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Summary 
 
   This report describes the results of a project (contract # 870055-13-0331) related to constitutive 
modeling of the mechanical behavior of Tournemire shale. In the first part, an overview of the 
basic trends in the mechanical response of the shale is provided. This includes a discussion on the 
results of experimental tests performed under different loading conditions, including axial tension, 
cyclic compression and creep. The focus is on the sensitivity of material characteristics to the 
orientation of the bedding planes. Subsequently, the constitutive relation incorporating the notion 
of a scalar anisotropy parameter, which is a function of a mixed invariants of the stress and 
microstructure tensors, is derived. Here, an implicit integration scheme is outlined and the problem 
of identification of material functions/parameters is addressed in depth. The performance of the 
framework is verified by simulating a set of experimental results described earlier. The last part of 
this report is focus on the description of localized deformation that is associated with formation of 
macrocracks. A mathematical formulation of the problem is outlined and the proposed approach 
is incorporated in a finite element code. An illustrative example is provided which deals with 
assessment of damage formation/propagation due to excavation of a deep tunnel in Tournemire 
shale.  
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General 
    This project was related to the development and numerical implementation of a constitutive 
framework which describes the mechanical response of Tournemire shale. The project started in 
November 2013 and the three main tasks involved: 

1. Conducting a review of the laboratory data on the basic trends in the mechanical response 
of Tournemire shale. 

2. Development of a constitutive relation for Tournemire shale/argillite: formulation of the 
model, identification of material functions and numerical verification. 

3. Description of localized deformation involving formation of macrocracks. 
 
Section 1 contains the work described in the first progress report, which deals with Task #1, i.e. a 
comprehensive review of the available experimental data. Section 2 gives first an outline of the 
formulation of the constitutive relation. Subsequently, the problem of identification of material 
parameters/functions embedded in the model is addressed. Later, an algorithm for numerical 
integration, based on an implicit scheme, is derived and the numerical simulations of experimental 
tests reviewed in Section 1 are provided. The material contained here is a major part of the second 
progress report. The last section, i.e. Section 3, addresses the Task #3, i.e. presents a framework 
for modelling of localized deformation. The approach is illustrated by presenting the results of a 
finite element analysis which deals with the problem of crack initiation in a deep underground 
tunnel which is excavated in Tournemire shale. 
 

1. Task #1: A review of the experimental data on the basic trends in the mechanical 
response of Tournemire shale 

1.1. Introduction 

Argillaceous sedimentary rocks are typically formed by deposition and progressive consolidation 
(including diagenetic processes) of marine sediments. They exhibit a strong degree of inherent 
anisotropy (transverse isotropy), so that their stiffness and strength properties are directionally 
dependent. The anisotropy is due to the oriented microstructure, particularly the presence of 
bedding planes that can be easily seen by a visual inspection. 
 
   Over the last few decades, an extensive research effort has been devoted to study the mechanical 
behaviour of anisotropic rocks. Comprehensive references on this topic can be found in a number 
of review papers (see e.g., Amadei (1983), Kwasniewski (1993) and Ramamurthy (1993)). The 
notion of transverse isotropy in geomaterials has been examined mainly through triaxial tests, and 
has been found of a significant importance in the analysis and design of a variety of geotechnical 
structures, such as foundations, retaining walls and slopes (Casagrande and Carillo, 1944; Arthur 
and Menzies, 1972; Oda et al., 1978). Other experimentally observed features, like the onset of 
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shear banding and the influence of the intermediate principal stress, which cannot be properly 
described by isotropic criteria, have also been extensively examined (e.g., Zhiwei Gao et al. 2010). 
 
   For sedimentary rocks, the strength has been found to be strongly affected by the loading 
direction. A large number of triaxial compression tests have been conducted on oriented samples 
(cf. Donath (1961), McLamore and Gray (1967), Hoek (1968), Atwell and Sandford (1974), Lerau 
et al. (1981) and Hoek (1983)) and the results generally indicate that the maximum strength is 
associated with specimens in which the direction of major principal stress is either parallel or 
perpendicular to the bedding planes, while the minimum strength has been observed for 
orientations between 30 and 60 degrees. In parallel with experimental studies, an extensive 
research has been carried out on formulation of appropriate general failure criteria. A 
comprehensive review on this topic, examining different approaches, is provided in the article by 
Duveau et al. (1998). 
 
   In this section the mechanical properties of Tournemire shale/argillite are reviewed. In particular, 
the basic trends in the experimental results are discussed, which are important in the context of the 
development of a constitutive model that describes the strength and deformation characteristics 
(Section 2). 

1.2. Basic properties of Tournemire shale/argillite 

The Tournemire shale/argillite is located in a Mesozoic marine basin on the south limit of the 
French Massif Central. Sedimentary formations of this basin are characterized by three main 
Jurassic layers: a 250 m thick nearly horizontal layer of argillite and marls of Toarcian and 
Domerian age, located between two aquifer limestone and dolomite layers of Carixian and Alenian 
Age (Abdi and Evgin, 2013). The basic properties of the Tournemire shale/argillite are shown in 
the tables below.   

 
 

The mineralogical composition of the Tournemire shale (Niandou et al., 1997) 

Mineralogical composition Weight Proportion (%)(a) 

Kaolinite 27.5% 
Illite 16.5% 
Quartz 19% 
Calcite 15% 
Chlorite  2.7% 
Interstratifier  8.3% 
Other minerals (pyrite, siderite, feldspars, ...) 11% 
Water  4.5 to 8% 
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Physico-chemical properties of the Tournemire argillite (Bonin, 1998) 

Density  ρ= 2.5-2.8e3 kg/m3
Pore size a= centered around 2.5 mm 
Porosity ω= 6-9 % 
Specific surface area S= 20-40 m2/g  
Cation exchange capacity (on total rock) CEC=10 meq/100g 
Capillary pressure (typical value at w=3%) Pc= 5-40 MPa 
Hydraulic permeability K= 10e-14−10e-15 m/s (samples) 

K=10e-13−10e-14 m/s (in situ) 
Effective diffusivity (for tritiated water) De= 2−4e-12 m2/s 

 
 

Main mechanical-thermal properties of the Tournemire argillite (Bonin, 1998) 

Young moduli E= 8000 to 30,000 MPa 
Poisson coefficients υ= 0.15 to 0.25 
Uniaxial compressive stress fc = 18 to 33 MPa 
Thermal conductivity λ= 1.6 to 1.8 W m-1 K-1 
Heat capacity C= 1.8 to 1.9e6 J m-3 K-1 

 
 

1.3. Laboratory experiments by Canadian Nuclear Safety Commission-University of 
Ottawa-Canmet Laboratory 

Below is a brief review of the experimental data on the behaviour of Tournemire shale/argillite 
taken from the CNSC report by Abdi & Evgin (2013).  The objective here is to review the basic 
trends and identify the specific tests that can be used for identification of the material 
parameters/functions and verification of the constitutive described in Section 2. 

(i) Brazilian indirect tensile tests 

The variation of tensile strength with loading orientation (relative to bedding planes) is shown in 
Fig.1 below. The strength varies between 4.8-6 MPa with the average value in the range of 5-
5.5MPa. It should be noted that the distribution of the tensile strength exhibits a different trend 
than the distribution of compressive strength which should, in general, be accounted for in the 
formulation of the problem. 
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Fig.1. Variation of the tensile strength with loading orientation, θ 

(ii)  Uniaxial and triaxial compression tests 

A series of triaxial compression tests were performed on specimens with different loading 
orientations and different confining pressures. The typical deviatoric stress-strain and volume 
change characteristics are shown in Figs.2-3 below. 

 

Fig. 2. Deviatoric stress-axial strain characteristics for different loading orientations, θ, and the confining 
pressures 
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Fig.3. Deviatoric stress-volumetric strain curves for different loading orientations, θ, and the confining 

pressures 

 
 
In general, the inelastic deformations develop virtually from the onset of the loading process, 
which is due to closure of the existing fissures. Within the considered range of confining pressures, 
the failure mode is predominantly brittle and is associated with strain softening. The ultimate 
strength and the maximum volume change are strongly influenced by the orientation of the sample. 
The material displays a contractive behavior up to the peak strength followed by a transition to 
dilatancy, which is mainly due to rapid propagation and coalescence of microcracks. Also, there 
is an evidence that the compressibility and the shear behaviour of bedding planes play a significant 
role in the deformation of argillite at the macroscale (Abdi & Evgin, 2013). 
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(iii)  Unconfined and confined cyclic compression tests 

Various unconfined and confined (at the cell pressure of 10 MPa) cyclic compression tests were 
carried out on specimens with different loading orientations. The unloading/reloading was carried 
out at various levels of deviatoric stress intensities.  The primary objective was to assess the extent 
of irreversibility of deformation and its influence of the stiffness of the material. 

 
 

 
Fig.4. Deviatoric stress-axial strain curves for different values of θ (unconfined tests) 
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Fig.5. Deviatoric stress-axial strain curves for different values of θ (confinement of 10 MPa) 
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Fig.6. Deviatoric stress-volumetric strain curves for different values of θ (confinement of 10 MPa) 

 

   From the above experimental results, viz. Figs. 4-6, it is evident that the load cycling has no 
considerable effect on strength and failure mode of the material. However, for orientations of 60 
degrees, or more, cycling before the peak strength causes the specimen to develop significant 
plastic deformations. The amount of accumulated plastic strains depends on the confining pressure. 
The degradation of elastic stiffness also depends on θ as well as the confinement, and increases 
with increasing plastic deformation. Each cycle of loading and unloading causes more compression 
of the specimen. It was also observed that sample orientation has strong influence on size, number, 
and orientation of fractures within the specimen before the applied deviatoric stress reaches the 
peak value.  
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(iv)  Creep behavior of Tournemire argillite 

For Tournemire argillite, the formation of new cracks (stable crack growth) and the irreversible 
crack damage (unstable crack growth) occur at stress levels of about σci = 70% ~ 75% and  
σcd = 85% ~ 90% of the peak stress, respectively. The creep test results can be analyzed in relation 
to the value of σcd. In the work reported by Abdi & Evgin (2013) a series of five uniaxial tests with 
a constant displacement rate (0.03 mm/min) has been performed and the key results are shown in 
Figs.7-8 below. 
 
 
 

 
 

Fig.7. Deviatoric stress-axial strain curves for different loading orientations 
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Fig.8. Axial strain-time curves for different loading orientations 
 
 

In each test the axial strain was increased to a prescribed level after which the load was maintained 
constant for a period of 1 hr. This was repeated for a number of increments until the failure 
occurred.  
 
   From the experimental data, it was concluded that if the deviatoric stress intensity is lower than 
σcd, the creep in Tournemire argillite is not very significant. However, when the deviatoric stress 
exceeds σcd, the increase in axial strain during creep period, and therefore the damage due to 
unstable crack propagation, become more substantial. At this stress level, a longer period of creep 
might cause the failure of the material. Compared to the results of uniaxial tests, larger axial strain 
is measured at peak load in creep tests. 
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1.4.  Laboratory experiments by others 

(i) Hydrostatic compression tests  

Niandou et al. (1997) conducted a series of hydrostatic tests on cubic samples of Tournemire shale. 
The size of the samples was 5x5x5 cm, and strains were measured in three orthogonal directions 
as shown in the figure below. 
 

 
Fig.9. Structural coordinates and strain gauge position in compressibility test 

 

 

Fig.10. (Left) Strain in direction s1 normal to the bedding plane; (Right) Strain in directions s2 and s3  
 

 
It is evident that the strain history is characterized by non-linearity and anisotropy. In general, the 
strain in the direction s1 is significantly larger than strains measured in two other directions (s2, s3) 
which, in turn, are almost the same. This implies that the response of Tournemire shale is 
transversely isotropic. The preferred orientation is that along s1 and the behaviour along bedding 
planes is isotropic. The irreversible plastic strains measured after the unloading of the samples, 
also display a significant degree of anisotropy. 
  

(ii) Triaxial tests 

In addition to hydrostatic compression tests, Niandou et al. (1997) performed a series of 
conventional triaxial tests on cylindrical samples 37 mm in diameter and 75 mm in height. The 
tests were carried out at different confining pressures and different orientations of the bedding 
planes. Strains in three orthogonal directions (i.e. longitudinal, parallel and perpendicular to the 
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bedding planes) were measured. Loading orientation was defined by the angle θ between the 
bedding planes and the axial stress σ1.  
 
 

 
Fig.11. (a) Definition of loading orientation θ; (b) positions of strain gauges in triaxial 

compression test 

 
The triaxial tests included unloading-reloading cycles at various loading orientations and confining 
pressures. The key experimental results, which highlight the basic trends, are presented in Figs. 
12-16 below.  
 
 
 

 
 
 

Fig.12. Stress-strain curves for a triaxial test with θ=90° and confining pressure of 5MPa 
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Fig.13. Stress-strain curves for a triaxial test with θ=45° and confining pressure of 5 MPa 
 
 
 
 

	
 

Fig.14. Stress-strain curves for a triaxial test with θ=0° and confining pressure of 30 MPa 
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Fig.15. Deviatoric characteristics for triaxial tests with various confining pressures and (a) θ=90°.  
(b) θ=45°, (c) θ=0° 
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Fig.16. Volume change characteristics for triaxial tests at various confining pressures and (a) θ=90°, 
(b) θ=45°, (c) θ=0° 
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According to Niandou et al. (1997), the main conclusions emerging from these tests are as follows: 
 

(1) For samples tested at θ=90°, both transversal strains are equal. For orientations other than 
90°, the normal strains perpendicular to the bedding planes are larger than those in the 
direction along those planes. 

(2) Stress-strain relations show significant non-linearity and irreversibility of deformation. 
After unloading, approx. 50% of the total deformation is in the plastic range for both 
longitudinal and transversal directions.  

(3) The failure mode evolves with the confining pressure. At high pressures, the response is 
ductile. At low confinement, the strain softening behaviour, associated with brittle failure, 
takes place.  

(4) The volumetric deformation of Tournemire shale is orientation-dependent and is mostly 
compactive with a transition to dilatant behaviour occurring near the peak stress. At θ=90°, 
a continuous compaction occurs as the volumetric strain is primarily due to the closure of 
the bedding planes. However at θ=0° the bedding planes are parallel to the axial stress, so 
that a significant dilatancy takes place when deviatoric stress reaches the maximum 
intensity.  

(5) The degree of strength anisotropy is larger at lower confining pressures than at higher ones. 
 

 

   It should be noted here that results of triaxial tests for inclined samples should be regarded with 
caution. This stems from the fact that for values of θ different from 00 and/or 900, the sample has 
a tendency to distort. In a triaxial test, however, this distortion is constrained by the presence of 
loading platens. Consequently, the stress field is no longer uniform and the results are not, strictly 
speaking, reliable. 
 
   The relevant experimental data from unconfined compression tests (after Niandou et al., 1994) 

is provided in the Fig.17. It can be seen that when the loading direction is perpendicular to the 
bedding planes the strength is maximum, while the minimum occurs at an orientation of about 45°. 
The strength is reduced by more than 50% (Pietruszczak et al. 2002). For orientations within the 
range 35°< α <60°, fc is approximately constant. This implies that the failure mechanism involves 
slippage along the bedding planes (S. Pietruszczak et al. 2004). 
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Fig.17. Variation of uniaxial compressive strength with the orientation of bedding planes; Cartesian and 

polar plots 

 

 

 

   Another source of experimental data on shales are the results provided by Rouabhi et al. (2007). 
The tested material came from a site in the Massif Central, France and the experimental program 
also involved a series of triaxial tests at different sample orientations (θ) and different confining 
pressures. The figure below shows the evolution of compressive strength obtained based on these 
experiments. 
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Fig.18. Compressive strength variation as a function of orientation of bedding planes 

 
 

It is evident that maximum strength occurs again when the major principal stress direction is 
orthogonal/parallel to the bedding/lamination planes, while minimum strength is observed for 
orientations within the range between 30°and 60°. The degree of anisotropy is not significantly 
affected here by the confining pressure, which is contrast to conclusions reached by Niandou et al. 
(1997). It should be noted, however, that the range of confining pressures here is relatively narrow. 

(ii)  Creep behavior of Tournemire shale 

There is a strong experimental evidence that the behaviour of Tournemire shale is time-dependent 
and the effect of creep is significant. It appears that, for this material, the only source of 
experimental data available in the literature, other than the results shown earlier in Section 1.3(iv), 
are the creep tests reported in the article of Rouabhi et al. (2007). The typical experimental results 
are presented in the figures shown below. The tests were carried out at the confinement of 5MPa 
and involved different sample orientations. The deformation characteristics were recorded at 
different intensities of deviatoric stress. For all tests the response is clearly time-dependent and, as 
the time increases, the stationary conditions are approached. 
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Fig.19. Triaxial creep data for samples tested at θ=0°, θ=90° under a constant axial stress of 25MPa 
 

 
 

 
Fig.20. Triaxial creep data for θ=45° and θ=60° (top & bottom figure, respectively);  varying axial load of 

10, 15 and 20MPa 
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The brief review provided here identifies the basic trends in the experimental response of the 
Tournemire shale/argillite. It is evident that both the deformation and strength characteristics are 
orientation-dependent. The effects of creep, at higher deviatoric stress levels, are quite pronounced 
and the failure mode is often brittle, especially at lower confining pressures.  
 
   The next section is focused on the development and implementation of a plasticity framework 
that incorporates the notion of inherent anisotropy via a scalar parameter that depends on a 
normalized value of a mixed invariant of the stress and microstructure tensor (cf. Pietruszczak et 
al., 2002). An important aspect here involves the notion of identification of material parameters. 
For this purpose, the experimental results of Abdi & Evgin (2013), reviewed in Section 1.3, are 
employed. The framework is then verified against other experimental data that were not used for 
the identification purposes.  

 
 
2. Task #2: Constitutive relation for Tournemire shale - formulation, identification of 
material functions and numerical verification 

2.1. Formulation of the constitutive relation 

As indicated in Section 1, sedimentary rocks, such as Tournemire shale, exhibit a strong inherent 
anisotropy (transverse isotropy), so that their mechanical properties are directionally dependent. 
The anisotropy is due to the oriented microstructure; in particular, the presence of bedding planes 
that can be easily seen by a visual inspection. The mathematical formulation of the problem 
requires, first of all, the specification of conditions at failure under an arbitrary stress state. In 
addition, a general framework must be provided for the description of the deformation field, which 
may include discontinuities such as macrocracks. The approach employed here incorporates 
anisotropy measures which depend on relative orientation of principal axes of stress and 
microstructure tensor (after Pietruszczak & Mroz, 2001). Those descriptors are later identified with 
strength parameters (such as angle of friction, cohesion, etc.), so that the strength properties are 
assumed to be orientation-dependent. 
 
   In order to define the anisotropy parameter(s), the formulation employs a generalized loading 
vector that is defined as 

 ( ) 2 2 2 1/ 2
1 2 3; ( ) ; ( , 1,2,3)j

i j i j j j jL L e L i j        (1) 

where ( ) , 1,2,3ie    , are the base vectors, which specify the preferred material axes. Thus, the 

components of iL  represent the magnitudes of traction vectors on the planes normal to the principal 

material axes. Note that 
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    2 ( ) ( ) ( )tr ; tri i i
i k kj l lj kp ql lk k k kj kj kl ljL e e m L L            (2) 

so that the traction moduli can be expressed as mixed invariants of the stress and microstructure-

orientation tensors. The unit vector along iL  is given by 

 
 

1
( ) ( ) 2

1/ 2( )

i i
k kj m mji

i
k k pq pq

e eL
l

L L

 

 

 
  
  

 (3) 

 

   Introduce now a microstructure tensor ija , which is a measure of material fabric. While different 

descriptors may be employed to quantify the fabric, the eigenvectors of this operator are said to be 

collinear with ( )
ie  . The projection of the microstructure tensor on il  , becomes 

 ik ij kj
ij i j

pq pq

a
a l l

 


 
   (4) 

Here, the scalar variable  , referred to as anisotropy parameter, specifies the effect of load 

orientation relative to material axes and is defined as the ratio of joint invariant of stress and 

microstructure tensor ij ik jka    to the stress invariant ij ij  . It is a homogeneous function of stress 

of the degree zero, so that the stress magnitude does not affect its value. Note that eq.(4) can be 
expressed as 

  0 0
0

1 1
1 ; ;

3ij i j ij ij ij kkA l l A a a   


      (5) 

where 0dev( ) /ij ijA a   is a symmetric traceless operator. The relation (5) may be generalized 

by considering higher order tensors, i.e. 

  0 1 ij i j ijkl i j k lA l l A l l l l      (6) 

The above representation is rather complex in terms of implementation and/or identification. 
Therefore, it is convenient to use a simplified functional form obtained by replacing the higher 
order tensors by dyadic products of second order tensors, i.e. 
 

  2 3
0 1 21 ( ) ( )ij i j ij i j ij i jA l l b A l l b A l l       (7) 

where b’s are constants. 
 
   In view of the consideration above, the failure function can be expressed in the general form 

 1 2 3( , ) ( , , , )ij ijF F a F I J J    (8) 
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where 1I  is the first stress invariant, while 2 3,J J  are the basic invariants of the stress deviator. As 

mentioned earlier, the parameter   is typically identified with a relevant strength descriptor, 

whose value is then assumed to depend on the orientation of the sample relative to the direction of 
loading. Thus, the existing criteria can be easily extended to anisotropic regime by assuming that 
the strength parameters vary according to (7). In this work a simple linear form of eq.(8) has been 
adopted, which corresponds to the well-known Mohr-Coulomb criterion, i.e. 

  3 ( ) 0f mF g C        (9) 

Here,   
1 1 32

2 1 3

1 1 3 3
; ; sin

3 3 2m

J
J I  


  

     
 

and 

 

 
3 sin 6sin

( ) ; ; cot
3 sin2 3 cos 2sin sin

fg C c
   

  


  


 (10) 

 

where   is the Lode’s angle while ,c  are the angle of friction and cohesion, respectively. 

 
   An extension to the case of inherent anisotropy can be accomplished by assuming that the 

strength descriptors, in this case f  and C, are orientation-dependent and have the representation 

analogous to that of (7). Note that, in the context of the criterion (9), the parameter C is associated 
with a hydrostatic stress state. The latter is, in fact, invariant with respect to orientation of the 
sample. Thus, the effects of anisotropy can be primarily attributed to variation in the strength 

parameter f , i.e. 

  2 3
1 2

ˆ 1 ( ) ( ) ; .f f ij i j ij i j ij i jA l l b A l l b A l l C const        (11) 

   The general plasticity formulation can be derived by assuming the yield/loading surface in the 
form consistent with representation (11), i.e. 

  
1/2

2
3 ( ) 0; ( ) ;

3
p p

m f ij ijf g C d de de
A

         


          
 (12) 

where   is the hardening parameter, p
ijde  is the deviatoric part of the plastic strain increment, 

while A and  are material constants. According to the hardening rule, for   there is 

f  , where 1  . The parameter   is introduced here in order to define the transition to 

localized deformation, which is assumed to occur at f  . Note that the latter equality implies 

that f F , so that the conditions at failure are consistent with Mohr-Coulomb criterion (9).  The 

plastic potential can be chosen as 
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    
0

3 ( ) ln 0m
c m

m

C
g C


    




     (13) 

where c f  , so that ( )c c il  . Following now the standard plasticity procedure, i.e. invoking 

the consistency condition 0df  , yields 

 

1
2

1 2
; ;

3
p

p ij pij
ij ij ij ij

f f
d d d H d H dev dev

      
     

       
            

 (14) 

where pH  is the plastic hardening modulus. 

 
   For the functional form (12), the gradient operator can be expressed as 

 
fm

ij m ij ij ij f ij

f f f f f   
        

         
                    

 (15) 

so that the effect of anisotropy is embedded in the last term of eq.(15). Given the representations 
(11) and (12) one obtains, after some algebraic manipulations, 

 
 

2
1 2 2

ˆ2 (1 2 3 ...) ;

( ) ( ) ( ) /

f ki kj pq pq pk pq kq ij
f

ij mn mn

m f
f

A A
b b

f
g C

      
  

  

    


 
   




  



 (16) 

Note that a similar expression can be obtained for the gradient of the plastic potential function. 
 
   Given the functional form of both gradient operators, the constitutive relation can now be 
obtained by invoking the additivity postulate, i.e. 

 1pe e
ij ijkl kl ijkl p kl ijkl klij

ij kl

f
d C d d C H d C d

    
 

  
        

 (17) 

where e
ijklC  is the elastic compliance whose representation, once again, depends on the type of 

material anisotropy. 
 
 
2. 2 Procedure for identification of material functions/parameters 
 
The identification process employed here is based on the experimental data for Tournemire 
argillite presented in Section 1 (Abdi & Evgin, 2013). The data includes the results of a series of 
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triaxial compression tests performed at different confining pressures on samples tested at different 
orientation of bedding planes. 
 
   The first step involves the specification of the conditions at failure which, in turn, requires the 

identification of material function f  and the parameter C, as defined in eq.(11).  The specification 

of coefficients appearing in f f i( l )   entails the information on conditions at failure in samples 

tested at arbitrary orientation   with respect to direction of loading.      Consider, for this purpose, 

the response of the sample under axial compression at a confining pressure 0p . Refer the geometry 

of the sample to the coordinate system in which 1 2 3{ , , }ix x x x are the material axes, Fig.21  

 
 
 
 
 
 
 
 
 

Fig.21. Geometry of the problem 

 
In this case, 

 
2 2 2 2

2 2 0 1
1 2 2 2 2

0 1

sin cos
(1 3 );

2ij i j

p
A l l A l l

p

  



  


 (18) 

 

where   defines the orientation of the bedding planes. Given the representation above, the 

function ( )f f il  , eq.(11), reduces to 

  2 2 2 2 3 2 3 4 2 4
1 2 1 1 2 2 1 2 3 1 2ˆ 1 (1 3 ) (1 3 ) (1 3 ) (1 3 ) .....f f A l b A l b A l b A l            (19) 

Note that in the absence of confinement, 0 0p  , there is 2 cosl  , so that the anisotropy 

parameter is an explicit function of the deposition angle  , i.e. 

  2 2 2 2 2 2
2 1 1 1

ˆcos 1 (1 3cos ) (1 3cos ) .....f fl A b A             (20) 

Given now the stress parameters {p,q} at failure, for each specific orientation of the sample, the 

anisotropy parameter can be determined, i.e. /( )f q p C   , together with the corresponding 

value of 2l , eq.(18). The results can then be plotted in the affined space 2{ , }f l to generate a set 


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of data describing the relation (19). It should be noted that the above procedure requires an estimate 
of the value of the constant C, which can also be obtained based on the results of standard triaxial 
tests. 
 
   The specification of strength parameters for Tournemire argillite employs the results plotted in 
Figures 22-24. Fig.22 shows a linear (Mohr-Coulomb) approximation of the conditions at failure 
in samples tested at different orientation of bedding planes (experimental data points are shown as 
symbols). Based on these results, the value of C was estimated as C=10.6 MPa, which represents 

an orientation-average for tests conducted at 0 0 0 0 00 30 45 60 and 90, , ,  . Given the value of the 

constant C, the spatial distribution of anisotropy parameter ( )f f il   was established by 

following the procedure described above. Fig.23a shows the experimental results projected in the 

affined space 2
2{ , (1 3 )}f l  . Again, the data incorporates the tests conducted at different confining 

pressures, viz. 0, 4 and 10 MPa, and different orientation of the bedding planes. The best-fit 
approximation is based on representation (19). In this case, the second order approximation 
appears to be adequate and corresponds to the following set of coefficients 

1 11 0725 0 17034 5 4957f
ˆ . , A . , b .     

Fig.23b shows the plot of f  against the loading angle 1
2cos l   , which incorporates the 

parameters given above.  
 

 
Fig.22. Approximation of conditions at failure for different sample orientations; 

 1 3 1 32 / 3,p q         
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   (a) 

 
   (b) 

 

Fig.23. Variation of strength parameter f  with  (a) ij i jA l l  and (b) loading angle 

 
 
     The next step of the identifications process pertains to specification of material parameters/ 
functions that govern the deformation characteristics. The elastic properties have been evaluated 
in Abdi & Evgin (2013). The assessment was based on the results of unconfined cyclic tests and 
the following constants were identified 

1 2 21 13 2112 5 21 0 0 16 0 08 4 57E . GPa , E . GPa, . , . , G . GPa       
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Again, these values are referred to the coordinate system associated with principal material axes, 
as shown in Fig.21.  
 
     The evaluation of plastic properties requires the identification of potential function, eq.(13), 

which incorporates the parameter c . The latter defines the transition from plastic compaction to 

dilatancy and its value can be assessed by examining the respective volume change characteristics. 
For the Tournemire argillite the results of experimental tests, as reported by Abdi & Evgin (2013), 
indicate that the transition to dilatancy occurs at deviatoric stress intensities that approach those 
associated with unstable strain-softening response. Therefore, it may be adequate to approximate 

this material function as ( ) 0.99 ( )c i f il l  . 

 
     The specification of hardening function involves the identification of material parameter A, viz. 
eq.(12). In order to accomplish this, the mechanical characteristics should be re-plotted in 

{ , / ( )}q p C     space. Note that constructing such characteristics requires the value of the 

elastic shear modulus, so that the plastic deviatoric strain can be determined via the additivity 
postulate. The deformation properties in the plastic range are likely to be direction-dependent. 
Thus, the above best-fit procedure should be repeated for different orientations of the sample in 
order to obtain a set of corresponding values of the parameter A. In order to maintain the simplicity 
of the formulation it may then be sufficiently accurate to assume that A represents a material 
constant, whose value is identified with the orientation average.  
 
   It needs to be pointed out now that the experimental results provided are not adequate to follow 
the procedure outlined above. This stems from the fact that the deformation measurements 
comprise only the vertical and volumetric strain, which for samples tested at orientations other 

than  =0 (i.e., horizontal bedding planes) is not sufficient to uniquely define the value of the 

plastic distortion  . Note that at 090  , the lateral strain will not be the same in the radial 

directions; however, no information in this respect was provided in the CNSC report. At the same 
time, for inclined samples the shear strain will develop under a stress-controlled regime as the 
material is anisotropic.  
 
   Given the restrictions mentioned above, the parameter A was determined by a trial-and-error 

procedure that involved fitting the deviatoric characteristics q  versus axial strain for samples with 

horizontal bedding planes. Fig.24 shows the plots corresponding to confinements of 0, 4 and 
10MPa. It is important to point out that the unstable strain softening characteristics reported in 
experimental tests are associated with localized deformation, i.e. formation of macrocracks. 
Therefore, they do not represent a material response and should be analysed within the context of 
a boundary-value problem. Thus, the characteristics reported in Fig.24 are restricted to a stable 
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range associated with strain-hardening. The experimental response is characterized by an abrupt 
transition to localized mode. Within the current mathematical framework the onset of localized 

deformation is associated with f   and is defined by means of parameter  , which appears in 

the hardening function eq.(12). In general, the constraint of 1   ensures that the transition occurs 

along the ascending branch of the deviatoric characteristic. The simulations reported in Fig.24 

were conducted assuming 1 25.   and resulted in the value of A = 0.0012. Thus, the material 

parameters governing the plastic response of Tournemire argillite were taken as 

( ) 0.99 ( ), 1.2, 0.0012c i f il l A      

 
Fig.24.  Trial-and-error assessment of the value of parameter A; the results corresponding to A=0.0012 

 
 
     Finally, it should be pointed out that the results of triaxial tests for inclined samples need to be 
taken with caution. This stems from the fact that the samples will have tendency to distort under 
the applied load, while in a triaxial set up such distortion is kinematically constrained by the 
presence of the loading platens. The latter will lead to a non-uniform stress distribution within the 
specimen, so that the results are representative of a boundary-value problem rather than a material 
test. This is in fact the main argument why, at the present stage, a simplified procedure for 
identification of material parameters in the plastic range has been adopted. 
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2.3.  Numerical integration scheme and simulation of triaxial tests 
 
For the purpose of implementation in FEM package, it is convenient to employ the matrix notation. 

The stress and plastic strain variables at time t t  can be evaluated as  

 { } { } [ ]{ } [ ] }{ { {; } } }{t p p p t pD D               (21) 

where, for an active loading process   

 
( ) .

}

, ) 0 (

{ { } 0

ij ij

p

f f const    

  


  


 





  


  (22) 

The consistency condition requires that  

 { } } 0{Tf f f
f  

  
  

     
  

  (23) 

so that the tangential stiffness operator can be expressed as 

 
[ ]{ { } [ ]

[ ] [ ]
{ } [ { }]

} T

T
T

f
D D

D D
f f f

D


 


   

 
  

   
   

  (24) 

Here, the gradient operators have the form analogous to that defined in eq.(15), i.e.  

 

{ } { } { } { } { }

{ } { } { } { } { }

fm

m f
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m f

f f f f f   
        

      
        


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   

        

      
  

        

  (25) 

In order to accurately integrate the constitutive relation (21) along with conditions (22), the return 
mapping scheme is employed here. It is clear that the governing equations are coupled and must 
be solved using a nonlinear solution technique. For the return mapping algorithm, the residuals 
can be expressed as 

 
} { } [ ]{{ } { } [D]{ }

( , )

t
i i i i

i i i

D

f f

r
   


 

      


 
  (26) 

Employing now the Newton-Raphson scheme, we can write  
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where 
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  (28) 

If the increments are small enough, 0  . In this case 
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  (29) 

and the updated state variables are 

 1 1{ } { } { } { } { } { }p p p
i i i i i i             (30) 

It should be noted that the above scheme can be implemented either in the global coordinate system 
or in the material coordinate system; in both cases, proper transformations must be applied for the 
stress/strain and stiffness operators. 
 
     The above integration scheme has been used to simulate the results of triaxial compression tests 
reported in Section 1.3 (Abdi & Evgin, 2013). The material parameters were identical to those 
identified in the previous section. The experimental data examined here comprised the tests 
performed on samples at different orientation of the bedding planes (viz. 

0 0 0 0 00 30 45 60 and 90, , ,  ) at confinements of 0, 4 and 10 MPa.  

  
    The results of numerical simulations are shown in Figs. 25-29 below. The figures present both 
the devatoric characteristics q versus axial strain (E11) as well as the corresponding evolution of 
volumetric strain (Ev). It is noted again that the simulations were terminated at the instant the 

criterion for the onset of localization, defined as f  , was satisfied. As mentioned earlier, the 

subsequent unstable response (indicated by an arrow pointing downwards) constitutes a boundary-
value problem and cannot be examined within the context of point integration scheme. It appears 
that, in spite of simplifications embedded in the identification procedure, the results of simulations 
are quite reasonable in terms of depicting the basic trends. This is certainly the case given the 
doubts concerning the validity of experimental data for samples tested at orientations other than 
those involving the horizontal bedding planes.  
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Fig. 25. Numerical simulations of triaxial compression tests; deviatoric and volume change charcteristics 

corresponding to 00   

 

Fig. 26. Numerical simulations of triaxial compression tests; deviatoric and volume change charcteristics 

corresponding to 030   
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Fig. 27. Numerical simulations of triaxial compression tests; deviatoric and volume change charcteristics 

corresponding to 045   

 
Fig. 28. Numerical simulations of triaxial compression tests; deviatoric and volume change charcteristics 

corresponding to 060   
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Fig. 29. Numerical simulations of triaxial compression tests; deviatoric and volume change charcteristics 

corresponding to 090   

    It needs perhaps to be pointed out that the most significant discrepancy between the 

experimental data and the numerical simulations occurs at  090   (see Fig.29). Here, the 

conditions at the failure are predicted quite accurately; however, the stiffness characteristics are 
markedly different. The predictions can be improved by accounting for the fact that the hardening 
characteristics are likely to be influenced by the orientation of the sample. This is illustrated in 
Fig.30, which compares the above results with the simulations corresponding to A=0.0002. It is 
quite evident that a significant enhancement in terms of predictive abilities is achieved.  

 

Fig.30.  Simulations for 00  and 090   corresponding to A=0.0012 and A=0.0002, respectively 
(confining pressure of 4 MPa) 
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3. Task#3: Description of localized deformation associated with formation of macrocracks 

3.1. Formulation of the problem 

The propagation of localized failure is modeled here by employing the volume averaging to 
estimate the properties of an initially homogeneous medium intercepted by a shear band/interface 
(Pietruszczak & Mroz, 1981; Pietruszczak, 1999). The constitutive relation employed in this 
approach incorporates the properties of constituents (i.e., intact material and interface) as well as 
a characteristic dimension associated with the structural arrangement. This formulation is 
enhanced here by revising the original approach and coupling it with the level set representation, 
similar to that used in Extended Finite Element Method, in order to capture a discrete nature of the 
crack propagation process (Haghighat & Pietruszczak, 2015).  Within the proposed approach the 
discontinuity is defined at the element level, rather than at an integration point, which enhances 
the numerical stability and enables an accurate assessment of the characteristic length parameter. 

 
    Following the framework outlined by Haghighat & Pietruszczak, (2015), a discontinuous 
motion within a reference volume V , which contains a discontinuity surface Γ , can be defined 

as 

 ˆv ( , ) v ( , ) v ( , )i i i i i ix t x t x t     (31) 

where, v ( , )i ix t  and v̂ ( , )i ix t  are continuous functions and   is the Heaviside step function. 

Denoting the velocity discontinuities across the interface as  g vi i , a symmetric part of the 

velocity gradient ,v s
i j can be expressed as 

 , , ,ˆv v v (g )s s s
i j i j i j

s
i jn       (32) 

where,   is the Dirac delta function. The procedure for assessing the equivalent properties within 

a small enough reference volume V  intercepted by a macrocrack is based on averaging scheme, 
viz. 

     , , ,ˆv v
1 1

(g )vs s s
i j i j i j

s
i jV V V
n

V
dV dV dV

V
   

  
        (33) 

which implies  

 , , ,ˆ ( )s s s
i j i j i ji j

sv v v g n   k   (34) 

Here, ,i jv  and ig  are volume averages of the respective variables defined in eq.(33), /A V    

and ) /( V V V    k , while A  is the surface area of the interface within the considered 

volume. Note that the decomposition (34) may be simplified by assuming that the discontinuity 
divides the domain into two approximately equal volumes, in which case there is 0k . 
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Identifying now the symmetric parts of the displacement gradients with the corresponding strain 
rates, we have 

 ,, ,; ( )ˆ ;s s
ij ij ij ij i j i j

s
i j i jv v g n              k   (35) 

In eq.(35), ij  defines the strain rate in the intact material, while ij  is the strain rate due to 

discontinuous deformation along the interface averaged over the considered volume. In general, 

ij  may include both elastic and plastic components.  

 
   Within the context of the plasticity framework, the average stress rates in the intact material can 
now be defined as 

  ; ( )ij ijkl kl ij ij ijkl kl l jj ik i
sgD nD                  (36) 

The stress rate ijσ  is subjected to the continuity condition that requires 

 ij j i ij jn t K g      (37) 

where it  is the traction along the interface and ijK defines the stiffness properties of the interfacial 

material. Note that the latter can be described, using the plasticity formalism, as 

 ; ( , ) ; ; ( )p p
i ij j i i i

i

t K g f f t g g
t


 


   


       (38) 

where, p
ig  is the plastic part of the velocity discontinuity, ,f   are the yield and plastic potential 

functions, respectively, and κ  is the softening parameter. Combing representations (36) and (37) 
leads, after some algebraic transformations, to the localization rule 

 1 ;i p ij jpkl kl ij ij iklj k lg n E D E K D n n      (39) 

which defines the local velocity discontinuities in terms of average macroscopic strain rates. 
     
   The strategy for monitoring the propagation of shear band within the context of finite element 
(FE) analysis is similar to that employed in XFEM. The interface is traced using the level set 
method, so that it is represented as a polygon of line segments passing through elements in which 
the macrocrack/shear band develops. The characteristic dimension   is then evaluated based on 

the geometry of the element and that of the propagating localization zone. 
  

3.2.  Numerical example 

 The plasticity approach described in Section 2, together with the formulation for localized 
deformation as discussed above, have both been incorporated into a finite element framework. In 
this section, a hypothetical example is provided which involves an assessment of damage due to a 
deep geological excavation in Tournemire shale.  
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The geometry of the problem is shown in Fig. 31, and it’s similar to that employed in the article 
by Le and Nguyen (2015). The tunnel is 1.04m is diameter and the initial stress state, prior to 
excavation, was assumed to comprise the vertical stress of 6.5 MPa and the lateral stress of 
4.4MPa. The focus in the analysis is on modelling of long-term damage induced by excavation. 
An accurate assessment in this respect requires a description of the creep phenomenon that is 
associated with time-dependent evolution of microstructure. Since the example given here is 
purely illustrative, with the emphasis on qualitative aspects, the latter effects have not been 
explicitly incorporated. Instead, the simulation of the onset of damage near the excavation zone 
was carried out by degrading the strength parameters to their residual values.  
 

 
Fig.31.  Geometry of the problem 

 
   The first stage of the analysis involved the excavation in the intact material. The mechanical 
properties were assumed to be the same as those identified in Section 2.2., i.e. 
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In the second stage, the analysis was conducted by imposing a linear degradation of strength 

parameters ˆ
f  and C to their residual values, viz. 

0.ˆ 2.09,r r
f C MPa   

The latter are assumed to be representative of the time associated with the end of creep. 
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   The main results of the simulations for stage 1 are presented in Figs. 32-33, which show the 

displacement field together with the stress ratio / f   and the plastic distortion maps at the end 

of exaction. It is evident here that for the intact properties the behavior remains in the stable regime 
(i.e., no localization). On the other hand, when the values of strength parameters are degraded to 
their residual level, there is a formation of macrocraks near the excavation zone. The relevant 
results for stage 2, which include the predicted crack pattern, are presented in Figs. 34-36. 

 

 
 

Fig.32.  Distribution of horizontal (top) and vertical displacements (bottom) after excavation 
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Fig.33.  Distribution of failure ratio / f   (top) and the plastic distortion   at the end of excavation 
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Fig.34.  Distribution of horizontal (top) and vertical displacements (bottom) at the end of creep (strength 
parameters at residual values) 
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Fig.35.  Cracking pattern for degraded properties (after creep) 

 
 
 
 
 
 

 

Fig.36.  Distribution of failure ratio / f   (top) and the plastic distortion   at the end of creep (strength 

parameters at residual values) 
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