocation (during ballooning, Fuel ballooning/el					failure m	ay also result from significant	t sheath strain, which could all	ow for an ingress of water or air	
before and after cladding				into the element. With subsequent oxidation of the fuel under the breached site, element deterioration can further occur with					
rupture)				localized conversion of U	D_2 to U_3	D_8 that can split and crack the	embrittled sheath due to a vo	lume expansion of the underlying	
				fuel.					
	Importa	nce Rank	(Importance I	Rank Rationale		
	(by sub-	scenario)				(by sub	-scenario)		
1	2	3	4	1		2	3	4	
I	М	Н	Н	Fuel is cool			Air oxidation to U_3O_8	Rewet will fragment the fuel	
Knowledge Assessment					Knowledge Assessment Rationale				
(by sub-scenario)					(by sub-scenario)				
1	2	3	4	1	2 3 4				
N/A	3	3	3	Phenomenon has been studied, with experiments and criteria available.					

Detailed description and rationale:

Sheath failure due to creep strain can occur at high-temperature resulting in a local bulge and a splitting of the sheath. A fuel sheath temperature in excess of the alpha–beta-Zircaloy transition temperature and an internal fission gas pressure higher than the external coolant pressure are pre-requisites for this latter type of failure mechanism. The sheath can particularly lose ductility due to hydriding, development of thick oxide layers and spalling of the oxide. Subsequent fragmentation of fuel elements can occur in a degraded bundle with cool down and/or quenching. Measurements have been made on the loss of ductility and embrittlement of Zircaloy-4 cladding by oxidation and hydriding under LOCA conditions and with a water quench. For example, the LOFT FP-2 test demonstrated that when coolant was introduced into a hot bundle, a resultant thermal shock caused fragmentation of the fuel rods with oxygen embrittlement of the fuel sheaths. For instance, based on measurements conducted by Sawatzky and other researchers, failure criteria have been derived for this phenomenon where if the oxygen concentration over half the sheath wall thickness exceeds 0.7 wt.%, the sheath will be sufficiently brittle to fail upon rewet. The criterion appears to be well founded and has the advantage of being very similar to a failure criterion used by the US nuclear industry. With the presence of stored defective fuel, additional element deterioration can occur as a combination of both sheath and fuel oxidation, where, for instance, an irradiated failed element exposed for 2.5 h in air at 900°C showed significant sheath deformation. This deterioration was associated with fuel oxidation and a phase change of the Zircaloy where solid UO₂ fuel fragments and U₃O₈ powder fell out of the enlarged defect location.

CW-126800-REPT-001 Page B-69

Rev. 0

					ID #	Phenom	nenon Synopsis Title			
					61	Release of retained fission ga	ases due to fuel fragmentation			
	Pheno	menon				Defin	ition			
Release	e of retai	ned fissic	on	Fission gases in fuel a	at the grain b	poundaries and in large intragra	nular bubbles may be released b	by cracking of the fuel, mainly		
ases d	ue to fue	el fragme	ntation	along grain boundari	es. Fuel frag	mentation may occur during fu	el oxidation in air, rapid heating	, or rapid cooling.		
	Importa	nce Rank	ζ.	Importance Rank Rationale						
	(by sub-s	scenario)			(by sub-scenario)					
1	2	3	4	1		2	4			
Ι	Μ	Σ	H	Low temperature, no fragmentation) 1	Fuel oxidation (steam or air) will promote fragmentation.		The addition of rapid cooling (in addition to the oxidation or high temperature UO_2 - Zircaloy oxidation) will result in additional fragmentation and release of fission products.		
Kno	owledge (by sub-s	Assessm scenario)	ent			Knowledge Asses (by sub-s	s ment Rationale scenario)			
1	2	3	4	1		2	3	4		
N/A	4	4	3			Models of fuel oxidation are ava	ailable for both steam and air.	Fragmentation due to quenching is a stochastic process, with some uncertainty.		

Detailed description and rationale:

Fuel fragmentation may occur on rapid heating [1] or fuel oxidation in air at low temperature [2]. Fuel fragmentation by these mechanisms tends to occur along grain boundaries, which are weakened areas in the fuel matrix. The main fission gases that are released by this mechanism are the grain boundary inventory.

Fuel oxidation in air at low temperature (\sim 300°C to 650°C) to U₃O₈ occurs more rapidly along the grain boundaries. The resulting volume increase tends to pop the grains out of the surface and expose fresh fuel surface, giving rise to rapid fragmentation. At \sim 500°C, about 2.5% of the grain inventory of fission gases was also released by the fragmentation process.

Another mechanism of fuel fragmentation occurs when a sample is heated until UO_2 -Zircaloy interaction occurs, and then is cooled below ~1000°C and oxidized in steam or air [3]. Metallic uranium precipitates form during cooling after UO_2 -Zircaloy interaction, and these precipitates increase significantly in volume on oxidation, fragmenting some of the fuel pellet to <1 mm diameter. The fragmented fraction increases with increased duration at UO_2 -Zircaloy interaction mechanism is unlikely, because of the complicated temperature history and high temperatures (>1500°C) required.

Related phenomena:

60: Fuel fragmentation and relocation (during ballooning, before and after cladding rupture)

CW-126800-REPT-001 Page B-70

Rev. 0

66: UO₂ Oxidation

References:

- R.S. Dickson, A.I. Belov, M.D. Gauthier, R.T. Peplinskie and C.A. Buchanan, "Fuel Behaviour and Fission Product Release in the Power Pulse 1 Experiment", Proceedings of the 11th International Conference on CANDU Fuel, Niagara Falls, 2010 October 17-20, AECL Report <u>CW-126320-CONF-004</u>
- [2] P.H. Elder, D.S. Cox, L.W. Dickson and R.V. Murphy, "New Post-Irradiation Examination Techniques at Chalk River Laboratories: Gamma Tomography and Grain-Boundary-Inventory Measurements on Irradiated Fuel", Recent developments in post-irradiation examination techniques for water reactor fuel, Cadarache, France, 1994 October 17-21, IAEA-TECDOC-822
- [3] D.G. Evans, P.M. Mathew and M.C. Arneson, "Effect of the UO₂/Zr Interaction on the Fragmentation of Unirradiated UO₂ Fuel Pellets", Proc. 12th CNS Annual Conference, Saskatoon, SK, Canada, 1991

CW-126800-REPT-001 Page B-71

Rev. 0

ID # Phenomenon Synopsis Title	
62 Heat transfer in sheath, pellets and through the gap, which affects distribution or	f
temperature, strain and stresses	
Phenomenon Definition	
Heat transfer in sheath, pellets The decay heat generated within the fuel is conducted through the fuel material, through the fuel/sheath interface of	or
and through the gap, which fuel/sheath gap, and though the sheath. The sheath can be coated by oxide layers or CRUD, which would reduce the	e
affects distribution of effectiveness of heat transfer through the sheath.	
temperature, strain and	
stresses	
Importance Rank Importance Rank Rationale	
(by sub-scenario) (by sub-scenario)	
1 2 3 4 1 2 3 4	
L H H H Prior to fuel uncovery, When the fuel is uncovered, the sheath temperature will be Heat transfer in the sufficient cooling is available bighty influenced by the heat transfer through the fuel and element will affect	ne fuel t the rate of
such that the sheath fuel/sheath gap or interface	ease during
temperature will be close to	reflooding
the pool water temperature.	vill take
time during which	h the sheath
temperature will	he
influenced by the	heat
transfer within the	
element	
cicincit.	e fuel
Knowledge Assessment	e fuel
Knowledge Assessment Knowledge Assessment Rationale	e fuel
Knowledge Assessment (by sub-scenario) Knowledge Assessment Rationale (by sub-scenario) 1 2 3 4	e fuel
Knowledge Assessment (by sub-scenario) Knowledge Assessment Rationale (by sub-scenario) 1 2 3 4 1 2 3 4 3 3 3 3 3 4 4	the effect of
Knowledge Assessment (by sub-scenario) Knowledge Assessment Rationale (by sub-scenario) 1 2 3 4 3 3 3 3 3 3 3 3 3 3	the effect of

Detailed description and rationale:

Heat transfer in the fuel element includes heat generation within the fuel (decay heat), diffusion through the fuel, heat transfer through the fuel/sheath gap or interface, and diffusion through the sheath and any oxide or CRUD coatings. If the fuel bundle is submerged in water, heat transfer in the fuel element does not significantly affect the sheath temperature, as sufficient cooling is available. However, if the fuel bundle is exposed to air or steam, then the sheath temperature will be influenced by the heat transfer in the fuel element. The knowledge level is high because validated computer codes, such as ELOCA, exist to model the heat transfer in a fuel element. However, some gaps exists such as the influence of oxide layers or CRUD on heat transfer. As well, the current code, ELOCA, is one-dimensional (radial) and a multi-dimensional analysis could be useful to incorporate the interaction between the fuel element/bundle and

CW-126800-REPT-001 Page B-72

Rev. 0

other bundles or racks/modules [1,2].

References:

- [1] C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28
- [2] C.J. Krasnaj and W. Grant, "Finite Element Analysis of Heat Transfer Between Spent CANDU Fuel Bundles in Spent Fuel Pools", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-73

Rev. 0

				ID #	ID # Phenomenon Synopsis Title			
				63	Axial gas flow in rod after cla	adding rupture		
	Pheno	menon			Defin	nition		
Axial ga	as flow in	rod afte	r	The dynamics of axial gas-flow along the fuel rod, from the plenum to the clad ballooning location, can have a significant e				
claddin	g ruptur	e on the timing of fuel cladding rupture [1]. Flow restriction will delay cladding rupture, due to a decrease in the press					decrease in the pressure in the	
				vicinity of the ballooning claddin	allooning cladding.			
	Importa	nce Rank	(Importance R	ank Rationale		
	(by sub-	scenario))		(by sub-	scenario)		
1	2	3	4	1	2	3	4	
Ι	Ι	I	I	Phenomenon does not need to I	pe considered for CANDU spent	fuel bay accidents.		
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale		
(by sub-scenario)					(by sub-	scenario)		
1	2	3	4	1	2	3	4	
	N	/A	•	Phenomenon does not need to I	pe considered for CANDU spent	fuel bay accidents.		

Detailed description and rationale:

The consensus of the panel was that this phenomenon is not significant for CANDU fuel. CANDU fuel is significantly shorter than LWR fuel, and also does not contain plenums.

Reference:

[1] G. Khvostov, W. Wiesenack, M.A. Zimmermann and G. Ledergerber, "Nuclear Engineering and Design", 241(5), pp. 1500-1507, 2011 May Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-74

Rev. 0

					ID #	Phenoi	menon Synopsis Title		
					64	Oxidation and releases from	previously defected fuel into t	he pool	
	Pheno	menon			Definition				
Oxidati	on and re	eleases fr	om	Previously defected	fuel can oxio	dize during the temperature tra	nsient, causing fuel degradation	n, and release fission products	
previou	isly defec	cted fuel	into	and fuel particulate	into the poo	ıl.			
the poo	bl								
	Importar	nce Rank		Importance Rank Rationale					
	(by sub-scenario)				(by sub-scenario)				
1	2	3	4	1		2	3	4	
L	L	Н	Μ	Fuel is covered and i	is at a low	Fuel begins to uncover and	Air oxidation could be an	Temperature is decreasing, so	
				temperature; oxidat	ion rates	some releases can occur.	issue	oxidation rates are also	
				will be low.				decreasing.	
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale				
(by sub-scenario)						(by sub-	scenario)		
1	2	3	4	1 2 3 4					
3	3 3 3 Experiments and models exist with moderate uncertainty.								

Detailed description and rationale:

The importance is low during Phase 1 because the temperatures are comparatively low and the gap inventory of fission products from the defected elements has already been released to the bay. The low-temperature oxidation in water is described in Phenomenon 66, "UO₂ Oxidation". In Phase 2, the environment will mainly be steam, so the oxidation will be comparatively slow unless the sheath temperature rises above ~800°C, partly because the oxidation in steam does not cause significant dimensional changes. In Phase 3, the temperatures are slightly higher, but the increasing incorporation of air into the environment will cause the defected fuel and sheaths to oxidize (see Phenomenon 66, "UO₂ Oxidation"), with the possibility of splitting the sheath [1], which would increase environment access to the fuel, and releasing FP [2], [3] (see Phenomenon 61, "Release of retained fission gases due to fuel fragmentation"). A temperature of 400°C will cause severe sheath splitting in less than 24 h, and extensive deterioration occurs in about 2 hours at higher temperatures (600°C and 900°C). In Phase 4, although the average temperatures are decreasing, the increased steam supply, greater state of fuel damage and possible consequential fuel damage may cause some further oxidation and releases. Note that the radiolysis products of air and water (NO_x, O₂²⁻, H₂O₂, OH) will enhance the oxidation. **References:**

- [1] I.J. Hastings, "Behaviour in Air at 175-400°C of Irradiated UO₂ Fuel", Proc. International Workshop on Irradiated Fuel Storage Operating Experience and Development Programs, Toronto, ON, Canada, AECL Report AECL-8562, 1984 October 17-18
- [2] Z. Liu, D.S. Cox, R.S. Dickson and P.H. Elder, "Release of Semi- and Low-Volatile Fission Products From Bare UO₂ Samples During Post-Irradiation Annealing", Proc. 15th Annual Conference of the Canadian Nuclear Society, Montreal, QC, Canada, Session 5A, AECL Report AECL CONF 00087, 1994 June 5-8
- [3] R.S. Dickson, R.T. Peplinskie and M.D. Gauthier, "Release of Fission Products from CANDU Fuel in Air Environment", Proc. 10th International Conference on CANDU Fuel, Ottawa, ON, Canada, AECL Report <u>CW-126320-CONF-003</u>, 2008 October 5-8

CW-126800-REPT-001 Page B-75

Rev. 0

					ID #	Phenor	nenon Synopsis Title		
					66	UO ₂ oxidation			
	Pheno	menon				Defir	nition		
UO ₂ ox	idation			When UO ₂ fuel in a	breached fuel	element is exposed to a water	r, steam or air environment especi	ally at elevated temperatures	
				the fuel can oxidize	to other phase	es (in accordance with a Pourb	aix diagram for aqueous corrosion	or with the uranium-oxygen	
				phase diagram for s	steam or air oxidation).				
	Importa	nce Rank			Importance Rank Rationale				
	(by sub-scenario)				(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
L	Н	Н	Н	Fuel temperatures and little oxidation expected.	are low F is	uel oxidation can result in sign	ificant release of fission products.		
Kn	owledge	Assessm	ent		Knowledge Assessment Rationale				
(by sub-scenario)					(by sub-scenario)				
1	2	3	4	1	1 2 3 4				
3 3 3 Experiments and models exist, with moderate uncertainty.									

Detailed description and rationale:

Fuel oxidation can affect the thermal performance of the fuel element and associated fission product release. The element performance is directly affected as a result of: (i) a degraded fuel thermal conductivity with continued oxidation, and (ii) a lower incipient melting temperature in hyperstoichiometric fuel. It can also impact fuel volatilization and fission product release behaviour during the accident. As part of the initial state, the uranium dioxide fuel in a defective element can oxidize in-reactor to UO_{2+x} prior to discharge. In addition, the fuel can continue to slowly oxidize over several years while stored in water bays open to the air surface at $\sim 30^{\circ}$ C via: (i) solid-state diffusion to U₃O₇ (similar to dry oxidation), (ii) oxidative dissolution and precipitation of U(VI) as $\sim (UO_3) \cdot 0.8$ H_2O_1 , and (iii) back-reduction of dissolved U(VI) on the UO₂/U₃O₇ surface to form U₃O₈. Oxidation of fuel in air occurs via a two-step nucleation-and-growth mechanism: $UO_2 \rightarrow U_4O_9 \rightarrow U_3O_8$, which has been extensively studied because of its importance to dry storage and disposal of used nuclear fuel. The "intermediate" phase(s) (U_4O_9/U_3O_7) forms as a discrete layer on the UO₂ surface sample that thickens with time, where the reaction occurs by a moving boundary process that is limited by oxygen diffusion through the surface layer. In the second step of the reaction, grain-boundary diffusion is relatively rapid compared to the rate of U₃O₈ formation since three-dimensional bulk formation of U₃O₈ will be slower than unhindered oxidation along the surface. Enhanced fuel oxidation also occurs with the production of nitrogen oxides formed by radiolysis of air, as well as production of radiolytic oxidants from water $(O_2^{2^2}, OH)$, H₂O₂). Numerous tests with irradiated defected fuel elements have shown significant diametral increases and sheath cracking due to localized U₃O₈ formation in air (with the accompanying density decrease of this phase), e.g., a 6% maximum diametral increase was observed in 4 h at 400°C leading to significant diametral increase/sheath splitting at defect locations in 24 h at this temperature due to local oxidation of UO₂ to U₃O₈, sheath cracking occurred at the defect site after 2 h at 600°C, while severe sheath deformation with a 45% diametral increase resulted along the entire element length after 2.5 h at 900°C. **Champion: Brent Lewis**

CW-126800-REPT-001 Page B-76

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					67	Fuel Melt			
	Pheno	menon			Definition				
Fuel Melt The fuel (UO ₂) tu				The fuel (UO ₂) turns	s to the liquid	phase (melts) at high temperat	ure.		
Importance Rank						Importance R	ank Rationale		
	(by sub-	scenario)			(by sub-scenario)				
1	2	3	4	1	2 3 4				
Ι	_	I	-	Fuel melting is not	expected to oc	ccur for CANDU spent fuel bay a	accidents.		
Knowledge Assessment					Knowledge Assessment Rationale				
(by sub-scenario)						(by sub-s	cenario)		
1 2 3 4 1				1		2	3	4	
N/A Fuel meltin				Fuel melting is not	ng is not expected to occur for CANDU spent fuel bay accidents.				

Detailed description and rationale:

Because of the low decay power and relatively low sheath temperature (<1200 K) expected in a spent fuel bay accidents [1,2], the fuel temperature is expected to be much less than melting (3113 K [3]). Hence, fuel melting is not expected to occur during a CANDU spent fuel bay accident. Note that the lack of fuel melting also precludes molten fuel/concrete interaction phenomenon.

References:

C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel [1] Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

C.J. Krasnaj and W. Grant, "Finite Element Analysis of Heat Transfer Between Spent CANDU Fuel Bundles in Spent Fuel Pools", Proc. 19th PBNC [2] Conference, Vancouver, BC, Canada, 2014 August 24-28

[3] SCDAP/RELAP5-3D Code Manual Volume 4: MATPRO – A Library of Materials Properties for Light-Water-Reactor Accident Analysis, INEEL/EXT-02-00589, 2003 October

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-77

Rev. 0

				ID #	Phenor	nenon Synopsis Title		
				68	Sheath Melt			
	Pheno	menon			Definition			
Sheath	Melt			At high temperatures (1850°C),	the sheath will melt.			
	Importa	nce Rank			Importance Rank Rationale			
	(by sub-s	scenario)			(by sub-	scenario)		
1	2	3	4	1	2	3	4	
I	L	М	L	Temperature too low for	Pool would be in the process	Melting or liquefying of the	Temperature too low for	
				melting.	of uncovering, so the sheath	sheath could occur at	melting.	
					temperatures would be low.	temperatures ~ 1800 K.		
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale		
	(by sub-s	scenario)			(by sub-	scenario)		
1	2	3	4	1	2	3	4	
N/A	3	3	3	Sheath temperature is well	Comparatively low sheath	Temperatures are not	Sheath temperature is well	
				known if covered	temperatures.	expected to reach this level	known if covered	
						due to natural convection		
						within the fuel stacks.		

Detailed description and rationale:

Melting of the Zircaloy sheath would not occur until the temperature would reach 1850°C (2123 K), but interactions with the UO₂ fuel could liquefy the sheath at temperatures of about 1800 K. However, with the low power in the fuel bundles, the natural circulation within the pool and radiation heat transfer from the highest power fuel elements, the sheath would not be expected to reach these temperatures. Nevertheless, if molten material were formed, it would likely fall into the water in the bottom of the SFP and be quenched. Therefore, it is considered to be of LOW to MEDIUM importance. The sheath melting temperature is known, but there is uncertainty in calculating the sheath temperature

Champion: Bob Henry

CW-126800-REPT-001 Page B-78

Rev. 0

				ID #	Phenor	nenon Synopsis Title				
				69	Behaviour of defected fuel					
	Pheno	menon			Definition					
Behavi	our of de	fected fu	lel	Fuel oxidation, fission product	release, thermal performance. D	efected fuel will behaviour differ	ent than an intact fuel.			
				Includes both pre-defected fue	-defected fuel (defected in the reactor) and defects during the accident					
	Importa	nce Rank	(Importance R	ank Rationale				
	(by sub-	scenario)			(by sub-	scenario)				
1	2	3	4	1	2	3	4			
L	М	Н	L	There will be very low impact	As fuel is exposed, fuel	The situation will be at its	Sheath failure is expected			
				during Phase 1. Fission	bundles will start to heat up.	worst when all of the fuel is	during rewet but the overall			
				products from existing	Defected elements will	exposed and there is no	situation will be improved as			
				defects which had been	release fission and activation	longer any cooling. Some	cooling is restored.			
				dissolved in the SFP water	products.	new fuel defects can be				
				will be released.		expected to be created.				
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale				
	(by sub-	scenario)			(by sub-scenario)					
1	2	3	4	1	2	3	4			
3	3	3	3	The properties and behaviour	As for Phase 1 with the	As for Phase 2 with increased	Some additional defects will			
				of defected fuel elements	additional possibility of new	possibility of fuel defects	be created during quenching			
				and of the exposed irradiated	fuel defects being created.	being created. The	of hot dry bundles containing			
				fuel pellets has been studied,	The properties of Zircaloy in	knowledge base exists to	oxidized fuel sheathing.			
				and are understood.	air and at high temperatures	perform estimates of fuel	Existing knowledge will allow			
					has been studied. The risk of	defect creation. Modeling of	estimation of the number of			
					additional fuel defects can be	heat transfer and decay heats	fuel elements at risk.			
					assessed.	will be required to estimate	Modeling of heat transfer and			
						the number of bundles at risk	decay heats will be required			
							to estimate the number of			
							bundles at risk.			

Detailed description and rationale:

The behaviour of both defected and intact fuel elements has been well studied and documented by the CANDU industry. The knowledge base exists to predict the release of fission and activation products from defected fuel elements in both wet and dry conditions. Similarly, the behaviour of fuel sheathing in both wet and dry conditions, and as a function of sheath temperatures is well known. The most challenging part of these calculations will be in the prediction of fuel and sheath temperatures in the complex geometries and cooling conditions which will exist during the evolution of this accident.

The release rate of fission products will be low during Phase 1 of the accident and will be limited to that which has already leached out from defected fuel

CW-126800-REPT-001 Page B-79

Rev. 0

elements and is already present in the SFP water. No new defects would be expected to be created.

As fuel bundles begin to be exposed during Phase 2, fuel elements will heat up. Releases will increase from existing fuel elements as these heat up and as water that had entered the fuel elements through defects heats up and is boiled away, carrying away dissolved and entrained fission products. Some new fuel defects might be created, especially at the top of the fuel stack which will have the longest exposure to air. Note that partially filled modules/baskets containing freshly discharged fuel bundles are often stored at the highest elevations of the SFP, so that they are accessible until they are completely full. These freshly discharged bundles might be at greatest risk of defecting.

Releases will continue during Phase 3 with a much higher risk of new fuel defects being created, since there is now no water or steam cooling at all. The fuel sheaths and fuel pellets of existing defected bundles will oxidize further, aggravating the releases of fission products and fuel. Fuel elements which had not previously been defected will heat up and accelerated sheath oxidation might lead to additional fuel defects. Recently discharged fuel bundles/elements will be most at risk. In particular, the impact of a recent full core discharge (as at the start of a refurbishment outage) will require assessment because the relatively high decay heats, and possible concentration of these hot bundles in certain locations of the SFP.

Phase 4 will be of overall benefit as cooling is restored, however, quick quenching of hot fuel and hot Zircaloy would present the risk of creation of some additional fuel defects, and of release of a plume of fission products and fuel debris as hot material is quickly cooled in a relatively uncontrolled way (we could be pumping in cold lake water in winter).

Champion: Jon Judah

CW-126800-REPT-001 Page B-80

Rev. 0

					ID #	Phenor	nenon Synopsis Title		
					70	Effect of sea, river, lake, grou	und (impure) water injectio	n	
	Pheno	menon				Defir	nition		
ffect o	of sea wa	ter inject	ion	If water sources are	utilized that	have either dissolved or entrai	ned materials, over time, th	nese could eventually result in the	
				accumulation of the	e materials wi	thin the SFP.			
	Importa	nce Rank	:		Importance Rank Rationale				
	(by sub-s	cenario)				(by sub-	scenario)		
1	2	3	4	1		2	3	4	
Ι	I	I	М	Only relevant for Ph	ase 3			Recovery actions could make	
								use of other water sources	
								available to the plant	
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale				
	(by sub-s	cenario)				(by sub-	scenario)		
1	2	3	4	1		2	3	4	
N/A	N/A	N/A	3	Only relevant for Ph	iase 3			Long term use of water	
								sources that have dissolved	
								or entrained materials could	
								result in the accumulation of	
								these materials within the	
								pool.	

Detailed description and rationale:

As a last resort, makeup in Phase 4 to cool the spent fuel bundles and retain fission products could be accomplished with other water sources available to the plant personnel. If water sources are utilized that have either dissolved or entrained materials, over time, these could eventually result in the accumulation of the materials within the SFP. Therefore, depending on the accident sequence, these sources should be considered as temporary and replaced by demineralized water whenever possible. Nevertheless, a decision tree should be formulated ahead of time so the when, where and how issues do not have to be generated in the confusion of a major event. Note that long term effect of Cl in seawater on concrete could be significant. **Champion: Bob Henry**

CW-126800-REPT-001 Page B-81

Rev. 0

					ID #	Phenor	nenon Synopsis Title		
				-	71	Stainless steel oxidation			
	Pheno	menon			Definition				
Stainle	ss steel o	xidation		The storage racks and modules are made of stainless steel (304L), which can oxidize at high temperatures in steam or air.					
				Oxidation could thr	d threaten the integrity of the racks or modules and in the case of steam oxidation, would produce hydrogen.				
	Importa	nce Rank	ζ.			Importance R	Rank Rationale		
(by sub-scenario) (by sub-scenario)									
1	2	3	4	1		2 3 4			
I	L	М	L	Before fuel uncovery, temperature of the ra modules will be too lo oxidation.	the A licks or te ow for ra o th ra licks	is the fuel uncovers, the emperature of the acks/module will increase and xidation may occur. However, he temperature of covered acks/modules will remain too by for oxidation.	During complete fuel uncovery, the temperature of the racks/modules will be at a maximum. Steam oxidation may still occur if steam is still available. Oxidation could result in rack/module structural failure.	During reflood, the temperature of the racks/modules will decrease, reducing and stopping oxidation.	
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale					
(by sub-scenario) (by sub-scenario)									
1	2	3	4	1		2 3 4			
N/A	2	2	2	Not applicable.	T	The oxidation of stainless steel, particularly in steam, is not as well studied as for Zirconium alloys. A comprehensive literature review would be needed and if gaps exists, additional experiments.			

Detailed description and rationale:

In an air environment, the maximum service temperature for intermittent exposure is approximately 815°C, and for continuous exposure is 900°C [1]. Since bundle temperatures could potentially reach 933°C [2], the rack/module temperatures may also reach temperatures that bring the potential of air oxidation. In general, oxidation rates of stainless steels in wet air is higher than for dry air [3]. The oxidation of stainless steel, particularly in steam, is not as well studied as for Zirconium alloys. Thus, the knowledge level is low (2), requiring at minimum a comprehensive literature review and, if gaps exists, additional experiments.

References:

- [1] ASM Alloy Center Database, AISI Type 304L, <u>http://mio.asminternational.org/ac/index.aspx?profileKey=grantami_ac_datasheets</u>, accessed 2016 August 2
- [2] C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28
- [3] *High-Temperature Characteristics of Stainless Steels*, American Iron and Steel Institute, <u>https://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/High TemperatureCharacteristicsofStainlessSteel 9004 .pdf</u>, accessed 2016 August 2

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-82

Rev. 0

				ID #	Phenom	ienon Synopsis Title				
				72	Melting of fuel rack/module	material				
	Pheno	menon			Definition					
Melting	g of fuel r	ack/mod	lule	The fuel racks or modules are r	nodules are made of stainless steel (304L), which melts between 1400 and 1455°C [1].					
materia	naterial									
Importance Rank					Importance Ra	ank Rationale				
	(by sub-s	cenario)			(by sub-scenario)					
1	2	3	4	1	2 3 4					
I	1	I.	I	Melting of the fuel rack/modul	e material (304L stainless steel) is	not expected due to the low to	emperatures expected of the			
				bundles (maximum 933°C [2])						
Knowledge Assessment			ent		Knowledge Assessment Rationale					
	(by sub-s	cenario)			(by sub-s	cenario)				
1	2	3	4	1	2	3	4			
N/A Not assessed as				Not assessed as rack/module n	ck/module melting is not expected to occur during the accident.					

Detailed description and rationale:

The melting temperature is significantly higher than the maximum sheath temperature expected in a CANDU spent fuel bay accident (933°C [2]). Hence, melting of the rack/module material is expected to be inactive during the accident sequence.

References:

[1] ASM Alloy Center Database, AISI Type 304L, <u>http://mio.asminternational.org/ac/index.aspx?profileKey=grantami_ac_datasheets</u>, accessed 2016 August 2

[2] C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-83

Rev. 0

					ID #	Pheno	menon Synopsis Title			
					73	Transport of released fission	n products			
	Pheno	menon			Definition					
Transp	ort of rel	eased fis	sion	Transport of fission	n products in the bay volume and building will determine the amounts and nature of release of fission					
produc	ts			products to the env	nvironment. Fission products can be transported as gases or vapours (mainly noble gases and iodine, with the					
				possible addition of	of ruthenium), or as aerosols (most other fission products).					
	Importa	nce Rank	ζ.			Importance F	Rank Rationale			
	(by sub-s	scenario)				(by sub-	-scenario)			
1	2	3	4	1		2 3 4				
L	М	Н	Н	Small amount of fise	sion	As the fuel becomes	The air environment will	Rewet is expected to cause		
				product release is e	xpected	uncovered, fuel failure is	cause more fuel failures.	additional sheath failure.		
				while the fuel remain	ins	expected, although not as				
				covered.		extensive as Phases 3 and 4.				
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale					
	(by sub-s	scenario)		(by sub-scenario)						
1	2	3	4	1		2 3 4				
3	3	3	3	Fission product vapour transport phenomena have been extensively studied, but there are still uncertainties related to chemistry and						
				production of vapour	production of vapour-phase iodine and ruthenium compounds. Aerosol behaviour has been extensively studied for severe reactor					
				accident conditions in the primary heat transport system and containment, but not as extensively for fuel bay accident conditions						

Detailed description and rationale:

The transport of vapours can be affected by reactions between vapours and between vapours and solids or liquids. Deposited fission products can revaporize by re-vaporization of a deposited vapour species, or by chemical reaction with the gaseous environment (possibly including air and water radiolysis products) or with the substrate if the temperature increases.

The transport of aerosols can be affected by condensation of water on solid, liquid and hydrophilic aerosol particles, agglomeration of aerosols, the presence of structural material aerosols, and the formation of mixed fission product-structural material-water aerosols. In the event of flame acceleration or explosion events, or rapid production of steam, aerosol and particulate material can be resuspended by rapid turbulent gas flows.

The importance of this phenomenon is directly related to the amount of fission products released during the phase, which is related to dose to the public and to local workers. The phenomenon is less important when fewer sources are available from failed fuel (Phases 1 and 2), than when failed fuel is expected (Phases 3 and 4). Fission product vapour transport phenomenon have been extensively studied, but there are still uncertainties related to chemistry and production of vapour-phase iodine and ruthenium compounds.

Aerosol behaviour has been extensively studied for severe reactor accident conditions in the primary heat transport system and containment, but not as extensively for fuel bay accident conditions. The conditions of fuel bay accidents are closely related to those of containments in severe accidents, but uncertainties in aerosol behaviour remain under containment conditions as well. For example, the nucleation of solid aerosols from mixed condensable species is still not well understood, and depends on the interactions of the vapour and solid species involved.

CW-126800-REPT-001 Page B-84

Rev. 0

					ID #	Phenor	menon Synopsis Title		
					74	Fission product deposition			
	Pheno	menon			Definition				
Fission	products	s depositi	on	Fission products can be	an be deposited on solid or liquid surfaces as aerosols or by condensation or dissolution of vapours.				
	Importa	nce Rank			Importance Rank Rationale				
(by sub-scenario)						(by sub-	scenario)		
1	2	3	4	1		2 3 4			
L	Μ	Η	H	The only FP release com from pool water, and lin additional releases from defected fuel.	nes N nited d n n	Aore FP releases (and leposition) will occur as nore fuel elements defect.	The highest fuel temperatures and greatest releases will occur during this phase, while the lower gas and steam flow rates will tend to increase the fractional deposition.	Until the fuel is covered, Phase 4 will be similar to Phase 3 (uncovered fuel, exposed to air); hence importance similar to Phase 3.	
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale					
	(by sub-s	scenario)		(by sub-scenario)					
1	2	3	4	1		2	3	4	
3	3	3	3	Mechanisms are reason operating mechanisms i	iably well u is not alwa	understood, but the correct ways clear.	ay to combine the behaviour of so	everal simultaneously	

Detailed description and rationale:

Deposition of aerosols can occur from laminar or turbulent flows, and by inertial, gravitational, thermophoretic, diffusiophoretic/Stefan flow and diffusional mechanisms. Most of these mechanisms are reasonably well understood, but the correct way to combine the behaviour of several simultaneously operating mechanisms is not always clear. Also, correct application of aerosol deposition phenomena requires good knowledge of the thermal-hydraulic conditions; poor knowledge of thermal-hydraulic conditions will lead to poor estimation of aerosol deposition.

The significance of vapour deposition is limited because of the low gas-phase temperatures at most locations away from the immediate vicinity of the fuel bundles. Released vapours will deposit on cooler surfaces such as the pool walls, or dissolve in pools or films of liquid water. Decay product ¹³²I may be released from deposited ¹³²Te, but this will have limited significance because of the small inventories of fuel with short decay times.

The significance of fission product deposition is similar to that of Phenomenon 73 (Fission product transport).

CW-126800-REPT-001 Page B-85

Rev. 0

				ID #	Phenor	nenon Synopsis Title				
				75	Fission product chemistry					
	Pheno	menon			Defir	nition				
Fission	product	chemistr	у	Iodine in the pool undergoes a	wide variety of chemical reactior	ns with water radiolysis products	and organic materials			
				(including epoxy liners, paint ar	nd adventitious organic chemicals	s), some of which produce volatil	e forms of iodine (including			
				molecular iodine and organic iodides). Chemical reactions of ruthenium deposits with air radiolysis products may also produce						
				volatile ruthenium oxides.	atile ruthenium oxides.					
	Importa	nce Rank			Importance R	ank Rationale				
	(by sub-s	scenario)		(by sub-scenario)						
1	2	3	4	1	2 3 4					
L	М	Н	Н	lodine content of the pool is	Iodine releases from freshly Releases of iodine from fuel Pool returns, washing		Pool returns, washing			
				low, because it only	discharged fuel will begin	will continue during this	deposited iodine and other			
				originates from defected fuel.	during this phase.	phase, and ruthenium release	fission products into the pool.			
						may occur because of				
						increased air entrainment.				
Kno	owledge	ledge Assessment Knowledge Assessment Rationale								
(by sub-scenario)					(by sub-	scenario)				
1	2	3	4	1	2 3 4					
3	2	2	2	The pool is closer to NOC	C Iodine chemistry under accident conditions has significant uncertainties, and reactions of					
				conditions, and iodine	iodine with paints and other materials is still an active research area.					
				content is low.						

Detailed description and rationale:

The initial iodine concentration is low, but increases during Phases 2 and 3 due to increased numbers of sheath failures. The iodine will be concentrated in the pool by boildown, and by washing of deposited iodine off of surfaces by condensation, and washdown during refilling of the irradiated fuel bay in Phase 4. Ruthenium release may occur during Phase 3 because of increased air entrainment and fuel damage, and reactions generating gaseous ruthenium from deposits may occur during Phases 3 and 4.

The iodine chemistry is strongly influenced by the pH, temperature and other chemical contents of the pool. The irradiated fuel bay water is at much lower initial pH than the water pool in a reactor accident, probably leading to higher fractional iodine volatility. Some of the available models are capable of modelling some of the effects of the different chemical environment. However, iodine chemistry under accident conditions has significant uncertainties, and reactions of iodine with paints and other materials is still an active research area.

Initial investigations have been performed on ruthenium volatility [2] [3], and investigations are continuing under the OECD START project, but the level of knowledge is much lower than for iodine volatility.

References:

- [1] G.A. Glowa, C.J. Moore and J.M. Ball, "The main outcomes of the OECD Behaviour of Iodine (BIP) Project", Annals of Nuclear Energy 61 (2013) 179–189
- [2] Holm, H. Glänneskog and C. Ekberg, "Deposition of RuO₄ on various surfaces in a nuclear reactor containment", Journal of Nuclear Materials 392 (2009) 55–62
- [3] C. Mun, L. Cantrel and C. Madic, "Radiolytic Oxidation of Ruthenium Oxide Deposits", Nucl. Technol. 164 (2008) 245-254

CW-126800-REPT-001 Page B-86

Rev. 0

				ID #	Phenoi	Phenomenon Synopsis Title				
				76	Fission product re-suspensio	on (note this generally relates to o	dry depositions)			
	Pheno	menon			Defi	nition				
ission	product	re-suspe	nsion	Fission products deposited or	posited on surfaces are re-suspended, due to a depressurization event or hydrogen burn.					
	Importa	nce Rank			Importance Rank Rationale					
(by sub-scenario)					(by sub-	scenario)				
1	2	3	4	1	2	3	4			
I	L	L	L	No event to initiate re-	Deposited fission products cou	ld become airborne as the	Less likely than in "3"			
				suspension expected.	result of a depression event or	a hydrogen burn.	because a wet recovery would be underway.			
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale				
(by sub-scenario)					(by sub-	scenario)				
1	2	3	4	1	2 3 4					
N.A	2	2	2	Limited or no hydrogen gas	Extent of the hydrogen gas is scenario dependent	If a burn were to occur, this is the most likely time.	Likely to be steam inerted in the SFP.			

Detailed description and rationale:

A depressurization event or a hydrogen burn would be needed for this to occur. Knowledge level has high uncertainty as it depends on the nature of the deposits. More specifically, the deposits need to be dry and more that a single particular layer thick. Since there are no pressurized volumes other than the fuel elements which have a limited mass of pressurized gas, a hydrogen burn is the only event that could potentially cause a resuspension of deposited fission products. Data related to wind erosion suggest that the resuspension rate is the largest for dry air and varies as the cube of the surface velocity. This data also shows that the rate is an order of magnitude less for moist conditions. The References [1-3] are relevant.

References:

- [1] G.A. Sehmel, 1975, "Initial Correlation of Particle Resuspension Rates as a Function of Surface Roughness Height", Pacific Northwest Laboratories Annual Report for 1975 to USAEC/DBER, Part 3
- [2] G.A. Sehmel and F.D. Lloyd, 1977, "Wind-Caused Particle Resuspension Rates", Pacific Northwest Laboratories Annual Report for 1976 to USERDA/DBER, BNWL-2100, Part 3
- [3] B.W. Reynolds and W.G.N. Slinn, 1979, "Experimental Studies of Resuspension and Weathering of Deposited Aerosol Particles", Oregon State University Report SR-0980-5 for USDOE

Champion: Bob Henry

CW-126800-REPT-001 Page B-87

Rev. 0

					ID #	Phenon	nenon Synopsis Title			
					77	Fission product release from	the fuel			
	Pheno	menon			Definition					
Fission	product	release f	rom	Fission products will be	released	from the fuel elements after th	e sheath fails. The fractional rele	ease of each fission product		
the fue				element is determined	by fuel ter	mperature, extent of oxidation	of the fuel and sheath, and fuel of	legradation (e.g., fracturing of		
				fuel and sheath), among	, g other va	ariables.				
	Importa	nce Rank	1			Importance R	ank Rationale			
	(by sub-	scenario)				(by sub-	scenario)			
1	2	3	4	1		2	3	4		
Ι	М	Н	L	No releases from uraniu	um l	Fuel will fail during this	Higher temperatures, more	Most FP releases will		
				dioxide during pool boil	ldown.	phase, and release of volatile	fuel failures, increased fuel	effectively cease when the		
				Gap inventory of previo	busly I	FP (e.g., iodine, cesium) will	degradation (e.g., through-	fuel rewets. Some additional		
				defected fuel may relea	ase to s	start.	wall oxidation) and increased	releases of fission gases may		
				pool.			air fraction in the	occur by fuel fracturing, but		
							environment will increase	the radiological		
							releases of volatile and semi-	consequences will be low.		
							volatile FP (e.g., ruthenium,	Other FP (e.g., strontium,		
							molybdenum).	antimony) may release slowly		
								by leaching of failed fuel or		
								fragments.		
Kno	owledge	Assessm	ent			Knowledge Asses	ssment Rationale			
	(by sub-	scenario)			(by sub-scenario)					
1	2	3	4	1		2	3	4		
N/A	3	2	3		1	Releases in steam	The data on long-term FP	Releases due to fuel		
						environment are reasonably	releases from fuel at low	fracturing and leaching are		
					· ·	well understood.	temperature in air or	reasonably well understood.		
							air/steam mixtures is not very			
							extensive. The modelling of			
							FP releases from fuel in air-			
							steam environments is not			
							verv well developed			

Detailed description and rationale:

During pool boildown, there will be no additional FP releases from the UO₂ fuel because the temperature is too low, and most of the fuel element sheaths are intact. The gap inventory of previously defected fuel may release to the pool during this phase, but most of the releasable FP in the gap will already have been

CW-126800-REPT-001 Page B-88

Rev. 0

released by leaching during storage in the pool. After fuel is exposed to steam environment, the sheaths may fail (see Phenomenon 56, "Sheath strain and failure"), and release of volatile FP (e.g., iodine, cesium, tellurium) will start. Release of other FP is largely precluded by the low temperatures (<1000°C), incomplete sheath oxidation and predominantly steam environment in this phase. After all of the fuel is uncovered, the higher temperatures, increased number of fuel failures, increased fuel degradation (e.g., through-wall sheath oxidation, fuel oxidation) and increased air fraction in the environment will increase releases of volatile and semi-volatile FP (e.g., ruthenium, molybdenum). During the refill phase, some additional releases of fission gases may occur by fuel fracturing and by leaching of fuel, but most FP releases from fuel will effectively cease when it rewets. **Champion: Ray Dickson**

CW-126800-REPT-001 Page B-89

Rev. 0

					ID #	Pheno	menon Synopsis Title				
					78	Liquid-phase transport of fission products to environment					
Phenomenon						Defi	nition				
Transp	ort of rele	eased fis	sion	Fission products disso	olved or susp	ended in water can go throug	h cracks in the bay wall. Both wa	ll layers (the liner and the			
produc	cts to envi	ironmen	t	structural wall) must	be cracked to	o allow significant release to t	he environment by this path. If t	he bay wall faces the ground,			
				some of the fission p	some of the fission products will be sorbed on the soil particles. If the bay wall faces the air, the dissolved FP will flow down the						
outside face of th					ay and onto t	he ground or the paved surfa-	ce near the bay.				
	Importa	nce Rank	(Importance Rank Rationale							
	(by sub-s	scenario)		(by sub-scenario)							
1	2	3	4	1		2	3	4			
L	М	М	М	Limited amount of FF	P in the Li	iquid water present in the	Even though the pool water is	During refill of the bay, fuel			
				pool at this stage.	fu	uel pool and fuel failures	assumed gone in this stage of	may fail (due to			
					fr	rom uncovered fuel would	the accident, some liquid	embrittlement) and fission			
					р	roduce fission products.	water would remain at the	products could be			
							bottom of the bay.	transported out via liquid			
								pathways.			
Knowledge Assessment					Knowledge Assessment Rationale						
(by sub-scenario)				(by sub-scenario)							
1	2	3	4	1		2	3	4			
2	2	2	2	Uncertainty on pathways (crack size, distribution).							

Detailed description and rationale:

The impact of FP release via water pathways will generally be somewhat less than a comparable release by air pathways, because transport via water will be more localized than air transport. The flow path will usually be through a set of fairly narrow cracks, so an uncertain fraction of FP will stick on concrete by sorption and by physical retention of particles (including suspended fuel particles). If the cracks are wide (due to earthquake or similar damage), the retention will be negligible. Retention of individual FP in soils will usually be reasonably well known because of research for waste management and dose calculation. The speciation from the fuel bay may differ slightly from the speciation assumed for the environmental studies because of the lower concentration of organic and inorganic species in the bay water relative to the ground water used for environmental studies, which increases the uncertainty in behaviour. **Champion: Ray Dickson**

CW-126800-REPT-001 Page B-90

Rev. 0

				I	D #	Phenom	nenon Synopsis Title			
					79	Fuel volatilization				
	Phenoi	menon		Definition						
Fuel vo	latilizatio	n		If the UO ₂ fuel is exposed to an oxidizing environment, hyperstoichiometric UO _{2+x} or higher oxides will be produced. The						
				vapour pressure of the ur	ranium-ł	pearing species is high, such tha	t the solid phase can be vaporiz	ed at a high rate through		
				incongruent vaporization.	. The lo	ss of uranium will also result in	the release of fission products.	This phenomenon is also		
				referred to as matrix strip	oping.					
	Importar	nce Rank				Importance Ra	ank Rationale			
	(by sub-s	cenario)		(by sub-scenario)						
1	2	3	4	1		2	3	4		
I	L	L	L	If the fuel is covered with	n /	A fuel temperature of at least 12	200°C is needed for this phenor	nenon to be significant [1]. It is		
				liquid water, the fuel	ι	unlikely that fuel temperatures	>1200°C will be achieved for a s	ignificant number of fuel		
				temperature will not be h	nigh l	oundles, as the maximum poter	ntial sheath temperature is expe	ected to be less than 933°C [2].		
				enough for the phenome	non					
				to be active.						
Kno	wledge	Assessm	ent		Knowledge Assessment Rationale					
	(by sub-s	scenario)		(by sub-scenario)						
1	2	3	4	1		2	3	4		
N/A	3	3	3	N/A	1	Experiments and models exist for the phenomenon, but little experimental information is				
					ä	available on the effect of concentration and pressure on the volatization rate of low-volatile				
					f	ission products.				

Detailed description and rationale:

A fuel temperature of at least 1200°C is needed for this phenomenon to be significant [1]. It is unlikely that fuel temperatures >1200°C will be achieved for a significant number of fuel bundles, as the maximum potential sheath temperature is expected to be less than 933°C [2]. Thus, this phenomenon is not expected to contribute significantly to the fission product releases to the environment. Experiments and models exist for the phenomenon, but little experimental information is available on the effect of concentration and pressure on the volatization rate of low-volatile fission products. **References:**

- [1] D.S. Cox, F.C. Iglesias, C.E.L. Hunt, N.A. Keller, R.D. Barrand, J.R. Mitchell and R.F. O'Connor, "Oxidation of UO₂ in Air and Steam With Relevance to Fission Product Releases", Proc. Symposium on Chemical Phenomena associated with Radioactivity Releases during Severe Nuclear Plant Accidents, Anaheim, CA, USA, 1986 September 8–12
- [2] C.J. Krasnaj and W. Grant, "Development of a 2-D Finite Element Model to Examine Both Natural Convection and Radiative Cooling of a Spent Fuel Bundle in Air", Proc. 19th PBNC Conference, Vancouver, BC, Canada, 2014 August 24-28

Champion: Jeffrey Baschuk

CW-126800-REPT-001 Page B-91

Rev. 0

				Γ	ID #	Phenor	nenon Synopsis Title		
					80	Fuel particle entrainment in	the gas outflow (during re-	wet)	
	Pheno	menon				Defir	nition		
Fuel pa	rticle ent	rainmen	t in the	Fine fuel particles for	ormed during	the transient or during the rew	vet can be entrained by the	high flows of steam that would	
gas out	flow (du	ing rewe	et)	result from cooling t	he fuel. Disp	ersal of fuel particles could lea	d to very high radiation fie	lds in the vicinity of the fuel pool and	
				possible suspension	and transpor	t of fuel particles off site.			
	Importa	nce Rank	ζ.			Importance R	ank Rationale		
	(by sub-s	cenario)				(by sub-	scenario)		
1	2	3	4	1		2	3	4	
Ι	I.	I	Н	Only active during re	ewet.			If water is added suddenly to	
								the pool, the formation of	
								fuel particulate and its	
								transport may both be	
								enhanced.	
Knowledge Assessment					Knowledge Assessment Rationale				
	(by sub-s	cenario)				(by sub-	scenario)	1	
1	2	3	4	1		2	3	4	
N/A	N/A	N/A	2					Some data are available on	
								particle size from air	
								oxidation of UO_2 . The data	
								on fuel particulate formation	
								by quenching are limited, but	
								they indicate limited	
								formation of fine particulate	
								(<1 mm diameter).	

Detailed description and rationale:

At the time of rewet, most of the fuel fragments inside any intact fuel elements will be large ($^{-1-3}$ mm) and therefore difficult to suspend by this mechanism. Fine fragments may be formed by thermal shock during cooling [1]. Very fine fuel powder (mostly U₃O₈) is formed by oxidation of irradiated or unirradiated UO₂ in air at temperatures between 300°C and 900°C [2]. The entrainment mechanism will be similar to that in Phenomenon 34 (Radioactive aerosol formation due to boiling at the free surface).

Before the rewet, some of the fuel may already have been powdered by oxidation in air at low temperatures (<800°C), which results in significant fractions of particles between 0.3 micron and 10 micron in diameter [2]. The experimental data on formation of fuel particulate by thermal shock during cooling was collected under loss-of-coolant accident (LOCA) conditions [1], and may therefore not be completely applicable. However, it indicates limited formation of fine particles (<1 mm in size), with most of the fuel remaining as larger particles. The particulate materials used in the aerosol re-entrainment tests [3] [4] had

CW-126800-REPT-001 Page B-92

Rev. 0

lower densities than UO_2 or U_3O_8 , and were very fine particles. Also, the boiling during rewet may be more violent than the bubbly regime boiling used in these experiments.

References:

- [1] OECD NEA Working Group on Fuel Safety, "Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions: State-of-the-art Report", NEA Document 6846, 2009
- [2] Z. Liu, D.S. Cox, R.D. Barrand and C.E.L. Hunt, "Particle Size Distributions of U3O8 Produced by Oxidation in Air at 300-900°C", 13th Annual Canadian Nuclear Society Conference, Saint John, NB, CA, 1992 June 7-10
- [3] W. Schöck and M. Wagner-Ambs, "Aerosol generation by bubble bursting from a boiling pool", J. Aerosol Sci. 20 (1989) 1405-1408.
- [4] J.O. Cosandey, A. Gunther and P. Rudolf von Rohr, "Transport of salts and micron-sized particles entrained from a boiling water pool", Experimental Thermal and Fluid Science 27 (2003) 877–889

CW-126800-REPT-001 Page B-93

Rev. 0

					ID #	Phenon	Phenomenon Synopsis Title			
					81	Heat generation from release	Heat generation from released fission products			
	Pheno	menon				Defin	ition			
Heat ge	eneration	from re	leased	Fission products rel	eased from th	ne fuel will decay and generate	heat.			
fission products										
Importance Rank					Importance Rank Rationale					
	(by sub-s	scenario)			(by sub-scenario)					
1	2	3	4	1		2	3	4		
Ι	L	L	L		1	Most of the decay heat would	Most of the decay heat would	Most of the decay heat would		
					r	remain within the fuel	remain within the fuel	remain within the fuel		
					e	elements.	elements	elements		
Kno	owledge	Assessm	ent			Knowledge Asses	ssment Rationale			
	(by sub-s	scenario)	_	(by sub-scenario)						
1	2	3	4	1		2	3	4		
N/A	4	4	4		9	Since the temperatures of the	Since the temperatures of the	Since the temperatures of the		
					f	fuel elements are expected to	fuel elements are expected to	fuel elements are expected to		
					k	be less than 1500°C, most of	be less than 1500°C, most of	be less than 1500°C, most of		
					t	the fission products would	the fission products would	the fission products would		
					r	remain in the fuel pellets.	remain in the fuel pellets.	remain in the fuel pellets.		

Detailed description and rationale:

Very little heat generation would result from the released fission products with most of this being noble gases, iodine gas and methyl iodide. These gases would add some heat to the building atmosphere and should be part of the energy balance for the code. However, it would be small compared to the total decay that would be transferred to the steam or air building atmosphere by the natural circulation within the building, thus it is of LOW importance. **Champion: Bob Henry**

CW-126800-REPT-001 Page B-94

Rev. 0

				ID #	Phenomenon Synopsis Title					
				82	Fission product (gas phase a	Fission product (gas phase aerosol) removal in leakage paths				
	Pheno	menon			Defi	nition				
Fission	product	(gas phas	se	Fission product in the form of a	erosols will be carried with the g	gas flow through leak paths out o	f the SFP building. Depending			
aerosol) remova	l in leaka	age	on the aerosol characteristics, f	low conditions and the geometr	y of the leak path, aerosols (fission	on products) may be retained in			
paths			-	the leak path.	-					
	Importa	nce Rank			Importance F	Rank Rationale				
	(by sub-s	cenario)		(by sub-scenario)						
1	2	3	4	1	2	3	4			
L	L	L	L	Building is not air-tight and	Building is not air-tight and	Building is not air-tight and	Building is not air-tight and			
				there are plenty of low	there are plenty of low	there are plenty of low	there are plenty of low			
				resistance, relative large	resistance, relative large	resistance, relative large	resistance, relative large			
				openings to carry fission	openings to carry fission	openings to carry fission	openings to carry fission			
				products out of the building.	products out of the building	products out of the building	products out of the building			
				As well, the quantity of						
				fission product is low because						
				the fuel is covered by water.						
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale					
	(by sub-s	cenario)		(by sub-scenario)						
1	2	3	4	1	2	3	4			
2	2	2	2	If the main doors are open, the	n there is no chance for aerosol	retention in this large opening. I	f the main doors are closed, it			
				will be difficult to pre-define the actual leak paths out of the spent fuel pool building.						

Detailed description and rationale:

Aerosol and gas can leak from a post-accident pressurized containment through a variety of paths. Gas flow hydraulics affects drastically the aerosol transport so that leak pathways have been classified accordingly: short pathways with sudden changes in flow cross-section area (i.e., valves and seals); tortuous and relatively long pathways (i.e., concrete joints, cracks and penetration gaps); and small diameter, long channels with high flow resistance (i.e., pores in intact concrete).

There are experimental and theoretical evidences of strong retention of particles in leak paths. The main working aerosol removal mechanisms are Brownian diffusion, gravitational sedimentation and, occasionally, inertial impaction as deposition mechanisms. If particle deposition is large enough, pathway plugging may occur. Nonetheless, under turbulent flows deposition may not be permanent and particles can bounce off surfaces they impact and/or resuspend from deposits due to changes in gas flow over deposits, to particle impact and/or to substrate vibration. A key condition for aerosol transport through leakage paths is steam content of gas (as steam condensation will contribute to flow blockage).

However, the leakage conditions in a building housing the spent fuel pool is drastically different from nuclear containment: (1) spent fuel pool buildings are
CW-126800-REPT-001 Page B-95

Rev. 0

not leak tight so driving pressures are only a few kPa, (2) leakage paths may be small (e.g., gaps between a closed door), large (e.g., opened fuel bay doors) or long (e.g., ventilation ductwork). It is the small and long leakage paths that may have the potential for aerosol retention. It is unlikely that conditions will develop to completely block a leakage paths from the spent fuel pool building. This phenomenon should be ranked low (or inactive) because even if leakage paths suitable for aerosol retention are present, the flow will be directed towards larger (less flow resistance) openings which are available to carry the fission products out of the building.

Furthermore, there is a large uncertainty regarding the actual leak paths available for aerosol flow out of the spent fuel pool building. As such, it will be difficult to quantify the degree of aerosol/fission product retention in the leak paths. Thus, this aerosol/fission product removal mechanism should be neglected to provide conservative (maximize) source term release.

Reference:

[1] "Containment Code Validation Matrix", NEA/CSNI/R(2014)3, 2014 May

Champion: Sammy Chin

CW-126800-REPT-001 Page B-96

Rev. 0

				ID #	Phenor	Phenomenon Synopsis Title			
				83	Thermal expansion (mismate	Thermal expansion (mismatch between aggregate and cement paste, rebar and concrete,			
					etc.)				
	Pheno	menon			Defir	nition			
herma	al expans	ion (misr	natch	The different materials of the	fuel bay and liner have different c	coefficients of thermal expansion	. As the fuel bay structure		
etwee	en aggreg	ate and	cement	heats-up, non-uniform expar	sion between aggregate and ceme	nt paste, rebar and concrete, an	d other components is		
oaste, r	rebar and	l concret	e <i>,</i> etc.)	expected and can contribute	to cracking.				
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-s	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
Μ	М	1	М	Thermal mismatch can create	Thermal mismatch can create	Cracks in bay will not affect	Potential cracking due to		
				cracks and drain the water.	cracks and drain the water.	the sheath temperature (fuel	rewet-induced temperature		
						uncovered)	gradient (cold on the inside)		
Kno	owledge	Assessm	ent		Knowledge Asse	ssment Rationale			
	(by sub-s	scenario)			(by sub-	scenario)			
1	2	3	4	1	2	3	4		
3	3	N/A	3	Assumed values of	Assumed values of	N/A	Assumed values of		
				coefficients of thermal	coefficients of thermal		coefficients of thermal		
				expansion may have to be	expansion may have to be		expansion may have to be		
				used for the fuel bay	used for the fuel bay		used for the fuel bay		

Detailed description and rationale:

Non-uniform expansion between aggregate and cement paste & rebar and concrete could lead to concrete cracking. If the liner is breached, then cracks in the concrete can allow pool water to escape, accelerating the accident progression and providing an addition path for fission product release. Thermal mismatch during accident is not expected to be significantly more than normal operation, and the cracking is not expected to be significant; hence, the importance is medium. Coefficients of thermal expansion are available from the literature, but there is some uncertainty due to the variability in concrete composition. **Champion: Shahzma Jaffer**

CW-126800-REPT-001 Page B-97

Rev. 0

				ID #	Phenor	Phenomenon Synopsis Title				
				84	Concrete aging (including te	mperature and radiation effec	ts)			
	Pheno	menon		Definition						
Concre	te aging	(includin	g	The structural integrity of concrete might degrade with time, with elevated temperature and radiation fields accelerating the						
temperature and radiation effects)				aging process. This phenomenon includes initial condition of the bay and degradation during the accident.						
Importance Rank				Importance Rank Rationale						
(by sub-scenario)					(by sub-	scenario)				
1	2	3	4	1	2	3	4			
Н	Н	I	Н	Concrete aging can lead to cracking. Cracking can lead to water loss.	Concrete aging can lead to cracking. Cracking can lead to water loss.	N/A	Concrete aging can lead to cracking. Cracking can lead to water loss. If leakage occurs during refill, continued addition of water may be needed. If leakage is significant, it can affect the surrounding environment and accident management.			
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale						
	(by sub-s	scenario)			(by sub-	scenario)				
1	2	3	4	1	2	3	4			
2	2	N/A	2	Processes that contribute to	Processes that contribute to	N/A	Processes that contribute to			
				aging are known, but	aging are known, but		aging are known, but			
				quantification of the aging	quantification of the aging		quantification of the aging			
				effects is not available.	effects is not available.		effects is not available.			

Detailed description and rationale:

The structural integrity of the concrete might degrade with age, and can be accelerated at high temperature and in radiation fields. Aging can result in cracking and if the liner is breached, water loss and an additional pathway for fission product release. The importance is high, because if liner is breached, cracks in the concrete will provide a pathway for fission product release. Quantitative information on aging specific to fuel bay concrete may not be readily available. Any information available in the literature will have to be analysed for application to fuel bay.

CW-126800-REPT-001 Page B-98

Rev. 0

				ID #	Phenon	Phenomenon Synopsis Title			
				85	Flow in cracks (erosion)				
	Pheno	menon			Defir	nition			
Flow in	cracks (e	erosion)		Crack enlargement due to eros	ion from the flow within the crac	k.			
	Importa	nce Rank			Importance R	ank Rationale			
	(by sub-s	cenario)			(by sub-scenario)				
1	2	3	4	1	2	3	4		
L	L	Ι	L	Path of cracks unclear.	Path of cracks unclear.	N/A	Path of cracks unclear.		
				Removal of material in cracks	Removal of material in cracks		Removal of material in cracks		
				may not be prominent if	may not be prominent if		may not be prominent if		
				crack paths are tortuous.	crack paths are tortuous.		crack paths are tortuous.		
Kno	owledge	Assessm	ent		Knowledge Asses	ssment Rationale			
	(by sub-s	scenario)		(by sub-scenario)					
1	2	3	4	1	2	3	4		
2	2	N/A	2	Path of cracks unclear.	Path of cracks unclear.	N/A	Path of cracks unclear.		
				General information on	General information on		General information on		
				erosion available, but	erosion available, but		erosion available, but		
				quantifying erosion may be	quantifying erosion may be		quantifying erosion may be		
				difficult.	difficult.		difficult.		

Detailed description and rationale:

This phenomenon involves the removal of material in cracks as a result of water flow resulting in enlarged crack and thus more flow through cracks. The importance of this phenomenon is low because the material removal rate is expected to be low. There is a lot of general information on concrete erosion, but quantifying and applying to fuel bay may be difficult, due to the variability of concrete material properties and high uncertainty on the cracking patterns. **Champion: Shahzma Jaffer**

CW-126800-REPT-001 Page B-99

Rev. 0

				ID #	Phenor	Phenomenon Synopsis Title		
				86	Concrete cracking (thermall	Concrete cracking (thermally induced, stress-induced, cre		
-								
	Pheno	menon			Defi	nition		
Concre	te cracki	ng (thern	nally	Concrete can crack due to thermal gradients, stresses, creep, and thermal shock from quenching.				
induce	d, stress-	induced,	creep,					
quench	ו)							
	Importa	nce Rank	ζ.		Importance F	Rank Rationale		
(by sub-scenario)					(by sub-	-scenario)		
1	2	3	4	1	2	3	4	
н	Н	I I	Н	Loss of water can occur due	Loss of water can occur due	N/A	Loss of water can occur due	
				to cracking of concrete	to cracking of concrete		to cracking of concrete	
Knowledge Assessment			ent		Knowledge Asse	essment Rationale		
(by sub-scenario)					(by sub-	-scenario)		
1	2	3	4	1	2	3	4	
2	2	N/A	2	Uncertainty regarding crack	Uncertainty regarding crack	N/A	Uncertainty regarding crack	
				path, location and size of	path, location and size of		path, location and size of	
				cracks.	cracks.		cracks.	
				Uncertainty due to:	Uncertainty due to:		Uncertainty due to:	
				(i) Temperature at which	(i) Temperature at which		(i) Temperature at which	
				cracks occur unknown	cracks occur unknown		cracks occur unknown (design	
				(design of structure, concrete	(design of structure, concrete		of structure, concrete	
				properties & temperature	properties & temperature		properties & temperature	
				gradient can have an	gradient can have an		gradient can have an	
				influence),	influence),		influence),	
				(ii) Changes in internal	(ii) Changes in internal		(ii) Changes in internal	
				concrete stresses	concrete stresses		concrete stresses	

Detailed description and rationale:

The fuel bay is made of concrete, which can crack if subjected to thermal gradients or stress. As well, creep processes can produce cracks in concrete. Thermal shock, due to the rewet of the concrete in the recovery phase of the accident (Phase 4) may also result in cracks. If the liner is breached, these cracks could accelerate water loss and provide a leakage path for fission products. The phenomenon is of high importance, because cracks in the concrete would provide a pathway for fission product release into the environment, if the liner is also breached. A high level of uncertainty is associated with prediction concrete cracking, with uncertainty in the path, location and size of cracks. As well, the driving forces, such as the temperatures associated with cracking and knowledge of the stresses within the concrete are uncertain.

CW-126800-REPT-001 Page B-100

Rev. 0

					ID #	Phenor	nenon Synopsis Title		
					87	Corrosion of rebar			
Phenomenon					Definition				
Corrosi	ion of reb	ar		Processes and pheno	omenon rel	ated to corrosion of the rebar in	the concrete structure of the sp	pent fuel bay.	
	Importa	nce Rank	(Importance R	ank Rationale		
	(by sub-s	cenario)		(by sub-scenario)					
1	2	3	4	1		2	3	4	
L	L	Ι	L	Corrosion may not b	e	Corrosion may not be	No or minimal water in the	Chloride may be introduced if	
				significant as chlorid	es are	significant as chlorides are	fuel bay.	sea water is used as refill	
				not expected to be p	oresent.	not expected to be present.		water; however, corrosion	
								kinetics are expected to be	
								slow.	
Kno	owledge	Assessm	ent	Knowledge Assessment Rationale					
	(by sub-s	cenario)	1	(by sub-scenario)					
1	2	3	4	1		2	3	4	
2	2	N/A	2	Initial condition of fu	iel bay cono	crete with respect to corrosion		See Phases 1 and 2.	
				may be difficult to es	stablish (e.g	g., if fuel bay has corrosion,			
				how much rebar loss	s, cracking,	etc.).			
				Information on corrosion of rebar available in the literature,					
but application			but application to fu	el bay requ	ires estimation and leads to				
				uncertainty. Effect c	of other ion	s (e.g., from fuel) on corrosion			
				of rebar unclear.					

Detailed description and rationale:

This phenomenon deals with corrosion of rebar in fuel bay concrete. The initial state of the concrete/rebar corrosion is more important that corrosion during the accident as the corrosion kinetics are slow. Because of the slow corrosion kinetics, the importance of this phenomenon is low. While information on rebar corrosion in the literature is available, the uncertainty for application to spent fuel bays is high, as the initial condition of the fuel bay concrete would be difficult to establish and the effect of ions from fission products is not known.

CW-126800-REPT-001 Page B-101

Rev. 0

				ID #	Phenon	Phenomenon Synopsis Title		
				88	Leaching of calcium hydroxic	Leaching of calcium hydroxide		
	Pheno	menon			Defin	iition		
Leachin	ng of calci	um hydr	oxide	Calcium hydroxide is a constitu	ent of concrete, and can be leach	ied out.		
Importance Rank					Importance Rank Rationale			
(by sub-scenario)					(by sub-scenario)			
1	2	3	4	1	2	3	4	
L	L	I	L	Not expected to have a	Not expected to have a	N/A	Not expected to have a	
				significant effect figure of	significant effect figure of		significant effect on figure of	
				merit	merit		merit	
Kno	wledge	Assessm	ent		Knowledge Asses	ssment Rationale		
	(by sub-s	cenario)			(by sub-s	scenario)		
1	2	3	4	1	2	3	4	
3	3	N/A	3	Solubility limits in water	Solubility limits in water	N/A	Solubility limits in water	
				known, but depth of concrete	known, but depth of concrete		known, but depth of concrete	
				affected by calcium	affected by calcium		affected by calcium hydroxide	
				hydroxide leaching unclear.	hydroxide leaching unclear.		leaching unclear.	

Detailed description and rationale:

Leaching of calcium hydroxide is not expected to influence the figure of merit (sheath temperature) and thus the importance is low. The effect of leaching would be to increase the porosity of concrete and influence crack size. Leaching of calcium hydroxide could be active as both an initial condition and during the accident (if the liner the breached). The knowledge level is high, but moderate uncertainty exists in determining the depth of concrete that would be affected by the leaching process.

CW-126800-REPT-001 Page B-102

Rev. 0

				-						
					ID #	Phenomenon Synopsis Title				
					89	Radiolysis of water in concre	ete.			
	Pheno	menon			Definition					
Radioly	sis of wa	ter in co	ncrete	The decomposition of water under radiation is called radiolysis. Both interstitial water and water in the pore structure of						
				concrete may participate in the radiolysis process. The two main outcomes resulting from water radiolysis are: (1) buildup of						
				internal overpressu	al overpressure that may lead to cracking of the concrete, and (2) the production of hydrogen gas [1].					
	Importa	nce Rank	(Importance Rank Rationale					
(by sub-scenario)				(by sub-scenario)						
1	2	3	4	1		2	3	4		
I	I	L	I	N/A	Ν	N/A	No water to shield from	N/A		
							gamma radiation. Effect on			
							figure of merit not			
							considered to be significant.			
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale					
	(by sub-s	scenario))			(by sub-	scenario)			
1	2	3	4	1		2	3	4		
N/A	N/A	2	N/A	N/A	١	N/A	Although some information	N/A		
							may be available in the			
							literature, effect of radiation			
							on concrete is still an active			
							research area.			

Detailed description and rationale:

The liquid water in the pool provide shielding of gamma radiation; hence, the phenomenon is inactive Phases 1, 2, and 4. Although the radiolysis process can damage concrete, causing cracking, the effect is expected to be small.

This phenomenon is only expected to be active in Phase 3 of the accident, where the liquid water is gone and does not provide shielding. During the phases of the accident in which liquid water is present in the spent fuel bay, the water provides a shield

Radiation damage to concrete is an active research area, with large uncertainty in predicting the effects of radiolysis.

Reference:

[1] K. William, Y. Xi, D. Naus and H. Graves, "A Review of the Effects of Radiation on Microstructure and Properties of Concretes Used in Nuclear Power Plants", NUREG/CR-7171, 2013 August

CW-126800-REPT-001 Page B-103

Rev. 0

					ID #	Phenon	nenon Synopsis Title		
					90	Delayed ettringite formation	l		
	Pheno	menon			Definition				
Delayed ettringite formation Ettringite is a need					e-like crystal tł	hat may form in concrete upor	n cooling, and can cause cracking	<u>z</u> .	
Importance Rank						Importance R	ank Rationale		
(by sub-scenario)					(by sub-scenario)				
1	2	3	4	1		2	3	4	
Ι	I	Ι	Н	N/A	N	I/A	N/A	Formation can cause cracks	
								and water may be lost	
								through the cracks, if liner is	
								breached. However, refill	
								water would be available.	
Kno	owledge	Assessm	ent		Knowledge Assessment Rationale				
	(by sub-s	cenario)				(by sub-s	scenario)		
1	2	3	4	1		2	3	4	
N/A	N/A	N/A	3	N/A	N	I/A	N/A	Difficult to predict location of	
								delayed ettringite formation	
								(DEF), if there is a potential	
								for DEF to occur.	

Detailed description and rationale:

Delayed ettringite formation (DEF) depends on sources of sulphates. The phenomenon would only be active in Phase 4, as the concrete cools during the recovery phase of the accident. The importance is high, as cracks in the concrete would provide a pathway for fission product release to the environment, if the linear is also breached. As well, the DEF-induced cracks would delay the refilling of the bay. The phenomenon of DEF is well documented in the open literature, but there is moderate uncertainty in predicting if and where ettringite will form.

Champion: Shahzma Jaffer

CW-126800-REPT-001 Page B-104

Rev. 0

				ID #	Phenor	nenon Synopsis Title				
				91	Epoxy liner degradation and	failure				
	Dhana				Defi					
	Pheno	menon								
Epoxy l	iner degr	adation a	and	Epoxy is used as a liner material in spent fuel bays. This phenomenon includes all mechanisms that could breach the liner.						
failure										
Importance Rank				Importance Rank Rationale						
(by sub-scenario)					(by sub-	scenario)				
1	2	3	4	1	2	3	4			
Н	Н	Н	Н	Breach of liner below the	Breach of liner below the	Breach of liner below the	Submergence of the breach			
				water level could accelerate	water level could accelerate	water level could accelerate	during recovery could reduce			
				water loss. Liner breach	water loss. Liner breach	water loss. Liner breach	or eliminate gaseous			
				above the water level could	above the water level could	above the water level could	releases. Liquid releases still			
				increase the FP release	increase the FP release	increase the FP release	would need to be monitored.			
Kn	owledge	Assessm	ent	Knowledge Assessment Rationale						
	(by sub-	scenario)		(by sub-scenario)						
1	2	3	4	1	2	3	4			
2	2	2	2	The accident sequence could	Overheating an epoxy above	Overheating an epoxy above				
				cause the liner to tear.	the water level could cause	the water level could cause				
					blistering and burn-through	blistering and burn-through				
					of the liner. Thermal	of the liner. Thermal				
					expansion of the concrete	expansion of the concrete				
					wall could cause the liner to	wall could cause the liner to				
					tear.	tear.				

Detailed description and rationale:

The loss of liner integrity would result in an increase in the rate of water loss from the spent fuel bay, as the concrete structure of the bay is expected to crack. A seismic event could cause the liner to tear. Also, thermal expansion of the wall could generate a mismatch in the expansion and possibly tear the epoxy liner. Should this occur, it is important to represent: (i) the extent of cracking (how large is the total crack area), (ii) would water flow in or out (depends on the location of the failure site compared to the ground water level), and (iii) the water flow rate. The importance is rated as high, as a breached liner will result in increased water loss (faster accident progression) and provide a pathway for the transport of fission products.

Some pieces of information required to assess the integrity of the liner are available, but additional work may be required. Currently, there are no "rules" to determine the integrity of the liner. Some effort should be directed toward formulating "rules" to guide the modeling development. **Champion: Bob Henry**

CW-126800-REPT-001 Page B-105

Rev. 0

					ID #	Phenom			
					92	Stainless steel liner degradat	ion and failure		
	Pheno	menon			Definition				
Stainles	ss steel li	ner degra	adation	Stainless steel is used as a liner material in spent fuel bays. This phenomenon includes all mechanisms that could breach the					
and fail	ure			liner.					
	Importa	nce Rank				Importance Ra	ank Rationale		
(by sub-scenario)				(by sub-scenario)					
1	2	3	4	1 2 3			3	4	
Н	Н	Н	Н	Breach of liner below the	e water le	evel could accelerate water loss	. Breach of liner above the	Submergence of the breach	
				water level could increas	se the FP	release		during recovery could reduce	
								or eliminate gaseous	
								releases. Liquid releases still	
				would need to be monitored.					
Kno	owledge	Assessm	ent			Knowledge Asses	sment Rationale		
	(by sub-	scenario)		(by sub-scenario)					
1	2	3	4	1		2	3	4	
2	2	2	2	The accident sequence of	could N	Melting of the SS liner above the	e water level is unlikely. Differe	ntial thermal expansion	
				cause the liner to tear.	t	etween the liner & concrete wall could cause the liner to tear.			

Detailed description and rationale:

The loss of liner integrity would result in an increase in the rate of water loss from the spent fuel bay, as the concrete structure of the bay is expected to crack. A seismic event could cause the stainless steel liner to tear. Also, differential thermal expansion between the liner and the wall could generate a mismatch in the expansion and possibly tear the liner. Should this occur, it is important to represent: (i) the extent of cracking (how large is the total crack area), (ii) would water flow in or out (depends on the location of the failure site compared to the ground water level), and (iii) the water flow rate. The importance is rated as high, as a breached liner will result in increased water loss (faster accident progression) and provide a pathway for the transport of fission products. Some pieces of information required to assess the integrity of the liner are available, but additional work may be required. Currently, there are no "rules" to determine the integrity of the liner. Some effort should be directed toward formulating "rules" to guide the modeling development. **Champion: Bob Henry**