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Executive Summary  
As described in the statement of the proposed work the purpose of this contract 

has been to formulate methodology for seismic wave excitation of numerical models of 

Nuclear Power Plant (NPP) structures, and specifically to provide detailed input ground 

motions for computations of seismic soil-structure interaction (SSI) in three dimensions 

(3D). This is illustrated in Fig. 1. Assuming that the structure, foundation and the 

surrounding soil are modeled numerically, this task can be accomplished by specifying 

the components of strong ground motion at a discrete mesh of points in the five surfaces 

of the “box” ABCD, which represents the boundary and the contact surfaces between the 

numerical representation of the model inside the box with the elastic, continuum 

mechanics representation of the site outside the box. 

 

 
 

Figure 1. Structure, foundation (abcd), and the surrounding soil (ABCD) for numerical 

analysis of SSI. 
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Traditional approach to solving the above problem has been conceptually same as what 

will be presented in this report, except that it was based on a simplification, which is that 

the seismic energy arrives to the site as vertically propagating waves (Fig. 2). 

 

 
 

Figure 2. Model in Fig. 1 excited by vertically incident seismic waves 

 

The geological structure near ground surface typically consists of “softer” deposits and 

therefore the seismic wave velocity decreases as the waves approach the surface. In such 

media, as a consequence of Snell’s Law, the ray path of body waves becomes 

progressively steeper (progressively closer to the vertical) (see Fig. 3). This fact has been 

 

 
 

Figure 3. Incident body and surface waves into the parallel, horizontal layers 

representation of the NPP site. 
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used to justify the simplified representation of ground shaking at a site in terms of 

vertically incident waves, and the associated one-dimensional (1D) site representation 

(Fig. 2).  

 

The wave front of a plane wave with incident angle γ , relative to vertical, will intersect 

the free surface at A and the vertical axis at B. and as it continues to propagate the points 

A and B will travel to right and up with phase velocities xC  and (Fig. 4). zC

 

 
 

Figure 4. Incident plane wave, horizontal and vertical phase velocities, and particle 

motion U in the homogeneous half space. 

 

It is seen from Fig. 4, that for γ  = 0 the horizontal phase velocity xC  will become infinite 

(i.e. all points on ground surface will move synchronously) and the model will reduce to 

1D representation shown Fig. 2. However, γ  is never zero and so the incident plane wave 

will arrive at the site and excite the structure by propagating horizontally with velocity 

xC  and with depth dependence described by cos( / )zz Cω , as shown in Fig. 4. Therefore, 

a body wave pulse will move the ground surface as a horizontally propagating wave, as 
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illustrated in Fig. 5. For nearly vertical wave arrival xC  will be large but the ground 

motion will still be a horizontally propagating wave. 

 
 

Figure 5. Structure excited by a strong motion pulse propagating with horizontal phase 

velocity xC   

 

Soon after the arrival of body waves, surface waves will begin to arrive propagating 

horizontally through the wave-guide represented by parallel layers (Fig. 6). 

 
Figure 6.  Body and surface waves arriving horizontally, through the layered half space. 

 

Frequency components of surface waves will propagate with different phase velocities, 

which depend on the frequency of motion and the mode shape number. Those represent 
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respectively the characteristic values and characteristic functions of the boundary value 

problem of wave motion in the layered half space. The wave amplitudes (i.e. the wave 

energy) will propagate with the frequency dependent group velocity. Near ground 

surface, where xC  is larger than the corresponding material velocity the surface wave 

mode shapes will have periodic dependence versus depth (sines and cosines), but bellow 

the depth at which xC  becomes smaller than the material velocities the mode shape 

amplitudes will decay exponentially with depth (Fig. 3). 

 

Horizontally propagating SH and Love waves will contribute torsional excitation of the 

foundation in addition to the out-of-plane translations. P, SV and Rayleigh waves, in 

addition to horizontal and vertical translations, will force the structure to rock in the (x,z) 

plane. This is illustrated in Fig. 7, which shows the structure excited by incident Rayleigh 

waves. 

 
Figure 7. Horizontal, vertical and rocking excitations of a structure by passage of 

Rayleigh waves. Part (a) shows the drift associated with inertial forces caused by 

horizontal motion of the base at B. Part (b) illustrates additional drifts caused by rocking 

of the base. 
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Strains and curvatures of ground deformation are also necessary for complete description 

of motions driving the walls of the numerical box ABCD in Fig. 1. Examples of 

computed strains and curvatures will be shown in Chapter 2. 

 

To accomplish the task of describing the ground motion which consists of body 

and surface waves, and which can be used to describe the motion at all points bounding 

the numerical box, it is necessary to formulate algorithms which describe (a) strong 

ground motion along a HORIZONTAL line extending (radialy) from the earthquake 

source towards the site of the structure (e.g. along BC in Fig.1), and (b) along a 

VERTICAL line (e.g. along AB or CD in Fig. 1) in the layered half space. Once these 

motions have been formulated, the complete motion can be specified at any desired 

number of points in the five surfaces of the box ABCD. 

 

The algorithms for description of strong earthquake motion along any horizontal 

line (HL) are described in Chapter 1. The essential feature of the algorithms for 

describing the motions along HL is the consistent use of phase delays based on the site-

specific dispersion of the wave motions through the soil layers described in terms of 

layered half space.  

 

For description of consistent motions along any vertical line (VL), it is necessary 

to work with decomposition of wave motion in terms of the frequency dependent mode 

shapes of body waves and of surface waves, which correspond to the characteristic 

functions of wave motion in the wave-guide in the layered half space. The mathematical 

formulation for the algorithms we have developed for the formulation of motions along 

VL is described in Chapter 2. At the time of this writing this method has been tested, and 

fully verified in terms of the basic physics of surface wave-guides. However, because it is 

now available for the first time, it will be necessary to continue to further refine and 

generalize its output formats, so that it is easily and conveniently consistent with 

requirements of different numerical models, which will be specified by future users. We 

will continue to monitor how it is used, by those who work with finite element and with 

finite difference models, and will further refine its output formats as required. 
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 All of the above has been formulated for the site geology represented by parallel 

and flat layers. However, in a realistic geological environment, these layers can be quite 

irregular. Chapter 3 describes the scattering and diffraction of Love surface waves and of 

body SH waves by layers, which have irregular surface and interfaces. The scattered and 

diffracted waves, which are caused by irregular layer geometry, will interfere with the 

input motions and may lead to amplification and deamplification of incident motions, and 

to concentration of stresses and strains on and below the ground surface. 

 

 Chapter 4 extends the results of Chapter 3 for excitation by Rayleigh surface 

waves and body P and SV waves. These in-plane motions require more complex analyses 

than what is described in Chapter 3, as there are mode conversions between longitudinal 

P- and shear SV- wave motions. 

 

        Chapter 5 presents a manual describing the computer program SYNAC, which is 

used to compute the time series representing all components of ground motion 

(translations, rotations, strains and curvatures) for excitation of the numerical box models 

for SSI calculations. 

 

 

Tasks that were to be performed 
 

• Fiscal year 2011/2012: 
4.1 Develop software for computation of time series describing three translation 
components,  
4.2 Carry out verification and validation process for 4.1. 
 

• Fiscal year 2012/2013: 
4.3 Develop software for computation of time series describing three rotational 

components of motion, 
4.4 Develop software for computation of time series describing all corresponding strains, 

and 
4.5 Develop software for computation of time series describing all components of 
curvature.  
4.6    Carry out verification and validation process for 4.3 to 4.5  
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• Fiscal year 2013/2014: 
4.7    Develop software for computation of time series as in the above 4.1, 4.3, 4.4 and 
4.5 for the complete body and surface waves together for all 6 components of motion.  
4.8    Carry out verification and validation process for 4.7.  
 

• Fiscal year 2014/2015: 
4.9    Develop software for computation of all time series at any point at depth, as in 4.1, 
4.3, 4.4 and 4.5 above, but for non-parallel and irregular layers in the half space for all 6 
components of motion. 
4.10 Carry out verification and validation process for 4.9. 
 
Tasks that have been performed 
 
We completed the work on all of the above tasks in early May of 2014. However, as we 
started the work it became clear that a better and more efficient sequence of tasks would 
have been to break up the tasks 4.1 to 4.8 into two groups: (1) For formulation of all 
motions along an array of surface points, and (2) for the same, but for the array of points 
along a vertical line down into the layered half space. Consequently our Report I (in 
Appendix R1) describes the strong motion translations, rotations, strains and curvatures 
along an array of horizontal points, and Reports II and III (in Appendices R2 and R3) 
describe the same along an array on a vertical line. The work on Tasks 4.9 and 4.10 is 
described in Appendices R4-1 and R4-2. Appendix R5 contains a manual on how to use 
the software for calculation of artificial strong ground motion, including translations, 
rotations, strains and curvatures versus time. 
 

 ES-10



 

 
Chapter 1       Synthetic Earthquake Ground Motions on an Array 

 

I.1 INTRODUCTION 

Extended structures are sensitive to differential motion of their supports and their seismic 

analysis and design require specification of time histories of ground motion at an array of closely 

spaced points.  Because the phase in an accelerogram is not a stable quantity, time histories of 

ground motion are not predictable directly by empirical scaling models, but can be constructed 

indirectly, using empirically predicted amplitude spectrum, and some procedure for unfolding 

the spectrum in time.  This chapter presents such a method, which generates synthetic time 

histories of motion at an array of points. The method is an extension of the SYNACC method, 

first proposed by Trifunac (1971) and demonstrated for a site in Imperial Valley in Southern 

California.  The method evolved over the years, by inclusion of more current empirical scaling 

laws for Fourier amplitude spectra of acceleration and frequency dependent duration (Wong and 

Trifunac 1978, 1979), and extension to prediction of rotational motions (Lee and Trifunac 1985, 

1987), strains (Lee 1990) and curvature (Trifunac 1990), all at a point in space (see also review 

in Lee 2002).  This chapterr presents an extension of the SYNACC method to an array of points 

on the ground surface.  It also presents new expressions for the point strains, rotations and 

curvatures, derived from the new formulation, which differ slightly from the previous 

expressions.  

 

The method is based on representation of the ground motion by traveling wavelets of surface 

and body waves, which propagate in space with phase and group velocities that are those of a 

horizontally layered half-space approximating the soil and geology of the site.  The amplitudes 

of the wavelets are such that the total motion in a narrow frequency band matches a target 

Fourier amplitude spectrum of acceleration. The methodology has been implemented in a 

computer program, which has built in a suite of empirical scaling models for prediction of site-

specific Fourier amplitude spectra of acceleration, and computes the phase and group velocities 

specific for the site.  A uniform hazard spectrum, or any user specified spectrum can also be 

used.  While the Fourier spectrum determines the overall amplitudes of motion, the layered 

1-1 
 



structure determines the distribution of the energy in time at a given site, and also the causal 

relationship between the motions at neighboring points along the supports of the structure. This 

causal relationship is such that the motions further away from the source are delayed relative to 

the closer points differently in different frequency bands.  Examples are shown of time histories 

for ground accelerations, velocities and displacements in the radial, transverse and vertical 

direction, and radial (normal) and transverse (shear) strains, at a point and at an array of points. 

 

This empirical-physical model based method has clear advantages over both the engineering 

stochastic methods and the seismological physics based methods.  The former methods (see 

recent comprehensive review in Zerva 2009) produce motions with stationary frequency content 

over the entire duration, in contrast to the nonstataionary nature reveled by the many 

observations. Further, motions at an array of points are generated using overly simplified 

coherency function, which is based on a single valued phase velocity, rather than the complete 

site-specific set for all body waves and surface wave modes.  The latter methods involve 

numerical simulations based on a physical model of the earthquake source and of the wave 

propagation from the source to the site.  They produce motions with correct physical nature, but 

involve many assumptions and need to be validated with data.  Also, due to the lack of detail in 

the available information about the earthquake source and the wave path, they have difficulties to 

model high-frequency content of the synthetic motions.  The SYNACC method, which is neither 

stochastic nor purely physics based, does not suffer from these shortcomings.  It produces 

motions with amplitudes that are automatically consistent with observations over a broad 

frequency range, and does not need calibration.  Also, the motions are nonstationary in a 

physically meaningful sense and consistent with the site soil and geology. In the following we 

illustrate this method only for translational components of motion. Examples describing strains, 

rotations and curvatures can be found in Appendix R1 
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I.2 METHODOLOGY 

 

The geology between the earthquake source and the site can vary considerably, especially 

for large distances, and different types of waves will arrive at the site via different wave paths, as 

illustrated in Fig. I.1, showing the earthquake fault, and a segment of a long structure located on 

sediments.  The surface waves (Love and Rayleigh) arrive horizontally through the low velocity 

layers, with velocities that are frequency dependent, defined by the dispersion in the layers of 

site soil and geology, while the body waves arrive from depth at an angle, which is close to 

vertical for soft geology near the surface.  Further, the amplitude attenuation is different for body 

and surface waves, due to different geometric spreading, and for both waves, the attenuation is 

frequency dependent.  The total effect can be predicted reliably, in statistical sense, using 

empirical scaling laws for Fourier amplitude spectra of acceleration.   Considering the nature of 

these processes, in the SYNACC methodology, over the frequency band of interest, 0 to 25 Hz, 

the empirically predicted Fourier amplitude spectrum is partitioned in  narrow non-

overlapping sub-bands, and the energy in each sub-band is partitioned among surface and body 

waves (Trifunac 1971; Wong and Trifunac 1978, 1979).    

N

 

 
Figure I.1 The Model 
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Waves in a narrow frequency band propagate as groups, forming wavelet packets, the 

amplitudes of which are localized in time, and which propagate with their group velocity.  The 

total motion, therefore, can be represented as a superposition of such wavelet packets.  In the 

following, the representation of the surface and body waves that enables generation of related 

motions at an array of points is presented, highlighting the changes relative to the previous 

versions for generating motions at a single point. 

 

I.2.1 Representation of Surface Wave Motion at a Site 

 

To expand the surface waves, the soil and geology at the site is locally approximated by a 

horizontally layered half-space, as shown in Fig. I.2.  Let , ih iρ , iα  and iβ  be the thickness, 

mass density and P- and S-wave velocities in the i -th layer, with i = 1, … , L , and let the x -axis 

point in the direction of wave propagation.  The layer boundaries define a boundary value 

problem for the displacement, which has a solution that is a surface wave only for a discrete set 

of frequency dependent phase velocities ( )mc ω , obtained from the roots of the characteristic 

equation for the particular problem (Thompson 1950; Haskell 1953)  The displacement for an 

eigenvalue constitutes an eigenfunction (or a mode), and any surface wave motion then can be 

represented as a linear combination of these eigenfunctions.   

 

 
 

Fig. I.2  Velocity profile for Dispersion Model 1. 
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Fig. I.2 shows an example of a velocity profile for a site in El Centro in Imperial Valley, 

California (Trifunac 1971), and Tables I-1a,b,c (in the Appendix A) show the properties of the 

layers for three variants of this profile, which differ only in the top 180 m.   Fig. I.3 shows the 

phase and group velocities,  ( )mc ω  and ( )mU ω  1, ,5m = … , for the first five modes of Rayleigh 

and Love waves, referred to as dispersion curves, for the three variants.  The Rayleigh waves are 

surface waves with in-plane particle motion along an ellipse, which is usually retrograde at the 

surface, and with vertical to horizontal aspect ratio > 1. The Love waves are surface waves with 

out of plane particle motion. The group velocity ( ) /m mU d dkω ω= , where ( ) / ( )m mk cω ω ω=  is 

the horizontal wave number, is the velocity with which the amplitude envelope of the wavelet 

packet propagates, and with which the energy is transported.   The number of modes is finite for 

a given frequency, and increases with frequency. The first mode exists at all frequencies, while 

the higher modes exist only for high enough frequencies.  Because the wave velocities in the 

earth crust are smaller at progressively smaller depths, and because the penetration depth of a 

mode decreases with frequency, ( )mc ω  decreases with frequency, approaching asymptotically 

the shear wave velocity of the top layer.   

 

The synthesis is based on dividing the frequency band of interest, 0 to 25 Hz, in  non-

overlapping sub-bands, assuming uniform Fourier amplitude within the sub-band, and in each 

band, representing the surface wave motion as a superposition of the eigenfunctions, evaluated at 

the central frequency of the sub-band.  Let 

N

nω  and nωΔ  be the central frequency and half-

bandwidth of the -the sub-band, n ( )nm m nU U ω=  and ( )nm m nc c ω=  be the group and phase 

velocities of the -th mode in that sub-band, and let  be the eigenfunction of the m -th 

mode in the -th sub-band,  at point 

m ( ; )nmw x t

n x  on the free surface ( 0z = ), and at time .   Then   t

 (( ; ) sinc expnm n n nm
nm

xw x t t i t k x
U

ω ω
⎡ ⎤⎛ ⎞ )⎡ ⎤= Δ − −⎢ ⎥⎜ ⎟ ⎣ ⎦
⎢ ⎥⎝ ⎠⎣ ⎦

  (1) 

where  

 11
2

n
nm

nm
k

c Q
ω ⎛ ⎞

= −⎜
⎝ ⎠

i ⎟  (2) 
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Fig I.3  Phase and Group velocities, for the first five modes of Rayleigh and Love waves. 

 

is the complex horizontal wave number, and  is the quality factor, assumed to be constant 

(Trifunac 1994).  If no material attenuation is assumed, 1 /

Q

(2 ) 0Q =  and  is real. Function 

 represents a traveling wavelet, which is a complex exponential of frequency 

nmk

( ; )nmw x t nω , 

amplitude modulated by a  function.  The amplitude modulation  sinc
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 ( ) sin( )sinc n
n

n

tt
t
ω

ω
ω
Δ

Δ =
Δ

 (3) 

is a window in time with half-width /nt nπ ωΔ = Δ , which propagates with velocity , while 

the phase propagates with velocity . Consequently, at a point 

nmU

nmc x , the phase has time lag 

/ nmx c , and the center of the amplitude envelope has time lag / nmx U  relative to the reference 

point, .   0x =

 

Representation (1) is consistent with the following convention of Fourier transform for the 

pair ( )f t  and ˆ ( )f ω  

 

ˆ( ) ( )

ˆ ( ) ( )

1 ˆ( ) ( )
2

i t

i t

f t f

f f t e dt

f t f e

ω

ω

ω

ω

dω ω
π

∞
−

−∞
∞

−∞

↔

= ∫

= ∫

 (4) 

Then, the Fourier transform of the wavelet  is ( ; )nmw x t

 (ˆ ( ; ) exp
n

n
nm nm n

n nm
w x i k x p

U ω
ω ωπ )ω ω ω

ω Δ
⎡ ⎤⎛ ⎞−

= − + −⎢ ⎥⎜ ⎟Δ ⎢ ⎥⎝ ⎠⎣ ⎦
 (5) 

where  

 ( ) 1,
0, otherwisen

n n
np ω

nω ω ω ω ω
ω ωΔ

− Δ ≤ ≤ + Δ⎧ ⎫
− = ⎨ ⎬

⎩ ⎭
 (6) 

represents a box function with half width nωΔ , centered at frequency nω , with amplitude scaled 

to / nπ ωΔ   and phase shifted by  .  nmk x

According to Eqns. (1) and (5), the energy of the wavelet  is localized, in time - 

around  with spread 

( )nmw x

/ nmt x U= /nt nπ ω±Δ = ± Δ , and, in frequency, around nω ω=  with spread 

nω±Δ , i.e. within a rectangle of constant area ( )( )2 2 2n nt ω πΔ Δ =  in the phase plane.  

Consequently, finer division of the frequency range (smaller nωΔ ) will lead to wider in time 
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wavelets , which is a manifestation of the Heisenberg-Gabor uncertainty principle for 

signals (Gabor 1946, 1953).  

( ; )nmw x t

 

Let  be the associated analytic signal of a generic component of motion (the specific 

expansions will be presented in one of the following sections.  Because scaling laws for Fourier 

spectra of acceleration are available, we start with the representation of acceleration in a series of 

wavelets 

( , )u x t

  (7) *

1 1
( , ) ( ; )

nMN
nm nm

n m
u x t A w x t

= =
= ∑ ∑��

where nM  is the number of modes that exist in the -th sub-band.   n

 

I.2.2 Representation of Velocity, Displacement and Spatial Derivatives 

It is convenient to do the synthesis in the frequency domain and then invert to the time 

domain, because the representations of velocities, displacements, strains, rotations, and 

curvatures are easily obtainable in the frequency domain by analytical integration and 

differentiation of the wavelets.  The Fourier transforms of acceleration, velocity and 

displacements are  

 *

1 1
ˆ ˆ( , ) ( ; )

nMN
nm nm

n m
u x t A w x ω

= =
= ∑ ∑��  (8) 

 *

1 1

1ˆ ˆ( ; ) ( ; )
nMN

nm nm
n m n

u x A w x
i

ω ω
ω= =

= ∑ ∑�  (9) 

and *
21 1

1ˆ( ; ) ( ; )
nMN

nm nm
n m n

u x A w xˆω ω
ω= =

−
= ∑ ∑  (10) 

 
I.2.3 Mode Participation Factors  

The coefficients of the expansion *
nmA  are complex valued and depend on the amplitude of 

the target spectrum, but, for a given site geology, they are related, as shown in Trifunac (1971) 
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for a site in Imperial Valley, and their relative amplitude depends on the frequency and mode 

number (Appendix A).  We represent them as  

 ( )*
1 2( ) ( )exp ran

nm n n nmA A m A iα ω φ=  (11) 

where ran
nmφ  is a random phase between π−  and π , describing the randomness in the radiation of 

energy from the earthquake source and other randomness along the wave path until the arrival to 

the region near the site, represented by the medium with parallel layers (Fig. I.1).  Functions 

1( )A m  and 2( )nA ω  are site specific, as in Trifunac (1971), and their product 1 2( ) ( )nA m A ω  can 

be thought of as a site dependent mode participation factor.  The coefficients ( , )n n nα α ω ω= Δ , 

for given division in sub-bands, depends only on the target spectrum that is to be matched by the 

synthetics.  

 

The representation (7) differs from that in Trifunac (1971) and Wong and Trifunac (1978, 

1979) as follows.  In the latter, the phase delay at point x  is ( )/ ran
n mn nmU tω φ+ , i.e. the lag of 

the amplitude modulation plus some random phase shift, while in this chapter, the phase lag is 

( )/n mnc tω .  

 

In this work, we consider also material attenuation due to , which affects the difference 

between the motions at different points of the array.  Minor differences, chosen for convenience 

in this presentation, are that the random phase is part of the coefficients of expansion, and that 

the associated analytic signal is expanded.   

Q

 

Another significant difference is in the definition of the reference point .  In the latter, 

 is the epicenter of the earthquake, while, in this work, it is a point between the epicenter 

and the site, from where the parallel layers geology can be adopted to be representative of the 

wave path.  This point can be referred to as the “the edge of the valley”, and 

0x =

0x =

x =   representative 

distance from the edge of the valley. Therefore, in this work, x  is just the distance over which 

dispersive wave propagation occurs consistent with the given parallel layers of soil and geology, 

while the target spectrum to be matched depends on the hypocentral distance R  of the site from 
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the source (Fig. I.1). Such definition of the reference 0x =  is more useful for modeling, as the 

geology can vary considerably between the source and the site.  It also helps control the duration 

of the synthetic motion, and avoid the artifact of unrealistically long duration of the synthetic 

motion for large source to site distances and softer near surface soil layers. Because the parallel 

layers structure is an idealization, the “distance from the edge of the valley” is not exact but an 

abstraction, and can be chosen by trial and error or by iteration, until the duration of the synthetic 

motion is satisfactory, based on some subjective or objective standard, such as empirical scaling 

laws.  

 

I.2.4 Expansion of Body Waves 

The propagation of body waves is essentially nondispersive, and ( ) ( )nc U nω ω= . They 

arrive at the site from depth, often close to vertical due to progressive bending of the rays 

towards the surface (Fig. I.1), and consequently propagate horizontally with larger phase 

velocities ( )nc ω  than the surface waves. Further, their amplitude at a given frequency reflects 

the interference characteristics of the layers, which depends on incident angle.   In the SYNACC 

synthesis, the body waves are treated as two additional “surface wave modes”, one for P- and the 

other one for S-waves, with large phase and group velocities, and contributing respectively to the 

in-plane and out of plane motions, and with mode participation factor same as those for the Love 

modes, i.e. not reflecting the site interference characteristics, but with the flexibility to increase 

or decrease their participation, relative to that of the surface waves.  Site-specific interference 

features could be included by appropriate frequency dependent mode participation factors, 

derived e.g. using the propagator matrix of the medium (Trampert et al.1993; Mehta et al. 2007).  

 

I.2.5 Determination of the Expansion Coefficients for a Site 

The site-specific mode participation factors, 1 2( ) ( )nA m A ω , can be determined by analysis of 

recorded motion in the region, as in Trifunac (1971), for example.  In this chapter, for illustration 

purposes, the same functions as in Trifunac (1971) are used, included in Appendix A (of 

Appendix R1) for completeness of this presentation.   The coefficients nα  are determined from 

the requirement that some representative value of ˆ( ; )u x ω��  over the n -th sub-band matches a 
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target value.  For example, such representative value can be obtained by averaging 10
ˆlog ( ; )u x ω��  

and converting back to linear scale.  Let (tar
nFS )ω  be the amplitude spectrum to be matched by 

the (real valued) synthetic acceleration.  Then  

 
( )

2

10 1 2
1

1 ˆlog ( ) ( )exp ( ; )
2

2 ( )

10

Mn n n ran
n nm nm

mn n n

tar
n

n
A m A i w x d

FS
ω ω

ω ω
ω φ ω

ω

ω
α +Δ +

=−ΔΔ

=
∑∫ ω

)

 (12) 

where  is the total number of surface and body waves contributing to the particular 

component of motion.  The factor of 2 multiplying 

2nM +

(tar
nFS ω  is because ˆ( ; )u x ω��  is the Fourier 

transform of the associated analytic signal, which, for 0ω > , has amplitudes twice of those of its 

real part.  The expression for the nα  in Eqn. (12) differs from Trifunac (1971) and Wong and 

Trifunac (1978, 1979) in the averaging.   

 

I.2.6 Motion at an Array of Sites 

The sites where related motions are needed for analysis of extended structures are typically 

at distances greater than few tens of meters.   For such distances, it is assumed that the motion 

differs only because of deterministic propagation and attenuation due to Q , while the 

randomness in phase and mode participation factors, included in coefficients *
nmA , is the same.  

For such an array of sites, the motion at one representative site, at 0x x= , is first synthesized by 

matching the target spectrum, which gives the coefficients *
0( )nmA x , and the motion at another 

sites, at 0x x= + Δx

0 )

, is then computed as  

 *
0 0

1 1
ˆ ˆ( , ) ( ) ( ;

nMN
nm nm

n m
u x x A x w x xω ω

= =
+ Δ = + Δ∑ ∑��  (13) 
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I.2.7 Trigger Time Adjustment  

The above equations correspond to reference time, which is such that, at 0x = , the 

amplitude envelopes of all the wavelets are centered at 0t = .  The wavelets, however, have 

energy also for time , as the main lobes of the sinc functions extend over the interval 0t <

[ ],n nt t−Δ +Δ , where /nt nπ ωΔ = Δ .   For small x , / nmx U  may be considerably smaller than 

, in which case the entire pulse does not contribute to the synthetic accelerogram, if its 

starting time (which would be the trigger time of an imaginary instrument that has recorded the 

motion) is set even to .  This can be avoided by time shifting the synthetic time history, 

which is conveniently done in the frequency domain.  For example, for time shift , 

ntΔ

0t =

0t ˆ ( ; )nmw x ω  

needs to be multiplied by 0exp( )i tω− . 

 

I.2.8 Cartesian Components of Linear Motions 

Having presented the analytical developments for a generic component of motion, we now 

proceed with the specific expansions for the Cartesian x y z− −  coordinate system shown in Fig. 

I.1.  Let ,  and  be the displacement components along the three 

coordinate axes, which have specific expansions    

( ; )xu x t ( ; )yu x t ( ; )zu x t

 *

1 1
ˆ ˆ( , ) ( ; )

nMN x x
x nm n

n m
u x t A w xm ω

= =
= ∑ ∑��  (14) 

 *

1 1
ˆ ˆ( , ) ( ; )

nMN y y
y nm n

n m
u x t A w xm ω

= =
= ∑ ∑��  (15) 

and    *

1 1
ˆ ˆ( , ) ( ; )

nMN z z
z nm n

n m
u x t A w xm ω

= =
= ∑ ∑��     (16) 

Because  and  are expanded in Rayleigh modes, the expansion wavelets ( ; )xu x t ( ; )zu x t

ˆ ( ; )x
nmw x ω  are as in Eqn. (5) with group and phase velocities R

nmU  and R
nmc  specific for the 
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corresponding Rayleigh mode, and ˆ ˆ( ; ) ( ; )z x
nm nm nmw x V w xω ω=  where ( )nm m nV V ω=  is the 

complex ratio of vertical to horizontal amplitude of the elliptic particle motion at the surface for 

the mode.  Similarly,  is expanded in Love modes, and ( ; )yu x t ˆ ( ; )y
nmw x ω  are as in Eqn. (5) with 

group and phase velocities L
nmU  and L

nmc  specific for the corresponding Love mode. 

 

I.2.9 Generation of Target Spectrum  

 

Site specific target Fourier amplitude spectra for a scenario earthquake can be generated 

using an empirical scaling model, for given earthquake magnitude, hypocentral distance, site 

conditions, and probability of being exceeded, which reflects the uncertainty in the scaling law.   

The uncertainty in the earthquake size, location and occurrence rate can also be included by 

specifying as a target spectrum a uniform hazard Fourier spectrum, which has amplitudes with 

equal probability of being exceeded from any earthquake considered.    

SYNACC has built in the Fourier amplitude scaling models developed by Trifunac and Lee 

(1985, 1989a), in addition to the earlier models (Trifunac 1976, 1979.1989b), and can also use 

uniform hazard spectrum generated by the program NEQRISK (Lee and Trifunac 1985), which 

has built in the same suite of scaling models as those built in SYNACC for a scenario 

earthquake, or any user provided Fourier amplitude spectrum.  The built in scaling models differ 

in the input parameters, and a particular model can be chosen depending on the details of the 

information available about the site.  For example, the earthquake magnitude and hypocentral 

distance can be provided or, alternatively, the Modified Mercalli site intensity. The local site 

conditions are described in terms of two scales – geologic one, which samples the geology up to 

the depths of the order of kilometers, and local soil one, which samples soil properties near the 

surface up to depths of two hundred meters. The classification based on geology can be 

described in two ways, by a categorical variable, such as the geologic site condition parameter , 

which can take values 0 (sediments), 2 (rock), and 1 (intermediate site conditions), or by a 

numeric variable, such as the depth of sediments .  The local soil classification is described by 

the categorical variable - local soil condition parameter 

s

h

Ls , which can take on the values 0 

(“rock” soil), 1 (stiff soil) and 2 (deep soil).   
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I.3 RESULTS 

The methodology is illustrated for a scenario earthquake.  A suite of synthetic motions and 

strains are presented for different earthquake sizes, hypocentral distances, and dispersion models, 

at a site and an array of sites.  The target Fourier spectra were computed using the MMI-SITE-

SOIL model (Trifunac and Lee 1985), with 0s =  (sediments) and 2Ls =  (deep soil).   Synthetic 

motions were computed at 4096 points in time with time step 0.02 s, i.e. with total length of 

about 82 s. Unless mentioned otherwise, the trigger time was adjusted by adding a 5 s shift.  The 

number of sub-bands is 73.   

 
I.3.1 Synthetic Motions at a Point 

 

Fig. I.4 Artificial acceleration, velocity and displacement that match the target Fourier spectrum of 

acceleration of M6.5 earthquake, at hypocentral distance 10R = km, and for a site on sediments ( 2s = ) 

and deep soil ( ), unfolded with dispersion model 1. 2Ls =
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Fig. I.5 Artificial acceleration, velocity and displacement that match the target Fourier spectrum of 

acceleration of M6.5 earthquake, at hypocentral distance 10R = km, and for a site on sediments ( 2s = ) 

and deep soil ( ), unfolded with dispersion model 2. 2Ls =

 

Figs. I.4, I.5 and I.6 show the three component synthetic motions (accelerations, velocities 

and displacements) from a moderate and near earthquake ( 6.5M =  and km), respectively 

for dispersion models 1, 2 and 3, discussed in the Model section of this chapter (Fig. I.2 and I.3).   

10R =

 

Model 1 is the same as the benchmark model in Trifunac (1971) and in Wong and Trifunac 

(1978, 1979), which corresponds to a site in El Centro in Imperial Valley, southern California, 

and the other two models are its variants that are “softer” in the top 180 m.  The “distance from 

the edge of the valley” was chosen to be 8x =  km, 7 km and 6 km for the three models. It can be 
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seen that the amplitudes of motion are similar for the three dispersion models, as they have been 

generated for the same target spectrum.  The time histories, however, differ in that late arrivals of 

high frequency waves are seen in the records for dispersion model 3, which has the softest top 

layer.  

 

 
 

Fig. I.6 Artificial acceleration, velocity and displacement that match the target Fourier spectrum of 

acceleration of M6.5 earthquake, at hypocentral distance 10R = km, and for a site on sediments ( 2s = ) 

and deep soil ( ), unfolded with dispersion model 3. 2Ls =

 

Finally, Fig. I.7 shows the agreement between the Fourier amplitude spectra of the synthetic 

motions and the target spectra, for all the cases for the 6.5M =  earthquake. 
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Fig. I.7     Fourier Transform amplitudes of synthetic accelerations for M6.5 earthquake, unfolded by 

dispersion models 1 (top), 2 (middle) and 3 (bottom), for radial (left), vertical (center) and transverse 

(right) motions.  
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I.3.2 Motions at an Array of Points  

Figs I.8, I.9 and I.10 show snapshots of synthetic accelerations at six sites, 100 m apart in 

the radial direction, with the closest site being at 10R = km distance from a M6.5 earthquake.  

The figures show respectively the radial, vertical and transverse components, all unfolded in time 

with dispersion model 3, and with 4x =  km.  These figures show noticeable differences in the 

acceleration time histories even though the sites are very close to each other.  The differences, 

created by a purely deterministic physical model of wave propagation, are more complex than 

single phase shift and some small amplitude decay.   

 

The displacements, having more energy in the lower frequency part of the spectrum, differ much 

less at such small distances, because the lower frequency energy propagates with much longer 

wavelengths.   

 

They exhibit a high degree of similarity of the waveforms even at distances several 

kilometers away, as it can be seen in Figs. I.11, I.12 and I.13, which illustrate radial, vertical and 

transverse synthetic displacements at sites 1 km apart in the radial direction.  

 

I.4 DISCUSSION AND CONCLUSIONS 

A method for generating synthetic time histories of earthquake ground motion at an array of 

points along the ground surface was presented, which is an extension of the SYNACC 

methodology, originally developed for a single site.  Such motions are needed for design of long 

structures, pipelines and bridges (Kojić and Trifunac 1988; Todorovska and Trifunac 1990a,b; 

Jalali and Trifunac 2007, 2009, 2011; Kashefi and Trifunac 1986), and in particular for nonlinear 

analyses, which need to be performed in the time domain. The methodology combines empirical 

scaling laws for Fourier amplitude spectra of acceleration with a physical model of wave 

propagation in a horizontally layered half-space. Consequently, the amplitudes of the synthetic 

motions are consistent in statistical sense with observations, while the phase and local 

differences between points of the array are consistent with local characteristics of wave 

propagation.   The presented examples for ground accelerations, velocities and displacements 
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(and for strains, rotations and curvatures in Appendix R1) generated by the method showed that 

the method produces realistic and physically meaningful time histories.     

 

 

 

Fig. I.8    Snapshots of synthetic acceleration - radial component - at six sites, 100 m apart in the radial 

direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance km (the closest 

site), for site condition - sediments ( ) and deep soil (

10R =

2s = 2Ls = ), unfolded with dispersion model 3.  
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Fig. I.9   Snapshots of synthetic acceleration - vertical component - at six sites, 100 m apart in the radial 

direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance km (the closest 

site), for site condition - sediments ( ) and deep soil (

10R =

2s = 2Ls = ), unfolded with dispersion model 3. 
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Fig. I.10  Snapshots of synthetic acceleration - transverse component - at six sites, 100 m apart in the 

radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance km (the 

closest site), for site condition - sediments (

10R =

2s = ) and deep soil ( 2Ls = ), unfolded with dispersion 

model 3. 
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Fig. I.11  Snapshots of synthetic displacement - radial component - at eleven sites, 1 km apart in the radial 

direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance km (the closest 

site), for site condition - sediments ( ) and deep soil (

10R =

2s = 2Ls = ), unfolded with dispersion model  

1-22 
 



 
 

 

Fig. I.12  Snapshots of synthetic displacement - vertical component - at eleven sites, 1 km apart in the 

radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance km (the 

closest site), for site condition - sediments (

10R =

2s = ) and deep soil ( 2Ls = ), unfolded with dispersion 

model 3.  
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Fig. I.13   Snapshots of synthetic displacement - transverse component - at eleven sites, 1 km apart in the 

radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance km (the 

closest site), for site condition - sediments (

10R =

2s = ) and deep soil ( 2Ls = ), unfolded with dispersion 

model 3. 
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 Appendix A:  Coefficients ( )1A m  and ( )2 nA ω  

Trifunac [1] suggested the following empirical equations for ( )1A m  and ( )2 nA ω  

 ( ) ( )( )2 2
1 0 0exp 2 R mA m m m C C X= − − +   

and   ( ) ( )2 2
2 0 exp 2n n p BA B Bω ω ω ω⎛ ⎞= − − +⎜ ⎟

⎝ ⎠ R nX   

with  and  being random numbers between -1 and 1, and the values of other constants are  

suggested in Table A1. 

mX nX

Table A1: Empirical Scaling Coefficients for Equations (5) and (6) (from [1]) 

Mode 0C  om  RC  0B  pω  Bω  RB  

1 3 5 0.2 1.5 10 5 0.1 
2 3 5 0.2 1.5 10 5 0.1 
3 3 5 0.2 1.5 10 5 0.1 
4 3 5 0.2 2.0 25 15 0.1 
5 3 5 0.2 2.0 25 15 0.1 
6 3 6 0.2 3.0 30 10 0.3 
7 3 7 0.2 1.5 30 5 0.25 

 
 

Table I-1a   Profile for dispersion model 1 

 

No. 

Error! 
Objects 

cannot be 
created from 
editing field 
codes. - [km] 

Error! 
Objects 

cannot be 
created from 
editing field 

codes.-  
[km/s] 

Error! 
Objects 

cannot be 
created from 
editing field 

codes.- 
[km/s] 

 Error! 
Objects 

cannot be 
created from 
editing field 

codes.-
[gm/cm3] 

1 0.18 1.70 0.98 1.28 
2 0.55 1.96 1.13 1.36 
3 0.98 2.71 1.57 1.59 
4 1.19 3.76 2.17 1.91 
5 2.68 4.69 2.71 2.19 
6 ∞ 6.40 3.70 2.71 
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Table I-1b   Profile for dispersion model 2 

 

No. 

Error! 
Objects 

cannot be 
created from 
editing field 
codes. - [km] 

Error! 
Objects 

cannot be 
created from 
editing field 

codes.-  
[km/s] 

Error! 
Objects 

cannot be 
created from 
editing field 

codes.- 
[km/s] 

 Error! 
Objects 

cannot be 
created from 
editing field 

codes.-
[gm/cm3] 

1a 0.06 0.867 0.50 1.2 
1b 0.12 1.70 0.98 1.28 
2 0.55 1.96 1.13 1.36 
3 0.98 2.71 1.57 1.59 
4 1.19 3.76 2.17 1.91 
5 2.68 4.69 2.71 2.19 
6 ∞ 6.40 3.70 2.71 

 
Table I-1c  Profile for dispersion model 3 

 

No. 

Error! 
Objects 

cannot be 
created from 
editing field 
codes. - [km] 

Error! 
Objects 

cannot be 
created from 
editing field 

codes.-  [km/s] 

Error! 
Objects 

cannot be 
created from 
editing field 

codes.- [km/s] 

 Error! 
Objects 

cannot be 
created from 
editing field 

codes.-
[gm/cm3] 

1a 0 .03 0.4335  0.25    1.20 
1b 0.03 0.867 0.50 1.2 
1c 0.12 1.70 0.98 1.28 
2 0.55 1.96 1.13 1.36 
3 0.98 2.71 1.57 1.59 
4 1.19 3.76 2.17 1.91 
5 2.68 4.69 2.71 2.19 
6 ∞ 6.40 3.70 2.71 
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Chapter 2
  

Synthetic Translational Motions of Surface and Body Waves 
in Elastic Layered Medium over Half-Space 

  
Summary 
 
The following is a brief description of the results presented in the Reports I (Appendix 

R1) and II (Appendix R2), which includes the theory and verification examples of how to 

extend the synthesis of strong ground motion along a vertical array of points, into the 

depth of a layered half space. Together Reports I and II describe the complete 

methodology for computing all components of strong ground motion at any point on the 

surface or at arbitrary point at some depth in the layered half space. The verification of 

this methodology has been performed by detailed analysis of the nature of synthesized 

motions at depth, and by verifying that the motions satisfy all known seismological 

properties and principles of body and surface wave propagation in layered half space. It 

was found that the synthesized motions meet all known properties of strong earthquake 

ground motion, and constitute realistic representation of strong earthquake waves in a set 

of parallel layers overlying the half space.    

     

II.1 Synthetic Translational Motions of Surface Waves in a 
Layered Medium at Points on the Half-Space Surface  – 
a Review 

 

The synthetic translational components of acceleration are constructed to have a 

required Fourier amplitude spectrum, ( )FS ω , and a given duration, ( )D ω , at the site. A 

complete review of the method first proposed by Trifunac (1971), and later refined by 

Wong and Trifunac (1978, 1979), for the generation of synthetic accelerograms, can also 

be found in the review paper by Lee (2002) and Todorovska et al (2013). The following 

is needed to construct synthetic motions: 

 

1.1 Wave Dispersion Curves at a Site 
 

1.2 Arrival Times of body waves and of each mode and frequency band of Surface 
Waves 
 

1.3 Contribution of the Modes at a Given Frequency Band 
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1.4 Determination of Relative Amplitudes and Phrases of all body and Surface 
Waves. 
 

1.5 The Total Accelerogram is then a Superposition of time-histories of all the 
contributing waves. 
 

 

Reports I and II outline the details of the above procedures and therefore not all of those 

will not be repeated here. The complete process will be referred to as the “SYNACC 

algorithm”. It applies to the translational (out of plane) horizontal component of surface 

Love waves and body SH waves, as well as to both the horizontal and vertical 

translational components of surface Rayleigh waves and body P and SV waves.  

Report II has presented also how the time and space derivatives of translational motions 

can be used to construct rotational components of strong motion (rocking and torsional 

accelerograms, velocities and displacements), all components of curvature and all 

components of strain, associated with passage of strong translational components of 

motion. To emphasize the essential parts of the physical nature of this problem we will 

focus our attention here mainly on the translational components of motion, and refer the 

reader to the material in Report II for further details and examples about the associated 

rotational, curvature and strain components of motion. 

 

Figure II.1 shows an example of dispersion curves at a site in El Centro Area in 

Imperial Valley, California (model 1 refers to the properties of parallel layers; see 

Todorovska et al 2013). The site is a 6-layered medium, and has been used in many of 

our previous studies (Lee, 2002) to illustrate various synthetic components of strong 

ground motion. This figure shows the phase velocities of Love and Rayleigh waves at the 

site, which can be employed to generate the synthetic accelerations at the site. Figure II.2 

is an example of one such synthetic translational accelerogram. 

 
II-2 Synthetic Translational Motions of Love and Body SH 

Waves On and Below Surface of a Layered Medium 
 

 Let c c( )ω=  be the wave speed of a mode of Love waves in the half-space with 

n elastic layers over half space. c is the (horizontal) phase velocity of the waves  in each 

layer of the elastic media above the  half space,  
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Figure II.1  Phase Velocities (left) and Group velocities (right) for Love & Rayleigh Waves 
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Figure II.2  Synthetic Translational Accelerogration Time Histories. 
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II-2 Synthetic Translational Motions of Love and Body SH 
Waves On and Below Surface of a Layered Medium 
 

 Let c c( )ω=  be the wave speed of a mode of Love waves in the half-space with 

n elastic layers over half space. c is also the (horizontal) phase velocity of the waves  in 

each layer of the elastic media above the  half space.  

 

 
 

Figure II.3.  N-layered half-space with Love waves. 
 
 

For each layer l, with , the displacement of the Waves in the layer 

takes the form (in the anti-plane, y- direction): 

 l 1, , N= …

 1 1v , v :− +    
( )

( )

l

l

ik x z
l l

ik x z
l l

 C          

  C

v e

v e

γ

γ

−− −

++ +

=

=
    (II.1) 
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There are the upward and downward propagating rays of Love waves present in the 

layer. Here thl k k( ) c( )
ωω ω= =  is the horizontal wave number of the waves at 

frequency ω  , and with phase velocity c c( )ω= .  The term , which is same in all 

layers, together with the time harmonic term 

ikxe

i te ω , corresponds to the waves propagating 

in the –ve x direction. The terms l yike γ∓  are the vertical components of the waves with 

the negative term propagating upwards (–ve y) and the positive term propagating 

downwards (y). Here l l l( )γ γ β=  is given by

  

( )l l

1 1 122 2 2 2 2 2

l
l

k k k c1kk
β βγ β
− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

1−   (II.2) 

so that lkγ  is the vertical wave number of the waves in the  layer of the medium with 

shear wave velocity

thl

lβ . In general, the wave velocities increase as one moves down 

through the layers, so that 1 2 nβ β β< < < <… β , with the semi-infinite half-space layer 

at the bottom having the highest shear wave speed β . The motion associated with Love 

waves in the semi-infinite layer, l N= , is given by 

( )ik x z ikx k z C   C          v  e eγ γ
∞ ∞

− −
∞ = =    (II.3)  

where  
( ) ( )

1 1 122 2 2 2 2 2k k k c1 1kk
β βγ β

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
     (II.4) 

γ  is the complement of γ  and is real, so that the term ikx k ye γ−  in  corresponds to a 

motion whose amplitude is exponentially decaying with depth below the surface. 

v∞

 

The coefficients , respectively of the waves, lC ,  C−
l
+

l lv ,  v− + , in each of the layers l, for  l  

= 1 to n, are all related by the stress and displacement boundary conditions. In the 

topmost layer, the zero-stress boundary condition at the half-space surface is  
 

1
zy 1z 0

z 0

v
0

z
τ μ

=
=

∂
=

∂
=      (II.5) 
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for waves  in the top layer 1 1v v v+= + 1
− .l 1=  This gives 

 

       or1 1 1
1 1

z 0 z 0

v v v
0,

z z z
μ μ

+ −

= =

⎛ ⎞∂ ∂ ∂
= + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

( ) ( )    for all 
z z1 1

1 1 1
z 0

ik x ik x
C C 0, x,e eγ γ

μ + −

=

+ −⎛ ⎞− =⎜ ⎟
⎝ ⎠

   (II.6) 

so that            or       1 1 1C C 0 C C+ − +− = = 1
−

 

Starting from , it can be shown by induction that if the waves in the  layer 

are known, then the waves in the 

1l = thl

( )1 thl + layer can also be known, including the bottom 

semi-infinite layer. 

 
One can start with the layer, where the waves are given by: thl
 

l lv ,  v :− +   
( )

( )
   

   

zl l

zl l

ik x ik z ikx
l l l

ik x ik z ikx
l l l

C C

C C

v e e

v e e

γ γ

γ γ

− −− − −

+ ++ + +

= =

= =

e

e

l

  Equation (II.1) above 

with known (complex) coefficients  lC , C− + . The waves in the ( )1 thl + layer below, are 

of the form: 

l 1 l 1v ,  v :− +
+ +   

( )

( )
   

   

zl 1 l 1

zl 1 l 1

ik x z ik ikx
l 1 l 1 l

ik x z ik ikx
l 1 l 1 l

C C

C C

v e e

v e e

γ γ

γ γ

+ +

+ +

− −− − −
+ +

+ ++ + +
+ +

= =

= =

e

e

+

   (II.7) 

with coefficients ,  to be evaluated.  At the common interface between the  

layer and (  layer, where 

 l 1 l 1C , C− +
+

thl

)1 thl + lz H= , the continuity of displacement and of stress at the 

interface between the 2 layers gives: 

At the interface of the & medium, thl ( )1 thl + lz H= : 

  
( ) ( )

1 1

1 1

               

  

l l l l

l l l l l l

v v v v

v v v v
z z

μ μ

+ − + −
+ +

+ − + −
+ +

+ = +

∂ ∂
+ = +

∂ ∂ 1+

    (II.8) 

or 

 2-7



1

11 1 1 1

1

1

1 1 1 1
  

l l l l

l l l ll l l l l l l l

ik H ik H
l l

ik H ik H
l l

C C

C C

e e
e e

γ γ

γ γμ γ μ γ μ γ μ γ

+

++ + + +

+ ++ +
+

− −− −
+

⎛ ⎞ ⎛⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜− −⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

+

)

  (II.9) 

 

giving  in terms of  .  l 1 l 1C , C− +
+ l lC , C− +

 

This means that once the complex Fourier coefficient at a given frequency of one 

mode of surface Love waves is given at a point of a site on the half-space surface, the 

complex Fourier coefficients of the same mode on and below the surface are known. 

 

The procedure for body SH waves incident from the semi-infinite layer is the 

same, with the one component of surface Love waves replaced by two components of 

body SH waves, one propagating upward and the other propagating downwards. 

 

II-3 Synthetic Translational Motions of Rayleigh and Body P and 
SV Waves On or Below the surface of Layered Half Space 

 

Let c c(ω=  be the phase velocity of a mode of Rayleigh waves in the half-space with N 

elastic layers.  c is the (horizontal) phase velocity of both the P- and SV-waves  in each 

layer of the elastic media above the  half space such that max Nc β β< = , the shear wave 

speed in the semi-infinite Nth layer (Figure II.4) 

       
For each layer l, with , the P- and SV-Waves in the layer take the 

form: 

 …l 1, , N=

   l l l l, , ,ϕ ϕ ψ ψ− + − + :    

( )

( )

( )

( )

          

  

          

  

l

l

l

l

ik x a z
l l

ik x a z
l l

ik x b z
l l

ik x b z
l l

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

      (II.10) 

Those are the upward and downward propagating waves in the lth layer, where 
k k( ) c( )

ωω ω= =   is the horizontal wave number of the P- and SV-waves at frequency 

ω  and phase velocity  c c( )ω= . The terms  for the P-waves and  for the lika ze∓ likb ze∓
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SV-waves are the phases for vertical components of the waves. The ones with the –ve 
exponent are propagating upwards (–ve y) and those with the +ve exponent are 
propagating downwards (+ve y). Here l l la a ( ,c )α= and l l lb b ( ,c )β= are given by 
 

( )

( )

l l

l l

1 1 122 2 2 2 2 2

l
l

1 1 122 2 2 2 2 2

l
l

k k k ca 1kk

k k k cb 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

1

1

−

−

  (II.11) 

 

so that and  are the vertical wave numbers of the P- and SV-waves in the  layer 

of the medium with longitudinal wave speed 

lka lkb thl

lα  and shear wave velocity lβ . 

  

.   
 

 
Figure II.4 N-layered half-space with Rayleigh waves 
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The surface waves in the semi-infinite layer at the bottom take the form: 

( )

( )
    

    

ik x az ikx kaz

ik x bz ikx kbz

A A

B B

e e

e e

ϕ

ψ

∞ ∞ ∞

∞ ∞ ∞

− −

− −

= =

= =
    (II.12)  

where  

( ) ( )
( ) ( )

1 1 12 2 2 2 2 2 2

1 1 122 2 2 2 2 2

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

     (II.13) 

and  a , b  are the complements of a,  and both are  real, so that the termsb kaze−  in 

ϕ∞ and kbze−  in ψ∞  both correspond to surface wave terms with amplitudes that are 

exponentially decaying with depth.  

 

The coefficients , of the P-wave potentials,  lA , A−
l
+

ll ,ϕ ϕ− + , and  l lB , B− +

l

, of the SV-

wave potentials,  l ,ψ ψ− + , in each of the layers l, for l = 1 to N, are all related by the 

stress and displacement boundary conditions. In the topmost layer, the zero-stress 

boundary conditions at the half-space surface is 
 

 z zxz 0 z 0
σ τ

= =
=       (II.14) 

 

for P- and SV-wave potentials. Let  be the horizontal and vertical (complex) 

displacements at the origin, the reference point at the free surface. Then stress boundary 

conditions at the half-space surface (

0U , W0

0z = ) and the displacement on the half-space 

surface at the origin (0., 0.) take the form: 
 

  

1 1 01

1 1 01
2 2
1 1 1 1 1

2 2
1 1 1 1 1

1 1 b b UA
a a 1 1 VA 1

1 b 1 b 2b 2b ik 0B
2a 2a 1 b 1 b 0B

+

−

+

−

⎛ ⎞−⎡ ⎤ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥− − − ⎜ ⎟ ⎜⎢ ⎥ =⎜ ⎟ ⎜⎢ ⎥− − −
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟− − − ⎝ ⎠⎣ ⎦ ⎝ ⎠

⎟
⎟

   (II.15) 

 
We start with the  layer, where the wave potentials are given by: thl
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   l l l l, , ,− + − +ϕ ϕ ψ ψ :    

( )

( )

( )

( )

          

  

          

  

l

l

l

l

ik x a z
l l

ik x a z
l l

ik x b z
l l

ik x b z
l l

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=      

Equation (II.10) above 

 

with known (complex) coefficients  lA , Al
− + for the P-wave and l lB , B− + for the SV-wave 

potentials. The waves in the (  layer are of the form, with ( replacing l 

everywhere in Equation (3.1): 

)1 thl + )1l +

   l 1 l 1 l 1 l 1, , ,− + − +
+ + + +ϕ ϕ ψ ψ :   

( )

( )

( )

( )

          

  

          

  

l 1

l 1

l 1

l 1

ik x a z
l 1 l 1

ik x a z
l 1 l 1

ik x b z
l 1 l 1

ik x b z
l 1 l 1

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

+

+

+

+

−− −
+ +

++ +
+ +

−− −
+ +

++ +
+ +

=

=

=

=

  (II.15) 

 
with the coefficients  for the P-wave and  l 1 l 1A , A− +

+ +  l 1 l 1B , B− +
+ + for the SV-wave potentials, 

next to be evaluated.  At the interface between the  layer and thl ( )1 thl +  layer, where 

lz H= , the continuity of (x- and z- components of) displacements and (normal and shear) 

stresses at the interface gives: 

 

    

l 1 l

l 1 l

l 1 l

l 1 l

ika H
l 1 l 1 l 1

ika H
l 1 l 1 l 1

2 2 ikb H
l 1 l 1 l 1 l 1 l 1 l 1

2 2 ikb H
l 1 l 1 l 1 l 1 l 1 l 1

1 0 0 0 1 1 b b A e
0 1 0 0 a a 1 1 A e
0 0 0 1 b 1 b 2b 2b B e
0 0 0 2a 2a 1 b 1 b B e

μ
μ

+

+

+

+

+
+ + +

−−
+ + +

+
+ + + + + +

−−
+ + + + + +

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎣ ⎦ ⎝ ⎠

=  

l l

l l

l l

l l

ika H
l l l

ika H
l l l

2 2 ikb H
l l l l l l

2 2 ikb H
l l l l l l

1 0 0 0 1 1 b b A e
0 1 0 0 a a 1 1 A e
0 0 0 1 b 1 b 2b 2b B e
0 0 0 2a 2a 1 b 1 b B e

μ
μ

+

−−

+

−−

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − ⎜⎢ ⎥ ⎢ ⎥
⎜⎢ ⎥ ⎢ ⎥− − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎣ ⎦ ⎝ ⎠

⎟
⎟  (II.16) 

 

Equation (II.16) can be written in the form, at lz H= : 
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( ) ( ) ( )        or     

l 1 l l 1 l

l 1 l l 1 l
l 1 l l l l l

l 1 l l 1 l

l 1 l l 1 l

A A A A
A A A

H H H
B B B
B B B

+ + +
+ +
− − −
+ +

+ + + +
+ +
− − −
+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

M M N
A
B
B

+

−

+

−

⎞
⎟
⎟
⎟
⎟⎟
⎠

H ⎤⎦

 (II.17) 

 
with , both ( ) ( ) ( )   

1

l l l 1 l l lH H
−

+⎡ ⎤ ⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎦ ⎣N M M ( ) ( )  l l l l l l lH ,a ,bμ , H⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦M M  and 

 matrices defined from Equation (II.16). Note that at 

the last semi-infinite layer, l , the Rayleigh surface waves have only one component  

of longitudinal P- and shear SV- waves. The cases of body P- and SV-waves are similar, 

except that the one component of Rayleigh P- and SV- surface waves at the semi-infinite 

medium is replaced each by two components of corresponding body P- and body SV- 

waves, one propagating upwards and one propagating downwards.  

( ) ( )  l l l l l l lH ,a ,bμ⎡ ⎤ ⎡=⎣ ⎦ ⎣M M , H ⎤⎦

N=

 

In summary, this means that once the complex Fourier coefficient at a given 

frequency of one mode of surface Rayleigh and body P and SV waves is given at one 

point of a site at the half-space surface, the complex Fourier coefficients of the same 

mode of surface and body P and SV waves at any point on and below the surface, in any 

of the elastic layers, is also known. 

 

Numerical implementation of the above boundary-valued problem to study the 

propagation of elastic waves in a layered media was first presented and formulated in the 

pioneering works by Thomson (1950) and Haskell (1953). Thomson (1950) first set up 

the theoretical groundwork to be extended later by Haskell (1953). A brief summary of 

the historical review and development of the Thomson-Haskell’s transfer (Propagating) 

Matrix method for both Love and Rayleigh surface waves is given in the Report II (in 

Appendix R2), and will not be repeated here. 

 

Here we adopt the method proposed by Liu (2010) to implement the improved 

Thomson-Haskell Propagating matrix method to successfully avoid numerical underflow 

and overflow problems encountered in the numerical implementation.  
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II-4 Love and SH Body Wave Mode Shapes - 
The Synthetic Transverse Translational Motions 

 
Next we describe the mode shapes of Love waves and of body SH waves in the 6-

layered site at Imperial Valley, in El Centro, California. With the modified Thomson-

Haskell propagator matrix as stated in the previous section, the relative amplitudes can 

now be computed for each mode of the Love (and Rayleigh) waves at all points on or 

below the half-space surface, for each frequency where the waves exist. At this 

intermediate stage of the synthesis of motions the displacement amplitude for all modes 

will be normalized to be one at the half-space surface. 

 

A complete set of graphs of mode shapes for all the periods of all five modes of 

Love waves and body SH waves of a selected incident angle are given in the Report II in 

Appendix R2. A few of these modes at selected frequencies are shown here for 

illustration only. 

 

Mode #1 has phase velocities for all 91 periods in the range from 15 sec down to 

0.04 sec. The Thomson-Haskell computation gives the mode shapes of the Mode#1 Love 

waves in the same wide period range. Fig. II.5 shows the plots of this Love wave mode 

shape at four selected periods: 5,  1.0,  0.5,  and 0.1 T s= . As expected for Mode #1, all 

mode amplitudes that start with unit amplitude at the surface, stay positive all the way, 

and finally decay to zero at depth. The waves at long periods (small frequencies) decay 

slower than the waves at short periods (high frequencies).  

 

Fig. II.6  below illustrates the Mode#3 at   and  sec.2, 0.75, 0.2 0.075T =   
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Fig. II.5    Mode#1 Love Wave Mode Shapes at 5,  1.0,  0.5,  and 0.1 T s=  
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Fig. II.6   Mode#3 Love wave at   and  s.2, 0.75, 0.2 0.075T =  
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Fig. II.7 illustrates synthetic accelerations calculated for the El Centro cite, with 

six-layers, at 100 depths equally spaced from the surface to a depth of almost 6 km below, 

for epicentral distance of  from an earthquake of magnitude 6.5, focal depth 8.0R k= m

6.0H km= , or a hypocentral distance of 10.0 .D km=  The geological condition of 

 (alluvium) and soil condition of 0s = 2Ls = (deep soil) are assumed. The SYNACC 

program determines that the appropriate duration of the record should be just above 40 

seconds.  The depth of each accelerogram is labeled at intervals 0.6 km apart. Of the 100 

accelerogration time histories, six are plotted green, and labeled 0 to 5. The one labeled 0 

is the accelerogram at the ground surface 0z = , while the ones labeled 1 to 5 are those at 

depths closest to the interfaces between adjacent layers. The actual time scale of the 

above time histories has been shifted to have a common time scale, where is 

defined by SYNACC to be the time 

0 secT =

maxD c , where is the maximum phase velocity 

of all the waves arriving at the site. 

maxc

 

The figure shows that, at the short distance of 10.0D km= , both the Love waves 

and body waves arrive within a few seconds of each other. The direct arrival time of the 

SH body waves is . The arrival times for Love waves will be different for 

different modes, and for waves at different periods, since the phase velocities , 

depend on the period of the waves, as shown by the dispersion curves in Figure I.1. The 

acceleration time histories show that the strong-motions arrives at about , which 

follows soon after the direct arrival time of body waves at 

4.49T = s

s

( )c c T=

5.0T =

4.49T s= .  

 

Figure II.8 shows the corresponding displacements calculated at the same site. 

The depth of each displacement is again labeled at intervals 0.6 km apart. Of the 100 

displacement time histories, six are again plotted green, and labeled 0 to 5, as in the case 

for acceleration. The new SYNACC computer program computes the displacement at all 

depths from the corresponding acceleration time histories.  
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Fig. II.7  Synthetic Acceleration: 6.5,  8.0 ,   6.0 ,  0,  2LM R km H km s s= = = = =  
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Fig. II.8   Synthetic Displacement: 6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  
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II-5 Rayleigh and P, SV Body Wave Mode Shapes -  
The Synthetic Radial and Vertical Translational Motions 

 
With the modified Thomson-Haskell propagator matrix as stated in the first 

section, the relative amplitudes can be computed for each mode of the Rayleigh waves at 

all points on or below the half-space surface, for each frequency where the waves exist 

and in each layer of the layered half-space. The output synthetic acceleration will now 

have the horizontal (radial) and vertical components of motion. The vertical displacement 

amplitude for all modes will be normalized to be one at the half-space surface. 

 

Fig. II.9 shows plots of two components (x- and z-) of Rayleigh wave mode 

amplitudes at four selected periods: 5,  1.0,  0.5,  and 0.1 T s= . The mode #1 of 

Rayleigh waves has phase velocities at all 91 periods from 15 sec down to 0.04 sec. The 

Thomson-Haskell computation gives the mode shapes of the mode#1 of Rayleigh waves 

in the same wide period range at every specified point below the surface. Each graph 

shows two components of mode shape amplitudes versus the depth z, measured in 

kilometers below the surface. Note that at the half-space surface, with the z-component 

motion 
0

( ) 1
z

W z
=
= , the x-component of motion, 

0 0
( ) ( )

z z
U z i W z iγ γ

= =
= = , is an 

imaginary number, where γ  is a ratio computed from the Haskell algorithm for 

estimating phase velocities of Rayleigh waves. With this normalization, will stay 

real, while will stay imaginary for all z. Without loss of generality, only the 

imaginary part of  is plotted here. 

( )W z

( )U z

( )U z

 

Mode #2 of Rayleigh waves has phase velocities for 74 periods in the range from 

4.6 sec down to 0.04 sec. The Thomson-Haskell computation gives the mode shapes of 

the Mode#2 in the same period range. Fig. II.10 illustrates the plots of both components 

of Rayleigh wave mode shape amplitudes at four selected periods: 

.  3.0,  1.0,  0.3,  and 0.1 T s=
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5,  1.0,  0.5,  and 0.1 T s=Fig. II.9   Mode#1: x- and z- Rayleigh Wave Mode Shapes at  
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3,  1,  0.3,  and 0.1 T sFig. II.10  Mode#2: x-and z- Rayleigh Wave Mode Shapes at =  
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Unlike Mode #1, the Mode #2 mode shapes will change sign and cross the zero 

line before decaying to zero at some depth. The waves at long periods (low frequencies) 

decay slower with depth than the waves at short periods (high frequencies). Note that at 

some periods, the mode amplitudes go below -1.0, resulting in larger amplitudes of 

motions below the surface than at the surface. 

 

The mode shapes for other periods and for Modes #1 to Modes #5 of Rayleigh 

waves can be perused in the Appendix R2 with Report II. 

 
Fig. II.11 and II.12 illustrate synthetic accelerations for both the horizontal  

and vertical  components of motion, calculated for the same El Centro six-layered 

site model, at 100 depths equally spaced from the surface to almost 6 km below the 

surface, and for the same earthquake at the same hypocentral distance of  

and at the same geological and local soil site conditions as for the Love waves described 

above. The depth of each accelerogram is again labeled at 0.6 km spacing. Six of them 

are plotted green, and labeled 0 to 5. The one labeled 0 is the accelerogram at the top 

surface, while the ones labeled 1 to 5 are at depths at or closest to the interfaces between 

adjacent layers. 

( )U z

( )W z

10.0D k= m

 

For the horizontal (radial) component, the strong-motions are seen at the depths of 

the first two top layers, up to 0.7∼z km . Smaller horizontal motions are observed in the 

3rd layer up to 1.7∼z km , beyond which depth the motions become small. For the 

vertical motions, the strong motions are observed in the first three top layers up to 

1.7∼z km , and the maximum motions are taking place in the 3rd layer from the top. For 

the transverse component, the motions below the surface in our examples are 

smaller than those at the surface. For the radial and vertical components in the 

example considered here, it is seen that the motions for the six-layered model in El 

Centro, can be larger at depth than at the surface. 
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Fig. II.11  Synthetic Acceleration: M=6.5, R=8.0 km, H=6.0 km, s=0, soil=2 
Horizontal (radial) Motions 
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Fig. II.12   Synthetic Acceleration: M=6.5, R=8.0 km, H=6.0 km, s=0, soil=2 
Vertical Motions 
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Fig. II.13   Synthetic Displacement:  M=6.5, R=8.0 km, H=6.0 km, s=0, soil=2 
Horizontal (radial) Motions. 
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Fig. II.14   Synthetic Displacements: at M=6.5, R=8.0 km, H=6.0 km, s=0, soil=2 
Vertical Motions  
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This is consistent with the mode shapes of Rayleigh waves in Report II (Appendix 

R2), where it is found that, for all modes of Rayleigh waves, at this site, at moderate 

periods, large motions occur in the first three top layers, and then begin to die down at 

greater depths. The decay of amplitudes with depth is even faster for waves with higher 

frequencies. For the horizontal component, it is noted that the maximum motions are 

observed in the 2nd layer, for most periods. For the vertical component, the maximum 

motions are observed in the 3rd layer. 

 

Fig. II.13 and II.14 show the plots of the corresponding synthetic displacements of the 

two components of motions. The depth for all displacements is again labeled at intervals 

of 0.6 km apart. Six are plotted green, and labeled 0 to 5. The one, which is labeled 0 is 

the displacement at the top surface 0z = , while the ones labeled 1 to 5 are those at 

depths corresponding to or closest to the interfaces between adjacent layers. The new 

SYNACC program computes the displacements at all depths from the corresponding 

acceleration time histories in the frequency domain to get the displacement spectra, and 

then taking the inverse Fourier transform.  

 

The same observations for displacement time histories can be made as for 

accelerations, namely, the strong-motions dominate in the first three layers of the site 

model, up to 1.7z km= . Unlike accelerations, the displacements, especially for the 

vertical components, do not completely die down even at large depths. 
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II-6 Synthetic Rotational Motions of Surface and Body Waves 
On and Below a Layered Media 

 
Starting from the translational component of motions, , the 

rotational components of motion are defined as (Appendix R3): 
( )U U V W, ,=�

 
i j k i j k

U x y z x
U V WU V W

1 1 1 02 2 2
∂ ∂ ∂ ∂ ∂Ω = ∇× = =∂ ∂ ∂ ∂ ∂

� � �
z   (II.`8) 

 
Since , V V  and W WU U x z( , )= x z( , )= x z( , )= , i.e. all components of motions are 

dependent only on x and , with z ( ) 0.y
∂ =∂  It then follows that 

 

x

y

z

V
z

U W
z x
V

x

1
2

∂⎛ ⎞−⎛ ⎞ ∂Ω ⎜ ⎟
⎜ ⎟ ⎜ ∂ ∂Ω = Ω = −⎜ ⎟ ⎜

⎟
⎟∂ ∂

⎜ ⎟ ⎜ ⎟Ω ∂⎝ ⎠ ⎜ ⎟∂⎝ ⎠

�Rotational Motions are given by:                 (II.19) 

 
with    

 

 

x
V

z
1

2
∂Ω = − ∂  

 

 
 

= 

 

Out-of--plane Rocking component of the Love and 
body SH waves propagating in the x-direction, 

 

( )y
U W

z x
1

2
∂ ∂Ω = −∂ ∂  

 
 

=  
 

In-plane Rocking component of the Rayleigh and body 
P, SV waves in the x-z plane, 

 

z
V

x
1

2
∂Ω = ∂  

 
 

= 

 

Out-of--plane Torsional rotation about z-axis, caused 
by the Love and body SH waves  

 
 
 As for the Torsional and Rocking accelerograms (Lee and Trifunac, 1985,87, 

Todorovska et al, 2013) at the half-space surface, we can now also compute the 1st and 

2nd time derivatives of the Torsional and Rocking motions to obtain the Torsional and 

Rocking velocities and acceleration time-histories at points below the half-space surface 

in the layered medium.  

 

Torsional and Rocking Velocities: 
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 Torsional and Rocking Accelerations: 

x
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z
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             (II.21) 

  

The computation of the 1st and 2nd time derivatives of the Torsional and Rocking 

motions is not difficult. This is because, as for Torsional and Rocking (Lee and Trifunac, 

1985,87; Todorovska et al, 2013) accelerograms at the half-space surface, the Torsional 

and Rocking accelerations can be computed, in the frequency domain, directly, as 

d
dx

d
dzand  derivatives, from the corresponding translational acceleration components, 

as described in Report III (Appendix R3), and from which the Torsional and Rocking 

velocity, and Torsional and Rocking displacements can then also be computed in the 

frequency domain. 

 
  

Similarly the strain components of motions are given by the symmetric matrix: 
 

[ ]
x xy xz

yx y yz

zx zy z

U U
x y
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2

ε ε ε

ε ε ε ε

ε ε ε

∂ ∂
∂ ∂
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= =⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
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V U W
x z

V
y

1
2

ε

⎛ ⎞∂ ∂ ∂+ +⎜ ⎟∂ ∂⎝ ⎠

∂
∂

x∂

V W
z y

1
2

∂ ∂+∂ ∂

zx zy
W

zε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂
⎣ ⎦

   (II.22) 

 
again with all components of motion being dependent only on x and z , and with 

( ) 0y
∂ =∂ .  Thus 
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      (II.23) 

 
Taking symmetry into account, five out of six components of the strain matrix 

exist, with the only component of strain that vanishes everywhere being yε , the normal 

strain in the anti-plane y- direction. Note that, when strain is calculated at the half-space 

surface (Lee, 1990), the shear strain xz 0ε = , since the corresponding shear stress 

xz xz2 0τ με= =  at the half-space surface. 

 
 In exactly the same way as the computation of the Torsional and Rocking 

accelerograms in Equations (II.20) and (II.21) above, one can also compute the first and 

second time derivatives of the strain matrix to obtain the strain acceleration time histories 

at points below the half-space surface inside the layered medium: 

 

Strain velocities: 

[ ] [ ]
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     (II.24) 

 
and  Strain accelerations: 

[ ] [ ]
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 (II.25) 

 
The computation of the 1st and 2nd time derivatives of the strain motions is not 

difficult. This is because, as in the case of Torsional and Rocking (Lee and Trifunac, 

1985,87; Todorovska et al, 2013) accelerograms and the strains (Lee 1990) at the half-

space surface, the strain accelerations can again first computed, in the frequency domain, 
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directly, as d
dx

d
dzand  derivatives, from the corresponding translational acceleration 

components, as given in Report III (in Appendix R3), and from which the strain velocity, 

and strain displacement motions can then also be computed in the frequency domain. 

 

Finally, as in Trifunac (1990), the curvatures in the vertical, transverse and radial 

directions are respectively given by: 

( )

u x uuk t x cu x

2 2 2
2 1 2

22 3 2
2 2 1

2 1

( )     
1

∂ ∂ ∂= ≈
∂⎡ ⎤+ ∂ ∂⎣ ⎦

��
Vertical:  2=    (II.26) 

uuk t x c

2
33

23 2
1

( )    ∂≈ =
∂

��
 Transverse:       

     

(II.27) 

 
and 

uuk t x c

2
11

21 2
1

( )   ∂≈ =
∂

��
      (II.28) Radial:         

 
Those are all computed directly from the translational components, the numerical 

implementation of which is summarized in the next section. 

 

The numerical procedure for computing the d
dx

d
dzand  derivatives of the 

corresponding translational motions will follow much along the same line as that of the 

corresponding translational motions described above. This allows the mode shapes of the 

rotational, strain and curvature components of both Rayleigh and Love surface waves, 

and of the body P, SV and SH waves, to be computed, as for the translational components. 
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6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = =Fig. 15a. Synthetic Rotational Acceleration: =  
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6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  Fig. 15b.Synthetic Rotational Acceleration:
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6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = =Fig. 16a. Synthetic Rotational Displacement: =  
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6.5,  8.0 & 6.0 ,  0,  2LM R km H km s s= = = = =  Fig. 16b Synthetic Rotational Displacement:
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Figures II.15a and b show the 3-D plots of synthetic rotational accelerations of the 

horizontal (radial) and vertical components of motion for the same 120 acceleration 

translational time histories corresponding to the 2-D representations in Figure II.11 and 

12. Figures II.16a and b show the 3-D views of the rotational displacement respectively 

for the horizontal and vertical components corresponding to the 2-D plots of the 

translational components of motion in Figures II.13 and II.14. 

 

For the radial and vertical rotational components in the example considered here, 

it is observed that for the six-layered model in Imperial Valley at El Centro site, large 

rotational motions are observed only on and near the surface. This is consistent with the 

rotational mode shape of Rayleigh waves in the last chapter, where it is found that, for all 

modes of Rayleigh waves, at moderate periods, large motions occur in the first two top 

layers, and then began to die down at greater depths. The decay of amplitudes with depth 

is even faster for waves with higher frequencies. The same is true of the transverse 

rotational motions. 
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Chapter 3 Scattering and Diffraction of Earthquake Motions in 
Irregular Elastic Layers, I: Love and SH Waves 

 
 
 

Summary 
 

 
We describe the wave propagation through an irregularly layered, elastic medium for 

incoming body (SH) and surface (Love) waves. As a result of irregular geometry, each layer 

generates additional waves by scattering and diffraction. These additional waves modify the input 

motions and locally may lead to larger motions and concentrations of stresses, strains, and 

rotations on or below the ground surface. For engineering design, and in particular for analyses of 

soil-structure interaction, it is important to understand the nature and the consequences of such 

motions. 

 

The scattering and diffraction of Love and SH waves by irregular layers will be 

investigated by the weighted-residuals method. The scattered and diffracted mode shapes and 

spectral amplification characteristics at different frequencies will be examined and discussed. 

 

 
 
I. Introduction 

 
 

I.1   General Introduction 
 
 

Two-dimensional site response to incident earthquake waves in irregularly layered stratum 

can be evaluated by numerical models based on finite elements or finite differences, but the 

response calculated by analytical methods combined with the weighted-residues method 

provides a valuable baseline reference to validate the results from the numerical approach (Vai et 

al., 1999). Finite numerical models have boundaries that require special attention in which the 

waves propagate inside and outside of the modeled space without significant changes, so that the 

comparison with the analytical solution becomes a valuable verification tool.  
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In this chapter, we study the elastic, layered medium for incidence of out-of-plane 

surface (Love) and body (SH) waves. We will study the motions at points on and below the 

half-space surface, in the vicinity of the irregularly shaped elastic layers.  

 
 
I.2 Ground Motion On and Below a Site With Irregular Topography and 

Irregular Layer Thickness 
 
 

The seismic ground motion of a layered medium with irregular topography has been 

studied in both  seismology and earthquake engineering. Aki and Larner (1970) applied 

analytical methods to evaluate the site response of an irregular, layered medium for incident 

plane SH waves, and Kohketsu (1987a,b) extended the study to a multi-layered medium. Chen 

(1990, 1993, 1995), and Kohketsu et al. (1991) used the Aki-Larner method to generate 

synthetic seismograms for seismological study of regional topography effects. Chen (1999) 

investigated the modal solutions and excitation of Love waves in multi-layered media with 

irregular interfaces. Lee & Wu (1994a,b) used the weighted-residual method to study motions 

near an irregular canyon. 

 
 
II. 

 
 
Love Surface and Body SH Waves On and Below the 
Surface of an Elastic, Layered Medium 

 
Elastic-wave motion in N-Layered half space can be formulated in terms of the approach 

proposed by Thomson (1950) and Haskel (1953). For the waves incident from the left, consider the 

model shown in Fig. III.1 below. 
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Fig. III.1. N-layered half space with Love waves. 

 
 

For each of these l  regular layers, with =  l 1, , NK , the displacement of the Love surface 

waves at each frequency ω takes the following form (in the anti-plane, y-component direction): 
 

 1 1v , v :− +    
( )

( )

l

l

ik x z i t
l l

ik x z i t
l l

 C  

  C

v e e

v e e

γ ω

γ ω

−− − −

++ + −

=

=
 .   (III.1) 

The harmonic term i te ω− is present in all of the wave terms, and it will be understood and omitted 

in all subsequent equations. 
 

Those are, respectively, the upward- and downward-propagating waves in the thl layer, 

where k k( ) c( )
ωω ω= =  is the horizontal wave number at frequency ω  and phase velocity 

c c( ).ω=  The term ikxe , which is also the same in each layer, is the horizontal component of the 

waves, which together with the time-harmonic term i te ω  corresponds to the waves propagating in 
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the –ve x direction. The terms l yike γm  are the vertical components of the waves with the negative 

term propagating upward (–ve y) and the positive term propagating downward (y). We define 

l l l( )γ γ β=  by 
 

( )l l

1 1 122 2 2 2 2 2

l
l

k k k c1 1kk
β βγ β
− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ,

   (III.2) 

 

so that lkγ  is then the vertical wave number of the waves in the thl  layer of the medium with shear 

wave velocity lβ . In most cases, the wave velocities increase as one moves down through the layers, 

so that 1 2 nβ β β β< < < <K , with the semi-infinite half-space layer at the bottom having the 

highest shear-wave speed β . With c c( )ω= , the wave speeds of the surface Love waves, c β< , 

and the surface waves take the form 
 

( )ik x z ikx k zv   C   C          e eγ γ
∞ ∞ ∞

− −= = ,    (III.3)  

where          
( ) ( )

1 1 122 2 2 2 2 2k k k c1 1kk
β βγ β

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ,
        (III.4) 

where γ is the complement of γ  and is real, which means that the term ikx k ye γ−  corresponds to a 

surface wave with an amplitude that is exponentially decaying with depth (in y). With lβ  , the 

shear-wave speed in the thl  layer, and c c( ),ω=  the Love-wave speed and also the (horizontal) 

phase velocity of the waves in each layer above the half space (Fig. III.1), we can have lc β≥  or 

lc β< . If lc β≥ , the term ( )l l lγ γ β=  in Eq. (III.2) is real, and both waves lv+
 and lv−  in Eq. (1) 

will correspond to harmonic plane waves. If, however, lc β< , then from Eq. (III.2) we have the 

following: 

 
 

1
2 2

1l
l

cγ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

is imaginary, and  
1

2 2

l
l

c1γ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is real.  (III.5) 
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III. Love and Body SH Waves Incident to Irregularly Layered, Elastic 
Medium 

 

 
 
 

Fig. III.2. Irregularly-shaped, N-layered half space with Love waves. 
 

The previous section described out-of-plane Love waves propagating along an N-layered 

half space, where the layers are perfectly flat and parallel. Consider next the case in which this is 

not so. Figure III.2 shows a model in which the parallel layers are not flat in some finite region 

but are flat elsewhere. Chen (1990) applied a method for seismogram synthesis in multi-layered 

media with irregular topography over a half space for waves incident from an arbitrary source. 

Later, a method called “global generalized reflection/transmission matrices method” (GGRTM) 

was developed for two-dimensional SH waves (Chen 1990, 1995) and two-dimensional P and 

SV waves, and for studying these waves in detail to get an alternative version for t h e  

classical theory of Love waves in a  laterally homogeneous, multi-layered medium (Chen 

1999). 
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A boundary-integral formulation was applied in the analysis of the two-dimensional, 

irregularly layered, elastic media by Sanchez-Sesma and Campillo (1991). Further applications to 

alluvial valleys for incident P, SV, and Rayleigh waves were presented by Sanchez-Sesma and 

Campillo (1993), and the methodology called the “indirect-boundary-element method” (IBEM) 

to simulate the elastic wave propagation in two-dimensional, irregularly layered media was 

presented by Vai et al. (1999). 
 
 

Turning back to Fig. III.2, without loss of generality we will assume that each of these 

irregular surfaces at each interface between the thl and ( )1 thl +  layers, which extends from = −∞x  

to = +∞x , can be represented by a curve ( )lz H x=  along the interface. We assume that this curve 

will be the flat surface = lz H  almost everywhere but that it will deviate from the flat surface 

within some finite region in which it is defined numerically by a set of points ( ),i ix z . The same 

curve can also be represented in polar coordinates ( )ˆˆ,r θ , with ( )ˆˆ ˆr r θ=  in a common coordinate 

system ( )ˆ ˆ,x z  with origin at some point Ô , above the half space in this example, as shown in Fig. 

III.2. 

 

With the surface Love waves − +
l lv , v  or body SH waves at each layer l  incident to these 

irregular surfaces, additional scattered waves will be generated, which can be represented by 

( )1 1 2 2
0

( ) ( ) ( ) ( )
, ,ˆ ˆ( ) ( ) coss

l l n n l l n n ln
v A H k r A H k r nθ∞

=
= +∑  ,   (III.6a) 

with both outgoing and  incoming waves (relative to Ô  for each layer 1, 2, , 1l N= −K , except for 

the last semi-infinite layer. For this layer, ,l N=  and the scattered wave, s s
Nv v∞ =  takes the form  

1
0

( )
, ˆ( )coss s

N n nn
v v A H kr nθ∞

∞ ∞=
= = ∑ ,      (III.6b) 

with only outgoing waves satisfying Somerfield’s radiation condition at infinity. Here, the wave 

terms in the scattered waves in all layers use only the cosine functions, as the range of θ in each 

layer is the half range from 0 to π, where the sine and cosine functions are not orthogonal and only 

the cosine functions are enough to form an orthogonal set of functions (Lee & Liu 2014). 
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The scattered waves, together with the free-field surface Love waves, form the complete 

motion in the layered media. Writing ff
l l lv v v+ −= +  as the free-field surface Love or Body SH 

waves in the thl  medium, the resultant wave in the same medium is ff s
l l lv v v= + , which, together, 

must satisfy the following set of boundary conditions (Lee and Wu, 1994a):  

 

1) On the half-space surface, 0( )z H x= , so the resultant waves in the top layer 1( )l =  

must together satisfy the half-space surface free-field stress condition: 

( )1 11
1 1 0,

ˆ ˆ

ff s

nt

v vv
n n

τ μ μ
∂ +∂

= = =
∂ ∂

        (III.7a) 

1 1  or                                             
ˆ ˆ

∂ ∂
= −

∂ ∂

s ffv v
n n

 .     (III.7b) 

2) For 1 2 1, , ,l N= −K , at the interface between the thl  layer and the 1( )thl +  layer below, 

and ( )lz H x= , so the resultant waves in these two layers must satisfy the continuity of 

displacement and stress at the interface as follows: 

1 1 1+ + += + = + =  ff s ff s
l l l l l lv v v v v v            (III.8a)  

( )1 1or                                 s s ff ff
l l l lv v v v+ +− = − −         (III.8b) 
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1 1
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1 1
1 1
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ˆ ˆ
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+
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∂ ∂
=

∂ ∂
∂ + ∂ +

=
∂ ∂

∂ ∂ ∂ ∂
− = − −

∂ ∂ ∂ ∂

l l
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l l l l

l l
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l l l l

v v
n n

v v v v
n n

v v v v
n n n

⎛ ⎞
⎜ ⎟
⎝ ⎠n

 ,

        (III.9) 

with the unknown wave functions on the left-hand side and the known functions on the right-hand 

side. Here, in Eqs. (III.3) and (III.5), n̂  is the normal at a boundary point ( , )x z , where ( )lz H x= , 

and ( )
n̂
∂
∂

 is the corresponding normal derivative of the wave functions given by 

 

( ) ( ) ( ) ( )sinˆ cos
ˆ

αα
θ

∂ ∂ ∂
= ∇ ⋅ = +

∂ ∂ ∂
% n

n r r
,  (III.10a) 
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where α  is the angle that the normal n̂  makes with the radial vector, as shown in Fig. III.3 (Lee & 

Wu 1994a,b). For the free-field waves, which are available in rectangular coordinates, Eq. (10a) 

can also be expressed as shown in Fig. III.3: 

 
 

 
 

Fig. III.3. Angle α  between radial vector and normal at a point 
 
 

 

( ) ( ) ( ) ( )ˆ
ˆ
∂ ∂ ∂

= ∇ ⋅ = +
∂ ∂ ∂

%
x zn n n

n x z
,        (III.10b) 

 

where the normal n̂   is expressed in rectangular coordinates as   zˆ ˆ ˆ = +x x zn n e n e , and  ˆ ˆ,  x ze e are, 

respectively, the unit vectors in the x- and z- directions. 

 
 
              On the flat part of the interface between the thl  and 1( )thl +  layers, on the left and right 

parts of the curve ( )lz H x= , where it is flat, the Love waves in between the layers already satisfy 

the continuity of displacement and stress at the interface. This means that only the scattered waves 

will appear in the continuity equations at those points. More precisely, Eqs. (III.3b), (III.4b), and 

(III.5b) can be written as 
 

1
1 0

1

0

 at irregular surface point of

0 on flat surface point of 0

                ( ),
ˆ

ˆ
                         ( )

ff
s

ff
vv z H x
nn z H x

τ
⎧ ∂

∂ − =⎪= − = ∂⎨∂ ⎪ = =⎩ ,

          (III.11a) 

 

( )1
1

at irregular surface point of  ,

0 on flat surface point of  

         ( )

                           ( ) H

ff ff
l l ls s ff

l l l

l l

v v z H x
v v v

z H x
δ +

+

⎧− − =⎪− = − = ⎨
= =⎪⎩ ,

     (III.11b) 
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1
1

1
1

and    

at irregular surface point of  ,

0 on a flat surface poin

             

      ( )
        = 

                                            

s s
ffl l

l l l

ff ff
l l

l l l

v v
n n
v v

z H x
n n

μ μ δτ

μ μ

+
+

+
+

∂ ∂
− = −

∂ ∂
⎛ ⎞∂ ∂

− − =⎜ ⎟∂ ∂⎝ ⎠
t of  ( ) Hl lz H x

⎧
⎪
⎨
⎪ = =⎩ .

               (III.11c) 

 

To solve this boundary-valued problem, one would have to find a wave function, lv , as given in Eq. 

(III.6a) for each layer 1 2 1= −, ,Kl N , and as given in Eq. (III.6b) for the bottom semi-infinite 

layer =l N .  

 
 
IV.  The Weighted-Residues (Moment) Method 
 

IV.1  Methodology  

 

               For completeness of this presentation, we briefly summarize the method described by Lee 

and Wu (1994a,b). It is seen from the above sections that the wave functions at each layer together 

have to satisfy the set of boundary conditions numerically at every point on the interfaces as given 

in Eqs. (III.7), (III.8), and (III.9). Since these surfaces are not flat, a numerical procedure has to be 

applied. 

 

               Harrington (1967), in his classic paper, “Matrix Methods for Field Problems,” presented a 

well-defined, unified treatment of most of the existing numerical methods for the above boundary-

valued problems, which he called the “moment methods,” and applied the method to 

electromagnetic wave problems. Soon afterward, Fenlon (1969) applied the same method to 

acoustic-wave problems, and Lee and Wu (1994a,b) applied the method to elastic-wave problems 

in arbitrarily shaped canyons in elastic half space. Another common name for the special case of 

the moment method used here is the weighted-residues method. We will summarize the method, 

following Lee and Wu (1994a,b). 

 

             Assume that a general equation to be satisfied is of the form 
 

=f gL  ,    (III.12) 
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where L is a linear operator, f  is an unknown function to be solved, and g  is a given known 

function. The boundary conditions in Eqs. (III.11a,b,c) and (III.12) above are all of this form, with 

L  being a linear combination of the identity and the derivative operators, f  being a sum or 

difference of the unknown wave functions and their derivatives in adjacent media, and g  being the 

corresponding sum or difference of the known free-field Love-wave functions and their derivatives 

in adjacent media. All of the unknown wave functions f  are here represented as a series of basis 

functions 0 1, , , , ,K K Knf f f  : 

= ∑ n nn
f c f

,
      (III.13) 

with nc  as a sequence of unknown coefficients to be determined. The range of the indices of the 

functions can either be infinite (  to −∞ ∞ ) or semi-infinite ( 0 to ∞ ). Since L is a linear operator, 

Eq. (10) takes the form, in terms of residues, ε , to be set to zero:  

0ε = − =∑ n nn
c f gL  .        (III.14) 

Next, we choose a scalar inner product ,f g  to be defined on any pair of functions in the domain 

of L  and a set of weight functions 0 1, , , , ,K K Knw w w  in the domain. We take the inner product 

of the residues with each weight function and equate it to zero as follows: 

0

so

                      , ,

                                    , ,   

                         , ,

m n n mn

n n m mn

n m n mn

w c f g w

c f w g w

f w c g w

= −

= − =

=

∑
∑

∑

ε

 

L

L

L
   (III.15a) 

or in matrix form: 

{ } { }=⎡ ⎤⎣ ⎦mn n mA c g  ,    (III.15b) 
 

with  ,mn n mA f w=⎡ ⎤⎣ ⎦ L  being a matrix of infinite order, and { } ,m mg g w=  being a 

known vector computed from the free-field surface Love waves or body SH waves. The matrix is 

composed of a (2N - 1) set of boundary conditions in Eqs. (11a,b,c) and for the set of  (2N - 1) 

coefficients from the (2N - 1) wave functions in Eqs. (6a,b) for the N-Layered media. 

 

              Depending upon the choice of the weight functions, they can also be considered as a set of 

basis functions, orthogonal with respect to the inner product, and here the residues are expanded in 
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terms of these basis functions using the inner product. We set each term of the expansion here to be 

zero. 

 

              Using the weighted residue method, the boundary conditions at each layer take the 

following form: 

   (1) Starting in the top layer, the half-space surface, from Eq. (7), is as follows: 
 

( ) 1
1 1

1 20

( ) ( )
,

,
ˆ ( )cos , ,

ˆ ˆ

ff
j j

n m n m
jn

vH k r n w A w
n n

θ
∞

==

∂∂
= −

∂ ∂∑
,
        (III.16a) 

 

or in matrix form, at the top surface of the 1st layer (surface of the half space): 
 

( ) ( )
1

11 2 1
1 1 2

0 1

( )
,( ) ( )

( )
,

ˆ ˆ( )cos , ( )cos , ,
ˆ ˆ ˆ

ff
n

n m n m m
n n

A v
H k r n w H k r n w w

An n n
θ θ

∞

=

⎧ ⎫⎡ ⎤ ∂∂ ∂ ⎪ ⎪ = −⎨ ⎬⎢ ⎥∂ ∂ ∂⎪ ⎪⎣ ⎦ ⎩ ⎭
∑

.
( III.16b) 

   (2) For the interface between the thl  and 1( )thl +  layers, for 1 2 3, ,l = K  from Eq. (11): 

1 1
1 20

1

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ             ( )cos , ( )cos ,

                                     ,

j j j j
n l m l n n l m l n

jn

ff ff
l l m

H k r n w A H k r n w A

v v w

θ θ
∞

+ +
==

+

−

= − −

∑
       (III.17a) 

( ) ( )1 1 1
1 20

1
1 I I 7I( b.1 )

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ ( )cos , ( )cos ,

ˆ ˆ

                           ,                                                  
ˆ ˆ

j j j j
l n l m l n l n l m l n

jn

ff ff
l l

l l m

H k r n w A H k r n w A
n n

v v
w

n n

μ θ μ θ

μ μ

∞

+ + +
==

+
+

∂ ∂
−

∂ ∂

∂ ∂
= − −

∂ ∂

∑
  

or in matrix form, at each interface between the thl  and 1( )thl +  layers, for 1 2 3, ,l = K  

( ) ( )
1

1 20 11 1

1

( ) ( )
( )
,

( )( ) ( ), ,

ˆ ˆ( )cos , ( )cos ,

ˆ ˆ( )cos , ( )cos ,
ˆ ˆ

,
                              

ˆ

j j
n l m n l m j

l n
jj jjn l nl n l m l n l m

ff ff
l l m

ff
l

l

H k r n w H k r n w
A

AH k r n w H k r n w
n n

v v w

v
n

θ θ

μ θ μ θ

μ μ

+∞

== ++ +

+

⎡ ⎤−
⎧ ⎫⎢ ⎥ ⎪ ⎪
⎨ ⎬⎢ ⎥∂ ∂

− ⎪ ⎪⎩ ⎭⎢ ⎥∂ ∂⎣ ⎦

−

= − ∂
−

∂

∑

1
1

III.( 17c)                                                      
,

ˆ

ff
l

l m
v

w
n
+

+

⎧ ⎫
⎪ ⎪
⎨ ⎬∂
⎪ ⎪∂⎩ ⎭ .
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Note that for the interface between layer 1N −  and the bottom (last) semi-infinite layer N , Eqs. 

(III.17a) and (III.17b) will have only the outgoing wave terms 1 0 1 2( )
, ,  , ,N nA n = K , without the 

incoming wave terms 2 0 1 2( )
, ,  , ,N nA n = K   

 

IV.2  Numerical  Implementation 

 
 In this section, we summarize the numerical procedure for solving the system of complex 

equations derived in the previous section. It can be observed that for an elastic half space with 

1 ( )N ≥  layers there are 1( )N −  interfaces between the layers, plus the topmost half space with no 

elastic medium above. With Hankel functions of both the 1st and 2nd kind present (except in the 

bottom semi-infinite layer), this gives a total set of 2 1 1 2 1( )N N− + = −  waves for a 2 1N −  set of 

boundary conditions from all of the layers. 

 

 Since each set of equations at each interface involves only waves at each side of the 

interface, a simple, elegant numerical algorithm can be derived to allow each set of wave 

coefficients at each medium to be solved separately, making the problem simple numerically. In 

other words, we are solving, for each layer, M complex equations with M unknowns separately at 

each step. The following is a brief summary of the numerical procedure. 

 

 Starting from the top surface, where 0z = , we have the matrix equation for the zero-stress 

boundary condition along the whole (regular and irregular) surface of the half-space, in the 

following form: 

{ } { } { }1 2
1 1 1 1 1 0

( ) * ( )      0
z

E A E A e
=

⎡ ⎤+ + =⎡ ⎤⎣ ⎦ ⎣ ⎦
% % %  ,   (III.18) 

from which { }2
1
( )A%

 
can be expressed in terms of  { }1

1A( )%
 
and { }1e% . Next, the displacement and 

stress continuity equations at the interface between layers l and l + 1, as in Eq. (III.17c) above, at 

the interface lz h=  can be written in the following form: 
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( ) ( ){ } ( ) ( ){ }

( ) ( ){ }

1 1
1

1 12 2
1

1 1
1

2 2
1

or in the form :     

( ) ( )

( ) ( )

( ) ( )

 ( ) ( )

                   

     

l l
l l l l l l l l

l l

l l
l l l l

l l

A A
M h e h M h e h

A A

A A
h h

A A

+
+ +

+

+

+

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤+ = +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤= +⎨ ⎬ ⎨ ⎬⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

% %
% %

% %

% %
%

% %
M m

       (III.19) 

 
 

for some matrices ( )l lh ⎡ ⎤⎣ ⎦M  and vectors ( ){ }l lh%m . Equation (III.19) shows that the coefficients 

in layer l +1 can be expressed in terms of those of layer l above. Iteratively this can be successively 

applied from layer to layer backward. In other words, the coefficients of every layer can be 

expressed in terms of those of the top, first layer. In the top layer, Eq. (III.18) shows that { }2
1
( )A% can 

be expressed in terms of { }1
1A( )% , which means that the coefficients of each layer can all be 

expressed in terms of { }1
1A( )% , as follows: 

 
 

{ }
1

11 1
12

2 2

( )
( )

( )

( )( )
( ) ( )

l ll ll

l ll l l

hhA
A

hA h

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪ ⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

tT
T t

%%
%

% %
        (III.20) 

 

for some transformation matrices 1l lh( )T  and 2l lh( )T and for vectors 1l lh( )%t and 2l lh( )%t . Note that 

at the bottom semi-infinite layer, l = N, only outgoing waves (to infinity) exist, and { } { }2 0NA( ) =% % .  

 
The reason we selected to have the coefficients of all waves in each layer expressed in terms 

of a set of coefficients of waves in the top layer is because we know that for surface waves, and 

most of the time for body waves, the waves in the top layer are more dominant. With the 

coefficients { }1
1
( )
 A%  evaluated, the coefficients of the waves in all layers can be found from Eq. 

(III.20). 

 
 

V.  The Scattered and Diffracted Mode Shapes of Love and SH Waves  
 
V.1  The Input Free-Field Waves 
 

In the following, we illustrate examples for Love waves and body SH waves incident from 

the left via a regular parallel-layered medium. We will consider the five lowest mode shapes of 

Love waves in the frequency range 0.07 Hz–25 Hz. To those, we will add body SH waves as the 
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“6th mode” of waves in the parallel-layered medium (Trifunac 1971; Wong and Trifunac 1979; Lee 

and Trifunac 1985, 1987; Todorovska et al. 2013). Each of these six mode shapes at each period 

(frequency) will be used as the free-field input wave into the irregularly layered medium. In the 

example that follows, we will take a simple two-layered medium to illustrate the process. The 

following parameters will be used for this two-layered model (Figure III.4): 

 

Table 1 
 

Two-Layered Velocity Model 

 

Layer 

 

Thickness 

(km) 

P-wave Speed 

(α, km/s) 

S-Wave Speed 

(β, km/s) 

Density, ρ 

(gm/cc) 

1 1.38 1.70 0 98 1.28 

2 ∞ 6.40 3.`70 2.71 
 

 

Those are the same first and last layers of the six-layered model described in Todorvska et 

al. (2013), except that the top layer is now taken to be 1.38 km thick. The computer program 

“Haskel.exe” (Todorocka et al. 2013) has been used to calculate the phase velocities of each mode 

of Love waves in the range from 14.0–0.04 s, and for a total of 91 discrete period values.  

 
V.2  -The Scattered and Diffracted Mode Shapes 
 
 
 We next consider the case of an irregularly shaped, layered medium superimposed on the 

parallel two-layered medium. For this example, we select a shallow, “almost-flat” ellipse with a 

ratio of the vertical axis to the horizontal axis of 0.1 at both the half-space surface and the interface 

of the two layers. The half width or radius of the horizontal major axis is taken to be 1.0 km long 

for both. Thus, the half-width or radius of the minor axis is 0.1 km deep. 
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Fig. III.4.   Irregular, two-layered medium with incident Love waves (a) and SH body waves (b). 

 

 Figure III.5 illustrates the scattered and diffracted mode shapes for Mode #3 of Love Waves 

in the two-layered medium (shown in Fig. III.4). The mode shapes are illustrated at four selected 

frequencies—f = 13.33, 18.18, 20.0, and 25.0 Hz—which are the frequencies below the period of 

0.1 s (or frequencies beyond 10 Hz). It was found that since the irregular parts of the layer we 

chose for this example are almost flat, the long-period waves do not “see” the irregularities, and the 

scattered and diffracted waves at those long periods are small. As the frequencies of the incident-

mode shapes increase from 15.0 to 25.0 Hz, and especially for the frequencies f = 18.18, 20.0, and 

25.0 Hz, the Love waves experience some scattering and diffraction in the top layer, and most 

noticeably in the 18.18-Hz mode shape, which is shown in the lower left corner of Fig. III.5. 

Further examples of the scattered mode shapes can be found in Appendix R4-1 (Report IV-1). 

 

With the irregular, almost-flat elliptic surfaces from 1 0  km.x = −  to 1 0 km.x = +  at both 

the half-space surface and at the surface with the half space, the scattered and diffracted mode 

shapes are plotted at equally spaced intervals along the x-axis from 2 0  km.x = −  to 2 0 km.x = +  

at 0 1  km.  apart. The dashed line at the left side of each graph represents the input free-field mode 

shape propagating along the parallel-layered medium from left to right, arriving at the irregular 

surfaces at 1 0 km.x = − . As the mode number increases, the mode shapes of both the input free-

field motion and the signs of the scattered and diffracted Love waves change sign (M - 1) times as 

they go down vertically from the top surface, where “M” is the mode number. The scattering and 

diffraction will become more complex as the mode number increases (Appendix R4-1). 
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VI.
  

The Synthetic Scattered and Diffracted Time Histories 

 
 The scattered and diffracted Love waves and SH body-wave mode shapes can next be used 

to generate the synthetic out-of-plane transverse (y-) components of accelerations at all points on 

and below the ground surface in the vicinity of the irregular layers. The input Love and body SH 

waves to these diffracted waves are the out-of-plane waves generated in the regular layered media 

of elastic half space. The complete description of this procedure is given in Todorovska et al. 

(2013). 

 

We will use the following parameters to generate the example time histories: 

  

  6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  

where 

 

M = earthquake magnitude 

R = epicentral distance 

H = focal depth of earthquake 

 s = geologic site condition of the recording site, where s = 0, alluvial site,  s = 

1, intermediate site, and s = 2, rock site 

Ls = soil condition of the recording site, where Ls = 0, rock soil, Ls =1,       

intermediate soil, and Ls =2, soft soil type. 

 

 

VI.1 Time Histories 

 

The time history of the transverse out-of-plane motions at the top surface 0z =  has been 

generated by the SYNACC method (Trifunac 1971; Wong and Trifunac 1979; Lee and Trifunac 

1985, 1987; Todorovska et al. 2013). The time histories at points 0z > , below the half-space 

surface, have been generated by the recently generalized SYNACC program, which uses the mode 

shapes below the half-space surface to construct the motions at depth. Because of the scattering and 

diffraction, these out-of-plane mode shapes are now space dependent, and the acceleration-time 

histories are different at every point on the half-space surface and at depth. 
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Fig. III.5. Mode #3: Scattered and diffracted mode shapes at f = 13.33, 18.18, 20.0, & 25.0 Hz.  
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Figure III.6 shows three synthetic displacement-time histories calculated in the two-layered 

medium at 101 depths equally spaced from the layered half-space top surface ( )0z =  to a depth of 

km2z = , below the first layer which extends to a depth of . km1 38z = . The time histories are at 

three vertical sets of points along the half-space surface, at . km,2 0x = −  (1.0 km  to the left of the 

left rim of the canyon), . km0 0x =  (the  center of the canyon), and . km2 0x = + (1.0 km to the 

right of the right rim of the canyon). The time histories at the left and right rims of the canyon are 

all plotted at km,0z =  the layered half-space surface, while the time histories at the middle of the 

canyon start at . km0 1z = , the bottom of the canyon.  

 

 
 
Fig. III.6.   Horizontal, out-of-plane, synthetic displacements at x = -2, 0, and 2 km. 
 
 
 

The origin at the center of the canyon on the half-space surface is situated at an epicentral 

distance of 8.0R km=  from the earthquake source of focal depth km6.0H = , which would 
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correspond to a hypocentral distance of ( )1 22 2 ,D R H= +  or km10.0D = . The time history of 

displacement at the half-space surface, km,0z = on the left at . km2 0x = − , is thus at an epicentral 

distance of 6.0R km=  and a hypocentral distance of km,  km8.5 1.5�D closer. Similarly, the 

time history of displacement at the half-space surface, km0z = , on the right at . km2 0x = +  is 

thus at an epicentral distance of 10.0R km=  and a hypocentral distance of km11.7�D , km1.7  

further away. The new SYNACC program determines that the appropriate duration of the 

displacement record should be just above 40 s. The depths of the time histories in the figure are at 

intervals of 0.20 km apart. Of the 101 displacement-time histories, a few are plotted red, and those 

are the time histories at the interface. In the middle graph, the top red curve is at the bottom of the 

canyon, while the one below is at the elliptical interface. 
 

 

It can be seen that the waves arrive earlier on the left side of the canyon compared with the 

waves below the center of the canyon, while the waves on the right side of the canyon arrive later, 

with each side differing by a few seconds. The amplitudes of the waves are similar but different 

because of the scattering and diffraction. In all of the graphs, the strong motions are seen only in 

the top layer, down to z = 1.38 km, which is the interface with half space. This is consistent with 

the fact that the Love-wave mode-shape amplitudes diminish exponentially in the half space. 

 

 

VI.2
  

The Fourier and Response Spectral Amplitudes 

 
The time histories above show that the motions, because of scattering and diffraction, can 

differ from point to point at points on or below the half-space surface in the vicinity of the 

irregularly layered media. To further illustrate these differences, we will show the spectral 

amplitudes of the motions at different points.  

 

Figure III.7 shows the response as well as the Fourier spectral amplitudes at four surface 

points on the Layered media. This is a typical Volume 3 plot, as in “routine digitization and data 

processing” (Lee and Trifunac 1979) of strong-motion accelerograms, which we use to describe 

spectral content in the strong ground motions in the form that is used in engineering design.  
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These spectral amplitudes show similar trends and yet are all different. They are spectral 

plots for only four points of the irregularly layered media. Each point on top and below the layered 

media, to the left and to the right of the irregular surface and interface, will all have its own spectral 

amplitude. The pseudo relative velocity (PSV) spectra are shown for damping values of 0.0 and 0.20 

of the critical value. The spectra for no damping are characterized by rapid oscillations because the 

oscillator has no memory (Udwadia and Trifunac 1974; Gupta and Trifunac 1988). The spectra for 

20% damping are smooth because of the considerable memory of the oscillator with large damping. 

These spectra show the clear differences in response at different surface stations. 

 

 
 
Fig. III.7.  Response- and Fourier-amplitude spectra of surface motions at x = -2, -1, 1, and 2. 
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Fig. III.8. Contours of Fourier amplitude spectra (FS) in the area surrounding the inhomogeneus 
layer ( 2 2x− < <  km and 0 2depth< < km) at 12 periods: T =  0.15, 0.20, 0.30, 0.40, 0.50, 0.75. 
1.00, 1.50, 2.00, 4.00, 5.00, and 7.50 s. 
 

The simplest way to show the variations of Fourier spectral (FS) amplitudes is to plot their 

contours at selected periods. Figure III.8 shows such contours in units of in./s, at 12 selected periods: 

T = 0.15, 0.20, 0.30, 0.40, 0.50, 0.75, 1.00, 1.50, 2.00, 4.00, 5.00, and 7.50 s. The contour levels are 

for the Fourier spectra in logarithmic scale, log FS, in the range -1.0 to 1.75 in steps of 0.25, so that 

the corresponding Fourier amplitudes in linear scale are in the range 0.10 in./s to over 56 in./s. As 

can be seen from the figure, the Fourier amplitudes are larger near the top medium of the layer, with 

amplitudes varying from point to point in the range of around 0.1 in./s to above 56 in./s. Below the 

top layer, z > 1.38 km, the motions are all below 1 in./s.  
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Fig. III.9. Contours of pseudo-relative velocity spectra (PSV) in the area surrounding the 
inhomogeneus layer ( 2 2x− < <  km and 0 2depth< < km), at 12 periods—T =  0.15, 0.20, 0.30, 
0.40, 0.50, 0.75. 1.00, 1.50, 2.00, 4.00, 5.00, and 7.50 s—and for 5% of critical damping. 
 

Figure III.9 shows the corresponding contour plots of the PSV response spectral amplitudes 

at 5% damping in units of in./s. Those contours show trends and ranges of amplitudes similar to the 

Fourier-spectrum amplitudes in Fig. III.8. 

 

V.  Summary 

 

In this chapter we illustrated the wave propagation in and near an irregularly layered medium 

for the out-of-plane transverse component of earthquake ground motions corresponding to the 

incoming Love surface waves and body SH waves. Additional waves were generated at each layer as 

a result of scattering and diffraction at the irregular half-space surface and irregular interfaces 

between the layers. The out-of-plane scattered and diffracted shear waves were computed using the 
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weighted-residues method to satisfy the (out-of-plane shear) zero-stress boundary condition on the 

top half-space surface and the continuity of (out-of-plane) stress and displacement at the interface 

surfaces between adjacent layers. 

 

The contour plots of the Fourier and response spectra illustrate how the motions vary from 

point to point at or below the half-space surface and for different periods of motions. These waves 

generated by scattering and diffraction will result in amplification and de-amplification at various 

points on the layered medium depending upon the different irregular geometries.  

 

In this chapter, we illustrated the amplification of motions near inhomogeneity only for 

translational components of motion. With spatial differentiation, it is now also possible to calculate 

the amplification of rotational components of motion on ground surfaces and anywhere inside the 

layers (Trifunac 2009). However, it will be necessary to study many different layer geometries to 

identify the general trends for both translational and rotational components of strong motion. These 

studies are beyond the scope of this work and will be presented in our future papers.  

 

Previous work on the scattering and diffraction of elastic waves by surface and subsurface 

topographies in a homogeneous, elastic half space can now be extended to an irregularly layered, 

elastic half space. The method presented in this work will be useful because more realistic 

geometries can be modeled, which will permit synthesis of artificial earthquake motions for use in 

design that are more realistic than the frequently used elastic half space, with or without the 

uniformly parallel layers. The methodology presented here can also be extended to the cases of 

irregularly layered poroelastic media.  

 

The method we presented here can be further generalized to cases in which the geometry of 

the surface topography and of the interface surfaces for one or several layers has to be represented 

by different convex or concave surfaces. Such cases generate wave-scattered and -diffracted motions, 

and they need to be approximated by the Hankel functions with different origins. This is illustrated 

in Fig. III.10, in which the bottom interface of layer 2 is convex upward, thus creating a “hill-

interface” within the layer. The waves in such layers will best be represented in terms of their own 

coordinate systems, such as 2 2( , )x z in Fig. III. 10. In general, the waves in all layers can then each 

be represented by their own coordinate systems and the addition theorem can be used to apply the 
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boundary conditions at all interfaces. Conceptually, the method of solution to such problems will be 

same as the one presented in this paper, except that more model-specific modeling will be required 

to solve each problem. We will show examples of such modeling in our future work. 

 

 
 

Fig. III.10. Irregularly layered media with multiple coordinate systems. 

 

 

The method developed in this work now enables us to compute analytical representations of 

seismic-wave motions in irregular media, which can in general be modeled only numerically. This 

will be particularly useful for verification and testing of the accuracy with which transmitting 

boundaries in numerical algorithms are able to transmit the waves without spurious reflections. 
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Chapter 4 Scattering and Diffraction of Earthquake Motions 

in Irregular, Elastic Layers, II: Rayleigh and Body 
P and SV Waves 

 
Summary 
 

We present our analysis of the wave propagation in an irregularly layered, 

elastic wave-guide excited by incoming Rayleigh surface waves and P and SV body 

waves. Our aim is to show examples of applying a method that will make it possible to 

analyze the distribution and amplification of displacements, rotations, curvatures, 

strains, and stresses on or below the ground surface during passage of strong 

earthquake ground motion.  We employ the weighted-residuals method,, which makes 

it possible to calculate the scattered and diffracted waves, and then we illustrate the 

amplification of motions in the vicinity of inhomogeneity. 
 
 
IV.1  Introduction 

In this chapter, we describe a method for the computation of scattered and 

diffracted waves for in-plane Rayleigh surface waves and body P and SV waves around a 

local irregularity in a layered medium. The method used and the nature of the model, in 

the work presented here follows closely the related analysis in which we examined the 

scattering and diffraction of Love surface waves and body SH waves (Chapter 3). 

 

A brief review of the related studies and of the weighted–residues method were 

presented in chapter 3, and will not be repeated here. Instead, we will proceed straight to 

the presentation of the present work, introducing additional references as we go along and 

as they are required by the specific stages of the analysis. 

 

IV.2 Rayleigh and Body P and SV Waves Incident on an Irregularly 
Layered Media 

 
As in Chapter III, we consider the case of an N-layered half space with Rayleigh 

and body P and SV waves incident from the left. An approach for solving this problem 
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was first formulated by Thomson (1950) and Haskell (1953) in a manner that is useful for 

the present study.  For each regular, flat layer l, with  Kl 1, , N= , the P- and SV-wave 

potentials, respectively, take the forms shown in Fig. IV.1: 
 

   l l l l, , , :ϕ ϕ ψ ψ− + − +    

( )

( )

( )

( )

          

  

          

  

l

l

l

l

ik x a z
l l

ik x a z
l l

ik x b z
l l

ik x b z
l l

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

   (IV.1a) 

 

 

 
 

 
Fig. IV.1.  N-layered half space with Rayleigh waves. 

 
 

Those potentials represent respectively the upward and downward propagating waves in

 

thl  layer, k k( ) c( )ω ω ω= =  is the horizontal wave number of the P- and SV-waves at 

frequency ω  and phase velocity c c( )ω= . The term ikxe , which is same in all layers, 
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describes the horizontal propagation of the waves, which together with the time-harmonic 

term i te ω  corresponds to waves propagating in the –ve x direction. The terms lika zem for 

the P waves and likb zem  for the SV waves are, respectively, the corresponding vertical 

components of the waves. The ones with the –ve exponent are propagating upward (–ve 

y), and those with the +ve exponent are propagating downward (+ve y). Here, 

l l la a ( ,c )α= and l l lb b ( ,c )β= are respectively defined by

  

( )

( )

l l

l l

1 1 122 2 2 2 2 2

l
l

1 1 122 2 2 2 2 2

l
l

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ,

     (IV.1b) 

 

so that lka and lkb  are the vertical wave numbers of the P and SV waves in the  thl layer 

of the medium with longitudinal wave speed lα  and shear-wave velocity lβ . In general, 

the wave speeds increase as one moves down into the layers, so 

that 1 2 Nβ β β β< < < <K , with the semi-infinite half-space layer at the bottom having 

the highest shear-wave speed β . The same can be said about the longitudinal wave 

speeds, which means that 1 2 Nα α α α< < < <K , withα  the longitudinal wave speed of 

the semi-infinite medium being the largest. With c c( )ω= , the wave speeds of the 

surface Rayleigh waves, c β α< < , and the surface waves take the forms: 
 

( )

( )
    

    

ik x az ikx kaz

ik x bz ikx kbz

A A

B B

e e

e e

ϕ

ψ

∞ ∞ ∞
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− −

− −

= =

= =
    (IV.2a)  

where  

( ) ( )
( ) ( )

1 1 12 2 2 2 2 2 2

1 1 122 2 2 2 2 2

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ,

    (IV.2b) 
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and  a , b  are, respectively, the complements of a , b , and both are real, so that the 

terms kaze−  in ϕ∞ and kbze−  in ψ∞  both correspond to surface-wave terms with 

amplitudes that exponentially decay with depth.  

 

With lβ , the shear-wave speed in the thl  layer of the medium, and c c( ),= ω  the 

Rayleigh wave speeds and the (horizontal) phase velocities of the waves in each layer of 

the elastic media above the half space (Fig. 1), we can have lc β≥  or lc β< .  

 

 Next, we will consider the case in which the layers are not perfectly flat. 
 
 
 
IV.3 Rayleigh and Body P and SV Waves Incident to Irregular Layers  
 
IV.3.1 The  Model 
 

Figure IV.2 shows a model in which the layers are not perfectly flat in some finite 

region but are flat beyond this region. We assume that each of these irregular surfaces, at 

each of the interfaces between the thl and the ( )1 thl + layers—which outside this region 

extend from = −∞x  to = +∞x —can be represented by a curve = ( )lz h x  at the 

interface. We further assume that this curve will be the flat surface = lz H  almost 

everywhere but will be irregular within some finite region, where it can be defined by a 

set of points ( ),i ix z . The same curve can also be represented in polar coordinates ( )ˆˆ,r θ , 

with ( )ˆˆ ˆr r θ=  in a common coordinate system ( )ˆ ˆ,x z , with origin at some point Ô  

above the half space as follows: 

 

As in the case of surface Love waves (chapter 3), with surface Rayleigh-wave 

potentials or body P- or SV-wave potentials— ,l lϕ ϕ− +  for P waves and ,l lψ ψ− +  for SV 

waves—at each layer l  incident to these irregular surfaces, additional scattered-wave 

potentials are generated, which can be represented by 
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Figure IV.2. Irregularly shaped, N-layered half space with Rayleigh waves. 
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  (IV.3) 

with both outgoing and incoming waves for each layer 1, 2, , 1l N= −K , except for the 

last semi-infinite layer. For this layer, ,l N=  the scattered waves, s s
Nϕ ϕ∞ = and s s

Nψ ψ∞ = , 

respectively, the P- and SV- potentials, take the forms  

1
0

1
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   (IV.4) 

with only outgoing waves satisfying Somerfield’s radiation condition at infinity. 
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The scattered waves, together with the free-filed surface Rayleigh or body P and 

SV waves, form the resultant waves in the layered medium. Writing ff
l l lϕ ϕ ϕ+ −= + and 

ff
l l lψ ψ ψ+ −= +  as the free-field surface Rayleigh or body P and SV waves in the thl  layer, 

the resultant waves in the same layer are ff s
l l lϕ ϕ ϕ= +  and ff s

l l lψ ψ ψ= + , respectively, 

for the P and SV wave potentials. Together, these waves must satisfy the following set of 

boundary conditions (Lee and Wu, 1994b):  

 

1. On the half-space surface, 0( )z H x= , the resultant waves in the top layer ( 1)l =  

must together satisfy the half-space surface-traction (stress)-free boundary 

condition, as follows: 

0θ θ= + =ˆ ˆ%
r rT T e T e   at 0( )z H x= ;  (IV.5a) 

separating the contribution of traction due to the free-field and scattered waves, 

we have: 

= +% % %ff sT T T ,    (IV.5b) 

 which gives, at 0( )z H x= :  

θ θ

= −

= −

s ff
r r

s ff

T T

T T
.    (IV.5c) 

2. For 1, 2, , 1l N= −K , at the interface between the thl  layer and the ( 1)thl +  layer 

below, ( )lz H x= , the resultant waves in these two layers must satisfy the 

continuity of displacement and stress at the interface,  at ( )lz H x= :  

   1

1 
l l

l l

U U

T T
+

+

=

=

% %

% %
;
      (IV.6a) 

with lU , %lT , respectively, the displacement and traction vectors in layer l,  and 1lU + , 

1lT +
% the corresponding ones in layer l+1. Separating the contribution of the displacement 

and traction due to the free-field and scattered waves, we have: 
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= +

= +

% % %

% % %

ff s
l l l

ff s
l l l

U U U

T T T
 ,    (IV.6b) 

which gives, at ( )lz H x= : 

  
( )
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1 1

+ +
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− = − −

% % % %

% % % %

s s ff ff
l l l l

s s ff ff
l l l l

U U U U

T T T T
,

        (IV.6c) 

where the unknown wave functions are on the left-hand side and the known functions are 

on the right-hand side. As in Eq. (IV.3) above, both the displacement and traction vectors 

at each layer can be expressed in the radial and tangential components, as follows: 

( ) ( )
( ) ( )

ˆ ˆ

ˆ ˆ
l l r lr

l l r lr

U U e U e

T T e T e
θθ

θθ

= +

= +

%

%
,
    (IV.7) 

so that the displacement and traction vectors in Eq. (IV.6b) can be separated into 

component forms, at ( )lz H x= : 

   
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1

s s ff ff
l l l lr r r r

s s ff ff
l l l l

U U U U

U U U U
θ θ θ θ

+ +

+ +

− = − −

− = − −
       (IV.8a) 

and 

  
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1

s s ff ff
l l l lr r r r

s s ff ff
l l l l

T T T T

T T T T
θ θ θ θ

+ +

+ +

− = − −

− = − −
.

    (IV. 8b) 

 

Here, the radial and tangential components of traction, rT and Tθ , can be expressed in 

terms of the various components of stresses in cylindrical coordinates (Lee and Wu, 

1994b): 

cos sin

sin cos
r r r

r

T

T
θ

θ θ θ

σ α τ α

σ α τ α

= +

= + ,
    (IV.9) 

where α  is the angle that the normal ˆ ˆ ˆ ˆ ˆcos sinr r rn n e n e e eθ θ θα α= + = +  makes with the 

radial vector, as shown in Fig. IV.3 (Lee and Wu, 1994a,b): 
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Expressions for the radial and angular components of the displacement vectors 

and stresses can be expressed in terms of the corresponding wave potentials (Pao and 

Mow, 1973). For the scattered wave potentials, at a point ( ) ( )ˆ ˆˆ ˆ, ( ),r rθ θ θ=  on the 

irregular surface (or at any point anywhere) they will take the following form: 

( )

( )

1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
, , ,

( ) ( ) ( ) ( )
, , ,

ˆ ˆˆ ˆ( , , ) ( , , )

ˆ ˆˆ ˆ( , , ) ( , , )

l l

l l

s j j j j
l j l n r l n rr

n

s j j j j
l j l n l n

n

U A D n k r B D n k r

U A D n k r B D n k rθ θθ

α β

α β

θ θ

θ θ

=
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∑

∑
,

     (IV.10) 

where 1
( ) ˆˆ( , , )

l

j
rD n k rα θ and 2

( ) ˆˆ( , , )
l

j
rD n k rβ θ  are the corresponding radial displacements 

from the P and SV scattered-wave potentials, and 1
( ) ˆˆ( , , )

l

jD n k rθ α θ and 2
( ) ˆˆ( , , )

l

jD n k rθ β θ  are 

their corresponding angular displacements.  

 

Similarly, the traction components at a point on the irregular surface 

( ) ( )ˆ ˆˆ ˆ, ( ),r rθ θ θ=  with normal  ˆ ˆ ˆ ˆ ˆcos   sinr r rn n e n e e eθ θ θα α= + = +  take the form: 

 

Fig.  IV.3. Angle α  between radial vector and normal at a point (Lee and Wu, 1994a,b). 
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(IV.11)

 

where 1 1
( ) ( ) ˆˆ ˆ( , , , )

l

j j
r r n k r nα θ=T T  and  2 2

( ) ( ) ˆˆ ˆ( , , , )
l

j j
r r n k r nβ θ=T T  are the corresponding 

radial components of traction from the P and SV scattered-wave potentials. 

Similarly, 1 1
( ) ( ) ˆˆ ˆ( , , , ),

l

j j n k r nθ θ α θ=T T 2 2
( ) ( ) ˆˆ ˆ( , , , )

l

j j n k r nθ θ α θ=T T are the corresponding 

stresses.  

 

              Using the weighted-residue method, as in the case of the out-of-plane Love 

waves in chapter 3, from Harrington (1967) for electromagnetic waves and Lee and Wu 

(1994a,b) for elastic waves, the boundary conditions at each layer take the form: 

 

1. Starting from the top layer, the half-space surface, from Eqs. (IV.4b): 
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(IV.12)

 
 

 

2) For the interface between the thl  and 1( )thl +  layers, for 1 2 3, ,l = K from Eq. (IV.8a)  

for displacements: 

1 2
1 20

( ) ( ) ( ) ( )
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,
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l l

j j j j
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(IV.13a) 
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(IV.13b)
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D n k r w A D n k r w Bθ θα βθ θ

∞

==

⎡ +⎣∑
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( ) ( )1 11 1 2 1 1
( ) ( ) ( ) ( )

, ,
ˆ ˆˆ ˆ( , , ), ( , , ),  ,

l l

j j j j ff ff
m l n m l n l l mD n k r w A D n k r w B U U wθ θ θ θα βθ θ

+ ++ + +
⎤− − = − −⎦  

 

and from Eq. (8b) for stresses: 

 

1 2
1 20

( ) ( ) ( ) ( )
, ,

,

ˆ ˆˆ ˆ ˆ ˆ( , , , ) , ( , , , ) ,
l l

j j j j
r m l n r m l n

jn
n k r n w A n k r n w Bα βθ θ

∞

==

⎡ +⎣∑ T T  
 

(IV.14a)

( ) ( )1 11 1 2 1 1
( ) ( ) ( ) ( )

, ,
ˆ ˆˆ ˆ ˆ ˆ( , , , ) , ( , , , ) , ,

l l

j j j j ff ff
r m l n r m l n l l mr r

n k r n w A n k r n w B T T wα βθ θ
+ ++ + +

⎤− − = − −⎦T T  

1 2
1 20

( ) ( ) ( ) ( )
, ,

,

ˆ ˆˆ ˆ ˆ ˆ( , , , ) , ( , , , ) ,
l l

j j j j
m l n m l n

jn
n k r n w A n k r n w Bθ θα βθ θ

∞

==

⎡ +⎣∑ T T  
 

(IV.14b)

( ) ( )1 11 1 2 1 1
( ) ( ) ( ) ( )

 ,  ,
ˆ ˆˆ ˆ ˆ ˆ( , , , ) , ( , , , ) , ,

l l

j j j j ff ff
m m ml n l n l ln k r n w A n k r n w B T T wθ θ θ θα βθ θ

+ ++ + +
⎤
⎥⎦

− − = − −T T
.

          In matrix form,  Eqns. (IV.13a,b) and (IV.14a,b) take the form: 
 

 

with  properly defined matrix elements 1
( ) ( , , )j
rD l m n ,… and 1

( ) ( , , )j
rT l m n ,… etc. 

 

            Note that for the interface between layer 1N −  and the (last) semi-infinite 

layer N , Eqs. (13a,b) and (14a,b) will have only the outgoing wave terms 
1 1 0 1 2( ) ( )

, ,,  ,  , ,N n N nA B n = K  and without the incoming wave terms 2 2 0 1 2( ) ( )
, ,,  ,  , ,N n N nA B n = K  

 
 
 

1 2 1 2

1 2 2 2

1 2 1 2 1 2

1 2

1 1
1 1
1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

( ) ( )

( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
( , , ) (

j j j j
r r r r

j j j j

j j j j
j r r r r

j j

D l m n D l m n D l m n D l m n
D l m n D l m n D l m n D l m n
T l m n T l m n T l m n T l m n
T l m n T l

θ θ θ θ

θ θ

=

− + − +
− + − +
− + − +

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 1

11 2

1

1

1

1

1 1

( )
,

( )
,

( )
,

( )( ) ( )
,, , ) ( , , ) ( , , )

,

,
                              

,

,

j
l n

j
l n
j

n l n
jj j

l n

ff ff
l l mr r

ff ff
l l m

ff ff
l l mr r

ff ff
l l m

A
B
A
Bm n T l m n T l m n

U U w

U U w

T T w

T T w

θ θ

θ θ

θ θ

∞

= +

+

+

+

+

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪− + − +⎢ ⎥⎣ ⎦ ⎩ ⎭

⎧ −

−
= − ⎨

−

−

∑

                                               

⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

 

 

 

 

(IV.14c)
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IV.3.2  Numerical Implementation 
 
 
 For the completeness of this presentation, we include here a brief summary of the 

numerical procedure used to apply the system of complex equations derived in the last 

section for in-plane Rayleigh and body P and SV waves. Mathematically, this is the same 

procedure that we used in chapter 3 for out-of-plane Love waves and body SH waves. 

 

For elastic half-space with 1( )N ≥  layers, there are 1( )N −  interfaces between 

the layers, plus the topmost half space with no elastic medium above.  With Hankel 

functions of both the 1st and 2nd kind of both longitudinal P and shear SV waves present 

(except in the bottom semi-infinite layer), this gives a total of 2 1 1 2 1( )N N− + = −  pairs 

of waves for 2N-1 pairs of (normal and shear) boundary conditions from all of the layers. 

 

 Since each set of equations at each interface involves only waves at each side of 

the interface, a simple, elegant numerical algorithm can be derived to allow each set of 

wave coefficients at each medium to be solved separately, making the problem simple 

numerically. This was already shown for Love waves in chapter 3. In other words, we are 

solving, for each layer, M complex equations in M unknowns separately at each step. The 

following is a detailed description of the numerical procedure. 

 

 Starting from the top surface, where 0z = , we have the matrix equation for the 

zero-stress boundary condition along the whole (regular and irregular) surface of the half 

space, in the form: 

{ } { } { }1 2
1 1 1 1 1 0

( ) * ( )      0
z

E C E C e
=

⎡ ⎤+ + =⎡ ⎤⎣ ⎦ ⎣ ⎦
% % %

,
   (IV.15) 

where { }1
1
( )C% and { }2

1
( )C%  are the two vectors { }1 1 1 1 1 1

10 10 11 11 12 12
( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

T
A B A B A B K and  

{ }2 2 2 2 2 2
10 10 11 11 12 12
( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

T
A B A B A B K , respectively, in the top layer. As in the case of Love 

and SH body waves in chapter 3, { }2
1
( )C%  can be expressed in terms of { }1

1
( )C%

 
and { }1e% . 
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Next, the displacement and stress-continuity equations at the interface between layers l 

and l+1, as in Eq. (IV.14c) above, at the interface, lz h=  can be written in the form: 

( ) ( ){ } ( ) ( ){ }

( ) ( ){ }

1 1
1

1 12 2
1

1 1
1

2 2
1

or in the form :     

( ) ( )

( ) ( )

( ) ( )

 ( ) ( )

                   

     

l l
l l l l l l l l

l l

l l
l l l l

l l

C C
M h e h M h e h

C C

C C
h h

C C

+
+ +

+

+

+

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤+ = +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤= +⎨ ⎬ ⎨ ⎬⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

% %
% %

% %

% %
%

% %
M m

   (IV.16) 

 

for some matrix ( )l lh ⎡ ⎤⎣ ⎦M  and vector ( ){ }l lh%m . Equation (IV.16) shows that the wave 

coefficients in layer l+1 can be expressed in terms of those of layer l above, as in chapter 

3. Iteratively, this can successively be applied from layer to layer backward. In other 

words, the coefficients in every layer can be expressed in terms of those in the top, first 

layer. Since in the top layer, Eq. (IV.15) shows that { }2
1
( )C% can be expressed in terms of 

{ }1
1
( )C% , the coefficients of each layer can all be expressed in terms of { }1

1
( )C% , as follows: 

{ }
1

11 1
12

2 2

( )
( )

( )

( )( )
( ) ( )

l ll ll

l ll l l

hhC
C

hC h

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪ ⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

%%
%

% %

tT
T t

       (IV.17) 

 

for some transformation matrices 1l lh( )T  and 2l lh( )T and vectors 1l lh( )%t and 2l lh( )%t . 

Note that at the bottom, semi-infinite layer, l = N, only outgoing waves (to infinity) exist, 

and { } { }2 0( )
NC =% % .  

 

As in the case of Love waves in chapter 3, the reason why we decided to have the 

coefficients of all waves in each layer expressed in terms of the coefficients of waves in 

the top layer is that we know, for surface waves and for body waves, that the top-layer 

waves are more dominant.  
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IV.4 The Diffracted Mode Shapes of Rayleigh Waves and P and SV 

Body Waves  
 
 
IV.4.1  The Input Free-Field Waves 
 
 

We can calculate and plot the displacement mode shapes of in-plane Rayleigh 

surface waves for a selected range of periods starting from 15 s down to 0.04 s (0.07–25 

Hz). We then do the same for the mode shapes resulting from in-plane body P and SV 

waves for a given incidence angle. We consider the body P and SV waves here as the 

“11th and 12th modes” of waves in the parallel, layered medium (Trifunac 1971; Wong 

and Trifunac 1979; Lee and Trifunac 1985, 1987; Todorovska et al. 2013). We are now 

able to extend this procedure to generate the mode shapes at every point on and below the 

surface of the layered medium (Lee et al. 2014). 

 

Each of these mode shapes, at each period (frequency), will be used as the free-

field input wave into the irregularly layered medium studied here. In what follows, we 

will take a rather simple two-layered medium to illustrate the process, as we did 

previously in the case of Love and body SH waves. The following parameters in Table 

IV.1 are used for this two-layered model. 

 

Table IV.1. Two-Layered Velocity Model 

Layer 
Thickness, 

km 

P-wave Speed, 

α, km/s 

S-wave Speed, 

β, km/s 

Density, ρ 

gm/cc 

1 1.38000    1.70000     0.98000    1.28000 

2 ∞ 6.40000    3.70000    2.71000 
 

These are the same top and bottom layers of the six-layered model considered in many of 

our previous studies (e.g., Todorovska et al. 2013), except that the top layer is now 1.38 

km thick. The computer program Haskel.exe is again used to calculate the phase 

velocities of each mode of Love waves, as in chapter 3, in the period 14.0 –0.04 s, for a 

total of 91 discrete period values.  
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IV.4.2  Scattered and Diffracted Mode Shapes 
 

               For this chapter, we select the same irregularly layered model as that used for 

Love surface waves and body SH waves in chapter 3. It is a shallow, “almost-flat” ellipse 

with a ratio of vertical minor axis / horizontal major axis = 0.1 at both the half-space 

surface and the interface of the two layers. The half width or radius of the horizontal 

major axis is taken to be 1.0 km long for both, or in other words the major diameter is 2.0 

km long. Figure IV.4 shows a sketch of this model for excitation by incident Rayleigh 

surface waves and incident body P or SV waves. 

 

 

 

Fig. IV.4. The 2-layered model with (a) incident Rayleigh and (b) P and SV waves. 

 
 
 Figures IV.5a and IV.5b illustrate the scattered and diffracted mode shapes, 

respectively, for the horizontal (x-component) and vertical (z-component) motions of 

mode #3 of Rayleigh waves at four selected frequencies: f = 1.0, 2.0, 3.33, and 6.67 Hz. 

With the irregular, almost-flat, elliptic surfaces from 1 0 km.x = −  to 1 0 km.x = +  on 

both the half-space surface ( )0 kmz =  and the surface of the interface of the two media 

( )1 38 km.z = , the diffracted mode shapes are plotted at equally spaced intervals along x 

from 2 0 km.x = −  to 2 0 km.x = + , at 0 1 km.  apart. The dashed line on the left side of 

each graph represents the input free-field mode shapes propagating in the parallel-layered 

medium from the left and arriving at the irregular zone. The shapes of the elliptical 

canyons on the top and at the interface are also plotted with dashed lines, showing how 

they have deformed from the regular elliptical shape. 
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Fig. IV.5a. The third Rayleigh mode shape, horizontal (x-axis) component, with scattered 
and diffracted mode shapes at f = 1.0, 2.0, 3.33, and 6.67 Hz.  
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Fig. IV.5b. Third Rayleigh mode shape, vertical (z-axis) component, with scattered and 
diffracted mode shapes at f = 1.0, 2.0, 3.33, and 6.67 Hz. 
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For all frequencies below 1.0 Hz (or all periods above 1 s.), the waves are not 

much affected by the almost-flat, irregular surfaces. The higher-mode Rayleigh waves are 

more oscillatory in the layer before decaying to almost zero at the interface with the half 

space. As the mode number increases, both the mode shapes of the input free field and 

those of the diffracted Rayleigh waves go through M-1 sign changes as they go down 

vertically from the top surface, where “M” is the mode number. Thus, the scattered and 

diffracted mode shapes are also more oscillatory in the layer. This behavior increases 

with increasing frequency. Further, such diffraction behavior also becomes more complex, 

for both the horizontal x- and vertical z-components of motion, as the mode number 

increases (Appendix R4-2). 

 
At present, we are able to do the calculations of the scattered and diffracted waves 

for the Rayleigh waves up to f ~ 6.67 Hz (period #61, T = 0.15s). Calculations for higher 

frequencies, up to the frequency of   f = 25.0 Hz (period #91, T = 0.04s), will need more 

work on the numerical procedures to ensure convergence of the computed results. This 

will be considered and described in our future papers. 

 
 
 
 

         IV.5      Synthetic, Scattered and Diffracted, In-Plane Time Histories 
 

 The scattered and diffracted, in-plane Rayleigh and body P and SV wave mode 

shapes can next be used to generate the synthetic, scattered and diffracted, in-plane radial 

(x-) and vertical (z-) components of accelerations at all points on and below the surface in 

the vicinity of the irregularly layered medium. The input Rayleigh and body P and SV 

waves to these diffracted waves are the in-plane waves generated in the regularly layered 

media of elastic half space. The complete description of the procedures for generation of 

these time histories is given in Todorovska et al. (2013). As in chapter 3, we will use the 

following parameters in Table IV.2 to generate the time-histories. 

  

Table IV.2: Time-History Parameters 

Case 1:  6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  

where M = earthquake magnitude 
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 R = epicentral distance 

H = focal depth of earthquake 

 s = geologic site condition of the recording site, where 

 s = 0, alluvial site;  s = 1, intermediate site; and  s = 2, rock site 

Ls = soil condition of the recording site, where 

Ls = 0, rock soil; Ls =1, intermediate soil; and Ls =2, soft-soil type. 
 

 

IV.5.1    Synthetic Time Histories 
 

The time history of the radial and vertical in-plane motions at the top surface 

0z =  has been generated by the SYNACC method (Trifunac 1971; Wong and Trifunac 

1979; Lee and Trifunac 1985, 1987; Todorovska et al. 2013). The time histories at 

points 0z > , below the half-space surface, have been generated by the updated SYNACC 

program, which uses the mode shapes below the half-space surface to construct the 

motions at depth. Because of the scattering and diffraction, these in-plane mode shapes  

 

 
 

Fig. IV.6a. Horizontal, in-plane, synthetic displacements at x = -2.0, 0.0, and 2.0 km. 
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Fig. IV.6b. Vertical, in-plane, synthetic displacements at x = -2.0, 0.0, and 2.0 km. 
 
 

are now space dependent, and therefore the acceleration time histories are different at 

every point on the half-space surface and at depth. 

 
Figures IV.6a and IV.6b show the horizontal (radial; x- component) and vertical 

(z- component) motions for synthetic-displacement time histories calculated in the two-

layered model at 101 depths equally spaced from the half-space surface ( )0z =  to a 

depth of km2z =  below the first layer up to a depth of . km.1 38z =  The time histories 

are plotted as three vertical lines, at . km2 0x = −  (on the left), . km0 0x = (in the center), 

and . km2 0x = +  (on the right) of the center of the canyon. The time histories on the left 

and right sides of the canyon are all plotted from km,0z =  which is the layered half-

space surface, while the time histories in the middle of the canyon start at . km,0 1z =  

which is the bottom of the canyon.  
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The origin at the center of the canyon on the half-space surface is situated at the 

epicentral distance of 8.0R km=  from an earthquake source at focal depth km6.0H = , 

so that the hypocentral distance is km10.0 .D =  The time history at the top and on the 

left is at . km,2 0x = −  and thus it is at the epicentral distance of 6.0R km=  and a 

hypocentral distance of km,  km8.5 1.5�D closer. Similarly, the time history at top right 

is at . km,2 0x = + and thus it is at an epicentral distance of 10.0R km=  and a 

hypocentral distance of km,11.7�D  or km1.7  further away. 

 

In all of the figures, the strong motions are seen mainly in the top layer, at depths 

of up to 1.38 km. Further, in all of the figures, whether it is the radial x- component or the 

vertical z- component, and whether it is the acceleration, velocity, or displacement 

motion, it can be seen that the waves arrive earlier on the left side and later on the right 

side. 

 

IV.5.2 Fourier- and Response-Spectral Amplitudes 
 
 

The time histories in Fig. IV.6a,b show that the motions can differ appreciably 

from point to point in the vicinity of the irregularly layered medium. To illustrate the 

variations of these motions from an earthquake-engineering viewpoint, we will next show 

the pseudo relative velocity (PSV) and Fourier (FS) spectral amplitudes at selected points.  

 
Figures IV.7a and IV.7b show the plots of the PSV spectral amplitudes at several 

surface points on the layered medium. The format of the plots we use is a typical 

“Volume 3” plot, which we use in the routine digitization (Trifunac and Lee 1979) and 

data processing (Lee and Trifunac 1979) of strong-motion accelerograms to describe the 

spectral content in the strong ground motions.  

 

Overall, these spectral amplitudes are very similar, but their details are all 

different. The spectra are plotted at four points on the irregularly layered media. Each 

point on top and below the layered media, and to the left and right of the irregular surface 

and interface, will have its own spectral amplitudes. 
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Fig. IV.7a. Response- and Fourier-amplitude spectra—horizontal components. 

 
 

Illustrating how the Fourier- and response-spectral amplitudes change from point 

to point from left to right and from top to bottom in the vicinity of inhomogeneity would 

take too many pages of plots to show the amplitudes at many different points.  However, 

a simple and convenient way to accomplish this is to plot the contours of the Fourier- and 

response-spectral amplitudes at a sufficient number of selected periods inside the medium. 

Figures IV.8a and IV.8b are plots of this type, which show the radial (x-) and vertical (z-) 

contour plots of the Fourier-spectral amplitudes in units of in./s at 12 selected periods: 
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Fig. IV.7b Response- and Fourier-amplitude spectra—vertical components. 
 
 

T = 0.15, 0.20, 0.30, 0.40, 0.50, 0.75, 1.00, 1.50, 2.00, 4.00, 5.00, and 7.50 s, at the 

corresponding frequencies: f = 6.67, 5.00, 3.33, 2.50, 2.00, 1.33, 1.00, 0.67, 0.50, 0.25, 

0.20, and 0.133 Hz. 

 
 The contours are plotted with the logarithms of the Fourier amplitudes, so that the 

contour levels are also in log scale, with log (FS) ranging from -1.0 to 2.25 in steps of 

0.25, and the Fourier amplitudes in the linear scale ranging from 0.10 in./s to over 315 

in./s. It can be seen that for all of the 12 periods shown the Fourier amplitudes are larger 
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in the top layer, with amplitudes varying from point to point in the range from around 1 

in./s to above 100 in./s. Below the top layer, z > 1.38 km, and the motions are typically 

smaller than 1 in./s.  

 

 
Fig. IV.8a   Fourier-spectral amplitudes—horizontal components. 

 

There is one noticeable difference between Figs IV.8a and IV.8b, on the one hand, 

for the in-plane, radial- and vertical-component Fourier amplitudes here, and the 

corresponding amplitudes in Fig. III.8, on the other hand, for the out-of-plane, transverse-

component Fourier amplitudes in chapter 3. Comparing the figures here and in chapter 3, 

it can be seen that in each of the 12 periods plotted, the Fourier amplitude contours vary 

much more and are more oscillatory inside the layer. Physically, the out-of-plane, 

transverse motions in chapter 3 are of only one component and one type of motion—

namely, the horizontal transverse component of motion, which does not lead to mode 



 4-24

conversion anywhere in the model.  In contrast, the in-plane radial and vertical motions 

here are of two components and of two types of motions—namely, the horizontal and 

vertical in-plane motions on the one hand, and the longitudinal and shear-wave motions 

of different wave speeds on the other. Thus, the mode conversions, which are present for 

all motions studied in this chapter lead to more complicated contour plots, as illustrated 

in Figs. IV.8a and IV.8b. 

 

 
Fig. IV.8b. Fourier-spectral amplitudes—vertical component.
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Figures IV.9a and IV.9b show the contour plots of in-plane radial and vertical 

components of the PSV response-spectral amplitudes at 5% damping in units of in./s 

These plots show the same trends and ranges of amplitudes as the Fourier amplitudes in 

Figs. IV.8a and IV.8b.  Again, comparing with the corresponding figures in chapter 3, for 

the out-of-plane, transverse component 5% PSV amplitudes, while the contour levels 

there and here are of comparable amplitudes, at each of the 12 periods shown, the contour 

values here change more and faster from point to point.  

 
 

 
 

Fig. IV.9a. PSV-spectral amplitudes—horizontal component, for 5% damping. 
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VI.  Summary 
 
 

In this chapter, we analyzed the wave propagation in an irregularly layered medium 

for the in-plane radial and vertical components of motion. With the incoming 

Rayleigh surface waves and body P and SV waves, additional scattered and 

diffracted waves are generated by irregular interfaces between the layers. The 

scattered and diffracted waves are computed using the weighted-residues method to 

satisfy (1) the (in-plane) coupled, normal, and shear zero-stress boundary conditions 

on the top half-space surface; and (2) the continuity of (in-plane) coupled stress and 

displacement at the layer interface surfaces.  

 

 
 

Fig. IV.9b.   PSV-spectral amplitudes—vertical  component, for 5% damping. 
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The contour plots in Figs. IV.8 and IV.9 show that the Fourier- and response-

spectral amplitudes vary quite rapidly from point to point at and below the half-space 

surface and also vary from period to period of motions. The scattered and diffracted waves 

may result in amplification and de-amplification at various points on the layered medium.  

 

 
 

 

Figure IV.10. Irregularly layered medium with multiple coordinate systems. 

 
 

The work on the scattering and diffraction of elastic waves by surface and 

subsurface topographies in a homogeneous, elastic half space for both out-of-plane Love 

(chapter 3) and in-plane Rayleigh (this Chapter) surface waves can further be extended to 

more irregularly layered, elastic half spaces than illustrated here. This will enable 
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engineering calculations of site-specific strong ground motion to be evaluated for more 

general and realistic models than those based on elastic, uniform, parallel-layered media, 

as considered in the past. The methodology presented in this chapter can also be extended 

to cases of irregularly layered, poroelastic media, in which the boundary conditions can be 

much more complicated. 

   

As in chapter 3, the present results can be further generalized to cases in which the 

geometries of surface topography and of interfaces between the layers have to be 

represented by additional origins of cylindrical coordinates. This is illustrated in Fig. 

IV.10, where it can be seen that the bottom interface of layer 2 is convex upward, which is 

a case of a “hill interface.” It is then more appropriate to associate it with its own 

coordinate system 2 2( , )x z  to describe the interface surface. The waves in the layers may 

then all be represented by their own coordinate systems, and the addition theorem can be 

used to apply the boundary conditions at the interfaces. 
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V.I  The Original Synthetic Accelerogram Program 

for Points on Half-space: SYNACC 
 

The synthetic translational and rotational components of acceleration are constructed to 

have a required Fourier amplitude spectrum, ( )FS ω , and a given duration, ( )D ω , at the half-

space surface of a given site. A complete review of the method first proposed by Trifunac 

(1971b), and later refined by Wong and Trifunac (1978, 1979), for the generation of synthetic 

accelerograms, can also be found in the review paper by Lee (2002) and Todorovska et al (2013). 

In short, the following files and information are needed to construct synthetic motions: 

 

1. Period.dat: the Data file of the Periods of waves 
 

2. HskWav.dat: Wave Dispersion Data at a Site 
 

3. InSyn.dat: Input data file for SYNACC.EXE 
 

4. Option to be used for constructing the Fourier Amplitudes in the given Frequency 
Band 

 

V.I.1 Period.dat 
 

 The data file is listed as follows, to be read in by the program: 

 0.040 0.042 0.044 0.046 0.048 0.050
 0.055 0.060 0.065 0.070 0.075 0.080
 0.085 0.090 0.095 0.10 0.11 0.12
 0.13 0.14 0.15 0.16 0.17 0.18
 0.19 0.20 0.22 0.24 0.26 0.28
 0.30 0.32 0.34 0.36 0.38 0.40
 0.42 0.44 0.46 0.48 0.50 0.55
 0.60 0.65 0.70 0.75 0.80 0.85
 0.90 0.95 1.00 1.10 1.20 1.30
 1.40 1.50 1.60 1.70 1.80 1.90
 2.00 2.20 2.40 2.60 2.80 3.00
 3.20 3.40 3.60 3.80 4.00 4.20
 4.40 4.60 4.80 5.00 5.50 6.00
 6.50 7.00 7.50 8.00 8.50 9.00
 9.50 10.00 11.00 12.00 13.00 14.00
 15.00      
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There is a total of 91 periods from 0.040 s to 15.00 s. In terms of frequency this 

corresponds to the frequency range of 0.07 Hz to 25 Hz. 

  

V.I.2 Hskwav.dat: The Original Haskel Program - HASKEL.EXE 
 

This section will describe the input needed to generate the wave dispersion data at a site: 

Hskwav.dat 

 
V.I.2.1 Input: The Layered Media Elastic Properties 
 

Following Trifunac (1971), Wong and Trifunac (1978), at a given site, we first select an 

approximate geological profile to be represented by the equivalent parallel layers. A model can 

have N layers. For each layer l , with l = 1 to N , the parameters   l l lh , ,α β and lρ must be 

specified, where  

 

lh =  layer thickness, 

lα  = P −wave velocity,  

lβ = S −wave velocity, and  

lρ  = density of the thl  layer, 

with the bottom l N=  medium having infinite thickness.   

 
 The file HskLin.dat here is an example of such a file used in Report I (see Appendix R1): 
 
Hsklin.dat: 
 
6 LAYER Imperial Valley VELOCITY MODEL 
0.18 1.70 0.98 1.28 
0.55 1.96 1.13 1.36 
0.98 2.71 1.57 1.59 
1.19 3.76 2.17 1.91 
2.68 4.69 2.71 2.19 
 .00 6.40 3.70 2.71 
15, 0.1,1.0,10,0 
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The 1st line is the number of elastic layers, N, followed by a name identifying the medium. This 

is then followed by N lines with four column each specifying the elastic properties in each layer. 

The first column is the thickness of each layer in km. The second column is the P-wave velocity 

in km/s. The third column is the shear wave velocity in km/s. The fourth and last column is the 

mass density in gr/c³. Those are followed by a line with 5 numbers: 15., 0.1, 1.0, 10, 0, which 

respectively are: 

 

i) TST = 15 sec = Starting longest period to start iterations, 

ii) TMIN = 0.1 sec = Down to minimum period, 

iii) DTS  = 1.0 sec = Spacing of periods to start iterations, 

iv) Nsmx = 10 = Recommended number of iterations in search of the roots. 

v) NMCL = 0, Number of Modes of Rayleigh and Love waves (set to default of 5) 

 

 

V.I.2.2 Output: Wave Dispersion Data of the Site 
 

 
 With the input file Hsklin.dat, the program Haskel.exe is first executed. It will compute, 

for both the Rayleigh and Love surface waves their group and phase velocities, each between the 

starting period 15secT = down to 0.1secT ∼ or in a frequency range from 0.07f Hz= to 

10f Hz∼ .  This will give, for to 1 5m =  modes of Rayleigh and Love waves, ( )m nC ω and 

( )m nU ω , respectively representing their phase and group velocities, at a set of discrete 

frequencies nω . For Rayleigh waves, HASKEL.EXE also gives the ratios of the vertical to 

horizontal displacement amplitudes at the half-space surface. The output data will be the file 

Hskout.dat. The set of discrete frequencies nω  is usually a set of non-uniform frequencies 

within the frequency range. The program then interpolate to the frequencies corresponding to the 

91 discrete periods of the data file Period.dat above, and outputs the data in Hskwav.dat, which 

will be the input file for SYNACC.EXE. 
 
  
 With the calculations of group and phase velocities, in the late 70’s, no actual travel time 

data were used for the corresponding body P, SV and SH waves. An equivalent “mode” of body 
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waves was created for both the longitudinal P- and shear S- waves. The P-wave “mod” was 

created using the range from minα  to maxα , from short period to long period, where minα and 

maxα are the minimum and maximum P-wave velocities in the layered half space model of the 

site. Similarly, the equivalent S-wave “mode” was created using the range from minβ  to maxβ , 

where minβ and maxβ are the minimum and maximum S-wave velocity is the layered model of the 

site. This old approach has been replaced at present by the P, SV and SH body wave modes 

calculated analytically from body waves incident from below. 

 
 Figure II.1 in Chapter II is an example of one such plot of the phase velocities for five 

modes of Rayleigh waves and five modes of Love waves for the 6-layered El Centro Imperial 

Valley site for which the layer properties are those given in the file Hsklin.dat above. The 

Rayleigh waves are plotted as solid lines and the Love waves as dashed lines. The horizontal axis 

for period is plotted in logarithmic scale from around 0.04 sT = to 15sT = .  

 

On the left side of the figure between 0.10sT =  and 0.40sT =  are two graphs, one solid 

and one dashed. The solid graph is a smooth step function going from minα to maxα representing 

the body P-wave, while the dashed graph is the corresponding step function from minβ to maxβ  

representing the body S-wave. These curves were used in the older versions of the program. As 

shown in the later sections, calculations are now available for P, SV and SH Body waves 

incident into the layers from half-space. 
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V.I.3 Insyn.dat: Input data for SYNACC.EXE 
 

 SYNACC will next open the file InSyn.dat in unit NU1 and read  input from: 
  OPEN(NU1,FILE='InsynS.dat',STATUS='OLD') 
 
 

1) Input 1: IWRT: Output Mode 
 

IWRT =0: Output ALL input read in 
=1: Simplified Output 
 

  Write(*,1111) 
1111    FORMAT(' INPUT IWRT = ') 

  READ(NU1,*)IWRT 
 
 

2) Input 2: Date and Time of the Synthetic Earthquake 
 

Write(*,*)' INPUT MONTH,DAY,YEAR,HOUR,MIN& SEC.:' 
  READ(NU1,*)IMON,IDAY,IYEAR,IHOUR,IMIN,ISEC 
 
 

3) Input 3: ICHOIC - Options to be used for constructing the Fourier Amplitudes in the 

given Frequency Band 

Write(*,*)' OPTIONS: (0)QUIT,' 
Write(*,*)' (1)MAG-SITE,(2)MMI-SITE,(3)MAG-DEPTH,(4)MMI-DEPTH,' 

 Write(*,*)' (5)INPUT FS,(6)MAG-DEPTH-SOIL,(7)MAG-SITE-SOIL,' 
 Write(*,*)' (8)MMI-DEPTH-SOIL, OR (9)MMI-SITE-SOIL MODEL?' 
 Write(*,1) 
 READ(NU1,*)ICHOIC 
 
This part of the input will be described in more detail in (the next) Section I.4 

 
4) Input 4: INMAX, PDURN 

 
INMAX=  number of times allowed to double the duration to allow for late 

arrival waves 
 

Write(*,*) ' INMAX (2,4,8,16...),PDURN = ' 
 READ(NU1,*)INMAX,PDURN 
 

5) Input 5: IGYZBE 

IGYZBE= Initial random number to be used to generate the synthetic accelorgram 
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Write(*,3) 
READ(NU1,*)IGYZBE 

 
 

6) Input 6: Synthetic Record Reference name of  
 

It is of the form XXNNN, where ‘XX’ are alphabetic characters and ‘NNN’ are 
numeric digits. 

 
Write(*,21)' INPUT SYNTHETIC RECORD REFERENCE # (XXNNN): ') 
READ(NU1,22)(IREF(I),I=1,3) 

22 FORMAT(40A2) 
 

7) Input 7: Synthetic Record log number 
 

  Write(*,*)' INPUT SYNTHETIC RECORD LOG # (80.01.12): ' 
  READ(NU1,22)(IREF(I),I=4,7) 
   

 
 

8) Input 8: IFDUR, duration parameter 
 

IFDUR =0 do not impose the empirical scaling to get duration. 
Instead, duration is computed from the epicentral distance 
and dispersion curves, 

  =1 Impose the empirical scaling to calculate duration 
 

Write(*,2)' INPUT DURATION PARAMETER(0/1): ' 
 READ(NU1,*)IFDUR 
 

9) Input 9:IPR, probability level 
 

IPR is a number between 1 and 9 corresponding to the probability level of 0.1 to 
0.9 

 
Write(*,*)' INPUT PROBABILITY LEVEL #, (1 TO 9, FOR .1 TO .9): ' 
READ(NU1,*)IPR 

 
10) Input 10: Earthquake parameters depending on ICHOIC of Input 3 

 

Depending of the option ICHOIC, earthquake parameters like magnitude or 
intensity, epicentral distance,… are input here. This part of the input will be 
described in more detail in (the next) Section I.4 

 

11) Input 11: NWAVE, total number of dispersed waves 
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 Write(*,*)' INPUT THE TOTAL # OF DISPERSION MODES, NWAVE(10) 
= ' 
 READ(NU1,*) NWAVE 
 

12) Input 12: Output Haskell velocity data Filename 
 

  Write(*,*)' THIS PROGRAM READS IN RAYLEIGH & LOVE WAVE 
DATA,' 
  Write(*,*)' FROM OUTPUT OF HASKEL & HSKFIX PROGRAMS,' 
  Write(*,*)' HASKEL VEL. DATA Filename(A20)    
  Read(nu1,9001)INFILE   !12/2/12 char*30 infile 
 

13) Input 13: Yes/No for 1st arrival time at T=0 
 

Write(*,6201)' MIN. ARRIVAL TIME AS T=0? (0)Y(1)N (0/1): ' 
  READ(NU1,*)ITMIN 

 
14)  Input 14: Mode participation factor 

MPFCTR=1 
Write(*,*)'  MODE PARTICIPATING METHOD? (1/2): ') 
READ(NU1,*)MPFCTR 

 
 

 

V.I.4
  

Options to be used for constructing the Fourier Amplitudes in the 

given Frequency Band 
 

 Currently SYNACC has a total of nine options to construct the Fourier amplitudes in the 

given frequency band. All except one are constructed from empirical regression equations. 

 
V.I.4.1 The Original and Current Regression Equations 
 

 Programmed into the original synthetic accelerogram program SYNACC.EXE are nine 

options by which the Fourier amplitudes for the synthetic acceleorgrams at the half-space surface 

can be generated. All except the 5th option are regression equations developed from the 1970s, 

through the 1990s for the generation of Fourier and Response spectral amplitudes and for the 

duration  of strong-motion.  
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The first 4 options constitute the original set of regression equations developed in the 

1970’s and 1980’s for the Magnitude or MMI models with local site geology specified by site 

geological site conditions (s = 0,1,2 respectively for rock, intermediate and soft sites) or depth of 

alluvium, h, in km. The 5th option allows the users to input their own Fourier amplitudes. The 6th 

to 9th options were added in the early 90’s for the Mag-Site-Soil,MMI-Site-Soil, Mag-Depth-Soil 

and MMI-Depth-Soil models, where the soil condition, Ls is added as an additional parameter in 

the regression. 

 

These are the format statements in SYNACC.EXE, used to inform the user what to input, 

depending on the options just described: 
CC----------------------------------------------------------------------- 
1 FORMAT(' INPUT CHOICE PARAMETER(0 TO 9): ') 
2 FORMAT(' INPUT DURATION PARAMETER(0/1): ') 
3  FORMAT(' INITIAL RANDOM INTEGER <OR 0 FOR SAME AS LAST RUN>: ') 
4 FORMAT(' INPUT EPICENTRAL DISTANCE (KM): ') 
5 FORMAT(' INPUT MAGNITUDE SCALE: ') 
6 FORMAT(' INPUT PROBABILITY LEVEL #, (1 TO 9, FOR .1 TO .9): ') 
7 FORMAT(' INPUT SITE CONDITION (0/1/2): ') 
8 FORMAT(' INPUT COMPONENT SPECIFICATION (0:HORZ,1:VERT): ') 
9 FORMAT(' INPUT M.M.I. SCALE: ') 
10 FORMAT(' INPUT DEPTH OF ALLUVIUM (KM): ') 
11 FORMAT(' CHOICE OPTION NUMBER = ',I2) 
12 FORMAT(' DURATION PARAMETER = ',I2) 
13 FORMAT(' INITIAL RANDOM # [=0 IF READ FROM SYNRAN.DAT]: ',I9) 
14 FORMAT(' EPICENTRAL DISTANCE (KM) = ',F10.3) 
15 FORMAT(' MAGNITUDE SCALE = ',F5.2) 
16 FORMAT(' PROBABILITY LEVEL, P(.1<P<.9): ',F3.1) 
17 FORMAT(' SITE CONDITION = ',I1) 
18 FORMAT 
     1(' COMPONENT(0:RAD,1:TRAN,2:VERT,3:TORSION,4:ROCKING) = ',I1) 
19 FORMAT(' M.M.I. SCALE = ',I2) 
20 FORMAT(' DEPTH OF ALLUVIUM (KM) = ',F10.1) 
 
 
SYNACC will first request from the user the option (ICHOIC): 
 

WRITE(*,*)' OPTIONS: (0)QUIT,' 
WRITE(*,*)' (1)MAG-SITE,(2)MMI-SITE,(3)MAG-DEPTH,(4)MMI-DEPTH,' 
WRITE(*,*)' (5)INPUT FS,(6)MAG-DEPTH-SOIL,(7)MAG-SITE-SOIL,' 
WRITE(*,*)' (8)MAG-DEPTH-SOIL, OR (9)MMI-SITE-SOIL MODEL?' 

 WRITE(*,1) 
 READ(NU1,*)ICHOIC 
 

1) Option 1:  Magnitude-Site Model (Trifunac, 1976, Trifunac and Lee, 1985) 
CC---------------------------------------------------------------------- 
CC    ICHOIC=1: INPUT DISTANCE, MAGNITUDE,  
CC              SITE CONDITIONS:        MAG-SITE MODEL 
CC---------------------------------------------------------------------- 
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WRITE(*,4) 
READ(NU1,*)DIST 

  WRITE(*,5) 
  READ(NU1,*)AM 
  WRITE(*,7) 
  READ(NU1,*)IS 
 
 
2) Option 2:  Intensity-Site Model (Trifunac, 1979, Trifunac and Lee, CE 1985-04) 

CC----------------------------------------------------------------------- 
CC    ICHOIC=2: INPUT DISTANCE, MM INTENSITY, CONFIDENCE LEVEL, 
CC    SITE CONDITION:   MMI-SITE MODEL 
CC----------------------------------------------------------------------- 

  WRITE(*,4) 
  READ(NU1,*)DIST 
  WRITE(*,9) 
  READ(NU1,*)MMI 
  WRITE(*,7) 
  READ(NU1,*)IS 
 
 
3) Option 3: Magnitude-Depth Model (Trifunac and Lee, 1978, 1989, Westermo and 

Trfiunac, 1978)) 
 
 

CC----------------------------------------------------------------------- 
CC    ICHOIC=3: INPUT DISTANCE, MAGNITUDE, CONFIDENCE LEVEL, 
CC     DEPTH:          MAG-DEPTH MODEL 
CC------------------------------------------------------------ 

  WRITE(*,4) 
  READ(NU1,*)DIST 
  WRITE(*,5) 
  READ(NU1,*)AM 
  WRITE(*,10) 

READ(NU1,*)DEPTH 
CC              ALLLUV. DEPTH NOW READ IN UNITS OF KM 
 
 

4) Option 4: Intensity-Depth Model (Trifunac and Lee, 1985) 
 

CC----------------------------------------------------------------------- 
CC    ICHOIC=4: INPUT DISTANCE, MM INTENSITY, CONFIDENCE LEVEL, 
CC        DEPTH:        MMI-DEPTH MODEL 
CC--------------------------------------------------------- 

  WRITE(*,4) 
  READ(NU1,*)DIST 
  WRITE(*,9) 
  READ(NU1,*)MMI 
  WRITE(*,10) 

READ(NU1,*)DEPTH 
CC              ALLLUV. DEPTH NOW READ IN UNITS OF KM 

 
 
5) Option 5: Use Input FS data 
 

CC----------------------------------------------------------------------- 
CC    ICHOIC=5: INPUT USER'S FOURIER SPECTRUM, TOTAL OF NTAB 

POINTS. 
CC----------------------------------------------------------------------- 

    NTAB=91 
WRITE(*,4) 
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  READ(NU1,*)DIST 
WRITE(*,321)DIST 

321      FORMAT('20D=',F5.1,',USER INPUT FS AMPS AT 91 PERIODS.') 
WRITE(*,*)' FOR THE 91 PERIODS:' 
WRITE(*,'(1X,13F6.2)')(PRD(I),I=1,91) 
WRITE(*,*)' INPUT 91 HORZ RADIAL FS AMP IN UNITS OF IN/SEC:' 
READ(NU1,*) (AU(IJ,1),IJ=1,NTAB) 
WRITE(*,*)' INPUT 91 HORZ TRANSVERSE FS AMP IN UNITS OF 

IN/SEC:' 
READ(NU1,*) (AU(IJ,3),IJ=1,NTAB) 
WRITE(*,*)' INPUT 91 VERT FS AMP IN UNITS OF IN/SEC:' 
READ(NU1,*) (AU(IJ,2),IJ=1,NTAB) 

 
 
6) Option 6: Magnitude-Site-Soil Model 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=6        MAG-SITE-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MAG,SITE(0/1/2),SOIL(0/1/2):' 
READ(NU1,*) Disti, AM, IS, ISOIL 

 
 
7) Option 7: Intensity-Site-Soil Model (Trifunac, 1991) 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=7        MMI-SITE-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MMI,SITE(0/1/2),SOIL(0/1/2):' 
READ(NU1,*)DIST,MMI,IS,ISOIL 

 
 
8) Option 8: Magnitude-Depth-Soil Model (Trifunac and Lee, 1987, 1989) 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=8        MAG-DEPTH-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MAG,DEPTH(km),SOIL(0/1/2):' 
READ(NU1,*) Disti, AM, DEPTH, ISOIL 

 
 
9) Option 9: Intensity-Depth-Soil Model (Lee, 1990) 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=9        MMI-DEPTH-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MMI,DEPTH(km),,SOIL(0/1/2):' 
READ(NU1,*)DIST,MMI,DEPTH,ISOIL 

 
 
 
Example 1:  
 
Here is an example of the SYNACC input file InSyn.DAT for option #6, ICHOIC=6: 
 
InSynDat: 
1 IWRT   
01,01,13,12,00,00 CURRENTDATE (Mo-Da-Yr) &TIME (00:00:00) 
6 ICHOIC,MODEL#  
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2,.875 INMAX, PDURN  
12345 INITIALRANDOM # between <-32767,32767> 
LA003 RECORDREFERENCE NAME 
89.03.01 RECORDLOG # 
1 DURNATION PARAMETER (0/1) 
5 PROB LEVEL (1 TO 9) 
1.5, 6.5, 0, 2 HYPOCENTRAL DIST,MAG/MMI,SITE/DEPTH,SOIL 
10 # OF WAVE MODES 
HSKWAV.DAT  
0 T=0 At Dist/Cmax 
2 MODE PARTICIPATION FACTOR 

 
 

Example 2: 

Here is another example of the SYNACC input file InSyn.DAT for option #5, ICHOIC=5, 

where the user inputs the 3 components (Radial, Transverse and Vertical) of Fourier amplitude 

data: 

 

InSyn.dat: 

1 IWRT   
01,01,13,12,00,00 CURRENTDATE (Mo-Da-Yr) &TIME (00:00:00) 
5 ICHOIC,MODEL#  
2,.875 INMAX, PDURN  
12345 INITIALRANDOM # between <-32767,32767> 
LA003 RECORDREFERENCE NAME 
89.03.01 RECORDLOG # 
1 DURNATION PARAMETER (0/1) 
5 PROB LEVEL (1 TO 9) 
1.00000E-10 1.00000E-10 3.94577E-01 3.94800E-01 
2.05194E-01 3.25239E-01 3.93269E-01 3.76363E-01 
2.49990E-01 2.54802E-01 6.85321E-01 3.63371E-01 
6.42797E-01 7.00448E-01 5.24887E-01 1.02113E+00 
1.34502E+00 1.65811E+00 3.05650E+00 2.81909E+00 
4.49047E+00 3.65102E+00 6.02187E+00 5.33620E+00 
3.33898E+00 6.96100E+00 1.03893E+01 1.24187E+01 
1.43819E+01 1.90009E+01 6.81712E+00 2.48083E+01 
2.16060E+01 1.89132E+01 2.10551E+01 2.55125E+01 
1.66354E+01 9.61588E+00 1.30416E+01 9.97679E+00 
1.78276E+01 2.11354E+01 1.93958E+01 1.22380E+01 
2.02096E+01 1.35959E+01 9.66726E+00 1.38484E+01 
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2.19153E+01 1.98801E+01 2.78279E+01 3.55078E+01 
2.10803E+01 2.55126E+01 2.44259E+01 1.99576E+01 
1.21552E+01 1.59339E+01 1.06934E+01 1.20950E+01 
1.27204E+01 1.34753E+01 1.44391E+01 2.07096E+01 
3.57730E+01 4.53028E+01 4.99574E+01 4.13284E+01 
3.36581E+01 2.80684E+01 2.30985E+01 1.86020E+01 
1.67221E+01 1.51307E+01 1.36718E+01 1.23297E+01 
1.07276E+01 9.53787E+00 8.96607E+00 9.17404E+00 
9.35428E+00 9.51199E+00 9.40564E+00 8.05007E+00 
6.83720E+00 5.74562E+00 3.86015E+00 2.28893E+00 
1.52479E+00 1.77728E+00 1.99610E+00  End of FS Radial Comp.
1.00000E-10 1.00000E-10 2.31009E-01 1.94537E-01 
3.19194E-01 3.83051E-01 3.76469E-01 3.32717E-01 
4.43216E-01 5.09405E-01 4.04593E-01 5.44001E-01 
4.89834E-01 3.01687E-01 7.09059E-01 1.37829E+00 
1.27044E+00 2.21121E+00 2.04364E+00 4.62448E+00 
4.79836E+00 2.79309E+00 5.69368E+00 6.53701E+00 
8.06265E+00 3.63794E+00 1.13821E+01 1.01337E+01 
5.93430E+00 2.41781E+01 1.72239E+01 1.99994E+01 
1.20149E+01 2.22880E+01 1.37573E+01 1.24219E+01 
1.64474E+01 1.27367E+01 1.83200E+01 2.73839E+01 
2.88879E+01 2.37006E+01 2.61794E+01 2.06856E+01 
2.95908E+01 1.02047E+01 1.51625E+01 1.86747E+01 
2.17198E+01 2.72379E+01 3.20074E+01 1.73098E+01 
1.86640E+01 1.29285E+01 2.74345E+01 2.43018E+01 
1.83995E+01 1.11270E+01 1.50910E+01 1.54509E+01 
1.50808E+01 1.37118E+01 1.86422E+01 2.99603E+01 
4.27058E+01 4.49779E+01 4.38568E+01 3.28721E+01 
2.31079E+01 2.08690E+01 1.91644E+01 1.76222E+01 
1.57691E+01 1.40516E+01 1.24772E+01 1.10288E+01 
1.14860E+01 1.22635E+01 1.24978E+01 1.20185E+01 
1.16030E+01 1.12395E+01 1.07896E+01 9.72566E+00 
8.77375E+00 7.91703E+00 6.43724E+00 5.20409E+00 
4.39439E+00 4.07555E+00 3.79923E+00 End of FS Transverse Comp.
1.00000E-10 1.00000E-10 4.59384E-01 3.17400E-01 
4.38541E-01 3.33765E-01 3.86963E-01 1.17292E+00 
6.97446E-01 1.03180E+00 9.03084E-01 1.78482E+00 
5.54601E-01 9.67074E-01 1.27816E+00 1.41444E+00 
3.90060E+00 4.10452E+00 3.13484E+00 1.95386E+00 
4.53177E+00 1.18723E+00 5.14047E+00 5.65238E+00 
6.60988E+00 2.85910E+00 3.17751E+00 3.52807E+00 
8.17153E+00 9.91231E+00 1.27238E+01 4.76816E+00 
7.27592E+00 2.97489E+00 5.21361E+00 5.07673E+00 
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4.32826E+00 9.07128E+00 2.04633E+00 1.24525E+01 
1.01732E+01 5.53326E+00 6.02687E+00 1.14904E+01 
9.38652E+00 9.88448E+00 1.13447E+01 6.72983E+00 
1.17014E+01 7.19098E+00 6.32351E+00 9.26453E+00 
8.32524E+00 5.78888E+00 6.38161E+00 8.23842E+00 
8.39110E+00 1.05250E+01 1.17266E+01 1.08374E+01 
8.69151E+00 5.03464E+00 6.84980E+00 1.09076E+01 
1.42376E+01 1.04890E+01 7.56431E+00 7.11810E+00 
6.72146E+00 6.49314E+00 6.29370E+00 6.11326E+00 
5.35652E+00 4.63204E+00 3.96794E+00 3.35696E+00 
4.28392E+00 5.30411E+00 5.57428E+00 4.85386E+00 
4.22950E+00 3.68318E+00 3.26290E+00 3.20659E+00 
3.15620E+00 3.11086E+00 3.03253E+00 2.96726E+00 
2.82022E+00 2.54681E+00 2.30987E+00 End of FS Vertical Comp.
10 # OF WAVE MODES 
HSKWAV.DAT  
0 T=0 At Dist/Cmax 
2 MODE PARTICIPATION FACTOR 

 
 
V.I.5             The SYNACC Output Files 
  

 With the input files of SYNACC all read in, SYNACC will 
 

  1) Use each mode of the Wave Dispersion Data at the site and their arrival times at each 

frequency band to assemble the contribution of each mode of surface and Body waves. 
 

  2) Determine the Relative Amplitudes and Phrases of all body and modes of Surface 

Waves, Sum up all the modes of waves in the frequency domain and by inverse Fourier 

Transform, create the (Volume 2, Corrected) time-histories of  Total Accelerogram. 
 

   3) The above process is performed for the following components of motions: 
 
 

i) The Radial, Transverse and Vertical (Trifunac, 1971; Wong and Trifunac, 1978, 

1979) components of Translational motions, with respective output files: 

V2X01.DAT, V2Y01.DAT and V2Z01.DAT. 
  

ii) The Torsion (Lee and Trifaunc, 1985) and Rocking (Lee and Trifunac, 1987) 

components of Rotational Motions, with respective output files: V2T01.DAT and 

V2R01.DAT. 
  

iii) The Radial Normal, Horizontal Shear and Vertical Normal components of Strain 
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(Lee, 1990) time history, all in one output file: V2E01.DAT. 
  

iv) The Radial, Tranverse and Vertical components of Curvature (Trifunac, 1990) time 

histories (Curvograms), all in one output file: V2E01.DAT. 
  

Figure II.2 in Chapter 2 is an example of one such plot of the translational 

accelerogram time history at the El Centro Imperial Valley layered media generated by an 

earthquake of magnitude 6.5M =  at hypocentral distance of  10 km . This is generated from the 

original synthetic accelerogram program SYNACC.EXE and represents one component of the 

translational motions at the half-space surface at the site. The input option of Option 1 above is 

used for  Option 1:  Magnitude-Site Model  (Trifunac, 1976, Trifunac and Lee, 1985) for a 

site condition of 0s = , which is the site condition for an alluvial site. A peak ground 

acceleration of 2
max 450∼a cm s  or almost 0.5 g is attained, which is similar to the data 

recorded in the 1940 Imperial Valley Earthquake, in El Centro, California. 
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V.II The Updated Synthetic Accelerogram Program  for Points 

on or Below Half-space Surface: EQSYNACC 

 
 The updated Synthetic Accelerogram Program here is created to include the 
developments described in the following two reports: 
 
1. Synthetic Translational Motions of Surface Waves on and below the surface of layered 

medium, Report II in Appendix R2. 
 

2. Synthetic Rotational Motions of Surface Waves in and below the surface of layered Medium,  
Report III in Appendix R3. 

 
 
V.II.1 The Updated Haskel Program  
  

In Chapter 2: Synthetic Translational Motions of Surface and body waves on or 

below the surface of layered medium, starting with the wave dispersion file Hskwav.dat, we 

constructed the synthetic translational motions of Love and body SH waves for points on and 

below the surface in the half-space layered model. In Section III of the same report, we 

constructed the synthetic translational motions of Rayleigh and body P and SV waves. Here the 

translational components are the Radial, Transverse and Vertical components of motion, namely, 

acceleration ( )T
U V W, ,�� �� �� , velocity ( )U V W, ,� � �  and displacement ( )U V W, ,  time histories. The 

numerical calculations for each mode at each frequency are described in Section IV of Report I, 

in Appendix R1. 

 

Figure II.5 in chapter 2, section II-5 is an example of one such plot of the transverse (y-) 

component Love wave mode shape amplitudes at four periods: 5,  1.0,  0.5,  and 0.1 T s= . The 

amplitude of each mode shape is normalized to be one at the surface of the half-space, and so it 

becomes the scaling factors or transfer function for the wave amplitudes along the depth. Each 

graph shows the mode shape amplitudes versus the z, which is the depth in kilometers below the 

half-space surface. 
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In the next section, Section II-6 of Chapter 2: Synthetic Rotational Motions of Surface 

and Body Waves on or below the surface in Layered Medium, we extended the analysis and 

results of Section II-5, Chapter 2, to construct the synthetic rotational motions of Love and body 

SH waves, and Rayleigh and body P and SV waves. The computation of the Rotational 

components of motions: Torsion, Rocking and Strain time histories all involve either or both of 

the d
dx and d

dz  derivatives of the corresponding translational accelerations ( )T
U V W, ,�� �� �� , 

velocities ( )U V W, ,� � �  and displacements ( )U V W, , .  

 

 

V.II.2 The Input and Output Files for New HskzdzModes.EXE 
 

With the available data for each frequency of each mode of surface Rayleigh and Love 

waves, and body P, SV and SH waves, an identical file as Hskwav.dat for the wave dispersion 

data at the site can now be constructed at any given point on or below the half-space surface. The 

procedure is as follows: 

 

1) A data file Zxcoord.dat is created, which consists of the specified z- and x-

coordinates of the points on or below the site. The lines below is an example of a 

part of such a file consisting of 120 points on or vertically below the site. 

The first line specifies the number of points and the exponent factor used to make 

the data in units of km. The ‘0’ here means the data are in units of km. If the data 

are given in meters, then it would be ‘-3’, i.e. 310−  km. Starting from the 2nd line, 

the 1st column has the z-coordinates and the 2nd column the x-coordinates, which 

are all 0’s here. This 2nd column is of no use here, but will be needed later to 

generate the synthetic acceleration data at any specified point with (z, x) 

coordinates at the site.  
 

Example 1: Zxcoord.dat for points vertically below a given site: 

 120 0   # of points, 10^exponent of km 
0.05 0.00  
0.10 0.00  
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0.15 0.00  
0.20 0.00  
0.25 0.00  
0.30 0.00  
0.35 0.00  
0.40 0.00  
0.45 0.00  
0.50 0.00  
0.55 0.00  
0.60 0.00  

: :  (Lines from z=0.65down to z=5.60 skipped…) 
5.65 0.00  
5.70 0.00  
5.75 0.00  
5.80 0.00  
5.85 0.00  
5.90 0.00  
5.95 0.00  
6.00 0.00  

 
The z-coordinates are specified here from 0.05z = (below the surface) to 

6.0 z km= (further down) and are equally spaced at 0.05 km apart. The 

point 0.0 z km= on the half-space surface will by a default and will be 

included. 

 

Example 2: Zxcoord.dat for points at a fixed depth varying in the horizontal 
direction (left to right): 
 

140 -3  
 # of points, 10^exponent of 
km 

192.97 1.5      
192.97 3.0      
192.97 4.5      
192.97 6.0      
192.97 7.5      
192.97 9.0      
192.97 10.5      
192.97 12.0      
192.97 13.5      
192.97 15.0      
192.97 16.5      
192.97 18.0      
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192.97 19.5      
                     
: 

                  
:  (Lines from x=21.0 to x=196.5 skipped…) 

192.97 198.0  
192.97 199.5  
192.97 201.0  
192.97 202.5  
192.97 204.0  
192.97 205.5  
192.97 207.0  
192.97 208.5  
192.97 210.0  

 

Here the 140 points of (z, x) coordinates are input in units of 310−  km, i.e. in units 

of meters. They are all at a depth of   or  3192.97 10 192.97z km m−= ×  with the x-

coordinates ranging from   to  1.5 210x m x m= =  in steps of 1.5 m . The point 

0.0 x km= at the depth of 192.97z m=  will be included by default. 

 

2) This file, together with the dispersion file Hskwav.dat output from 

HASKEL.EXE in the previous section, are now the input files for the program 

NewHSKzDzModes.EXE. The file Hskwav.dat has the phase and group 

velocities for each mode of surface Rayleigh and Love waves, at each period, at the 

point 0.0z = on the half-space surface.  

 

This program reads the data in the file Hskwav.dat, and using the modified 

Haskell-Thompson propagator matrices created in Section IV.3 of Report II 

(Appendix R2) and Section IV.3 of Report III (Appendix R3), produces the internal 

propagator matrix files, RYLGMTRX.DAT and LOVEMTRX.DAT, for both the 

translational and rotational components of motion for the Rayleigh and Love 

surface wave modes and also the new representation of body P, SV and SH wave 

modes for given angles of incidences from the bottom semi-infinite medium. As an 

example, for the 6 layered example, we use angles of incidence of 83o  and 

84.5o (with respect to horizontal) for the examples of synthetic accelerograms at 

hypocentral distances of 10 and 40 km .  
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3) 

 

 

 

 

 

 

 

 
 

 

i) 

ii) 

iii) 

iv) 
 

v) 

 
 

vi) 

 
 

vii) 

viii) 
 

 

This program will at each z-coordinate in the file Zxcoord.dat (starting at 

0.0 z km= on the half-space surface), produce an updated wave dispersion file, 

HSKwav.___, where ‘.___’  in the file extension is the index number of the z-

coordinate in the file Zxcoord.dat. For the example file Zxcoord.dat above, this 

would range from ‘000’ ( 0.0 z km= ) at the surface to ‘120’ ( 6.0 z km= ) at the 

very bottom of the medium. The program will produce, for each file Hskwav.___, 

5 modes of Rayleigh and 5 modes of Love surface waves. For each mode, at each 

period, NewHSKzDzModes.EXE,  as the name suggests, will write the following 

at each period of each mode of Rayleigh waves: 
 

T, Period of the Rayleigh wave in second, 

c, Phase velocity of the Rayleigh wave in km/s, 

u, Group velocity of the Rayleigh wave in km/s, 

W U Ratio of vertical to horizontal wave displacement amplitudes, 

U , the relative x-component Rayleigh wave translational motion, which is 

available as an imaginary number (See Report II), 

W , the z-component Rayleigh wave translational motion, which is a real number 

(See Report II in Appendix R2), and normalized to be =1 at the half-space surface, 

( )510dU dz −× , the z-derivative of the x-component of Rayleigh wave motion, 

( )510dW dz −× , the z-derivative of the z-component of Rayleigh wave motion, 

( )510dU dx −× , the x-derivative of the x-component of Rayleigh wave motion, 

( )510dW dx −× , the x-derivative of the z-component of Rayleigh wave motion. 

 And similarly at each period of each mode of Love waves (transverse direction): 
 

i) 

ii) 

iii) 

iv) 

v) 
 

 

T, Period of the Love wave in second, 

c, Phase velocity of the Love wave in km/s, 

u, Group velocity of the Love wave in km/s, 

Ratio =0.0 since this doesn’t apply to Love waves 

V , the y-component wave translational motion, which is available as a real number 

(See Report II, in Appendix R2), and normalized to be =1 at the half-space surface 

( )510dV dz −× the derivative of the y component of Love wave motion
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 vi) 
 

vii) 

( )510dV dz −× , the z-derivative of the y-component of Love wave motion, 

( )510dV dz −× , the z-derivative of the y-component of Love wave motion, 
 

4) In exactly the same way as for the five modes of Rayleigh waves and five modes of 

Love waves, additional modes corresponding to waves from incident body P-, SV 

and SH- waves, respectively mode# 11, 12 and 13 at a specified angle of incidence 

are created, written in files BodyW___.___, where ‘W___’in the file name 

specifies the angle of incidence of the body waves. For example, ‘W845’would 

correspond to body waves at incident angle of  84.5o .  ‘.___’ in the file extension 

is again the index number of the z-coordinate. 
 

Appendix V-1 gives for Mode 1 of Rayleigh waves mode shapes in the output file  

Hskwav.000 of the Program “NewHSKzDzModes.EXE” 

 
Appendix V-2 gives for Mode 1 of Love waves the corresponding output in 
Hskwav.000. 
 
Appendix V-3 gives for Mode 11 body P- Waves the mode shapes in the file 

BodyW845.000.
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V.II.3
  

 

The Updated Synthetic Accelerogram Program for Points On 

and Below the Half-Space Surface: EQSYNACC.EXE 
 

 
 With the dispersion data of the Rayleigh and Love surface waves and the body P, SV and 

SH waves computed at points on and below the half-space surface, the synthetic translational and 

rotational components of the acceleration, velocity and displacement time histories of every 

point on or below the half-space surface will next be constructed. Each such point will have a 

designated Fourier amplitude spectra and a designated duration.  

 

Here is the structure of the Working Folder:  

 

Working\ 

 

1) Batch files: SynAnnn.BAT 

 

Example of SynAnnn.BAT, with ‘nnn’ = ‘025’:  

SynA025.BAT    

MD z025 
CD z025 
COPY ..\1ZFolder\*.* *.* 
COPY ..\InsynS\InSynS.025 InSynS.dat 
CALLAccSynS 
CD ..\ 

 

2) Data files: Period.dat, Zxcoord.dat 

 

3) Subfolders: Working\Programs\  

   Working\1ZFolder 

Working\InSynS\ 

   Working\HskWav\ 

   Working\BodyW__\  (Example: Working\BodyW830\) 
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The following set of files and the information are needed to construct the synthetic motions at all 

the points:   

 

1 Period.dat: the Data file of the Periods of waves. This is the same data file as 

given in Section I.1 above for the original SYNACC program. 

 

2. Zxcoord.dat: the same data file of the z- and x- coordinates of the points as 

given in Section II.2 above. 
 

3. ..\HskWav\HskWav.___: Wave Dispersion Data of the Rayleigh and Love 

surface waves at every point on or below the half-space surface at the given site. 

Here the file extension “.___” is again the index number of the (z, x)-coordinate 

in the file Zxcoord.dat. Since there are now many such files, one for each point 

in the file Zxcoord.dat, they are all placed in the sub-folder ..\HskWav\inside 

the working directory (folder). 
 

4. ..\BodyW___\BodyW___.___:the file of additional modes corresponding to 

waves from incident P-, SV- and SH- body waves, respectively modes # 11, 12 

and 13 for a specified angle of incidence, as described in Section II.2 above. As 

in the case of the Haskel files, there is one file for each point in the file 

Zxcoord.dat. Those are also all placed in the subfolder ..\BodyW___\inside the 

working directory (folder), where ‘W___’ in the name of the folder specifies the 

angle of incidence of the body waves, as for all the body wave files in the 

subfolder. 

 

5. ..\InSynS\InSyn.___: These are the input files for the updated program 

EQSYNACC.EXE. They are the same input file as InSyn.dat for the original 

SYNACC.EXE program as described in Section I.3 above. The difference now 

is that there are many such files, one for each point in the file Zxcoord.dat. 

Those are all placed in the subfolder ..\InSynS\ inside the working directory 

(folder). There are also now additional lines of input, to identify the coordinates 



 
 

5-24

of the point on or below the site where the synthetic accelerogram data are to be 

generated. Here is a brief description of the file, with emphasis on where the 

additional inputs are, in addition to those for InSyn.dat described in Section I.3 

above: 

 
1) Input 1: IWRT: Output Mode 

 
2) Input 2: Date and Time of the Synthetic Earthquake 

3) Input 3: ICHOIC– Options to be used for constructing the Fourier 

Amplitudes in the given frequency band 
4) Input 4: INMAX, PDURN 

 
5) Input 5: IGYZBE 

6) Input 6: Synthetic Record Reference name  
 

7) Input 7: Synthetic Record log number 
 

8) Input 8:  IFDUR, duration parameter 
 

9) Input 9: IPR, probability level 
 

10) Input 10: Earthquake parameters depending on ICHOIC of Input 3 
 

Inputs #1 to #10 are identical to those used in the original ‘SYNACC.EXE” 

program. As described in Section I.3 above. The following (NEW) inputs are 

modified for the Updated ‘EQSYNACC.EXE’ Program: 
 

11) Input 11: NWAVE, total number of dispersion waves 
 

12) Input 12: Output Haskel surface wave velocity data filename 
 

Here there is one Haskel velocity data file for each (z, x) coordinates given in 

the file Zxcoord.dat, and those are of the form ..\Hskwav\Hskwav.___, where 

the file extension ‘.___’ is the index number of the (z, x) coordinate in the file 

Zxcoord.dat. The files are all in a separate subfolder HskWav\ inside the 

EQSYNACC working folder Working\ . 
 

13) Input 13: (z, x) coordinate location on or below the site, 10^exp in km 

This is the same input as used in the file Zxcoord.dat. 
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 write(*,*)' at (z,x)E__ (+/-exp) ='                        !!!New  
 read(NU1,*,err=6101)zLoc,xLoc,kexp                !!!New 
 

14)  Input 14: Output body wave velocity data filename 
 

          !8/4   Read in Body wave filename        
 write(*,*)' Body Wave Mode Shape Filename(a20): ' 
 read(nu1,9001)BodyFile  !12/2/12 now 30 chars long 
 write(*,9001)' ',BodyFile 
 

Here there’s one Body wave velocity data file for each (z, x) coordinates given 

in the file Zxcoord.dat, and those are of the form ..\Bodywave\BodyW___.___, 

where the file extension ‘.___’ is the index number of the (z, x) coordinate in the 

file Zxcoord.dat. The files are all in a separate subfolder BodyW___\ inside the 

EQSYNACC working folder Working\ . 
 

15) Input 15: Yes/No for 1st arrival time at T=0 

16) Input 16: Mode participation factor 
 

Input #15 and 16 are identical to Inputs #13 and 14 of the input file for the 

Original “SYNACC.EXE’ program. 

 
  

The following file InSyn.025 is an example of such an input file: 
 

InSyn.025: 
 

1 IWRT 
01,01,13,12,00,00 CURRENT DATE (Mo-Da-Yr) & TIME (00:00:00) 
6 ICHOIC, MODEL# 
2,.875 INMAX, PDURN 
12345 INITIAL RANDOM # <-32767,32767> 
LA003 RECORD REF NAME 
1208.025 RECORD LOG # 
1 DURNATION PARAMETER (0/1) 
5 PROB LEVEL (1 TO 9) 
4125, 6.5, 0, 2 HYPO. DIST, MAG/MMI,SITE/DEPTH,SOIL 
10 # OF WAVE MODES 
..\HSKWAV\HSKWAV.025  
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  1.250,   .000  0  z, x Location, 10^exp km 
..\BodyW840\BodyW840.025  
0 T=0 At Dist/Cmax 
2 MODE PARTICIPATION FACTOR 

 
 

 

 
V.II.4 The EQSYNACC Output Files 

 
 

With the input files of EQSYNACC all read in, execution of EQSYNACC will do the following: 

 
1) Create, for each point of (z, x) coordinate in the file Zxcoord.dat, a subfolder inside the working 

folder \Working of some generic name \Working\zx___, where ‘___’ in the subfolder name is 

index number of the (z, x) coordinate in the file Zxcoord.dat. 

 

2) At each such subfolder, the program EQSYNACC.EXE will use the same algorithm and 

procedure as the original program SYNACC.EXE to generate each mode of synthetic 

accelerogration data, as described in  Section I.5 above, namely, use each mode of the wave 

dispersion data at the site and their arrival times at each frequency band to assemble the 

contribution of each mode of surface and body waves. Currently, there are five modes of 

Rayleigh waves (Mode#1 to 5), five modes of Love waves (Mode#6 to 10), one mode for each 

of the Incident body P, SV and SH waves (Modes #11 to 13) 

 
3) At each point (z, x) on or below the half-space surface at the site, the relative amplitudes 

and phrases of each mode of Rayleigh and Love surface waves are determined relative 

to that at the surface point where 0z =  using the mode shape data files in the folder 

..\Hskwav. Similarly, the relative amplitudes and phases of each mode of body P, SV 

and SH waves are determined relative to that at the surface, using the mode shape data 

files in the folder ..\BodyW___, where ‘W___’ in the name of the folder specifies the 

angle of incidence of the body waves used. All modes of the waves at each point are 

then summed up in the frequency domain.  

 

4) At the surface point (z, x) = (0, 0), the translational components of the Fourier 
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amplitudes of acceleration are scaled to be the same as that calculated by the regression 

equations specified by the parameter ‘ICHOIC’ in Input#3. The Fourier amplitudes of 

all points of  (z, x) below are then scaled relative to the surface point as in the previous 

step 3). By inverse Fourier Transform (using FFT), the Volume 2, corrected time-

histories of total accelerogram are calculated. 

 

5) The above process was performed for the following components of translational 
motions: 
 

 The Radial, Transverse and Vertical (Trifunac, 1971; Wong and Trifunac, 1978, 1979) 

components of Translational motions (the U-, V-, W- components), respectively 
 

The Translational files: 

             V2X01.DAT 

             V2Y01.DAT 

             V2Z01.DAT.  

These are the same output files as in the original SYNACC, which are now extended for 

all defined points below the half-space surface.  

 

Figures II.7, II.11 and II.13 of Chapter 2 are examples of synthetic acceleration 

time histories of the transverse, radial and vertical components of motions at a given site 

where the strong-motion earthquake and site parameters are specified as: 

 6.5,  8.0 ,   6.0 ,  0,  2LM R km H km s s= = = = =  
See Chapter 2 for further explanation of these parameters. The examples are calculated 

for the El Centro six-layered site model, at 100 depths equally spaced from the surface 

to almost 6 km below the surface, and at hypocentral distance of 10.0D km= , 

 

Figures II.8, II.12 and II.14 of Chapter 2 show examples of the synthetic displacement 

time histories of the transverse, radial and vertical components of motions at the same 

site.  

  
  

6) Unlike the Original SYNACC.EXE program, which will output the Torsion and 
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Rocking components of Rotational Motions, and the Strain motions, the NEW 

EQSYNACC.EXE program will output the d/dx- and d/dz- derivatives of the U-

(Radial), V-( Transverse) and W-( Vertical)  translational components, as follows:  
 

The d/dx- derivative files: 

          V2DUDX.DAT 

          V2DVDX.DAT 

          V2DWDX.DAT 
 

and the d/dz- derivative files: 

          V2DUDZ.DAT 

          V2DVDZ.DAT 

          V2DWDZ.DAT 
 

from which the Rocking, Torsion and Strain component time histories can be defined. 

For example, The synthetic motion, U
x

∂
∂  is the synthetic normal strain, xε  Similarly, 

W
z

∂
∂  is the synthetic normal strain, zε . As for the two derivative components 

U
z

∂
∂ and W

x
∂

∂ , those can be used to compute, ( )y
U W

z x
1

2
∂ ∂Ω = −∂ ∂ , the in-

plane Rocking component of the Rayleigh and body P, SV waves in the x-z plane, or the 

y- direction rotation, while 
 ( )xz

U W
z x

1
2ε ∂ ∂= +∂ ∂  is the Shear Strain the x-z plane. 

  

Figures II.15a and b of Chapter 2 show r the synthetic rotational accelerations for the 

horizontal Motions:  dU
dx
�� ,

 
dU

dz
��  and vertical motions: , dW

dx
�� ,

 
dW

dz
�� . Finally Figures 

II.16a and b of Chapter 2 show the synthetic rotational displacement time histories of the same 

motions. 
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7) The Radial, Transverse and Vertical components of Curvature (Trifunac, 1990) time 

histories (Curvograms), are all in one output file: V2K01.DAT. This is the same as in 

the case of the original SYNACC.EXE program. 

 

8) The New EQSYNACC.EXE program currently has a new option which, at the request 

of the user, outputs the above files separately for each mode of motions. These files are 

named as follows: 

 The Translational files: 

Mode# Radial Transverse Vertical 

1 V2X01.M01 V2Y01.M01 V2Z01.M01 

2 V2X01.M02 V2Y01.M02 V2Z01.M02 

3 V2X01.M03 V2Y01.M03 V2Z01.M03 

#  #  #  #  

11 V2X01.M11 V2Y01.M11 V2Z01.M11 

12 V2X01.M12 V2Y01.M12 V2Z01.M12 

13 V2X01.M13 V2Y01.M13 V2Z01.M13 

 

where the extension ‘.M__’ indicates the Mode# of the data in the file. Here M01 

through M05 are the 5 modes of Rayleigh waves, M06 through M10 are the 5 modes of 

Love waves. M11 through M13 are respectively for incident body P-, SV- and SH- 

waves. Similarly for the d/dx and d/dz derivative files: 

 The d/dx and d/dz derivatives files: 

Mode# Radial d/d/x, d/dz Trans. d/d/x, d/dz Vertical d/d/x, d/dz 

1 V2DUD(X,Z).M01 V2DVD(X,Z).M01 V2DWD(X,Z).M01 

2 V2DUD(X,Z).M02 V2DVD(X,Z).M02 V2DWD(X,Z).M02 

3 V2DUD(X,Z).M03 V2DVD(X,Z).M03 V2DWD(X,Z).M03 

#  #  #  #  

11 V2DUD(X,Z).M11 V2DVD(X,Z).M11 V2DWD(X,Z).M11 

12 V2DUD(X,Z).M12 V2DVD(X,Z).M12 V2DWD(X,Z).M12 

13 V2DUD(X,Z).M13 V2DVD(X,Z).M13 V2DWD(X,Z).M13 
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Appendix V.1 
 

Mode 1 Rayleigh Waves in Hskwav.000: 
 
6 LAYER Velocity Model  
Imperial Valley VELOCITY MODEL  
Thickness, km alpha, km/s beta, km/s density Depth from top, km 
0.18 1.70 0.98 1.28 0.18 
0.55 1.96 1.13 1.36 0.73 
0.98 2.71 1.57 1.59 1.71 
1.19 3.76 2.17 1.91 2.90 
2.68 4.69 2.71 2.19 5.58 
 .00 6.40 3.70 2.71 5.58 
 
RAYLEIGH WAVE DISPERSION 
  LAYER VELOCITY MODEL FOR  

PERIOD       C        U       RATIO   Imag[U(z)] Real[W(z)] dU/dz(^-5)     dW/dz(^-5)      dU/dx(^-5)     dW/dx(^-5) 
 
 Rayleigh Wave Mode# 1     U,W(z) at z=   .000E-3 km       

15.00 3.17131 2.96209 1.32144 1.32144E+00 1.00000E+00
-1.32084E-

01 5.85346E-02
-1.74541E-

01 1.32084E-01

14.00 3.15297 2.89729 1.36955 1.37000E+00 1.00000E+00
-1.42342E-

01 6.53771E-02
-1.94944E-

01 1.42342E-01

13.00 3.13177 2.85438 1.42305 1.42000E+00 1.00000E+00
-1.54329E-

01 7.36517E-02
-2.19618E-

01 1.54329E-01

12.00 3.10639 2.79749 1.483 1.48000E+00 1.00000E+00
-1.68555E-

01 8.38300E-02
-2.49968E-

01 1.68555E-01

11.00 3.07499 2.72319 1.54973 1.55000E+00 1.00000E+00
-1.85756E-

01 9.65417E-02
-2.87872E-

01 1.85756E-01

10.00 3.03486 2.62693 1.62225 1.62000E+00 1.00000E+00
-2.07034E-

01 1.12635E-01
-3.35861E-

01 2.07034E-01
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9.50 3.00841 2.56712 1.65985 1.66000E+00 1.00000E+00
-2.19846E-

01 1.22378E-01
-3.64912E-

01 2.19846E-01

9.00 2.98196 2.50730 1.69744 1.70000E+00 1.00000E+00
-2.34118E-

01 1.33274E-01
-3.97402E-

01 2.34118E-01

8.50 2.94606 2.42245 1.73263 1.73000E+00 1.00000E+00
-2.50911E-

01 1.45794E-01
-4.34736E-

01 2.50911E-01

8.00 2.90741 2.33224 1.76601 1.77000E+00 1.00000E+00
-2.70137E-

01 1.59990E-01
-4.77064E-

01 2.70137E-01

7.50 2.85779 2.22061 1.79214 1.79000E+00 1.00000E+00
-2.93149E-

01 1.76188E-01
-5.25364E-

01 2.93149E-01

7.00 2.79710 2.09476 1.80778 1.81000E+00 1.00000E+00
-3.20903E-

01 1.94552E-01
-5.80122E-

01 3.20903E-01

6.50 2.72535 1.95668 1.81232 1.81000E+00 1.00000E+00
-3.54686E-

01 2.15573E-01
-6.42805E-

01 3.54686E-01

6.00 2.63182 1.80471 1.79182 1.79000E+00 1.00000E+00
-3.97899E-

01 2.39102E-01
-7.12963E-

01 3.97899E-01

5.50 2.51546 1.64997 1.74071 1.74000E+00 1.00000E+00
-4.54151E-

01 2.65120E-01
-7.90544E-

01 4.54151E-01

5.00 2.37800 1.49917 1.65672 1.66000E+00 1.00000E+00
-5.28443E-

01 2.93605E-01
-8.75482E-

01 5.28443E-01

4.80 2.31929 1.43994 1.61705 1.62000E+00 1.00000E+00
-5.64396E-

01 3.06071E-01
-9.12656E-

01 5.64396E-01

4.60 2.25468 1.38552 1.56468 1.56000E+00 1.00000E+00
-6.05811E-

01 3.17891E-01
-9.47900E-

01 6.05811E-01

4.40 2.18951 1.33155 1.51113 1.51000E+00 1.00000E+00
-6.52199E-

01 3.30520E-01
-9.85557E-

01 6.52199E-01

4.20 2.12237 1.28024 1.45259 1.45000E+00 1.00000E+00
-7.04871E-

01 3.43375E-01
-

1.02389E+00 7.04871E-01

4.00 2.05344 1.23135 1.38951 1.39000E+00 1.00000E+00
-7.64958E-

01 3.56464E-01
-

1.06292E+00 7.64958E-01

3.80 1.98326 1.18361 1.3245 1.32000E+00 1.00000E+00
-8.33713E-

01 3.70326E-01
-

1.10425E+00 8.33713E-01

3.60 1.91099 1.13780 1.25623 1.26000E+00 1.00000E+00
-9.13312E-

01 3.84772E-01
-

1.14733E+00 9.13312E-01
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3.40 1.83720 1.09297 1.18768 1.19000E+00 1.00000E+00
-

1.00588E+00 4.00645E-01
-

1.19466E+00 1.00588E+00

3.20 1.76143 1.04942 1.11876 1.12000E+00 1.00000E+00
-

1.11472E+00 4.18232E-01
-

1.24710E+00 1.11472E+00

3.00 1.68433 1.00883 1.05289 1.05000E+00 1.00000E+00
-

1.24346E+00 4.39066E-01
-

1.30923E+00 1.24346E+00

2.80 1.60677 0.97045 0.98941 9.89000E-01 1.00000E+00
-

1.39659E+00 4.63404E-01
-

1.38180E+00 1.39659E+00

2.60 1.53024 0.93858 0.93324 9.33000E-01 1.00000E+00
-

1.57924E+00 4.94261E-01
-

1.47381E+00 1.57924E+00

2.40 1.45624 0.91263 0.88377 8.84000E-01 1.00000E+00
-

1.79778E+00 5.32832E-01
-

1.58882E+00 1.79778E+00

2.20 1.38512 0.89147 0.8408 8.41000E-01 1.00000E+00
-

2.06191E+00 5.81404E-01
-

1.73365E+00 2.06191E+00

2.00 1.31735 0.87300 0.80482 8.05000E-01 1.00000E+00
-

2.38478E+00 6.43670E-01
-

1.91932E+00 2.38478E+00

1.90 1.28465 0.86338 0.7894 7.89000E-01 1.00000E+00
-

2.57420E+00 6.81482E-01
-

2.03207E+00 2.57420E+00

1.80 1.25236 0.85104 0.77549 7.75000E-01 1.00000E+00
-

2.78727E+00 7.24886E-01
-

2.16150E+00 2.78727E+00

1.70 1.22044 0.83627 0.76291 7.63000E-01 1.00000E+00
-

3.02841E+00 7.74825E-01
-

2.31040E+00 3.02841E+00

1.60 1.18814 0.82400 0.75132 7.51000E-01 1.00000E+00
-

3.30516E+00 8.32785E-01
-

2.48323E+00 3.30516E+00

1.50 1.15573 0.86507 0.74028 7.40000E-01 1.00000E+00
-

3.62437E+00 8.99796E-01
-

2.68305E+00 3.62437E+00

1.40 1.12973 0.85971 0.73718 7.37000E-01 1.00000E+00
-

3.97262E+00 9.82124E-01
-

2.92854E+00 3.97262E+00

1.30 1.10444 0.85923 0.73439 7.34000E-01 1.00000E+00
-

4.37617E+00 1.07780E+00
-

3.21382E+00 4.37617E+00

1.20 1.08090 0.86756 0.73182 7.32000E-01 1.00000E+00
-

4.84410E+00 1.18887E+00
-

3.54501E+00 4.84410E+00

1.10 1.06005 0.87857 0.72876 7.29000E-01 1.00000E+00
-

5.38841E+00 1.31693E+00
-

3.92686E+00 5.38841E+00
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1.00 1.04122 0.88427 0.7247 7.25000E-01 1.00000E+00
-

6.03445E+00 1.46660E+00
-

4.37316E+00 6.03445E+00

0.95 1.03223 0.88435 0.72223 7.22000E-01 1.00000E+00
-

6.40737E+00 1.55193E+00
-

4.62759E+00 6.40737E+00

0.90 1.02334 0.91565 0.71956 7.20000E-01 1.00000E+00
-

6.82209E+00 1.64627E+00
-

4.90890E+00 6.82209E+00

0.85 1.01663 0.91437 0.71505 7.15000E-01 1.00000E+00
-

7.27107E+00 1.74361E+00
-

5.19917E+00 7.27107E+00

0.80 1.00994 0.91369 0.71007 7.10000E-01 1.00000E+00
-

7.77668E+00 1.85187E+00
-

5.52199E+00 7.77668E+00

0.75 1.00334 0.91325 0.7045 7.05000E-01 1.00000E+00
-

8.34969E+00 1.97273E+00
-

5.88236E+00 8.34969E+00

0.70 0.99671 0.91058 0.69829 6.98000E-01 1.00000E+00
-

9.00561E+00 2.10894E+00
-

6.28853E+00 9.00561E+00

0.65 0.98985 0.90540 0.69171 6.92000E-01 1.00000E+00
-

9.76556E+00 2.26536E+00
-

6.75494E+00 9.76556E+00

0.60 0.98254 0.89800 0.68498 6.85000E-01 1.00000E+00
-

1.06581E+01 2.44834E+00
-

7.30056E+00 1.06581E+01

0.55 0.97440 0.89036 0.67817 6.78000E-01 1.00000E+00
-

1.17241E+01 2.66645E+00
-

7.95094E+00 1.17241E+01

0.50 0.96526 0.87532 0.67237 6.72000E-01 1.00000E+00
-

1.30186E+01 2.93555E+00
-

8.75334E+00 1.30186E+01

0.48 0.9612 0.87101 0.67066 6.71000E-01 1.00000E+00
-

1.36184E+01 3.06297E+00
-

9.13328E+00 1.36184E+01

0.46 0.95696 0.86681 0.66921 6.69000E-01 1.00000E+00
-

1.42734E+01 3.20337E+00
-

9.55193E+00 1.42734E+01

0.44 0.95254 0.86303 0.66811 6.68000E-01 1.00000E+00
-

1.49915E+01 3.35898E+00
-

1.00160E+01 1.49915E+01

0.42 0.94797 0.85995 0.66738 6.67000E-01 1.00000E+00
-

1.57811E+01 3.53203E+00
-

1.05320E+01 1.57811E+01

0.40 0.94328 0.85777 0.66706 6.67000E-01 1.00000E+00
-

1.66525E+01 3.72529E+00
-

1.11082E+01 1.66525E+01

0.38 0.93855 0.85663 0.66713 6.67000E-01 1.00000E+00
-

1.76173E+01 3.94153E+00
-

1.17530E+01 1.76173E+01
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0.36 0.93382 0.85662 0.66758 6.68000E-01 1.00000E+00
-

1.86902E+01 4.18440E+00
-

1.24772E+01 1.86902E+01

0.34 0.92918 0.85779 0.66837 6.68000E-01 1.00000E+00
-

1.98885E+01 4.45793E+00
-

1.32929E+01 1.98885E+01

0.32 0.92470 0.86004 0.66946 6.69000E-01 1.00000E+00
-

2.12339E+01 4.76727E+00
-

1.42152E+01 2.12339E+01

0.30 0.92047 0.86303 0.67078 6.71000E-01 1.00000E+00
-

2.27536E+01 5.11852E+00
-

1.52626E+01 2.27536E+01

0.28 0.91653 0.86572 0.67225 6.72000E-01 1.00000E+00
-

2.44836E+01 5.51978E+00
-

1.64591E+01 2.44836E+01

0.26 0.9128 0.86674 0.67384 6.74000E-01 1.00000E+00
-

2.64747E+01 5.98278E+00
-

1.78397E+01 2.64747E+01

0.24 0.90933 0.88049 0.67547 6.75000E-01 1.00000E+00
-

2.87904E+01 6.52182E+00
-

1.94470E+01 2.87904E+01

0.22 0.90692 0.88286 0.67687 6.77000E-01 1.00000E+00
-

3.14911E+01 7.14840E+00
-

2.13154E+01 3.14911E+01

0.20 0.9049 0.88761 0.67811 6.78000E-01 9.99999E-01
-

3.47175E+01 7.89524E+00
-

2.35424E+01 3.47175E+01

0.19 0.90409 0.88996 0.67864 6.79000E-01 1.00000E+00
-

3.65775E+01 8.32472E+00
-

2.48230E+01 3.65775E+01

0.18 0.90339 0.89213 0.6791 6.79000E-01 1.00000E+00
-

3.86395E+01 8.79997E+00
-

2.62401E+01 3.86395E+01

0.17 0.90282 0.89409 0.6795 6.79000E-01 1.00000E+00
-

4.09383E+01 9.32899E+00
-

2.78176E+01 4.09383E+01

0.16 0.90235 0.89581 0.67983 6.80000E-01 1.00000E+00
-

4.35196E+01 9.92203E+00
-

2.95859E+01 4.35196E+01

0.15 0.90199 0.89727 0.68009 6.80000E-01 1.00000E+00
-

4.64394E+01 1.05918E+01
-

3.15830E+01 4.64394E+01

0.14 0.90172 0.89853 0.68029 6.80000E-01 1.00000E+00
-

4.97714E+01 1.13551E+01
-

3.38590E+01 4.97714E+01

0.13 0.90154 0.90017 0.68044 6.80000E-01 1.00000E+00
-

5.36107E+01 1.22337E+01
-

3.64789E+01 5.36107E+01

0.12 0.90153 0.90405 0.68054 6.81000E-01 1.00000E+00
-

5.80789E+01 1.32552E+01
-

3.95250E+01 5.80789E+01
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0.11 0.90201 0.91301 0.68061 6.81000E-01 9.99999E-01
-

6.33250E+01 1.44541E+01
-

4.30997E+01 6.33250E+01

0.10 0.90363 0.94321 0.68064 6.81000E-01 1.00000E+00
-

6.95327E+01 1.58717E+01
-

4.73268E+01 6.95327E+01

0.095 0.90496 0.97596 0.68065 6.81000E-01 1.00000E+00
-

7.30848E+01 1.66827E+01
-

4.97452E+01 7.30848E+01

0.090 0.90868 0.98358 0.68065 6.81000E-01 1.00000E+00
-

7.68292E+01 1.75374E+01
-

5.22938E+01 7.68292E+01

0.085 0.91313 0.98336 0.68065 6.81000E-01 1.00000E+00
-

8.09521E+01 1.84785E+01
-

5.51001E+01 8.09521E+01

0.080 0.91759 0.98313 0.68066 6.81000E-01 1.00000E+00
-

8.55935E+01 1.95383E+01
-

5.82602E+01 8.55935E+01

0.075 0.92205 0.98291 0.68066 6.81000E-01 1.00000E+00
-

9.08582E+01 2.07401E+01
-

6.18435E+01 9.08582E+01

0.070 0.92651 0.98269 0.68066 6.81000E-01 1.00000E+00
-

9.68795E+01 2.21145E+01
-

6.59420E+01 9.68795E+01

0.065 0.93097 0.98246 0.68066 6.81000E-01 1.00000E+00
-

1.03832E+02 2.37016E+01
-

7.06743E+01 1.03832E+02

0.060 0.93542 0.98224 0.68066 6.81000E-01 1.00000E+00
-

1.11949E+02 2.55545E+01
-

7.61995E+01 1.11949E+02

0.055 0.93988 0.98202 0.68066 6.81000E-01 1.00000E+00
-

1.21547E+02 2.77454E+01
-

8.27323E+01 1.21547E+02

0.050 0.94434 0.98179 0.68067 6.81000E-01 9.99999E-01
-

1.33070E+02 3.03762E+01
-

9.05771E+01 1.33070E+02

0.048 0.94612 0.9817 0.68067 6.81000E-01 1.00000E+00
-

1.38354E+02 3.15824E+01
-

9.41736E+01 1.38354E+02

0.046 0.94790 0.98161 0.68067 6.81000E-01 1.00000E+00
-

1.44099E+02 3.28936E+01
-

9.80835E+01 1.44099E+02

0.044 0.94969 0.98152 0.68067 6.81000E-01 1.00000E+00
-

1.50365E+02 3.43239E+01
-

1.02349E+02 1.50365E+02

0.042 0.95147 0.98143 0.68067 6.81000E-01 1.00000E+00
-

1.57230E+02 3.58912E+01
-

1.07022E+02 1.57230E+02

0.040 0.95325 0.97955 0.68067 6.81000E-01 1.00000E+00
-

1.64783E+02 3.76154E+01
-

1.12163E+02 1.64783E+02
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Appendix V.2  
 
Mode 1 Love waves in Hskwav.000: 

 
LOVE WAVE DISPERSION 
LAYER VELOCITY MODELFOR 
PERIOD      c, km/s u, km/s        n/a Real[V(z)] dV/dz(^-5) dV/dx(^-5) 
       
Love WaveMode# 1V(z) atz=   .000E-3 km 

15.00 3.53897 3.21717 0 1.00000E+00 0.00000E+00 1.18362E-01
14.00 3.50616 3.04785 0 1.00000E+00 0.00000E+00 1.28003E-01
13.00 3.46498 2.93077 0 1.00000E+00 0.00000E+00 1.39488E-01
12.00 3.41070 2.77435 0 1.00000E+00 0.00000E+00 1.53517E-01
11.00 3.33717 2.58106 0 1.00000E+00 0.00000E+00 1.71163E-01
10.00 3.23653 2.35901 0 1.00000E+00 0.00000E+00 1.94133E-01

9.50 3.16800 2.24421 0 1.00000E+00 0.00000E+00 2.08771E-01
9.00 3.09946 2.12942 0 1.00000E+00 0.00000E+00 2.25243E-01
8.50 3.00846 2.00112 0 1.00000E+00 0.00000E+00 2.45707E-01
8.00 2.91278 1.87267 0 1.00000E+00 0.00000E+00 2.69639E-01
7.50 2.79834 1.74359 0 1.00000E+00 0.00000E+00 2.99377E-01
7.00 2.67256 1.61918 0 1.00000E+00 0.00000E+00 3.35857E-01
6.50 2.53706 1.49991 0 1.00000E+00 0.00000E+00 3.81010E-01
6.00 2.39071 1.39319 0 1.00000E+00 0.00000E+00 4.38028E-01
5.50 2.24004 1.30007 0 1.00000E+00 0.00000E+00 5.09990E-01
5.00 2.08823 1.22022 0 1.00000E+00 0.00000E+00 6.01771E-01
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4.80 2.02748 1.19065 0 1.00000E+00 0.00000E+00 6.45628E-01
4.60 1.96792 1.16619 0 1.00000E+00 0.00000E+00 6.94088E-01
4.40 1.90847 1.14221 0 1.00000E+00 0.00000E+00 7.48242E-01
4.20 1.85022 1.12080 0 1.00000E+00 0.00000E+00 8.08551E-01
4.00 1.79305 1.10172 0 1.00000E+00 0.00000E+00 8.76047E-01
3.80 1.73695 1.08425 0 1.00000E+00 0.00000E+00 9.51939E-01
3.60 1.68268 1.06951 0 1.00000E+00 0.00000E+00 1.03723E+00
3.40 1.62975 1.05634 0 1.00000E+00 0.00000E+00 1.13391E+00
3.20 1.57859 1.04521 0 1.00000E+00 0.00000E+00 1.24383E+00
3.00 1.52953 1.03594 0 1.00000E+00 0.00000E+00 1.36931E+00
2.80 1.48174 1.02771 0 1.00000E+00 0.00000E+00 1.51443E+00
2.60 1.43635 1.02101 0 1.00000E+00 0.00000E+00 1.68247E+00
2.40 1.39266 1.01508 0 1.00000E+00 0.00000E+00 1.87985E+00
2.20 1.35054 1.00983 0 1.00000E+00 0.00000E+00 2.11471E+00
2.00 1.31009 1.00528 0 1.00000E+00 0.00000E+00 2.39800E+00
1.90 1.29049 1.00331 0 1.00000E+00 0.00000E+00 2.56255E+00
1.80 1.27131 1.00163 0 1.00000E+00 0.00000E+00 2.74572E+00
1.70 1.25252 1.00021 0 1.00000E+00 0.00000E+00 2.95084E+00
1.60 1.23424 0.99925 0 1.00000E+00 0.00000E+00 3.18171E+00
1.50 1.21622 0.99851 0 1.00000E+00 0.00000E+00 3.44411E+00
1.40 1.19894 0.99845 0 1.00000E+00 0.00000E+00 3.74330E+00
1.30 1.18203 0.99869 0 1.00000E+00 0.00000E+00 4.08891E+00
1.20 1.16559 0.99925 0 1.00000E+00 0.00000E+00 4.49214E+00
1.10 1.14972 1.00008 0 1.00000E+00 0.00000E+00 4.96815E+00
1.00 1.13442 1.00081 0 1.00000E+00 0.00000E+00 5.53868E+00
0.95 1.12696 1.00098 0 1.00000E+00 0.00000E+00 5.86878E+00
0.90 1.11957 1.00106 0 1.00000E+00 0.00000E+00 6.23571E+00
0.85 1.11229 1.00074 0 1.00000E+00 0.00000E+00 6.64573E+00
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0.80 1.10505 1.00027 0 1.00000E+00 0.00000E+00 7.10735E+00
0.75 1.09785 0.99908 0 1.00000E+00 0.00000E+00 7.63090E+00
0.70 1.09063 0.99753 0 1.00000E+00 0.00000E+00 8.23009E+00
0.65 1.08337 0.99539 0 1.00000E+00 0.00000E+00 8.92257E+00
0.60 1.07591 0.99237 0 1.00000E+00 0.00000E+00 9.73313E+00
0.55 1.06824 0.98873 0 1.00000E+00 0.00000E+00 1.06942E+01
0.50 1.06026 0.98450 0 1.00000E+00 0.00000E+00 1.18522E+01
0.48 1.05699 0.98268 0 1.00000E+00 0.00000E+00 1.23842E+01
0.46 1.05361 0.98081 0 1.00000E+00 0.00000E+00 1.29641E+01
0.44 1.05015 0.97890 0 1.00000E+00 0.00000E+00 1.35980E+01
0.42 1.04666 0.97701 0 1.00000E+00 0.00000E+00 1.42931E+01
0.40 1.04302 0.97518 0 1.00000E+00 0.00000E+00 1.50601E+01
0.38 1.03937 0.97337 0 1.00000E+00 0.00000E+00 1.59084E+01
0.36 1.03558 0.97178 0 1.00000E+00 0.00000E+00 1.68536E+01
0.34 1.03177 0.97026 0 1.00000E+00 0.00000E+00 1.79109E+01
0.32 1.02787 0.96905 0 1.00000E+00 0.00000E+00 1.91026E+01
0.30 1.02393 0.96804 0 1.00000E+00 0.00000E+00 2.04545E+01
0.28 1.01996 0.96727 0 1.00000E+00 0.00000E+00 2.20008E+01
0.26 1.01598 0.96692 0 1.00000E+00 0.00000E+00 2.37860E+01
0.24 1.01202 0.96684 0 1.00000E+00 0.00000E+00 2.58690E+01
0.22 1.00809 0.96708 0 1.00000E+00 0.00000E+00 2.83307E+01
0.20 1.00424 0.96766 0 1.00000E+00 0.00000E+00 3.12833E+01
0.19 1.00237 0.96809 0 1.00000E+00 0.00000E+00 3.29912E+01
0.18 1.00051 0.96855 0 1.00000E+00 0.00000E+00 3.48888E+01
0.17 0.99870 0.96912 0 1.00000E+00 0.00000E+00 3.70080E+01
0.16 0.99693 0.96976 0 1.00000E+00 0.00000E+00 3.93908E+01
0.15 0.99520 0.97048 0 1.00000E+00 0.00000E+00 4.20899E+01
0.14 0.99356 0.97147 0 1.00000E+00 0.00000E+00 4.51708E+01
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0.13 0.99198 0.97281 0 1.00000E+00 0.00000E+00 4.87230E+01
0.12 0.99051 0.97473 0 1.00000E+00 0.00000E+00 5.28615E+01
0.11 0.98932 0.97814 0 1.00000E+00 0.00000E+00 5.77365E+01
0.10 0.98851 0.97922 0 1.00000E+00 0.00000E+00 6.35622E+01

0.095 0.98811 0.97935 0 1.00000E+00 0.00000E+00 6.69347E+01
0.090 0.98763 0.97939 0 1.00000E+00 0.00000E+00 7.06876E+01
0.085 0.98716 0.97943 0 1.00000E+00 0.00000E+00 7.48813E+01
0.080 0.98668 0.97947 0 1.00000E+00 0.00000E+00 7.96001E+01
0.075 0.98620 0.97950 0 1.00000E+00 0.00000E+00 8.49481E+01
0.070 0.98572 0.97954 0 1.00000E+00 0.00000E+00 9.10601E+01
0.065 0.98525 0.97958 0 1.00000E+00 0.00000E+00 9.81115E+01
0.060 0.98477 0.97962 0 1.00000E+00 0.00000E+00 1.06339E+02
0.055 0.98429 0.97966 0 1.00000E+00 0.00000E+00 1.16063E+02
0.050 0.98382 0.97969 0 1.00000E+00 0.00000E+00 1.27730E+02
0.048 0.98363 0.97971 0 1.00000E+00 0.00000E+00 1.33078E+02
0.046 0.98343 0.97973 0 1.00000E+00 0.00000E+00 1.38892E+02
0.044 0.98324 0.97974 0 1.00000E+00 0.00000E+00 1.45234E+02
0.042 0.98305 0.97976 0 1.00000E+00 0.00000E+00 1.52179E+02
0.040 0.98286 0.98008 0 1.00000E+00 0.00000E+00 1.59819E+02
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Appendix V.3 

 
Mode 11 Body P- Waves in BodyW845.000: 
 
6 LAYER Velocity Model  
Imperial Valley VELOCITY MODEL  
Thickness, km alpha, km/s beta, km/s density Depth from top, km 
0.18 1.70 0.98 1.28 0.18 
0.55 1.96 1.13 1.36 0.73 
0.98 2.71 1.57 1.59 1.71 
1.19 3.76 2.17 1.91 2.90 
2.68 4.69 2.71 2.19 5.58 
 .00 6.40 3.70 2.71 5.58 
 
BODY WAVE DISPERSION 
  LAYER VELOCITY MODEL FOR  

PERIOD    c, km/s (n/a)      (n/a)     Imag[U(z)] Real[W(z)] dU/dz(^-5)         dW/dz(^-5)       dU/dx(^-5)       dW/dx(^-5) 
 
 Body P- Wave Mode# 11     U,W(z) at z=   .000E-3 km       

15.00 6.45000 0 0 -1.80906E+00 1.00000E+00
-6.49620E-

02 -3.94119E-02 1.17520E-01 6.49620E-02

14.00 6.45000 0 0 -1.85095E+00 1.00000E+00
-6.96021E-

02 -4.32049E-02 1.28830E-01 6.96022E-02

13.00 6.45000 0 0 -1.89027E+00 1.00000E+00
-7.49561E-

02 -4.75168E-02 1.41688E-01 7.49562E-02

12.00 6.45000 0 0 -1.92613E+00 1.00000E+00
-8.12025E-

02 -5.24530E-02 1.56407E-01 8.12026E-02

11.00 6.45000 0 0 -1.95777E+00 1.00000E+00
-8.85845E-

02 -5.81615E-02 1.73429E-01 8.85846E-02



 

 
 

5-43

10.00 6.45000 0 0 -1.98495E+00 1.00000E+00
-9.74430E-

02 -6.48658E-02 1.93420E-01 9.74431E-02

9.50 6.45000 0 0 -1.99703E+00 1.00000E+00
-1.02572E-

01 -6.86954E-02 2.04839E-01 1.02572E-01

9.00 6.45000 0 0 -2.00834E+00 1.00000E+00
-1.08270E-

01 -7.29224E-02 2.17443E-01 1.08270E-01

8.50 6.45000 0 0 -2.01907E+00 1.00000E+00
-1.14639E-

01 -7.76244E-02 2.31464E-01 1.14639E-01

8.00 6.45000 0 0 -2.02915E+00 1.00000E+00
-1.21804E-

01 -8.28879E-02 2.47159E-01 1.21804E-01

7.50 6.45000 0 0 -2.03753E+00 1.00000E+00
-1.29924E-

01 -8.87788E-02 2.64725E-01 1.29924E-01

7.00 6.45000 0 0 -2.04009E+00 1.00000E+00
-1.39204E-

01 -9.52396E-02 2.83989E-01 1.39204E-01

6.50 6.45000 0 0 -2.02453E+00 1.00000E+00
-1.49912E-

01 -1.01783E-01 3.03502E-01 1.49912E-01

6.00 6.45000 0 0 -1.96026E+00 1.00000E+00
-1.62405E-

01 -1.06765E-01 3.18356E-01 1.62405E-01

5.50 6.45000 0 0 -1.79231E+00 1.00000E+00
-1.77169E-

01 -1.06492E-01 3.17542E-01 1.77169E-01

5.00 6.45000 0 0 -1.48654E+00 1.00000E+00
-1.94886E-

01 -9.71564E-02 2.89705E-01 1.94886E-01

4.80 6.45000 0 0 -1.34018E+00 1.00000E+00
-2.03006E-

01 -9.12409E-02 2.72066E-01 2.03006E-01

4.60 6.45000 0 0 -1.19448E+00 1.00000E+00
-2.11833E-

01 -8.48570E-02 2.53030E-01 2.11833E-01

4.40 6.45000 0 0 -1.05752E+00 1.00000E+00
-2.21461E-

01 -7.85423E-02 2.34201E-01 2.21462E-01

4.20 6.45000 0 0 -9.31259E-01 1.00000E+00
-2.32007E-

01 -7.24582E-02 2.16059E-01 2.32007E-01
4.00 6.45000 0 0 -8.03692E-01 1.00000E+00 2.51353E-01 -8.49203E-02 1.95786E-01 2.43608E-01
3.80 6.45000 0 0 -5.73926E-01 1.00000E+00 6.49222E-01 -1.90320E-01 1.47171E-01 2.56429E-01
3.60 6.45000 0 0 -1.21849E+00 1.00000E+00 - 2.74417E-01 3.29814E-01 2.70675E-01
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1.10328E+00 

3.40 6.45000 0 0 -8.37301E-01 1.00000E+00
-2.86597E-

01 -8.04764E-02 2.39968E-01 2.86597E-01

3.20 6.45000 0 0 -7.20895E-01 1.00000E+00
-3.04509E-

01 -7.36187E-02 2.19519E-01 3.04509E-01

3.00 6.45000 0 0 -5.93310E-01 1.00000E+00
-3.24810E-

01 -6.46289E-02 1.92713E-01 3.24810E-01

2.80 6.45000 0 0 -4.04105E-01 1.00000E+00
-3.48011E-

01 -4.71631E-02 1.40633E-01 3.48011E-01

2.60 6.45000 0 0 -1.96669E-01 1.00000E+00
-3.74781E-

01 -2.47189E-02 7.37079E-02 3.74781E-01

2.40 6.45000 0 0 -7.44285E-02 1.00000E+00
-4.06012E-

01 -1.01343E-02 3.02189E-02 4.06013E-01

2.20 6.45000 0 0 -4.72817E-02 1.00000E+00
-4.42923E-

01 8.67461E-03 2.09421E-02 4.42923E-01

2.00 6.45000 0 0 -1.28314E-01 1.00000E+00
-4.87215E-

01 2.83372E-02 6.25166E-02 4.87215E-01

1.90 6.45000 0 0 -2.62172E-01 1.00000E+00
-5.12858E-

01 -4.50919E-02 1.34457E-01 5.12858E-01
1.80 6.45000 0 0 -4.62670E-01 1.00000E+00 8.88796E-01 -8.39972E-02 2.50466E-01 5.41350E-01

1.70 6.45000 0 0 1.08812E-01 1.00000E+00
-

1.29557E+00 5.99271E-02
-6.23703E-

02 5.73194E-01

1.60 6.45000 0 0 8.61284E-02 1.00000E+00
-6.09019E-

01 1.80184E-02
-5.24538E-

02 6.09019E-01

1.50 6.45000 0 0 1.75171E-01 1.00000E+00
-6.49620E-

01 5.11451E-02
-1.13794E-

01 6.49620E-01

1.40 6.45000 0 0 9.34311E-03 1.00000E+00
-6.96021E-

01 1.20801E-01
-6.50301E-

03 6.96022E-01

1.30 6.45000 0 0 -3.76042E-01 1.00000E+00
-7.49561E-

01 -9.45278E-02 2.81867E-01 7.49562E-01

1.20 6.45000 0 0 -2.11961E-01 1.00000E+00
-8.12025E-

01 -5.77219E-02 1.72118E-01 8.12025E-01
1.10 6.45000 0 0 2.11456E+00 1.00000E+00 - -6.30851E-01 - 8.85846E-01
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8.50732E+00 1.87317E+00

1.00 6.45000 0 0 -1.07758E-01 1.00000E+00
-9.74430E-

01 2.31645E-01 1.05003E-01 9.74431E-01

0.95 6.45000 0 0 -4.06482E-01 1.00000E+00
-

1.02572E+00 1.51760E-01 4.16935E-01 1.02572E+00

0.90 6.45000 0 0 -5.00290E-01 1.00000E+00
-

1.08270E+00 -1.81654E-01 5.41664E-01 1.08270E+00

0.85 6.45000 0 0 -2.12769E-01 1.00000E+00
-

1.14639E+00 -8.18005E-02 2.43916E-01 1.14639E+00

0.80 6.45000 0 0 2.03166E-01 1.00000E+00 1.51744E+00 -8.56182E-02
-2.47463E-

01 1.21804E+00

0.75 6.45000 0 0 6.25002E-01 1.00000E+00
-

1.29924E+00 2.72324E-01
-8.12028E-

01 1.29924E+00

0.70 6.45000 0 0 5.26729E-01 1.00000E+00
-

1.39204E+00 5.62471E-01
-7.33230E-

01 1.39204E+00

0.65 6.45000 0 0 -1.54140E+00 1.00000E+00
-

1.49912E+00 -7.74941E-01 2.31075E+00 1.49912E+00

0.60 6.45000 0 0 -2.89206E-01 1.00000E+00
-

1.62405E+00 -4.59319E-01 4.69685E-01 1.62405E+00

0.55 6.45000 0 0 9.70465E-03 1.00000E+00
-

1.77169E+00 -2.83281E-02
-1.71937E-

02 1.77169E+00

0.50 6.45000 0 0 2.55393E+00 1.00000E+00
-

2.59862E+01 
-

2.28896E+00
-

4.97726E+00 1.94886E+00

0.48 6.45000 0 0 3.82539E-01 1.00000E+00
-

2.03006E+00 2.60436E-01
-7.76577E-

01 2.03006E+00

0.46 6.45000 0 0 5.26907E-03 1.00000E+00
-

2.11833E+00 6.37821E-01
-1.11616E-

02 2.11833E+00

0.44 6.45000 0 0 -6.62124E-01 1.00000E+00
-

2.21461E+00 -4.91759E-01 1.46635E+00 2.21462E+00

0.42 6.45000 0 0 3.15404E-01 1.00000E+00
-

1.51427E+02 
-

1.00947E+00
-7.31761E-

01 2.32007E+00

0.40 6.45000 0 0 -5.09269E-01 1.00000E+00
-

2.43608E+00 -4.16057E-01 1.24062E+00 2.43608E+00
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0.38 6.45000 0 0 1.36556E-01 1.00000E+00
-

2.56429E+00 -5.39895E-01
-3.50168E-

01 2.56429E+00

0.36 6.45000 0 0 8.34954E-02 1.00000E+00
-

3.47495E+00 -7.77881E-01
-2.26001E-

01 2.70675E+00

0.34 6.45000 0 0 1.61742E-01 1.00000E+00
-

2.86597E+00 1.59213E+00
-4.63548E-

01 2.86597E+00
0.32 6.45000 0 0 -7.83054E-01 1.00000E+00 9.90475E+00 -7.99664E-01 2.38447E+00 3.04510E+00

0.30 6.45000 0 0 3.57629E-02 1.00000E+00 3.58843E+00 2.52771E-01
-1.16162E-

01 3.24810E+00

0.28 6.45000 0 0 3.46575E-01 1.00000E+00
-

3.48011E+00 1.34672E+00
-

1.20612E+00 3.48011E+00

0.26 6.45000 0 0 -2.46652E+00 1.00000E+00 1.53945E+01 
-

5.48702E+00 9.24403E+00 3.74781E+00

0.24 6.45000 0 0 1.75647E+00 1.00000E+00 1.21399E+01 
-

3.69668E+00
-

7.13148E+00 4.06013E+00

0.22 6.45000 0 0 -1.00638E+00 1.00000E+00 1.35494E+01 
-

1.49488E+00 4.45749E+00 4.42923E+00

0.20 6.45000 0 0 1.71676E-01 1.00000E+00
-

4.87215E+00 1.00635E+00
-8.36430E-

01 4.87215E+00

0.19 6.45000 0 0 -1.42609E+00 1.00000E+00 2.84408E+01 
-

6.57357E+00 7.31384E+00 5.12858E+00

0.18 6.45000 0 0 5.53923E-01 1.00000E+00 1.88426E+01 
-

2.05407E+00
-

2.99866E+00 5.41350E+00
0.17 6.45000 0 0 -4.42545E-01 1.00000E+00 1.01859E+01 2.08252E+00 2.53664E+00 5.73194E+00

0.16 6.45000 0 0 -1.10177E+00 1.00000E+00 2.80501E+01 
-

4.94037E+00 6.71000E+00 6.09019E+00
0.15 6.45000 0 0 -3.65427E+00 1.00000E+00 2.87556E+01 8.17365E+00 2.37389E+01 6.49620E+00

0.14 6.45000 0 0 9.48046E-01 1.00000E+00
-

1.38859E+01 2.21293E+00
-

6.59861E+00 6.96022E+00

0.13 6.45000 0 0 -3.64750E+00 1.00000E+00 3.03608E+01 
-

1.00898E+01 2.73403E+01 7.49562E+00

0.12 6.45000 0 0 1.24707E-01 1.00000E+00
-

8.12025E+00 3.39607E-01
-

1.01266E+00 8.12026E+00
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0.11 6.45000 0 0 -7.95266E+00 1.00000E+00 1.37413E+02 
-

2.36257E+01 7.04483E+01 8.85845E+00

0.10 6.45000 0 0 -5.27639E-01 1.00000E+00
-

1.04044E+01 1.93421E+00 5.14147E+00 9.74430E+00

0.095 6.45000 0 0 -1.63671E+00 1.00000E+00 1.69910E+01 
-

5.63007E+00 1.67880E+01 1.02572E+01

0.090 6.45000 0 0 -4.02834E-03 1.00000E+00
-

1.08270E+01 7.97454E-01 4.36148E-02 1.08270E+01

0.085 6.45000 0 0 3.95053E-01 1.00000E+00
-

1.15267E+01 1.51881E+00
-

4.52884E+00 1.14639E+01

0.080 6.45000 0 0 2.26467E-01 1.00000E+00
-

1.22488E+01 1.19878E+00
-

2.75845E+00 1.21804E+01

0.075 6.45000 0 0 6.69894E-01 1.00000E+00
-

1.29924E+01 2.91885E+00
-

8.70354E+00 1.29924E+01

0.070 6.45000 0 0 3.30943E+00 1.00000E+00
-

4.18887E+01 1.54497E+01
-

4.60687E+01 1.39204E+01

0.065 6.45000 0 0 1.41389E-01 1.00000E+00 2.56898E+01 4.61849E+00
-

2.11959E+00 1.49912E+01

0.060 6.45000 0 0 -1.28346E-01 1.00000E+00
-

1.62405E+01 7.75379E-01 2.08440E+00 1.62405E+01

0.055 6.45000 0 0 -9.08622E-01 1.00000E+00 5.69378E+01 
-

6.55676E+00 1.60980E+01 1.77169E+01

0.050 6.45000 0 0 3.95032E+01 1.00000E+00 5.63086E+02 2.58183E+02
-

7.69862E+02 1.94886E+01

0.048 6.45000 0 0 2.49486E+00 1.00000E+00
-

3.07547E+01 1.69852E+01
-

5.06472E+01 2.03006E+01

0.046 6.45000 0 0 -4.14021E-01 1.00000E+00
-

2.11833E+01 
-

2.94124E+00 8.77032E+00 2.11833E+01

0.044 6.45000 0 0 6.90904E-02 1.00000E+00
-

2.21461E+01 
-

1.08889E+00
-

1.53009E+00 2.21462E+01

0.042 6.45000 0 0 1.21869E+00 1.00000E+00
-

2.32007E+01 9.48222E+00
-

2.82745E+01 2.32007E+01

0.040 6.45000 0 0 -2.84811E-01 1.00000E+00
-

2.43608E+01 
-

2.32682E+00 6.93822E+00 2.43608E+01
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INTRODUCTION 
 
As described in the statement of the proposed work the purpose of this contract is to 
formulate a comprehensive regulatory approach for seismic wave excitation of NPP 
structures, and specifically to provide detailed procedures for computations of overall 
response associated with seismic soil-structure interaction in 3D. This is illustrated in Fig. 
1. Assuming that the structure, foundation and the surrounding soil are modeled 
numerically, this task can be accomplished by specifying components of strong ground 
motion at a discrete mesh of points in the five surfaces of the “box” ABCD, which 
represents the boundary and the contact surfaces between the numerical representation of 
the model inside the box with the elastic, continuum mechanics representation of the site 
outside the box. 
 

 
 
Figure 1. Structure, foundation (abcd), and the surrounding soil (ABCD) for numerical 
analysis of SSI. 
 
To accomplish this task it is necessary to formulate algorithms which describe (a) strong 
ground motion along a HORIZONTAL line radialy extending from the earthquake source 
towards the site of the structure (e.g. along BC in Fig.1), and (b) along a VERTICAL line 
(e.g. along AB or CD in Fig. 1) in the layered half space. Once these algorithms have 
been formulated, the complete motion can be specified at any desired number of points in 
the five surfaces of the box ABCD.. 
 
The algorithms for description of strong earthquake motion along any horizontal line 
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(HL) have been completed and tested, and are described in detail in Appendix I. The 
essential feature of the algorithms for describing the motions along HL is the consistent 
use of phase delays based on the site specific dispersion of the wave motions through the 
foundation soil described in terms of layered half space. For description of consistent 
motions along any vertical line (VL), it is necessary to work with decomposition of wave 
motion in terms of the frequency dependent mode shapes, which correspond to the 
characteristic functions of the surface waves in the layered half space. The mathematical 
formulation for the algorithms we are developing for the formulation of motions along 
VL is described in Appendix II. At the time of this writing this method has been 
developed, but needs to be tested and verified. 
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APPENDIX I 
 

Synthetic Earthquake Ground Motions on an Array 
 
 

INTRODUCTION 

Extended structures, such as pipelines and bridges, for example, are sensitive to 

differential motion of their supports and their seismic analysis and design require 

specification of time histories of ground motion at an array of closely spaced points.  

Because the phase in an accelerogram is not a stable quantity, time histories of ground 

motion are not predictable directly by empirical scaling models, but can be constructed 

indirectly, using empirically predicted amplitude spectrum, and some procedure for 

unfolding the spectrum in time.  This paper presents such a method, which generates 

synthetic time histories of motion at an array of points. The method is an extension of the 

SYNACC method, first proposed by Trifunac [1] and demonstrated for a site in Imperial 

Valley in Southern California.  The method evolved over the years, by inclusion of more 

current empirical scaling laws for Fourier amplitude spectra of acceleration and 

frequency dependent duration [2,3], and extension to prediction of rotational motions 

[4,5], strains [6] and curvature [7], all at a point in space (see also review in [8]).  This 

paper presents an extension of the SYNACC method to an array of points on the ground 

surface.  It also presents new expressions for the point strains, rotations and curvatures, 

derived from the new formulation, which differ slightly from the previous expressions. In 

what follows, for brevity, we will use “pipeline” to mean any long structure supported by 

many separate foundations. 
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The method is based on representation of the ground motion by traveling wavelets of 

surface and body waves, which propagate in space with phase and group velocities that 

are those of a horizontally layered half-space approximating the soil and geology of the 

site.  The amplitudes of the wavelets are such that the total motion in a narrow frequency 

band matches a target Fourier amplitude spectrum of acceleration.   The methodology has 

been implemented in a computer program, which has built in a suite of empirical scaling 

models for prediction of site specific Fourier amplitude spectra of acceleration, and 

computes the phase and group velocities specific for the site.  A uniform hazard 

spectrum, or any user specified spectrum can also be used.  While the Fourier spectrum 

determines the overall amplitudes of motion, the layered structure determines the 

distribution of the energy in time at a given site, and also the causal relationship between 

the motions at neighboring points along the supports of the structure. This causal 

relationship is such that the motions further away from the source are delayed relative to 

the closer points differently in different frequency bands.  Examples are shown of time 

histories for ground accelerations, velocities and displacements in the radial, transverse 

and vertical direction, and radial (normal) and transverse (shear) strains, at a point and at 

an array of points. 

This empirical-physical model based method has clear advantages over both the 

engineering stochastic methods and the seismological physics based methods.  The 

former methods (see recent comprehensive review in [9]) produce motions with 

stationary frequency content over the entire duration, in contrast to the nonstataionary 

nature reveled by the many observations. Further, motions at an array of points are 

generated using overly simplified coherency function, which is based on a single valued  

 R1-5



phase velocity, rather than the complete site-specific set for all body waves and surface 

wave modes.  The latter methods involve numerical simulations based on a physical 

model of the earthquake source and of the wave propagation from the source to the site.  

They produce motions with correct physical nature, but involve many assumptions and 

need to be validated with data.  Also, due to the lack of detail in the available information 

about the earthquake source and the wave path, they have difficulties to model high-

frequency content of the synthetic motions.  The SYNACC method, which is neither 

stochastic nor purely physics based, does not suffer from these shortcomings.  It produces 

motions with amplitudes that are automatically consistent with observations over a broad 

frequency range, and does not need calibration.  Also, the motions are nonstationary in a 

physically meaningful sense and consistent with the site soil and geology.  

METHODOLOGY 

The geology between the earthquake source and the site can vary considerably, 

especially for large distances, and different types of waves will arrive at the site via 

different wave paths, as illustrated in Fig. 1, showing the earthquake fault, and a segment 

of a pipeline located on sediments.  The surface waves (Love and Rayleigh) arrive 

horizontally through the low velocity layers, with velocities that are frequency dependent, 

defined by the dispersion in the layers of site soil and geology, while the body waves 

arrive from depth at an angle, which is close to vertical for soft geology near the surface.  

Further, the amplitude attenuation is different for body and surface waves, due to 

different geometric spreading, and for both waves, the attenuation is frequency 

dependent.  The total effect can be predicted reliably, in statistical sense, using empirical 

scaling laws for Fourier amplitude spectra of acceleration.   Considering the nature of 
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these processes, in the SYNACC methodology, over the frequency band of interest, 0 to 

25 Hz, the empirically predicted Fourier amplitude spectrum is partitioned in  narrow 

non-overlapping subbands, and the energy in each subband is partitioned among surface 

and body waves [

N

1,2,3].   Waves in a narrow frequency band propagate as groups, 

forming wavelet packets, the amplitudes of which are localized in time, and which 

propagate with their group velocity.  The total motion, therefore, can be represented as a 

superposition of such wavelet packets. In the following, the representation of the surface 

and body waves that enables generation of related motions at an array of points is 

presented, highlighting the changes relative to the previous versions for generating 

motions at a single point [1,2,3,6]. 

 

Fig. 1  Model. 

Representation of Surface Wave Motion at a Site 

To expand the surface waves, the soil and geology at the site is locally approximated 

by a horizontally layered half-space, as shown in Fig. 1.  Let , ih iρ , iα  and iβ  be the 

thickness, mass density and P- and S-wave velocities in the i -th layer, with i 1, … , = L , 
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and let the x -axis point in the direction of wave propagation.  The layer boundaries 

define a boundary value problem for the displacement, which has a solution that is a 

surface wave only for a discrete set of frequency dependent phase velocities ( )mc ω , 

obtained from the roots of the characteristic equation for the particular problem [10,11].  

The displacement for an eigenvalue constitutes an eigenfunction (or a mode), and any 

surface wave motion then can be represented as a linear combination of these 

eigenfunctions.   

 

Fig. 2  Velocity profile for Dispersion Model 1. 

 

Fig. 2 shows an example of a velocity profile for a site in El Centro in Imperial 

Valley, California [1], and Tables 1a,b,c show the properties of the layers for three 

variants of this profile, which differ only in the top 180 m.   Fig. 3 shows the phase and 

group velocities,  ( )mc ω  and ( )mU ω  1, ,5m = … , for the first five modes of Rayleigh  
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Table 1a   Profile for dispersion model 1 

No. h  - [km] α -  [km/s] β - [km/s]  ρ -[gm/cm3] 

1 0.18 1.70 0.98 1.28 

2 0.55 1.96 1.13 1.36 

3 0.98 2.71 1.57 1.59 

4 1.19 3.76 2.17 1.91 

5 2.68 4.69 2.71 2.19 

6 ∞ 6.40 3.70 2.71 

Table 1b   Profile for dispersion model 2 

No. h  - [km] α -  [km/s] β - [km/s]  ρ -[gm/cm3] 

1a 0.06 0.867 0.50 1.2 

1b 0.12 1.70 0.98 1.28 

2 0.55 1.96 1.13 1.36 

3 0.98 2.71 1.57 1.59 

4 1.19 3.76 2.17 1.91 

5 2.68 4.69 2.71 2.19 

6 ∞ 6.40 3.70 2.71 

Table 1c  Profile for dispersion model 3 

No. h  - [km] α -  [km/s] β - [km/s]  ρ -[gm/cm3] 

1a 0 .03 0.4335  0.25    1.20 

1b 0.03 0.867 0.50 1.2 

1c 0.12 1.70 0.98 1.28 

2 0.55 1.96 1.13 1.36 

3 0.98 2.71 1.57 1.59 

4 1.19 3.76 2.17 1.91 

5 2.68 4.69 2.71 2.19 

6 ∞ 6.40 3.70 2.71 
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Fig. 3  Phase velocities  (left) and group velocities  (right) as functions of frequency ( )c f ( )U f
f  for Rayleigh waves (top) and Love waves (bottom), for the first five modes.  The three types 

of curves correspond to the different dispersion models.   It can be seen that, for the three models, 
which differ only in the top 180 m, at low frequencies, the phase and group velocities do not 
depend on the model but only on the mode.  In contrast, at high frequencies, they depend less on 
the mode and strongly on the model, all approaching the velocity in the top layer for the model.  

 

and Love waves, referred to as dispersion curves, for the three variants.  The Rayleigh 

waves are surface waves with in-plane particle motion along an ellipse, which is usually 

retrograde at the surface, and with vertical to horizontal aspect ratio > 1.   The Love 

waves are surface waves with out of plane particle motion. The group velocity 

, where ( ) /m mU d dω ω� k ( ) / ( )m mk cω ω� ω  is the horizontal wave number, is the 
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velocity with which the amplitude envelope of the wavelet packet propagates, and with 

which the energy is transported.   The number of modes is finite for a given frequency, 

and increases with frequency. The first mode exists at all frequencies, while the higher 

modes exist only for high enough frequencies.  Because the wave velocities in the earth 

crust are smaller at progressively smaller depths, and because the penetration depth of a 

mode decreases with frequency, ( )mc ω  decreases with frequency, approaching 

asymptotically the shear wave velocity of the top layer.   

 

Fig. 4 Artificial acceleration, velocity and displacement that matchthe target Fourier spectrum of 

acceleration of M6.5 earthquake, at hypocentral distance 10R = km, and for a site on sediments 

( ) and deep soil ( ), unfolded with dispersion model 1. 2s = 2Ls =
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As mentioned earlier, the synthesis is based on dividing the frequency band of 

interest, 0 to 25 Hz, in  non-overlapping subbands, assuming uniform Fourier 

amplitude within the subband, and in each band, representing the surface wave motion as 

a superposition of the eigenfunctions, evaluated at the central frequency of the subband.  

Let 

N

nω  and nωΔ  be the central frequency and half-bandwidth of the n -the subband, 

( )nm m nU U ω=  and (nm m nc c )ω=  be the group and phase velocities of the -th mode 

in that subband,  and let  be the eigenfunction of the -th mode in the -th 

subband,  at point 

m

( ; )nmw x t m n

x  on the free surface ( 0z = ), and at time t .   Then   

(( ; ) sinc expnm n n nm
nm

xw x t t i t k x
U

ω ω
⎡ ⎤⎛ ⎞ )⎡ ⎤= Δ − −⎢ ⎥⎜ ⎟ ⎣ ⎦
⎢ ⎥⎝ ⎠⎣ ⎦            

 (1) 

where  

11
2

n
nm

nm
k i

c Q
ω ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

    (2) 

is the complex horizontal wave number, and Q  is the quality factor, assumed to be 

constant [12].  If no material attenuation is assumed, 1 / (2 ) 0Q =  and  is real.   

Function  represents a traveling wavelet, which is a complex exponential of 

frequency 

nmk

( ; )nmw x t

nω , amplitude modulated by a  function.  The amplitude modulation  sinc

( ) sin( )sinc n
n

n

tt
t
ω

ω
ω
Δ

Δ =
Δ

 (3) 

is a window in time with half-width /nt nπ ωΔ = Δ , which propagates with velocity , 

while the phase propagates with velocity .   Consequently, at a point 

nmU

nmc x , the phase has 
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time lag / nmx c , and the center of the amplitude envelope has time lag / nmx U  relative 

to the reference point, .  0x =

 

Fig. 5 Artificial acceleration, velocity and displacement that match the target Fourier spectrum of 

acceleration of M6.5 earthquake, at hypocentral distance 10R = km, and for a site on sediments 

( ) and deep soil ( ), unfolded with dispersion model 2. 2s = 2Ls =

 

Representation (1) is consistent with the following convention of Fourier transform 

for the pair ( )f t  and ˆ ( )f ω  
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ˆ( ) ( )

ˆ ( ) ( )

1 ˆ( ) ( )
2

i t

i t

f t f

f f t e dt

f t f e

ω

ω

ω

ω

dω ω
π

∞
−

−∞
∞

−∞

↔

= ∫

= ∫

 (4) 

Then, the Fourier transform of the wavelet  is ( ; )nmw x t

(ˆ ( ; ) exp
n

n
nm nm n

n nm
w x i k x p

U ω
ω ωπ )ω ω ω

ω Δ
⎡ ⎤⎛ ⎞−

= − + −⎢ ⎥⎜ ⎟Δ ⎢ ⎥⎝ ⎠⎣ ⎦
                    (5) 

where  

( ) 1,
0, otherwisen

n n
np ω

nω ω ω ω ω
ω ωΔ

− Δ ≤ ≤ + Δ⎧ ⎫
− = ⎨ ⎬

⎩ ⎭
                                   (6) 

represents a box function with half width nωΔ , centered at frequency nω , with amplitude 

scaled to / nπ ωΔ   and phase shifted by  .  nmk x

According to Eqns (1) and (5), the energy of the wavelet  is localized, in time 

- around  with spread 

( )nmw x

/ nmt x U= /nt nπ ω±Δ = ± Δ , and, in frequency, around nω ω=  

with spread nω±Δ , i.e. within a rectangle of constant area ( )( )2 2 2n nt ω πΔ Δ =  in the 

phase plane.  Consequently, finer division of the frequency range (smaller nωΔ ) will lead 

to wider in time wavelets , which is a manifestation of the Heisenberg-Gabor 

uncertainty principle for signals [

( ; )nmw x t

13,14].  

Let  be the associated analytic signal of a generic component of motion (the 

specific expansions will be presented in one of the following sections.  Because scaling 

( , )u x t
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laws for Fourier spectra of acceleration are available, we start with the representation of 

acceleration in a series of wavelets 

*

1 1
( , ) ( ; )

nMN
nm nm

n m
u x t A w x t

= =
= ∑ ∑��  (7) 

where nM  is the number of modes that exist in the -th subband.   n

 

 

Fig. 6 Artificial acceleration, velocity and displacement that match the target Fourier spectrum of 

acceleration of M6.5 earthquake, at hypocentral distance 10R = km, and for a site on sediments 

( ) and deep soil ( ), unfolded with dispersion model 3. 2s = 2Ls =
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Representation of Velocity, Displacement and Spatial Derivatives 

It is convenient to do the synthesis in the frequency domain and then invert to the 

time domain, because the representations of velocities, displacements, strains, rotations, 

and curvatures are easily obtainable in the frequency domain by analytical integration and 

differentiation of the wavelets.  The Fourier transforms of acceleration, velocity and 

displacements are  

 

Fig. 7 Artificial axial and shear strain, xxε  and xyε , for target corresponding to M6.5 

earthquake, at hypocentral distance 10R = km, and for a site on sediments ( ) and deep soil 

( ), unfolded with dispersion models 1 (top), 2 (middle) and 3 (bottom). 

2s =

2Ls =
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*

1 1
ˆ ˆ( , ) ( ; )

nMN
nm nm

n m
u x t A w x ω

= =
= ∑ ∑��  (8) 

*

1 1

1ˆ ˆ( ; ) ( ; )
nMN

nm nm
n m n

u x A w x
i

ω ω
ω= =

= ∑ ∑�  (9) 

and  

*
21 1

1ˆ( ; ) ( ; )
nMN

nm nm
n m n

u x A w xˆω ω
ω= =

−
= ∑ ∑  (10) 

Further, the first and second derivatives of ˆ ( ; )nmw x ω are    

ˆ ˆ( ; ) ( ; )n
nm nm nm

nm
w x i k w x

x U
ω ω

ω ω
⎛ ⎞−∂

= − +⎜ ⎟∂ ⎝ ⎠
 (11) 

and 

22

2
ˆ ˆ( ; ) ( ; )n

nm nm nm
nm

w x i k w x
Ux
ω ω

ω ω
⎡ ⎤⎛ ⎞−∂

= − +⎢ ⎥⎜ ⎟
∂ ⎢ ⎥⎝ ⎠⎣ ⎦

           (12) 

which gives for the corresponding derivatives of displacements  
 

*
21 1

ˆ ˆ( ; ) ( ; )
nMN n

nm nm nm
n m nmn

iu x k A w x
x U

ω ωω ω
ω= =

⎛ ⎞−∂
= +∑ ∑ ⎜ ⎟∂ ⎝ ⎠

         (13) 

and 

22
*

2 21 1

1ˆ ˆ( ; ) ( ; )
nMN n

nm nm nm
n m nmn

u x k A w x
Ux
ω ω

ω ω
ω= =

⎛ ⎞−∂
= +∑ ∑ ⎜ ⎟

∂ ⎝ ⎠
          (14) 
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Mode Participation Factors  

The coefficients of the expansion *
nmA  are complex valued and depend on the 

amplitude of the target spectrum, but, for a given site geology, they are related, as shown 

in [1] for a site in Imperial Valley, and their relative amplitude depends on the frequency 

and mode number.  We represent them as  

 

Fig. 8 Artificial acceleration, velocity and displacement that match the target Fourier 

spectrum of acceleration of M6.5 earthquake, at hypocentral distance 50R = km, and for a site 

on sediments ( ) and deep soil (2s = 2Ls = ), unfolded with dispersion model 1. 

 

( )*
1 2( ) ( )exp ran

nm n n nmA A m A iα ω φ=  (15) 
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where ran
nmφ  is a random phase between π−  and π , describing the randomness in the 

radiation of energy from the earthquake source and other randomness along the wave 

path until the arrival to the region near the site, represented by the medium with parallel 

layers (Fig. 1).  Functions 1( )A m  and 2( )nA ω  are site specific, as in [1], and their product 

1 2( ) ( )nA m A ω  can be thought of as a site dependent mode participation factor.  The 

coefficients ( , )n n nα α ω ω= Δ , for given division in subbands, depends only on the target 

spectrum that is to be matched by the synthetics.  

 

         Fig. 9 Artificial acceleration, velocity and displacement that match the target Fourier 
spectrum of acceleration of M6.5 earthquake, at hypocentral distance 50R = km, and for a site 
on sediments ( ) and deep soil (2s = 2Ls = ), unfolded with dispersion model 2. 
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The representation (7) differs from that in [1,2,3] as follows.  In the latter, the phase 

delay at point x  is ( )/ ran
n mn nmU tω φ+ , i.e. the lag of the amplitude modulation plus 

some random phase shift, while in this paper, the phase lag is ( )/n mncω t . In this paper, 

we consider also material attenuation due to Q , which affects the difference between the  

 

Fig. 10 Artificial acceleration, velocity and displacement that match the target Fourier spectrum 
of acceleration of M6.5 earthquake, at hypocentral distance 50R = km, and for a site on 
sediments ( ) and deep soil (2s = 2Ls = ), unfolded with dispersion model 3. 

 

motion at different points of the array.  Minor differences, chosen for convenience in this 

paper, are that the random phase is part of the coefficients of expansion, and that the 

associated analytic signal is expanded.  Another significant difference is in the definition 
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of the reference point .  In the latter, 0x = 0x =  is the epicenter of the earthquake, while, 

in this work, it is a point between the epicenter and the site, from where the parallel 

layers geology can be adopted to be representative of the wave path.  This point can be  

 

Fig. 11 Artificial axial and shear strain, xxε  and xyε , for target corresponding to M6.5 

earthquake, at hypocentral distance 50R = km, and for a site on sediments ( ) and deep soil 
( ), unfolded with dispersion models 1 (top), 2 (middle) and 3 (bottom).  

2s =
2Ls =

 

referred to as the “the edge of the valley”, and x =   representative distance from the edge 

of the valley. Therefore, in this paper, x  is just the distance over which dispersive wave 

propagation occurs consistent with the given parallel layers of soil and geology, while the 

target spectrum to be matched depends on the hypocentral distance R  of the site from the 

source (Fig. 1).  Such definition of the reference 0x =  is more useful for modeling, as the 
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geology can vary considerably between the source and the site.  It also helps control the 

duration of the synthetic motion, and avoid the artifact of unrealistically long duration of  

 

Fig. 12 Fourier Transform amplitudes of synthetic accelerations for M6.5 earthquake, unfolded 
by dispersion models 1 (top), 2 (middle) and 3 (bottom), for radial (left), vertical (center) and 
transverse (right) motions.   
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the synthetic motion for large source to site distances and softer near surface soil layers. 

Because the parallel layers structure is an idealization, the “distance from the edge of the 

valley” is not exact but an abstraction, and can be chosen by trial and error or by 

iteration, until the duration of the synthetic motion is satisfactory, based on some 

subjective or objective standard, such as empirical scaling laws [1]. 

 

 

Fig. 13 Artificial acceleration, velocity and displacement that match the target Fourier spectrum 
of acceleration of M7.5 earthquake, at hypocentral distance 100R = km, for a site on sediments 
( ) and deep soil ( ),and probability of being exceeded 2s = 2Ls = 0.1p = , unfolded with 
dispersion model 3. 
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Expansion of Body Waves 

The propagation of body waves is essentially nondispersive, and ( ) ( )n nc Uω ω= . 

They arrive at the site from depth, often close to vertical due to progressive bending of 

the rays towards the surface (Fig. 1), and consequently propagate horizontally with larger  

 

Fig. 14 Artificial axial and shear strain, xxε  and xyε , for target corresponding to M7.5 

earthquake, at hypocentral distance 100R = km, for a site on sediments ( ) and deep soil 
( ), and probability of being exceeded 

2s =
2Ls = 0.1p = , unfolded with dispersion model 3.  

 

phase velocities ( )nc ω  than the surface waves. Further, their amplitude at a given 

frequency reflects the interference characteristics of the layers, which depends on 

incident angle.   In the SYNACC synthesis, the body waves are treated as two additional 

“surface wave modes”, one for P- and the other one for S-waves, with large phase/group 

velocities, and contributing respectively to the in-plane and out of plane motions, and 

with mode participation factor same as those for the Love modes, i.e. not reflecting the 

site interference characteristics, but with the flexibility to increase or decrease their 

participation, relative to that of the surface waves.  Site specific interference features 

could be included by appropriate frequency dependent mode participation factors, 
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derived e.g. using the propagator matrix of the medium [15,15]. Pipelines, however, are 

light, long and flexible structures, hence more sensitive to strains and differential 

motions, which are caused largely by the surface waves, and including the site 

interference (resonances) is not essential.  

Determination of the Expansion Coefficients for a Site 

The site specific mode participation factors, 1 2( ) ( )nA m A ω , can be determined by 

analysis of recorded motion in the region, as in [1], for example.  In this paper, for 

illustration purposes, the same functions as in [1] are used, included in Appendix A for 

completeness of this paper.   The coefficients nα  are determined from the requirement 

that some representative value of ˆ( ; )u x ω��  over the -th subband matches a target value.  

For example, such representative value can be obtained by averaging  

n

10
ˆlog ( ; )u x ω��  and 

converting back to linear scale.  Let ( )tar
nFS ω  be the amplitude spectrum to be matched 

by the (real valued) synthetic acceleration.  Then  

( )
2

10 1 2
1

1 ˆlog ( ) ( )exp ( ; )
2

2 ( )

10

Mn n n ran
n nm nm

mn n n

tar
n

n
A m A i w x d

FS
ω ω

ω ω
ω φ ω

ω

ω
α +Δ +

=−ΔΔ

=
∑∫ ω

                     (16) 

where  is the total number of surface and body waves contributing to the 

particular component of motion.  The factor of 2 multiplying 

2nM +

( )tar
nFS ω  is because 

ˆ( ; )u x ω��  is the Fourier transform of the associated analytic signal, which, for 0ω > , has 

amplitudes twice of those of its real part.  The expression for the nα  in Eqn. (16) differs 

from [1] and [2,3] in the averaging.   

 R1-25



Motion at an Array of Sites 

The sites where related motions are needed for analysis of extended structures are 

typically at distances from few tens of meters to few kilometers.   For such distances, it is 

assumed that the motion differs only because of deterministic propagation and 

attenuation due to Q , while the randomness in phase and mode participation factors, 

included in coefficients *
nmA , is the same.  For such an array of sites, the motion at one 

representative site, at 0x x= , is first synthesized by matching the target spectrum, which 

gives the coefficients *
0( )nmA x , and the motion at another sites, at 0x x= + Δx

0 )

, is then 

computed as  

*
0 0

1 1
ˆ ˆ( , ) ( ) ( ;

nMN
nm nm

n m
u x x A x w x xω ω

= =
+ Δ = + Δ∑ ∑��                                       (17) 

 
Trigger Time Adjustment  

The above equations correspond to reference time, which is such that, at , the 

amplitude envelopes of all the wavelets are centered at 

0x =

0t = .  The wavelets, however, 

have energy also for time , as the main lobes of the sinc functions extend over the 

interval [

0t <

],n nt t−Δ +Δ , where /nt nπ ωΔ = Δ .   For small x , / nmx U  may be considerably 

smaller than , in which case the entire pulse does not contribute to the synthetic 

accelerogram, if its starting time (which would be the trigger time of an imaginary 

instrument that has recorded the motion) is set even to 

ntΔ

0t = .  This can be avoided by 

time shifting the synthetic time history, which is conveniently done in the frequency 
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domain.  For example, for time shift ,  0t ˆ ( ; )nmw x ω  needs to be multiplied by 

0exp( )i tω− . 

Cartesian Components of Linear Motions, Strains, Rotations and Curvatures 

Having presented the analytical developments for a generic component of motion, 

we now proceed with the specific expansions for the Cartesian x y z− −  coordinate 

system shown in Fig. 1.  Let ,  and  be the displacement 

components along the three coordinate axes, which have specific expansions    

( ; )xu x t ( ; )yu x t ( ; )zu x t

*

1 1
ˆ ˆ( , ) ( ; )

nMN x x
x nm n

n m
u x t A w xm ω

= =
= ∑ ∑��  (18) 

*

1 1
ˆ ˆ( , ) ( ; )

nMN y y
y nm n

n m
u x t A w xm ω

= =
= ∑ ∑��  (19) 

and 
*

1 1
ˆ ˆ( , ) ( ; )

nMN z z
z nm n

n m
u x t A w xm ω

= =
= ∑ ∑��  (20) 

Because  and  are expanded in Rayleigh modes, the expansion wavelets ( ; )xu x t ( ; )zu x t

ˆ ( ; )x
nmw x ω  are as in Eqn. (5) with group and phase velocities R

nmU  and R
nmc  specific for 

the corresponding Rayleigh mode, and ˆ ˆ( ; ) ( ; )z x
nm nm nmw x V w xω ω=  where ( )nm m nV V ω=  

is the complex ratio of vertical to horizontal amplitude of the elliptic particle motion at 

the surface for the mode.  Similarly,  is expanded in Love modes, and ( ; )yu x t ˆ ( ; )y
nmw x ω  

are as in Eqn. (5) with group and phase velocities L
nmU  and L

nmc  specific for the 

corresponding Love mode. 
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The point strains, (stains on an infinitesimal volume at the point on ground surface), 

can be obtained from the spatial derivatives of the synthetic displacements.  The 

compressional strain is  

ˆ ˆ( ; ) ( ; )xx xx u x
x

ε ω ∂
=
∂

ω  (21) 

and the shear strain is  

1ˆ ˆ ˆ( ; ) ( ; ) ( ; )
2
1 ˆ ( ; )
2

xy y x

y

x u x u x
x y

u x
x

ε ω ω

ω

ω
⎡ ⎤∂ ∂

= +⎢ ⎥∂ ∂⎣ ⎦
∂

=
∂

 (22) 

with the displacement derivatives as in Eqn.  (13).  The expression in Eqn. (21) and (22) 

differs from [6]  in that it is exact, and includes also the variation of the amplitude 

envelope with x , through the term n

nmU
ω ω−   in Eqn.  (13).  For small nωΔ , the difference 

is small.  

The point rotations, (rotations of an infinitesimal volume at the point on the ground 

surface), can be obtained by applying the curl operator on the displacement vector 

( ; ) ( ; )

x y z

x u x

i j k

x y z
u u u

ψ ω ω= ∇×

∂ ∂ ∂
=
∂ ∂ ∂

G G
GG G

 (23) 

where i , 
G

j
G

 and  are unit vectors in the k
G

x , y  and  directions.   The nonzero rotations 

are the torsion 

z

( ; )z x kψ ω
G
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( ; )( ; ) z
z

u xx k k
x
ωψ ω ∂

=
∂

G G
 (24) 

and rocking ( ; )y x jψ ω
G

 

( ; )
( ; ) y

y
u x

x j j
x
ω

ψ ω
∂

= −
∂

G G
 (25) 

with the displacement derivatives as in Eqn.  (13).   

 

 

Fig. 15  Fourier Transform amplitudes of synthetic accelerations for to M7.5 earthquake, at 

hypocentral distance km, for a site on sediments (100R = 2s = ) and deep soil ( ), and 

probability of being exceeded , unfolded with dispersion model 3, for radial (left), 

vertical (center) and transverse (right) motions.   

2Ls =

0.1p =
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  The curvature of ground motion, for small deformations, can be approximated by 

the second spatial derivative of displacement.  The curvatures in the x y−  and x z−  

planes are  

2

2
( ; )

( ; ) y
yx

u x
x

x

ω
κ ω

∂
=

∂
 (26) 

and 

2

2
( ; )( ; ) z

zx
u xx

x
ωκ ω ∂

=
∂

 (27) 

 

Fig. 16 Snapshots of synthetic acceleration - radial component - at six sites, 100 m apart in the 
radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance 

km (the closest site), for site condition - sediments (10R = 2s = ) and deep soil ( 2Ls = ), 
unfolded with dispersion model 3.  
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with the second derivatives of displacement as in Eqn. (14), and with positive and 

negative curvatures corresponding respectively to convex and concave shapes.  

Generation of Target Spectrum  

Site specific target Fourier amplitude spectra for a scenario earthquake can be 

generated using an empirical scaling model, for given earthquake magnitude,  

hypocentral distance, site conditions, and probability of being exceeded, which reflects 

the uncertainty in the scaling law.   The uncertainty in the earthquake size, location and 

occurrence rate can also be included by specifying as a target spectrum a uniform hazard 

Fourier spectrum, which has amplitudes with equal probability of being exceeded from 

any earthquake considered.    

SYNACC has built in the Fourier amplitude scaling models developed by [16,17], in 

addition to the earlier models developed [19,20], and can also use uniform hazard 

spectrum generated by the program NEQRISK [22], which has built in the same suite of 

scaling models as those built in SYNACC for a scenario earthquake, or any user provided 

Fourier amplitude spectrum.  The built in scaling models differ in the input parameters, 

and a particular model can be chosen depending on the details of the information 

available about the site.  For example, the earthquake magnitude and hypocentral distance 

can be provided or, alternatively, the Modified Mercalli site intensity. The local site 

conditions are described on two scales – geologic one, which samples the geology up to 

the depths of the order of kilometers, and local soil one, which samples soil properties 

near the surface up to depths of two hundred meters. The classification based on geology 

can be described in two ways, by a categorical variable, such as the geologic site 

condition parameter , which can take values 0 (sediments), 2 (rock), and 1 (intermediate s
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site conditions), or by a numeric variable, such as the depth of sediments .  The local 

soil classification is described by the categorical variable - local soil condition parameter 

h

Ls , which can take on the values 0 (“rock” soil), 1 (stiff soil) and 2 (deep soil).   

 

Fig. 17 Snapshots of synthetic acceleration - vertical component - at six sites, 100 m apart in the 

radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance 

km (the closest site), for site condition - sediments (10R = 2s = ) and deep soil ( 2Ls = ), 

unfolded with dispersion model 3. 

 

RESULTS 

The methodology is illustrated for a scenario earthquake.  A suite of synthetic motions 

and strains are presented for different earthquake sizes, hypocentral distances, and 

dispersion models, at a site and an array of sites.  The target Fourier spectra were 
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computed using the MMI-SITE-SOIL model [16], with 0s =  (sediments) and 2Ls =  

(deep soil).   Synthetic motions were computed at 4096 points in time with time step 0.02 

s, i.e. with total length of about 82 s. Unless mentioned otherwise, the trigger time was 

adjusted by adding a 5 s shift.  The number of subbands is 73.   

 

 

Fig. 18  Snapshots of synthetic acceleration - transverse component - at six sites, 100 m apart in 

the radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance 

km (the closest site), for site condition - sediments (10R = 2s = ) and deep soil ( 2Ls = ), 

unfolded with dispersion model 3. 
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Synthetic Motions at a Point 

Figs. 4, 5 and 6 show tree component synthetic motions (accelerations, velocities and 

displacements) from a moderate and near earthquake ( 6.5M =  and km), 

respectively for dispersion models 1, 2 and 3, discussed in the Model section of this paper  

10R =

 

 

Fig. 19  Snapshots of synthetic displacement - radial component - at eleven sites, 1 km apart in 

the radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance 

km (the closest site), for site condition - sediments (10R = 2s = ) and deep soil ( 2Ls = ), 

unfolded with dispersion model 3. 
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(Tables 1a,b,c; Fig. 2 and 3).  Model 1 is the same as the benchmark model in [1,2,3], 

which corresponds to a site in El Centro in Imperial Valley, southern California, and the 

other two models are its variants that are “softer” in the top 180 m.  The “distance from 

the edge of the valley”  km, 7 km and 6 km for the three models.    8x =

 

 Fig. 7 shows the strain time historiesFigs. 8 – 11 show similar results for  km, 

with “distance from the edge of the valley” 

50R =

18x =  km, 8 km and 8 km for the three 

models.   Figs. 11 show the strain time histories.  It can be seen that the amplitudes of 

motion are similar for the three dispersion models, as they have been generated for the 

same target spectrum.  The time histories, however, differ in that late arrivals of high 

frequency waves are seen in the records for dispersion model 3, which has the softest top 

layer. . The peak radial and shear strains (see definition in Eqs. (21) and (22)), for the 

sites at  km are about 0.02% and 0.01%  for all three models, and are the largest 

for model 3, which is the softest at the top.  For the sites at 

10R =

50R =  km, the peak radial 

and shear strains are about 0.01% and 0.005%, and are the largest for model 2.  They are 

not the largest for model 3, because of the smaller peak amplitudes, due to the longer 

duration (for the same Fourier spectrum), relative to the other two models.  Finally, Fig. 

12 shows the agreement between the Fourier amplitude spectra of the synthetic motions 

and the target spectra, for all the cases for the 6.5M =  earthquake.  

 

        Figures 13, 14 and 15 show similar results (synthetic motions, strains and Fourier 

spectra) for a larger but more distant earthquake ( 7.5M =  and 100R = km), and only for 

dispersion model 3 with  km, and trigger time adjustment by a 12 s shift.   These 12x =
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records have longer duration than the previous ones, which is physically meaningful due 

to both larger magnitude and source to site distance.  The peak radial and shear strains are 

0.021% and 0.016%.     

Motions at an Array of Points  

Figs 16, 17 and 18 show snapshots of synthetic accelerations at six sites, 100 m apart 

in the radial direction, with the closest site being at 10R = km distance from a M6.5 

earthquake.  The figures show respectively the radial, vertical and transverse components,  

 

Fig. 20 Snapshots of synthetic displacement - vertical component - at eleven sites, 1 km 

apart in the radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral 
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distance km (the closest site), for site condition - sediments ( ) and deep soil 

( ), unfolded with dispersion model 3.  

10R = 2s =

2Ls =

all unfolded in time with dispersion model 3, and with 4x =  km.  These figures show 

noticeable differences in the acceleration time histories even though the sites are very 

close to each other.  The differences, created by a purely deterministic physical model of 

wave propagation, are more complex than single phase shift and some small amplitude 

decay.   

 

Fig. 21 Snapshots of synthetic displacement - transverse component - at eleven sites, 1 km apart 

in the radial direction.  The target spectrum is that of M6.5 earthquake, at hypocentral distance 

km (the closest site), for site condition - sediments (10R = 2s = ) and deep soil ( 2Ls = ), 

unfolded with dispersion model 3. 
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The displacements, having more energy in the lower frequency part of the spectrum, 

differ much less at such small distances, because the lower frequency energy propagates 

with much larger velocities ( )U ω .  They exhibit a high degree of similarity of the 

waveforms even at distances several kilometers away, as it can be seen in Figs. 19, 20 

and 21, which illustrate radial, vertical and transverse synthetic displacements at sites 1 

km apart in the radial direction.  

DISCUSSION AND CONCLUSIONS 

A method for generating synthetic time histories of earthquake ground motion at an 

array of points along the ground surface was presented, which is an extension of the 

SYNACC methodology, originally developed for a single site.  Such motions are needed 

for design of long structures, pipelines and bridges [23-29], and in particular for 

nonlinear analyses, which need to be performed in the time domain. The methodology 

combines empirical scaling laws for Fourier amplitude spectra of acceleration with a 

physical model of wave propagation in a horizontally layered half-space. Consequently, 

the amplitudes of the synthetic motions are consistent in statistical sense with 

observations, while the phase and local differences between points of the array are 

consistent with local characteristics of wave propagation.   The presented examples for 

ground accelerations, velocities, displacements and strains generated by the method 

showed that the method produces realistic and physically meaningful time histories.     
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Appendix A:  Coefficients ( )1A m  and ( )2 nA ω  

Trifunac [1] suggested the following empirical equations for ( )1A m  and ( )2 nA ω  

 ( ) ( )( )2 2
1 0 0exp 2 R mA m m m C C X= − − +   

and 

 ( ) ( )2 2
2 0 exp 2n n p BA B Bω ω ω ω⎛ ⎞= − − +⎜ ⎟

⎝ ⎠ R nX   

with  and  being random numbers between -1 and 1, and the values of other 

constants are  suggested in Table A1. 

mX nX

Table A1: Empirical Scaling Coefficients for Equations (5) and (6) (from [1]) 

Mode 0C  om  RC  0B  pω  Bω  RB  

1 3 5 0.2 1.5 10 5 0.1 
2 3 5 0.2 1.5 10 5 0.1 
3 3 5 0.2 1.5 10 5 0.1 
4 3 5 0.2 2.0 25 15 0.1 
5 3 5 0.2 2.0 25 15 0.1 
6 3 6 0.2 3.0 30 10 0.3 
7 3 7 0.2 1.5 30 5 0.25 
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APPENDIX II 

 
 

Part A: Synthetic Translational Motions of Love Waves In or 
Below a Layered Media 

 
Given c c( ),ω=  the wave speed of a mode of Love waves in the half-space with n 

elastic layered elastic media on top.  c is also the (horizontal) phase velocity of the waves  

in each layer of the elastic media above the  half space (Figure 1) 

   
        x             O 
   0y =
    1h 1 1,μ β     y 1 1                 W W− +

   

   1y H=
    2h 2 2,μ β    2 2                 W W− +  
 

   2y H=

         
#
 
#

   1ny H −=
 
    nh ,n nμ β                     n nW W− +

  
    ny H=
         W∞   
            to ∞ ,μ β       
 

Figure 1 n-layered half-space with Love waves 
 
 

For each layer l, with , the Waves in the layer take the form    l 1, , n= … 1 1W , W :− +

    
( )

( )

l

l

ik x y
l l

ik x y
l l

 C          

  C

W e

W e

γ

γ

−− −

++ +

=

=
          (1)

 

 

They are respectively the upward and downward propagating Loves waves present in the 

 

i-th layer and k k( ) c( )
ωω ω= =

 
is the horizontal wave number of the waves at 

 R1-42



frequency ω  and phase velocity c c( ).ω=   The term , which is also the same in 

each layer, is the horizontal component of the waves, which together with the time 

harmonic term 

ikxe

i te ω , corresponds to waves propagating in the –ve x direction. The terms 

l yike γ∓  are the vertical components of the waves with the –ve term propagating upwards 

(–ve y) and the +ve term propagating downwards (+ve y). Here l l l( )γ γ β=  is given by 
 

( )l l

1 1 122 2 2 2 2 2

l
l

k k k c1kk
β βγ β
− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

1−   (2) 

so that lkγ  is the vertical wave number of the waves in the  l-th layer of the medium with 

shear wave velocity lβ . In general, the wave velocities increase in going  down the 

layers, so that 1 2 nβ β β< < < <… β ,  with the semi-infinite half-space at the bottom 

having the highest shear wave speed β . With ( )c c ω=  the wave speed of the surface 

Love waves, c β< , and the surface waves take the form:  

( )ik x y ikx k yW   C   C          e eγ γ
∞ ∞ ∞

− −= =     (3)  

where       
( ) ( )

1 1 122 2 2 2 2 2k k k c1 1kk
β βγ β

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎟          (4)  

γ  is the complement of γ  and is real, so that the term ikx k ye γ−  in W  correspond to a 

surface wave term whose amplitude is exponentially decaying with depth (in y) below the 

surface. With

∞

lβ  the shear wave speed in the  l-th layer of the medium, and c c( ),ω=   the 

Love wave speed and also the (horizontal) phase velocity of the waves  in all layers of the 

elastic media above the  half space (Fig.1), we can have lc β≥  or lc β< . If  lc β≥ , the 

term ( )l l lγ γ β=  in Equation (2) is real and both waves lW +  and lW −  in Equation (1) will 

correspond to harmonic plane waves.  If, however, lc β<  then, as from Equation (2): 

1
2 2

l
l

c 1γ β
⎛ ⎞⎛ ⎞= −⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎟  is imaginary and  
1

2 2

l
l

c1γ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is real     (5) 

so that, from Equation (1): 
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l lW ,  W :− +     
( )

( )

l l

l l

ik x y k yikx
l l l

ik x y k yikx
l l l

  C  C

  C  C

W e e e

W e e e

γ γ

γ γ

− +− − −

+ −+ + +

= =

= =
                (6) 

meaning that the waves  will be exponentially decaying , while the waves lW +
lW −  will 

be exponentially growing in the  l-th layer. 

 
 The coefficients , respectively of the waves, lC ,  C−

l
+

llW , W− + , in each of the 

layers l, for l = 1 to n, are all related by the stress and displacement boundary conditions. 

In the topmost layer, the zero-stress boundary condition at the half-space surface,  
 

1
yz 1y 0

y 0

W
0

y
τ μ

=
=

∂
= =

∂
     (7) 

 

for waves  at the top layer 1 1 1W W W+= + − 1.l =  This gives 
 

       or1 1 1
1 1

y 0 y 0

W W W 0,
y y y

μ μ
+ −

= =

⎛ ⎞∂ ∂ ∂
= + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

( ) ( )    for all 1 1
1 1 1

y 0

ik x y ik x y
C C 0,e eγ γ

μ + −

=

+ −⎛ ⎞− =⎜ ⎟
⎝ ⎠

x,

1
−

   (8) 

so that            or       1 1 1C C 0 C C+ − +− = =
 
 Recall from above that we have shown that at a given site on the half-space 

surface, one can use the “SYNACC algorithm” to define the complex Fourier 

components of acceleration of each mode m of surface Love (and Rayleigh) waves at 

each frequency ω  within the n-th frequency band n n n, nω δω ω δω− +⎡ ⎤⎣ ⎦  of the whole 

spectrum. We’ll take the site to be at the origin O ( )( , ) (0.,0.)x y =  in Figure 1 above. 

Since the Fourier Transform of displacement ( )D ω  and acceleration ( )A ω  are related at 

frequency ω  by 

                                  2A( ) D( )ω ω ω= −      (9) 
 

So the waves for acceleration and displacement at frequency ω  are related the same way. 

Let ( )nm
20 0 ,mn

AC C ω
ω

−= =  be such complex Fourier components of displacement of 
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the m-th mode of surface Love waves at frequency ω  within the n-th frequency band 
n n n, nω δω ω δω− +⎡⎣ ⎤⎦   at the site O(0.,0.) in the top layer ( l 1 )= . Then 

 

( ) ( )

or                  

1 1
0 1 1 1 1 1( x ,y ) ( 0 ,0 ) ( x ,y ) ( 0 ,0 )

( x , y ) ( 0 ,0 )

0 1 1

ik x y ik x y
C W W W C C

C C C

e eγ γ+ − + −
= =

=

+ −

+ −⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠

= +

     (10) 

 

Equation (8) and Equation (10) together give      0
1 1

CC C ,2
+ −= = or the waves in the 1st 

layer be given by: 
( ) ( )     

                         

1 10
1 1 1 1

0 1

ik x y ik x y

ikx

CW W ( x, y ) W W 2

C cos y

e e

e

γ γ

γ

+ − + −⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠

=
  (11) 

 
Recall that  is the complex Fourier components of displacement of the m-th 
mode of surface Love waves at frequency 

0 0 ,C C= mn

ω  within the n-th frequency band 
n n n, nω δω ω δω− +⎡⎣ ⎤⎦  at the site O(0.,0.) in the top layer ( l 1 )= .  

 
In summary, this means that once the complex Fourier coefficient at a given 

frequency of one mode of surface Love waves is given at one point of a site at the half-

space surface, the complex Fourier coefficient of the same mode of waves at any point on 

and below the surface, in the top layer, is known. 

 
The next step is to extend this to evaluate the complex Fourier coefficients at a 

given frequency of one mode of surface Love waves at any point of any elastic layers 

below the surface. Starting from 1l = , we will show by induction that if the waves at the  

 layer are known, then the waves at the thl ( )1 thl +  layer can also be known, including the 

bottom semi-infinite layer, 

 
Start with the  layer, where the waves are given by: thl
 

l lW ,  W :− +   
( )

( )
   

   

l l

l l

ik x y ik y ikx
l l l

ik x y ik y ikx
l l l

C C

C C

W e e e

W e e e

γ γ

γ γ

− −− − −

+ ++ + +

= =

= =
  Equation (6) above 

with known (complex) coefficients  ,lC Cl
− + . The waves in the ( )1 thl +  layer below, of 

the form: 
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l 1 l 1W ,  W− +
+ + :          

( )

( )
   

   

l 1 l 1

l 1 l 1

ik x y ik y ikx
l 1 l 1 l

ik x y ik y ikx
l 1 l 1 l

C C

C C

W e e

W e e

γ γ

γ γ

+ +

+ +

− −− − −
+ +

+ ++ + +
+ +

= =

= =

e

e
+
+

    (12)     

with coefficients , can next be evaluated.  At the common interface between 

the  layer and (  layer, where 

 l 1 l 1C , C−
+

thl )1 thl + ly H= , the continuity of displacement and stress 

at the interface between the 2 layers gives: 

  At  ly H= :     ( ) (
1 1

1 1

               

  

l l l l

l l l l l l

W W W W

W W W W
y y

μ μ

+ − + −
+ +

+ − + −
+ +

+ = +

∂ ∂
+ = +

∂ ∂
)1+

⎞
⎟
⎟
⎠

+

  (13) 

or 

    (14) 
1

11 1 1 1

1

1

1 1 1 1
  

l l l l

l l l ll l l l l l l l

ik H ik H
l l

ik H ik H
l l

C C

C C

e e
e e

γ γ

γ γμ γ μ γ μ γ μ γ

+

++ + + +

+ ++ +
+

− −− −
+

⎛ ⎞ ⎛⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜− −⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝
 

giving  in terms of   .  l 1 l 1C , C− +
+ l lC , C− +

 
Starting from the top layer, with the (complex) coefficients of the waves  

0
1 1

CC C 2
+ −= = , mnexpressed in terms of 0 0 ,C C= , that of the waves at the origin, 

Equation (14) gives an iterative step to compute the wave coefficients  of each 
elastic layer l, for  At the bottom of the last  layer, at 

 lC , C−
l
+

n1, , .  l = … thn ny H=  , the 
interface is now between it and the semi-infinite medium below, which has a mode of 
surface Love waves given by: 

 

( )             ik x y ikx k yW C Ce eγ γ
∞ ∞ ∞

− −= =    Equation (3) above 

and the continuity equations now take the form, with μ  the shear modulus of the semi-

infinite half-space below: 

At  ny H= :      ( )
            

  

n n

n n n

W W W

W
W W

y y
μ μ

+ −
∞

+ − ∞

+ =

∂∂
+ =

∂ ∂

       (13)    

or 

  
1 1 1

  
n n

n
n nn n n n

ik H
n k H

ik H
n

C
C

i i C

e e
e

γ
γ

γμ γ μ γ μ γ ∞

++
−

−−

⎛ ⎞⎡ ⎤ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟− −⎝ ⎠⎣ ⎦ ⎝ ⎠

    (14) 
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 The solution c c( )ω=  of that mode of Love surface waves will guarantee that 

both equations are satisfied by the surface wave coefficients in the semi-infinite half-

space. This completes the derivation. 

 
In summary, this means that once the complex Fourier coefficient at a given 

frequency of one mode of surface Love waves is given at one point of a site at the half-

space surface, the complex Fourier coefficient of the same mode of surface waves at any 

point on and below the surface, at any of the elastic layers down below, is also known. 

 
Part B:  Synthetic Translational Motions of Rayleigh Waves In 

or Below a Layered Media  
 

Given c c( )ω= , the wave speed of a mode of Rayleigh waves in the half-space with n 

elastic layered media on top.  c is also the (horizontal) phase velocity of both the P- and 

SV-waves  in each layer of the elastic media above the  half space (Fig. 1) 

            x             O 
   0y =
    1h 1 1, ,  1μ α β  y         1 1 1 ,,                      1ϕ ψ ψ ϕ− − + +

2

   

   1y H=
    2h 2 2, ,  μ α β   2 2 2 ,,                      2ϕ ψ ψ ϕ− − + +

n

 
 

   2y H=

     
#

 #
   1ny H −=
 
    nh , ,  n nμ α β   ,,                      n nn nϕ ψ ψ ϕ− − + +

=
  

   y H  n

         ,  ϕ ψ∞ ∞   
            to ∞ , ,  μ α β       

 
 

Figure 1    n-layered half-space with Rayleigh waves 
 
 

 R1-47



For each layer l, with , the P- and SV-Waves in the layer respectively 

take the form: 

 l 1, , n= …

    l l l l, , ,ϕ ϕ ψ ψ− + − + :    

( )

( )

( )

( )

          

  

          

  

,l

,l

,l

,l

ik x y
l l

ik x y
l l

ik x y
l l

ik x y
l l

A

A

B

B

e

e

e

e

α

α

β

β

γ

γ

γ

γ

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

          (1)

 

 

They are respectively the upward and downward propagating waves with 

k k( ) / c( )ω ω ω= =  being the horizontal wave number of the P- and SV-waves in i-th 

layer, at frequency ω  and with phase velocity c c( )ω=   The term , which is also 

the same in all layers, is the horizontal component of the waves, which together with the 

time harmonic term 

ikxe

i te ω , correspond to waves propagating in the –ve x direction, which 

is to the right. The term ,l yike αγ∓ , for the P-waves and ,l yike βγ∓  for the SV-waves are 

respectively the vertical arguments for the same waves. The ones with the –ve exponent 

terms are propagating upwards (–ve y) and those with the +ve exponent terms are 

propagating downwards (+ve y). Here ,l ,l l(α α )γ γ α=  and ,l ,l l(β β )γ γ α= are 

respectively given by 
 

( )

( )

l l

l l

1 1 122 2 2 2 2 2

,l
l

1 1 122 2 2 2 2 2

,l
l

k k k c1 1kk

k k k c1 1kk

α α
α

β β
β

γ α

γ β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

−

−

   (2) 

 

so that ,lk αγ and ,lk βγ  are the vertical wave numbers of respectively the P- and SV-

waves in the  l-th layer of the medium with longitudinal wave speed lα  and shear wave 

velocity lβ . In general, the wave speeds increase as one goes down into the deeper 

layers, so that 1 2 nβ β β< < < <… β , with the semi-infinite half-space layer at the 

bottom having the highest shear wave speed β .  The same can be said about the 
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longitudinal wave speeds, so that 1 2 nα α α α< < < <… , withα the longitudinal wave 

speed of the semi-infinite medium furthest below being the highest. With c c( )ω=  the 

wave speed of the surface Rayleigh waves there, c β α< < , and the surface waves take 

the form:  
 

( )

( )
    

    

ik x y ikx k y

ik x y ikx k y

A A

B B

e e

e e

α α

β β

γ γ

γ γ

ϕ

ψ

∞ ∞ ∞

∞ ∞ ∞

− −

− −

= =

= =
      (3)  

where       

( ) ( )
( ) ( )

1 1 12 2 2 2 2 2 2

1 1 122 2 2 2 2 2

k k k c1 1kk

k k k c1 1kk

α α
α

β β
β

γ α

γ β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

         (4)          

 ,α βγ γ  are respectively the complements of ,α βγ γ  and both are  real, so that the terms 

k ye αγ−  in ϕ∞  and k ye βγ−  in ψ∞  both correspond to surface wave terms with amplitudes 

that are exponentially decaying with depth into the half space.  

 

With lβ  the shear wave speed in the l-th layer of the medium, and c c( )= ,ω  the 

Rayleigh wave speed and also the (horizontal) phase velocity of the waves  in all layers 

of the elastic media above the  half space (Figure.1), we can have lc β≥  or lc β< .  

 

 If  lc β≥ , the term ,l ,l (β β l )γ γ β=  in Equation (2) is real and both the SV- waves 

 and  in Equation (1) will correspond to harmonic plane waves.  If, however,  lW +
lW −

lc β<  then, as from Equation (2): 

1
2 2

,l
l

c 1βγ β
⎛ ⎞⎛ ⎞= −⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎟  is imaginary and  
1

2 2

,l
l

c1βγ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is real  (5) 

so that, from Equation (1): 
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 l l, :ψ ψ− +         
( )

( )
   

   

,l ,l

l ,l ,l

ik x y k yikx
l l l

ik x y k yikx
l l l

B B

B B

e e e

e e

β β

β β

γ γ

γ γe

ψ

ψ

− +− − −

+ −+ + +

= =

= =

           (6)          

meaning that the waves lψ +  will be exponentially decaying, while the waves lψ −  are 

exponentially growing in the l-th layer. 

 

 The same observations can be made of the cases for lc α≥  or  lc α< , in regards 

to the P-wave potentials  l l,ϕ ϕ− +

l
+

l

 in the l-th layer.  

 
 The coefficients , respectively of the P-wave potentials,  lA , A−  l ,ϕ ϕ− +

l

, and 

 lB , B− +
l, respectively of the SV-wave potentials, l ,ψ ψ− + , in each of the layers l, for l = 1 

to n, are all related by the stress and displacement boundary conditions. In the topmost 

layer, the zero-stress boundary conditions at the half-space surface is 
 

 y yzy 0 y 0
σ τ

= =
=      (7) 

 

for P- and SV-wave potentials. Let  respectively be the horizontal and vertical 

(complex) displacements at the origin, the reference point at the free surface. Then stress 

boundary conditions at the half-space surface (

0U , V0

0y = ) and the displacement specification 

on the half-space surface  at the origin (0., 0.) take the form: 
 

  

,1 ,1 01

,1 ,1 01
2 2

,1 ,1 ,1 ,1 1
2 2

,1 ,1 ,1 ,1 1

1 1 UA
1 1 VA 1

1 1 2 2 ik 0B
2 2 1 1 0B

β β

α α

β β β β

α α β β

γ γ
γ γ
γ γ γ γ
γ γ γ γ

+

−

+

−

− ⎛ ⎞⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎜ ⎟− − − ⎜ ⎟⎢ ⎥ ⎜ ⎟=⎜ ⎟⎢ ⎥ ⎜ ⎟− − −
⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟− − −⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎝ ⎠

     (8) 

 
 Recall from above that we have shown that at a given site on the surface, one can 

use the “SYNACC algorithm” to define the complex Fourier components of acceleration 

of each mode m of surface Rayleigh waves at each frequencyω  within the n-th 

frequency band n n n, nω δω ω δω− +⎡⎣ ⎤⎦

)
 of the whole spectrum. We will take the site to be 

at the origin O  in Figure 1 above. Since the Fourier Transform of 

displacement 

(( x , y ) ( 0.,0.)=

D( )ω  and acceleration A( )ω  are related at frequency ω  by 
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2A( ) D( )ω ω ω= −      (9) 

 
 

so the waves for acceleration and displacement at frequency ω  are related the same way. 

Let , respectively be such complex Fourier (in-plane) horizontal 

and vertical components of displacement of the m-th mode of surface Rayleigh waves at 

frequency 

 0 0 ,mn 0 0 ,mU A , V B= = n

ω  within the n-th frequency band n n n,− + n⎡ ⎤⎣ ⎦ω δω ω δω  at the site O(0.,0.) in 

the top layer .  ( l 1 )=

 
From Equation (8), it is seen that, given the complex Fourier components of 

displacement, , of the m-th mode of surface Rayleigh waves at frequency 0 ,  U V0 ω , at a 

site on the half-space surface, as estimated by the “SYNACC algorithm” described 

above, one can solve for the complex coefficients 1 1A , A− + and 1 1B , B− +  respectively of the 

P- and SV-wave potentials associated with the waves in the 1st media on top. With the 

waves in the top layer defined, it can be used to compute the displacement everywhere in 

the top layer. 

 
In summary, this means that once the complex Fourier coefficient at a given 

frequency of any mode of surface Rayleigh waves is given at one point of a site at the 

half-space surface, the complex Fourier coefficient of the same mode of waves at any 

point on and below the surface, in the top layer, is known. 

 
The next step is to extend this to evaluate the complex Fourier coefficients at a 

given frequency of each mode of surface Rayleigh waves at any point of all the elastic 

layers below the surface. Starting from 1l = , we will show by induction that if the waves 

at the  layer are known, then the waves at the thl ( )1 thl +  layer can also be known, 

including the bottom, semi-infinite layer, 

 
We start with the  layer, where the wave potentials are given by: thl
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   l l l l, , ,− + − +ϕ ϕ ψ ψ :    

( )

( )

( )

( )

          

  

          

  

,l

,l

,l

,l

ik x y
l l

ik x y
l l

ik x y
l l

ik x y
l l

A

A

B

B

e

e

e

e

−− −

++ +

−− −

++ +

=

=

=

=

α

α

β

β

γ

γ

γ

γ

ϕ

ϕ

ψ

ψ

 Equation (1) above 

 

with known (complex) coefficients  lA , Al
− +

 for the P-wave and l lB , B− +

 for the SV-wave 

potentials  . The waves in the (  layer below, of the form, with (l+1) replacing l 

everywhere in Equation (1): 

)1 thl +

   l 1 l 1 l 1 l 1, , ,− + − +
+ + + +ϕ ϕ ψ ψ :    

( )

( )

( )

( )

          

  

          

  

,l 1

,l 1

,l 1

,l 1

ik x y
l 1 l 1

ik x y
l 1 l 1

ik x y
l 1 l 1

ik x y
l 1 l 1

A

A

B

B

e

e

e

e

+

+

+

+

−− −
+ +

++ +
+ +

−− −
+ +

++ +
+ +

=

=

=

=

α

α

β

β

γ

γ

γ

γ

ϕ

ϕ

ψ

ψ

    (10) 

 
with coefficients  for the P-wave and  l 1 l 1A , A− +

+ +  l 1 l 1B , B− +
+ +  for the SV-wave potentials are 

next to be evaluated.  At the common interface between the  layer and  layer, 
where 

thl ( )1 thl +

ly H= , the continuity of (x- and y- components) of displacements and (normal 
and shear) stresses at the interface between the 2 layers gives, at  ly H=  are 
  

,l 1 l

,l 1 l

,l 1 l

ik H
l 1,l 1 ,l 1

ik H
,l 1 ,l 1 l 1

2 2 ik H
,l 1 ,l 1 ,l 1 ,l 1l 1 l 1

2 2
,l 1 ,l 1 ,l 1 ,l 1l 1

l 1

A e1 11 0 0 0
1 1 A e0 1 0 0

1 1 2 20 0 0 B e
2 2 1 10 0 0 B

+

+

+

+
++ +

−−
+ + +

+
+ + + ++ +

−+ + + ++
+

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − − −
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

α

α

β

γ

β β
γ

α α
γ

β β β β

α α β β

γ γ
γ γ
γ γ γ γμ
γ γ γ γμ

    

,l 1 lik He +−
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Equation (11) can be written in the form, at ly H= : 
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with  , both ( ) ( ) ( )   

1

l l l 1 l l lH H
−

+⎡ ⎤ ⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎦ ⎣N M M ( ) ( )  l l l l ,l ,l lH , , , H⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦α βμ γ γM M  

and  matrices defined from Equation (11). ( ) (  l l l l ,l ,l lH , ,⎡⎡ ⎤ =⎣ ⎦ ⎣ α βμ γ γM M ), H ⎤
⎦

 
Starting from the top layer, with the (complex) coefficients of the waves  1 1A , A− +  

and  1 1B , B− +
n expressed in terms of, 0 0 ,mU U=  and 0 0 ,mV V n=   respectively the Fourier 

component of the waves in the horizontal and vertical directions at the origin, Equation 
(12) gives an iterative steps to compute the wave coefficients l lA , A− + and  l lB , B− +

.
 of 

each elastic layer l, for  At the bottom of the last  layer, at   l 1, , n= … thn ny H=  , the 
interface is now between it and the semi-infinite medium below, which has a mode of 
surface Rayleigh waves given by: 
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The continuity of displacements and stress between the waves at  gives ny H=
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where, from Equation (11) and Equation (12), the  matrix ( ) n nH⎡ ⎤⎣ ⎦M  in the right-hand 
side can be written in full as: 
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 The solution c c(= )ω  for that mode of Rayleigh surface waves will guarantee 
that Equation (13) is satisfied by the surface wave coefficients in the semi-infinite half-
space. This completes the derivation. 
 

In summary, this means that once the complex Fourier coefficient at a given 
frequency of one mode of surface Rayleigh waves is given at one point of a site at the 
half-space surface, the complex Fourier coefficient of the same mode of surface waves at 
any point on and below the surface, at any of the elastic layers down below, is also 
known. 

 R1-54



R2-1 
 

APPENDIX R2 
(Reporting Date 12 September 2012) 

 
REPORT No. II 

Contract No.: 87055-11-0562 
RSP Project ID (R525.1) 

 
REPORTING DATE – 12 September 2012 

 
PROJECT TITLE: Interfacing Seismological Description of Strong Ground 
Motion with Engineering Analysis of Soil Structure Interaction for Nuclear 

Power Plants 
 
 

REPORT SUBMITTED BY: Structural and Earthquake Engineering Consultants (SEEC) 
Inc. 

855 Arcadia Ave. #E, Arcadia, CA 91007 USA 
Contact name: M. D. Trifunac 

Phone: (626) 447-9382 
Email: trifunac@usc.edu, misha.trifunac@gmail.com 

 
 

to 
 
 

Canadian Nuclear Safety Commission 
 
 

ATTENTION: Nanci Laroche, Nebojsa Orbovic 
280 Slater St., Ottawa, Ontario, Canada, K1P 5S9 

E-mail: research-recherche@cnsc-ccsn.gc.ca 
Nebojsa.Orbovic@cnsc-ccsn.gc.ca 

 

mailto:trifunac@usc.edu�


R2-2 
 

 
 

 

Synthetic Translational Motions of 
Surface and Body Waves 

On or Below an Elastic Layered Half-Space 
 
 
 
 
 

 Abstract 3 
I. Synthetic Translational Motions of Surface Waves 

of a Layered Media at Points on the Half-Space 
Surface – A Review 

 
 

4 

II. Synthetic Translational Motions of Love and Body 
SH Waves On or Below a Layered Media 

 
11 

III. Synthetic Translational Motions of Rayleigh and 
Body P, SV Waves On or Below a Layered Media 

 
18 

IV. The Numerical Implementation 27 
V. Love and SH Body Waves Mode Shapes 44 
VI. Rayleigh and P, SV Body Waves Mode Shapes 53 
VII. The Synthetic Transverse Translational Motions 61 
VIII. The Synthetic Radial and Vertical Translational 

Motions 
 

83 

 
 
 

References 119 

Appendix A Love and SH Body Waves Mode Shapes 125 
Appendix B Rayleigh and P, SV Body Waves Mode Shapes 181 



R2-3 
 

Abstract  
 

This, second report, Report #2, is a continuation of the Report #1 (submitted 21 May 2012). In 
Report #1 we presented the theory and verification examples of computing synthetic strong 
earthquake ground motion for an array of points on the surface of the layered half space. This 
Report #2 presents, theory and varification examples of how to extend the synthesizing of strong 
ground motion along a vertical array of points, into the depth of the layered half space. Together 
Reports #1 and #2 constitute the complete methodology for computing translational components 
of strong ground motion at any point on the surface or at arbitrary depth in the layered half space. 
With these tools it is now possible to calculate translational components of strong motion as 
input into a finite element or finite difference numerical “box”, which can be used in time 
computations of earthquake response of complex linear and nonlinear soil structure interaction 
problems. In the Report #1 we showed how the synthesized motions can be verified by 
comparison of the Fourier amplitude spectra of synthesized motions with the empirical scaling 
equations for the Fourier spectra corresponding to the same earthquake and site conditions. In 
this Report #2 the verification has been performed by detailed analysis of the nature of 
synthesized motions at depth, by verifying that the motions satisfy all known seismological 
properties and principles of body and surface wave propagation in layered half space. By 
examining the properties of the plots of this motion within the layered half space, as will be seen 
from the body of this report, we find that the synthesized motions meet all known properties of 
strong motion, and constitute realistic representation of strong motion in the set of parallel layers 
overlying the half space.        
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I. Synthetic Translational Motions of Surface Waves of a 

Layered Media at Points on the Half-Space Surface  – 
Review 

 
 

 Observational studies of strong ground motion in the 1970's showed that a typical strong 

motion record consists of near-field, intermediate-field, body and surface waves contributing 

different amounts to the total result, depending on the earthquake source mechanism and on the 

wave path (Trifunac, 1971a, 1971b; Trifunac, 1972a, 1972b; Trifunac, 1973). Empirical studies 

of spectral characteristics (Trifunac, 1976, 1979a, 1979b, 1993, 1994, 1995a, 1995b; Trifunac 

and Anderson, 1977; Trifunac and Lee, 1978, 1985) and frequency-dependent duration 

(Trifunac and Westermo, 1976a, 1976b; Trifunac and Novikova, 1994, 1995) have further 

shown the nature of the dependence of strong motion on the geologic environment of the 

recording station. Consequently, realistic artificial accelerograms must have nonstationary 

frequency, amplitude and duration characteristics that agree with the trends present in the 

recorded accelerograms. 

 

In choosing a suitable accelerogram for a particular analysis, many factors must be taken 

into account, for example, the distance between the source and the site, the size of the 

earthquake, and the geology surrounding the site. The recorded accelerograms cannot be 

modified in a simple way to satisfy the engineering design requirements at all sites (Lee and 

Trifunac, 1989), and thus, site-dependent artificial synthetic accelerograms are needed. 

 

The synthetic translational components of acceleration are constructed to have a required 

Fourier amplitude spectrum, ( )FS ω , and a given duration, ( )D ω , at the site. A complete review 

of the method first proposed by Trifunac (1971b), and later refined by Wong and Trifunac 

(1978, 1979), for the generation of synthetic accelerograms, can also be found in the review 

paper by Lee (2002). In short, the following items are needed to construct synthetic motions: 

 

1.1 Wave Dispersion Curves at a Site 
 

1.2 Arrival Times of body waves and of each mode and frequency band of Waves 
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1.3 Contribution of the Modes at a Given Frequency Band 
 

1.4 Determination of Relative Amplitudes and Phrases of all body and modes of Surface 
Waves. 
 

1.5 The Total Accelerogram as a Superposition of time-histories of all the contributing 
waves. 
 

 

The rest of this section is a brief summary of the above procedures, as summarized in Lee 

(2002). It will be referred to as the “SYNACC algorithm”. It applies to the translational (out 0f 

plane) horizontal component of surface Love waves and body SH waves, as well as to both the 

horizontal and vertical translational components of surface Rayleigh waves and body P and 

SV waves. 

 
1.1 Wave Dispersion Curves at a Site  

 
Figure I.1 Phase Velocities for 

 

 
For a given site, a geological profile with equivalent layered medium must first be 
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selected. A model can have 1N n= +  layers. For each layer l with l = 1 to N  the parameters 

  l l lh , ,α β and lρ  must be specified, where  

lh =  layer thickness, 

lα  = P −wave velocity,  

lβ = S −wave velocity, and  

lρ  = mass density of thl  layer, 

with the bottom l N=  medium of infinite thickness.   

 
In such a medium, surface waves will travel in a dispersive manner, and this will depend on 

(1) the material properties of the medium, (2) the frequency of the wave motion, and on (3) the 

thicknesses of different layers.  

 
Through calculation for the group and phase velocities of the Rayleigh and Love surface 

waves, the dispersion curves can be evaluated. The results will be given for each mode (for 

1  2   m , , , M= … ) of Rayleigh and Love surface waves separately, and will consist of both the 

phase and group velocities, ( )m nC ω  and ( ) ,m nU ω  for a given set of selected frequencies, 

,  1,  2,  ,  n n Nω = … . Figure I.1 is an example of such dispersion velocities for a site at El 

Centro Area in Imperial Valley, California. 

 
1.2 Arrival Times of each mode and frequency bands of Waves 
 

Once the dispersion curves have been computed, the arrival time of the m th−  mode at 

frequency nω  can be written as 

( ) ( )
*
nm

m n

Rt R U ω=       (1.1) 

 
where R is the epicentral distance from the source to the site. For computational efficiency, 

Equation (1.1) will be assumed to hold not only at frequency, nω , but at all frequencies within the  

band, which is narrow enough for ( )m nU ω  to be assumed constant.  
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1.3 Contribution of the Modes at a Given Frequency Band, n nω ω± Δ  

 
Within the frequency band n nω ω± Δ , the m th−  mode of surface waves is assumed to 

have a Fourier transform  

 

( )
( )

( ) ( )

*

nm

*

A 2
0

            

                                            otherwise  

n nm n
n n

nm

nm nm

i t

A

A A

e
ω ω φπ ω ω ωω

ω ω

⎡ ⎤
⎢ ⎥⎣ ⎦

− − +⎧
− ≤ Δ⎪= ⎨

⎪⎩
− =

  (1.2) 

 
where nφ is the phase. It is introduced to model the source randomness and other effects along the 

path. *
nmt  is the arrival time of the m th− mode given in Equation (1.1). Anmis the relative 

amplitude of the m th−  mode. The phase nφ  will be assumed to be a random number in the 

interval[ ] ,π π− . The relative amplitude Anm will be described in the next sub-section.  

 
The inverse transform of equation (1.2) is given by  

( )1( )
2nm nm

i ta t A de ωω ω
π

∞

−∞

= ∫     (1,3a) 

which can be calculated to be  
( )

( ) ( )
*

nm *

sin
( ) A cosn nm

nm n n
nm

t t
a t t

t t

ω
ω φ

Δ −
= +

−
  (1.3b) 

 

This represents the contribution of the m th−  mode at the given frequency band. The total 

contribution of all the modes at the same frequency band is then given by  
 

( )
( ) ( )

*

nm *
1 1

sin
( ) ( ) A cos

M M
n nm

n n nm n n n
m m nm

t t
a t a t t

t t

ω
δ δ ω φ

= =

Δ −
= = +

−
∑ ∑  (1.3c) 

where M is the total number of wave modes, and nδ  is the scaling factor used to determine the 

final amplitude of ( )nFS ω , as described in the next sub-section.  
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1.4 Determination of nmA  and nδ  

 
The relative amplitudes of different modes of surface waves, Anm, depend on the 

earthquake source mechanism and the propagation path, and will be different in each case. 

Hence, it is useful to estimate these amplitudes empirically on the basis of previous acceleration 

recordings. The following empirical equations for Anm have been proposed and used by Tribunac 

(1971b): 

( ) ( )*
1 2( )nm n nA A m Aω ω=      (1.4a) 

       

where   ( )2
0

21
0

( ) exp 2 R m
m mA m C XC

⎡ ⎤− −
= +⎢ ⎥

⎢ ⎥⎣ ⎦
    (1.4b) 

and  ( ) ( )2

22 0 exp 2
n p

n R n
B

A B B X
ω ω

ω ω

⎡ ⎤−⎢ ⎥= − +
⎢ ⎥
⎣ ⎦

    (1.4c) 

 

with mX and nX  being random numbers in the interval [ ]1  1., .− , and the values of other 

constants are given in Table 1 below: 

 

Table 1:  Empirical Scaling Coefficients for Equations (1.4b) and (1.4c)  

(Trifunac, 1971a, 1971b)  
 

Mode 
 

0C  0m  
 

RC  0B  Pω  Bω  RB  

1  3  5  0.2  1.5  10  5  0.1  
2  3  5  0.2  1.5  10  5  0.1  
3  3  5  0.2  1.5  10  5  0.1  
4  3  5  0.2  2.0  25  15  0.1  
5  3  5  0.2  2.0  25  15  0.1  
6  3  6  0.2  3.0  30  10  0.3  
7  3  7  0.2  1.5  30  5  0.25  

 
 The scaling factor nδ  is next determined, by using the empirically determined Fourier 

amplitudes. The Fourier amplitude of ( )na t in Equation (1.3c) is given by  
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( ) *

nm
1

A
( ) 2

0

            

                                                        otherwise  

M
n nm n

n n n
mn

i t

A
e

ω ω φπ
δ ω ω ω

ω

⎡ ⎤
⎢ ⎥⎣ ⎦

=

− − +⎧
− ≤ Δ⎪= ⎨

⎪
⎩

∑   (1.5a) 

for 0 ,ω≤ < ∞ and ( ) ( ) ( )*
nm nm nmA A Aω ω ω− = = . 

 
 It is seen that the amplitude ( )nA ω is defined only over the narrow band of width 2 nωΔ .  

Its average amplitude over this band is given by  
 

( ) ( )1
2

n n

n n

n n
n

A A d
ω ω

ω ω
ω ω ω

ω

+Δ

−Δ

=
Δ ∫    (1.5b) 

 

which should agree with the empirically estimated Fourier amplitudem ( ) ,nFS ω  
 

( ) m ( )n nA FSω ω=     (1.5c) 
 

Combining Equations (1.5a), (1.5b) and (1.5c), nδ  becomes  
 

m ( )
( ) *

nm
1

2

A
2 2

n n

n n

n n
n M

n nm n

m

i t

FS

de
ω ω

ω ω

ω ω φ

ω ω
δ

π π ω
⎡ ⎤
⎢ ⎥⎣ ⎦

=

+Δ

−Δ

− − +

Δ
=

∑∫
   (1.5d) 

 

The Fourier amplitude p ( )nFS ω at frequency nω may be estimated from empirical scaling 

equations, by using the earthquake parameters specified at the site. These parameters may 

include a suitable combination of the following:  

 

M  = local magnitude ML or surface wave magnitude MS (Richter, 1958),  

R  = epicentral distance,  

MMI  = modified Mercalli intensity at the site,  

s  = geological site classification ( s = 0, 1 or 2),  

SL  = soil site classification (0, 1 or 2),  

h  = depth of sediments, and  

v = component direction ( v =0: horizontal; v =1: vertical).  
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1.5 The Total Accelerogram 
 

The total accelerogram can be expressed as   
 

1
( ) ( )

N

n
n

a t a t
=

= ∑      (1.6) 
 

where N is the total number of frequency bands.  From Equations (1.3c) and (1.6) this becomes  
 

( )
( ) ( )

*

nm *
1 1

sin
( ) A cos

N M
n nm

n n n
n m nm

t t
a t t

t t

ω
δ ω φ

= =

⎛ ⎞Δ −
⎜ ⎟= +
⎜ ⎟−⎝ ⎠

∑ ∑    (1.7) 

 

One final property, the Duration or ‘time length’, D( )ω , of the accelerogram time 

history, ( )a t , will be determined by using the empirical results on Strong-Motion Duration 

(Trifunac and Brady, 1975; Trifunac and Novikova, 1994) and the first and last arrival times of 

the waves. This completes the review and description of the “SYNACC algorithm”. Figure I.2 

is an example of one such synthetic translational accelerogram. 

Figure I.2 Synthetic Translational Accelerogram Time Histories 
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II. Synthetic Translational Motions of Love and Body SH 

Waves On and Below Surface of a Layered Media 
  
 
 Let c c( )ω=  be the wave speed of a mode of Love waves in the half-space with n elastic 

layers over half space. c is also the (horizontal) phase velocity of the waves  in each layer of the 

elastic media above the  half space (Figure II.1) 

   
     x             O 
  0z =  
   1h  1 1,  μ β   z                  1 1v v− +

   

  1z H=  
   2h  2 2,  μ β                     2 2v v− +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  ,  n nμ β                     n nv v− +  
  1Nz H −=  
         v∞   
  to ∞   ,  μ β       
 

Figure II.1 n-layered half-space with Love waves 
 
 

For each layer l, with   l 1, , n= … , the displacement of the Waves in the layer takes the 

form (in the anti-plane, y- direction): 

 1 1v , v :− +    
( )

( )

l

l

ik x z
l l

ik x z
l l

 C          

  C

v e

v e

γ

γ

−− −

++ +

=

=
    (2.1) 
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There are the upward and downward propagating rays of Love waves present in the thl layer. 

Here k k( ) c( )
ωω ω= =  is the horizontal wave number of the waves at frequency ω  and phase 

velocity c c( ).ω= The term ikxe , which is also same in each layer, is the horizontal component 

of the waves, which together with the time harmonic term i te ω , corresponds to the waves 

propagating in the –ve x direction. The terms l yike γ∓  are the vertical components of the waves 

with the negative term propagating upwards (–ve y) and the positive term propagating 

downwards (y). Here l l l( )γ γ β=  is given by

  

( )l l

1 1 122 2 2 2 2 2

l
l

k k k c1 1kk
β βγ β
− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.2) 

so that lkγ  is the vertical wave number of the waves in the thl  layer of the medium with shear 

wave velocity lβ . In general, the wave velocities increase as one moves down through the layers, 

so that 1 2 nβ β β β< < < <… , with the semi-infinite half-space layer at the bottom having the 

highest shear wave speed β . With c c( )ω=  the wave speed of the surface Love waves there, 

c β< , and the surface waves take the form: 

( )ik x z ikx k zv   C   C          e eγ γ
∞ ∞ ∞

− −= =    (2.3)  

where  
( ) ( )

1 1 122 2 2 2 2 2k k k c1 1kk
β βγ β

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
     (2.4) 

γ  is the complement of γ  and is real, so that the term ikx k ye γ−  in W∞  corresponds to a surface 

wave term whose amplitude is exponentially decaying with depth (in y) below the surface. 

With lβ  the shear wave speed in the thl  layer of the medium, and c c( ),ω=  the Love wave 

speed and also the (horizontal) phase velocity of the waves  in each layer of the elastic media 

above the  half space (Fig.1), we can have lc β≥  or lc β< . If  lc β≥ , the term ( )l l lγ γ β=  in 

Equation (2.2) is real and both waves lv+
 and lv−  in Equation (1) will correspond to harmonic 

plane waves.  If, however, lc β<  then, as from Equation (2.2): 
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1
2 2

1l
l

cγ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

is imaginary and  
1

2 2

l
l

c1γ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is real   (2.5) 

so that, from Equation (2.1)  

l lv ,  v :− +    
( )

( )

l l

l l

ik x z k zikx
l l l

ik x z k zikx
l l l

  C  C

  C  C

v e e e

v e e e

γ γ

γ γ

− +− − −

+ −+ + +

= =

= =
      (2.6) 

This means that the waves lv+  will be exponentially decaying, while the waves lv−  are 

exponentially growing in the thl  layer. 

 
 The coefficients l lC ,  C− + , respectively of the waves, l lw ,  w− + , in each of the layers l, for  

l  = 1 to n, are all related by the stress and displacement boundary conditions. In the topmost 

layer, the zero-stress boundary condition at the half-space surface is  
 

1
zy 1z 0

z 0

v
0

z
τ μ

=
=

∂
= =

∂
     (2.7) 

 

for waves 1 1 1v v v+ −= +  at the top layer l 1.=  This gives 
 

       or1 1 1
1 1

z 0 z 0

v v v 0,
z z z

μ μ
+ −

= =

⎛ ⎞∂ ∂ ∂
= + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

( ) ( )    for all 
z z1 1

1 1 1
z 0

ik x ik x
C C 0, x,e eγ γ

μ + −

=

+ −⎛ ⎞− =⎜ ⎟
⎝ ⎠

   (2.8) 

so that           or       1 1 1 1C C 0 C C+ − + −− = =  
 
 Recall from above that we have stated that at a given site on the half-space surface, one 

can use the “SYNACC algorithm” to define the complex Fourier components of acceleration of 

each mode m of surface Love (and Rayleigh) waves at each frequency ω within the n-th 

frequency band n n n n,ω δω ω δω− +⎡ ⎤⎣ ⎦of the whole spectrum. We will take the site to be at the 

origin O ( )( , ) (0.,0.)x y = in Figure II.1 above. Since the Fourier Transforms of 

displacement ( )D ω  and acceleration ( )A ω  are related at frequency ω  by 
 

2A( ) D( )ω ω ω= −      (2.9) 
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 the waves for acceleration and displacement at frequency ω  are related the same way. Let 

( ) ( )nm
20 0 ,mn

AC C ωω ω
−= =  be such complex Fourier components of displacement of the thm  

mode of surface Love waves at frequency ω  within the thn frequency band 
n n n n,ω δω ω δω− +⎡ ⎤⎣ ⎦  at the site O(0.,0.) in the top layer ( l 1 )= . Then 

 

( ) ( )

or                  

1 1
0 1 1 1 1 1( x ,z ) ( 0 ,0 ) ( x ,z ) ( 0 ,0 )

( x ,z ) ( 0 ,0 )

0 1 1

ik x z ik x z
C v v v C C

C C C

e eγ γ+ − + −
= =

=

+ −

+ −⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠

= +

     (2.10) 

 

Equations (2.8) and (2.10) together give      0
1 1

CC C ,2
+ −= = or the waves in the 1st layer are 

given by: 
( ) ( )     

                         

1 10
1 1 1 1

0 1

ik x z ik x z

ikx

Cv v ( x,z ) v v 2

C cos z

e e

e

γ γ

γ

+ − + −⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠

=
   (2.11) 

 
Recall that 0 0 ,mnC C=  is the complex Fourier component of displacement of the m-th mode of 

surface Love waves at frequency ω  within the n-th frequency band n n n n,ω δω ω δω− +⎡ ⎤⎣ ⎦  at the 
site O(0.,0.) in the top layer ( l 1 )= .  
 

In summary, this means that once the complex Fourier coefficient at a given frequency of 

one mode of surface Love waves is given at one point of a site at the half-space surface, the 

complex Fourier coefficient of the same mode of waves at any point on and below the surface, in 

the top layer, is known. 

 
The next step is to continue this to evaluate the complex Fourier coefficients at a given 

frequency of one mode of surface Love waves at any point of any elastic layer below the surface. 

Starting from 1l = , we will show by induction that if the waves at the thl  layer are known, then 

the waves at the ( )1 thl + layer can also be known, including the bottom semi-infinite layer, 

 
Start with the thl layer, where the waves are given by: 
 

l lv ,  v :− +   
( )

( )
   

   

zl l

zl l

ik x ik z ikx
l l l

ik x ik z ikx
l l l

C C

C C

v e e e

v e e e

γ γ

γ γ

− −− − −

+ ++ + +

= =

= =
  Equation (2.6) above 

with known (complex) coefficients  l lC , C− + . The waves in the ( )1 thl + layer below, of the form: 
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l 1 l 1v ,  v :− +
+ +   

( )

( )
   

   

zl 1 l 1

zl 1 l 1

ik x z ik ikx
l 1 l 1 l

ik x z ik ikx
l 1 l 1 l

C C

C C

v e e e

v e e e

γ γ

γ γ

+ +

+ +

− −− − −
+ +

+ ++ + +
+ +

= =

= =
   (2.12) 

with coefficients ,  l 1 l 1C , C− +
+ +  can next be evaluated.  At the common interface between the thl  

layer and ( )1 thl +  layer, where lz H= , the continuity of displacement and stress at the interface 

between the 2 layers gives: 

At the interface of the thl & ( )1 thl + medium, lz H= : 

  
( ) ( )

1 1

1 1 1

               

  

l l l l

l l l l l l

v v v v

v v v v
z z

μ μ

+ − + −
+ +

+ − + −
+ + +

+ = +

∂ ∂
+ = +

∂ ∂

    (2.13) 

or 

1

11 1 1 1

1

1

1 1 1 1
  

l l l l

l l l ll l l l l l l l

ik H ik H
l l

ik H ik H
l l

C C

C C

e e
e e

γ γ

γ γμ γ μ γ μ γ μ γ

+

++ + + +

+ ++ +
+

− −− −
+

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
  (2.14) 

 

giving  l 1 l 1C , C− +
+ +  in terms of  l lC , C− +  . 

 
Starting from the top layer, with the (complex) coefficients of the waves 

0
1 1

CC C ,2
+ −= = expressed in terms of 0 0 ,mnC C= , that of the waves at the origin, Equation 

(2.14) gives an iterative step to compute the wave coefficients l lC , C− +  of each elastic layer l, for 
1, , .  l n= …  At the bottom of the last ( 1)th thn N= −  layer, at 1n Nz H H −= =  , the interface is 

now between it and the semi-infinite medium below, which has a mode of surface Love waves 
given by: 

 

( )             N
ik x z ikx k zv v C Ce eγ γ

∞ ∞ ∞
− −= = =   Equation (2.3) above 

and the continuity equations now take the form, with μ  the shear modulus of the semi-infinite 

half-space below: 

At  1n Ny H H −= = :   
( )

            

  

n n

n n n

v v v

v
v v

z z
μ μ

+ −
∞

+ − ∞

+ =

∂∂
+ =

∂ ∂

     (2.13) 

or 

1 1 1
  

n n
n

n nn n n n

ik H
n k H

ik H
n

C
C

i i C

e e
e

γ
γ

γμ γ μ γ μ γ ∞

++
−

−−

⎛ ⎞⎡ ⎤ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟− −⎝ ⎠⎣ ⎦ ⎝ ⎠

  (2.14) 



R2-16 
 

 
 The solution c c( )ω=  of that mode of Love surface waves will guarantee that both 

equations are satisfied by the surface wave coefficients in the semi-infinite half-space. This 

completes the derivation. 

 

 For the case of body SH waves incident from the semi-infinite medium at the bottom, we 

will consider the model in Figure II.2. It is the same N-layered media model as in Figure II.1, for 

the case of Love surface waves, but now the waves in all layers are body waves. 
  
     x             O 
  0z =  
   1h  1 1,  μ β   z                  1 1v v− +

   

  1z H=  
   2h  2 2,  μ β                     2 2v v− +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  ,  n nμ β                     n nv v− +  
  1Nz H −=  
           
  to ∞   ,  μ β                     N Nv v− +

  
 

Figure II.2 n-layered half-space with incident body SH waves 
 
 

The body waves in all layers have a common constant phase velocity c , now independent 

of frequency ω , and dependent only on the incident angle of the incident body SH waves. It is 

higher than max Nβ β= , the shear wave speed at the bottom semi-infinite Nth layer.  
 
The wave Nv v∞=  at the bottom semi-infinite layer will also be replaced by the waves 

Nv− and Nv+ , respectively the incident and reflected body SH waves: 
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N Nv ,  v :− +

  

( )

( )
   

   

zN N

zN N

ik x ik z ikx
N N N

ik x ik z ikx
N N N

C C

C C

v e e e

v e e e

γ γ

γ γ

− −− − −

+ ++ + +

= =

= =
   (2.15) 

     
as in all the other layers 1,  2,  ,  1l N= −… , in Equation (2.6) above. At the interface with the 

layer above, instead of Equation (2.13), the continuity equations are: 
 

At  1n Ny H H −= = :  ( )

            

  

n n N

N N
n n n

v v v

v v
v v

z z z
μ μ

+ −

+ −
+ −

+ =

⎛ ⎞∂ ∂∂
+ = +⎜ ⎟∂ ∂ ∂⎝ ⎠

    (2.16) 

 
In summary, this means that once the complex Fourier coefficient at a given frequency of 

one mode of surface Love waves or body waves is given at one point of a site at the half-space 

surface, the complex Fourier coefficient of the same mode of surface or body waves at any point 

on and below the surface, at any of the elastic layers down below, is also known. 

 
 The above method will be referred in what follows as the reflection-transmission (R-T) 

coefficient matrix method for Love and body SH waves. 
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III. Synthetic Translational Motions of Rayleigh and Body P and SV 
Waves On or Below the surface of Layered Half Space 

 
 

 Let c c( )ω=  be the phase velocity of a mode of Rayleigh waves in the half-space with N 

elastic layers.  c is also the (horizontal) phase velocity of both the P- and SV-waves  in each layer 

of the elastic media above the  half space such that max Nc β β< = , the shear wave speed at the 

bottom semi-infinite Nth layer (Fig.III.1). 

           
     x             O 
  0z =  
   1h  1 1 1, ,  μ α β  z 1 1 1 1,,                      ϕ ψ ψ ϕ− − + +

   

  1z H=  
   2h  2 2 2, ,  μ α β   2 2 2 2,,                      ϕ ψ ψ ϕ− − + +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  , ,  n n nμ α β   ,,                      n n n nϕ ψ ψ ϕ− − + +  
  1Nz H −=  
          ,  ϕ ψ∞ ∞   
  to ∞   , ,  μ α β       
 

Figure III.1 n-layered half-space with Rayleigh waves 
 
 

For each layer l, with   …l 1, , N= , the P- and SV-Waves in the layer respectively take 

the form: 



R2-19 
 

   l l l l, , , :ϕ ϕ ψ ψ− + − +    

( )

( )

( )

( )

          

  

          

  

l

l

l

l

ik x a z
l l

ik x a z
l l

ik x b z
l l

ik x b z
l l

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

         (3.1) 

They are respectively the upward and downward propagating waves present in the lth layer. 

k k( ) c( )
ωω ω= =   is the horizontal wave number of the P- and SV-waves at frequency ω  and 

phase velocity c c( )ω= . The term ikxe , which is also the same in each layer, is the horizontal 

component of the waves, which together with the time harmonic term i te ω , corresponds to 

waves propagating in the –ve x direction. The terms lika ze∓  for the P-waves and likb ze∓  for the 

SV-waves are respectively the vertical components of the waves. The ones with the –ve exponent 

are propagating upwards (–ve y) and those with the +ve exponent are propagating downwards 

(+ve y). Here l l la a ( ,c )α= and l l lb b ( ,c )β= are respectively given by 
 

( )

( )

l l

l l

1 1 122 2 2 2 2 2

l
l

1 1 122 2 2 2 2 2

l
l

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

   (3.2) 

 

so that lka and lkb  are the vertical wave numbers of the P- and SV-waves in the  thl layer of the 

medium with longitudinal wave speed lα  and shear wave velocity lβ . In general, the wave 

speeds increase as one goes down into the layers, so that 1 2 Nβ β β β< < < <… , with the semi-

infinite half-space layer at the bottom having the highest shear wave speed β .  The same can be 

said about the longitudinal wave speeds, so that 1 2 Nα α α α< < < <… , withα the longitudinal 

wave speed of the semi-infinite medium furthest below being the highest. With c c( )ω=  the 

wave speed of the surface Rayleigh waves, c β α< < , and the surface waves take the form: 
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( )

( )
    

    

ik x az ikx kaz

ik x bz ikx kbz

A A

B B

e e

e e

ϕ

ψ

∞ ∞ ∞

∞ ∞ ∞

− −

− −

= =

= =
    (3.3)  

where  

( ) ( )
( ) ( )

1 1 12 2 2 2 2 2 2

1 1 122 2 2 2 2 2

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

      (3.4) 

and  a , b  are respectively the complements of a, b  and both are  real, so that the terms kaze−  in 

ϕ∞ and kbze−  in ψ∞  both correspond to surface wave terms with amplitudes that are 

exponentially decaying with depth below the surface.  

 

With lβ  the shear wave speed in the thl  layer of the medium, and c c( ),= ω  the Rayleigh 

wave speed and also the (horizontal) phase velocity of the waves in each layer of the elastic 

media above the half space (Figure III.1), we can have lc β≥  or lc β< .  

 

 If, in the thl  layer, lc β≥ , the term l l lb b ( ,c )β=  in Equation (3.2) is real, both the SV- 

waves lW +  and lW − in Equation (3.1) will correspond to harmonic plane waves.  If, however, 

lc β<  then, as from Equation (3.2): 

1
2 2

l
l

cb 1β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

is imaginary and  
1

2 2

l
l

cb 1 β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is real                   (3.5) 

so that, from Equation (3.1): 

 l l, :ψ ψ− +    
( )

( )
   

   l

l l

l

ik x b z kb zikx
l l l

ik x b z kb zikx
l l l

B B

B B

e e e

e e e

ψ

ψ

− +− − −

+ −+ + +

= =

= =
    (3.6) 

meaning that the waves lψ +  will be exponentially decaying in z, while the waves lψ −  are 

exponentially growing in the thl  layer. 
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 The same observations can be made of the cases for lc α≥  or  lc α< , in regards to the 

P-wave potentials  l l,ϕ ϕ− + in the thl layer. 

 
 The coefficients  l lA , A− + , respectively of the P-wave potentials,  l l,ϕ ϕ− + , and l lB , B− + , 

respectively of the SV-wave potentials, l l,ψ ψ− + , in each of the layers l, for l = 1 to N, are all 

related by the stress and displacement boundary conditions. In the topmost layer, the zero-stress 

boundary conditions at the half-space surface,  
 

 z zxz 0 z 0
σ τ

= =
=       (3.7) 

 

for P- and SV-wave potentials. Let 0 0U , W  respectively be the horizontal and vertical (complex) 

displacements at the origin, the reference point at the free surface. Then stress boundary 

conditions at the half-space surface ( 0z = ) and the displacement specification on the half-space 

surface at the origin (0., 0.) take the form: 
 

  

1 1 01

1 1 01
2 2
1 1 1 1 1

2 2
1 1 1 1 1

1 1 b b UA
a a 1 1 VA 1

1 b 1 b 2b 2b ik 0B
2a 2a 1 b 1 b 0B

+

−

+

−

⎛ ⎞−⎡ ⎤ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥− − − ⎜ ⎟ ⎜ ⎟⎢ ⎥ =⎜ ⎟ ⎜ ⎟⎢ ⎥− − −
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟− − − ⎝ ⎠⎣ ⎦ ⎝ ⎠

   (3.8) 

 
 Recall from above that we have shown that at a given site on the surface, one can use the 

“SYNACC algorithm” to define the complex Fourier components of acceleration of each mode 

m of surface Rayleigh waves at each frequency ω  within the thn  frequency band 

n n n n,ω δω ω δω− +⎡ ⎤⎣ ⎦ of the whole spectrum. We will take the site to be at the origin 

O ( )( x , y ) ( 0.,0.)=  in Figure III.1 above. Since the Fourier Transforms of displacement D( )ω  

and acceleration A( )ω  are related at frequency ω  by 
 

2A( ) D( )ω ω ω= −      (3.9) 
 
 

so the waves for acceleration and displacement at frequency ω  are related the same way. Let 

 0 0 ,mn 0 0 ,mnU A , V B= = , respectively be such complex Fourier (in-plane) horizontal and vertical 

component of displacement of the thm  mode of surface Rayleigh waves at frequency ω  within 

the thn frequency band n n n n,− +⎡ ⎤⎣ ⎦ω δω ω δω  at the site O(0.,0.) in the top layer ( l 1 )= .  
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From Equation (3.8), it is seen that, given the complex Fourier components of 

displacement, 0 0,  U V , of the m-th mode of surface Rayleigh waves at frequency ω , at a site on 

the half-space surface, as estimated by the “SYNACC algorithm”, one can solve for the 

complex coefficients  1 1A , A− + and 1 1B , B− +  respectively of the P- and SV-wave potentials 

associated with the waves in the 1st media on top. With the waves on the top layer defined, those 

can be used to compute the displacements everywhere in the top layer. 

 
In summary, this means that once the complex Fourier coefficient at a given frequency of 

one mode of surface Rayleigh waves is given at one point of a site at the half-space surface, the 

complex Fourier coefficient of the same mode of waves at any point on and below the surface, in 

the top layer, is known. 

 
The next step is to extend this to evaluate the complex Fourier coefficients at a given 

frequency of each mode of surface Rayleigh waves at any point of all the elastic layers below the 

surface. Starting from 1l = , we will show by induction that if the waves at the thl  layer are 

known, then the waves at the ( )1 thl +  layer can also be known, including the bottom semi-

infinite layer. 

 
Start with the thl  layer, where the wave potentials are given by: 
 

   l l l l, , , :− + − +ϕ ϕ ψ ψ    

( )

( )

( )

( )

          

  

          

  

l

l

l

l

ik x a z
l l

ik x a z
l l

ik x b z
l l

ik x b z
l l

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

  Equation (3.1) above 

 

with known (complex) coefficients  l lA , A− + for the P-wave and  l lB , B− + for the SV-wave 

potentials. The waves in the ( )1 thl +  layer below, of the form, with ( )1l + replacing l 

everywhere in Equation (3.1): 
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   l 1 l 1 l 1 l 1, , , :− + − +
+ + + +ϕ ϕ ψ ψ    

( )

( )

( )

( )

          

  

          

  

l 1

l 1

l 1

l 1

ik x a z
l 1 l 1

ik x a z
l 1 l 1

ik x b z
l 1 l 1

ik x b z
l 1 l 1

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

+

+

+

+

−− −
+ +

++ +
+ +

−− −
+ +

++ +
+ +

=

=

=

=

  (3.10) 

 
with the coefficients  l 1 l 1A , A− +

+ +  for the P-wave and  l 1 l 1B , B− +
+ + for the SV-wave potentials next to 

be evaluated.  At the common interface between the thl  layer and ( )1 thl +  layer, where ly H= , 

the continuity of (x- and y- components of) displacements and (normal and shear) stresses at the 

interface between the 2 layers gives, at ly H= : 

 

   

l 1 l

l 1 l

l 1 l

l 1 l

ika H
l 1 l 1 l 1

ika H
l 1 l 1 l 1

2 2 ikb H
l 1 l 1 l 1 l 1 l 1 l 1

2 2 ikb H
l 1 l 1 l 1 l 1 l 1 l 1

1 0 0 0 1 1 b b A e
0 1 0 0 a a 1 1 A e
0 0 0 1 b 1 b 2b 2b B e
0 0 0 2a 2a 1 b 1 b B e

μ
μ

+

+

+

+

+
+ + +

−−
+ + +

+
+ + + + + +

−−
+ + + + + +

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎣ ⎦ ⎝ ⎠

=  

l l

l l

l l

l l

ika H
l l l

ika H
l l l

2 2 ikb H
l l l l l l

2 2 ikb H
l l l l l l

1 0 0 0 1 1 b b A e
0 1 0 0 a a 1 1 A e
0 0 0 1 b 1 b 2b 2b B e
0 0 0 2a 2a 1 b 1 b B e

μ
μ

+

−−

+

−−

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎣ ⎦ ⎝ ⎠

 (3.11) 

 

Equation (3.11) can be written in the form, at ly H= : 
 

( ) ( ) ( )        or     

l 1 l l 1 l

l 1 l l 1 l
l 1 l l l l l

l 1 l l 1 l

l 1 l l 1 l

A A A A
A A A A

H H H
B B B B
B B B B

+ + + +
+ +
− − − −
+ +

+ + + + +
+ +
− − − −
+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M M N  (3.12) 

 
with ( ) ( ) ( )   

1

l l l 1 l l lH H H
−

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦N M M , both ( ) ( )  l l l l l l lH ,a ,b , Hμ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦M M  and 

( ) ( )  l l l l l l lH ,a ,b , Hμ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦M M  matrices defined from Equation (3.11). 
 

Starting from the top layer, with the (complex) coefficients of the waves 1 1A , A− + and 

 1 1B , B− + expressed in terms of, 0 0 ,mnU U=  and 0 0 ,mnV V= respectively the Fourier components of 

the waves in the horizontal and vertical directions at the origin, Equation (3.12) gives an iterative 
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step to compute the wave coefficients l lA , A− + and l lB , B− +  of each elastic layer l, for 

  l 1, , n N 1.= = −…  At the bottom of the last thn  layer, at n N 1y H H −= =  , the interface is 

now between it and the semi-infinite medium below, which has a mode of surface Rayleigh 

waves given by: 

( )

( )
     

     

N

N

ik x az ikx kaz

ik x bz ikx kbz

A A

B B

e e

e e

ϕ ϕ

ψ ψ

∞ ∞ ∞

∞ ∞ ∞

− −

− −

= = =

= = =
   Equation (3.3) above 

 

The continuity of displacement and stress between the layers at ny H=  gives 
 

( ) n  
n

n

n
kaH

n
n2 kbH

n
2

n

1 0 0 0 1 ib A
A e0 1 0 0 a 1 A

H
0 0 0 1 b i2b BB e
0 0 0 2ia 1 b B

μ
μ

+

− −
∞

+−
∞

−

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎛ ⎞− ⎜ ⎟⎢ ⎥⎢ ⎥ ⎡ ⎤=⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ + − ⎝ ⎠ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟+⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠

M   (3.13) 

 
 

where, from Equation (3.11) and Equation (3.12), the  matrix ( ) n nH⎡ ⎤⎣ ⎦M in the right-hand side 

can be written in full as: 

( ) n        nH⎡ ⎤⎣ ⎦ =M       (3.14) 
n n

n n

n n

n n

ika H
n n

ika H
n n

2 2 ikb H
n n n n n

2 2 ikb H
n n n n n

1 0 0 0 1 1 b b e 0 0 0
0 1 0 0 a a 1 1 0 e 0 0
0 0 0 1 b 1 b 2b 2b 0 0 e 0
0 0 0 2a 2a 1 b 1 b 0 0 0 e

μ
μ

−

−

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  
 The solution c c( )= ω  of that mode of Rayleigh surface waves will guarantee that 

Equation (3.13) is satisfied by the surface wave coefficients in the semi-infinite half-space. This 

completes the derivation. 

 

For the case of body P or SV waves incident from the semi-infinite medium at the bottom, 

we will consider the model in Figure III.2. It is the same N-layered model as in Figure III.1, for 

the case of Rayleigh surface waves, but now the P and SV waves in all layers are body waves. 

The body waves in all layers have a common constant horizontal phase velocity c , now 

independent of frequency ω , and dependent only on the incident angle of P or SV waves. For 

incident P waves, 0Nψ − = , and c is higher than max Nα α= , the longitudinal P wave speed at the 
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bottom semi-infinite Nth layer. For incident SV waves, 0Nϕ
− = , and the phase velocity c is higher 

than max Nβ β= , the shear SV wave speed at the bottom semi-infinite Nth layer. (Figure III.2). 

 
    x             O 
  0z =  
   1h  1 1 1, ,  μ α β  z 1 1 1 1,,                      ϕ ψ ψ ϕ− − + +

   

  1z H=  
   2h  2 2 2, ,  μ α β   2 2 2 2,,                      ϕ ψ ψ ϕ− − + +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  , ,  n n nμ α β   ,,                      n n n nϕ ψ ψ ϕ− − + +  
  1Nz H −=  
            
  to ∞   , ,  μ α β       

,,                      n n n nϕ ψ ψ ϕ− − + +  
Figure III.2 n-layered half-space with Body P and SV waves 

 
 

The Rayleigh waves Nϕ ϕ∞=  and Nψ ψ∞=  in the bottom semi-infinite layer will now be 
replaced by the body P waves Nϕ

− and Nϕ
+ , and SV waves Nψ − and Nψ +

 respectively, the incident 
and reflected body P and SV waves: 

 

   N N N N, , , :ϕ ϕ ψ ψ− + − +    

( )

( )

( )

( )

          

  

          

  

N

N

N

N

ik x a z
N N

ik x a z
N N

ik x b z
N N

ik x b z
N N

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

    (3.15) 

     
as in all the other layers 1,  2,  ,  1l N= −… , in Equation (3.1) above. At the interface with the 

layer above, the interface between the nth = (N-1)th  layer and the Nth layer,  instead of Equation 
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(3.13), the continuity equations are the continuity of displacement and stress between the two 

layers. They are, as in Equation (3.11), with ( 1)l n N= = − and 1l N+ = : 
 

 

   

N N

N N

N N

N N

ika H
N N N

ika H
N N l 1

2 2 ikb H
N N N N N N

2 2 ikb H
N N N N N N

1 0 0 0 1 1 b b A e
0 1 0 0 a a 1 1 A e
0 0 0 1 b 1 b 2b 2b B e
0 0 0 2a 2a 1 b 1 b B e

μ
μ

+

−−
+
+

−−

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎣ ⎦ ⎝ ⎠

=  

l l

l l

l l

l l

ika H
l l l

ika H
l l l

2 2 ikb H
l l l l l l

2 2 ikb H
l l l l l l

1 0 0 0 1 1 b b A e
0 1 0 0 a a 1 1 A e
0 0 0 1 b 1 b 2b 2b B e
0 0 0 2a 2a 1 b 1 b B e

μ
μ

+

−−

+

−−

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎣ ⎦ ⎝ ⎠

 (3.16) 

 
 

In summary, this means that once the complex Fourier coefficient at a given frequency of 

one mode of surface Rayleigh and body P and  SV waves is given at one point of a site at the 

half-space surface, the complex Fourier coefficient of the same mode of surface and body P and 

SV waves at any point on and below the surface, at any of the elastic layers down below, is also 

known. 

 

The above method will be referred in what follows as the reflection-transmission (R-T) 

coefficient matrix method for Rayleigh, and body P and SV waves. 
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IV. The Numerical Implementation 
 
Numerical implementation of the above boundary-valued problem to study the 

propagation of elastic waves in a layered media was first presented and formulated in the 

pioneering work by Thomson (1950) and Haskell (1953). Thomson (1950) first set up the 

theoretical groundwork to be extended later by Haskell (1953) 

 
The following section is a brief summary of Thomson-Haskell method. 
 
 

IV.1 The Original Thomson-Haskell’s Transfer Matrix Method 
 
 The objective here is to use the equations developed in the above two sections to evaluate 

the displacement and stress at every point of every medium in the half-space. In what follows we 

will follow the approach of Thomson (1950) and Haskell (1953). We will first present the 

(simpler) case of Love and SH waves, and then follow with the (more complicated) case of 

Rayleigh, P and SV waves. 

 

(1) Love Waves 

 

There the displacement-stress state vector [ ], T
l lv τ  of the thl  layer is to be expressed in 

terms of the coefficients of the wave functions of the thl  layer in matrix form. Further, instead of 

a global coordinate system for all the media, each layer has its own local z-vertical coordinate 

system, so that in the thl  layer, we have 0z =  at the top and lz h=  at the bottom of the layer. 

Using the above equations, this takes the form: 

( )
( )

           ( , )

( , )

ikx
l l l

ikxl
l l l l l l

l l

l l

ik z ik z

ik z ik z

v x z C C e

v
x z i k C C e

z

e e

e e

+ −

+ −

+ −

+ −

= +

∂
= = −

∂

γ γ

γ γτ μ μ γ
   (4.1) 

or, in matrix form 
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( )

( , ) 1 1 0
( , ) 0

                                         ( )

l l

l l

i k z
l ikxl

i k z
l l l l l l

ikx
l l l

v x z Ce
e

x z i k i k Ce

T E z C e

+

−−

⎛ ⎞⎡ ⎤⎛ ⎞ ⎡ ⎤
= ⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥−⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

μ γ

μ γτ μ γ μ γ

�
  (4.2a) 

Equation (4.2a) allows the displacement-stress state vector at any point of the thl  layer to be 

evaluated in terms of the coefficients of the wave functions there, and vice versa. In other words, 

if the displacement-state vector is known at one point of the thl  layer, the displacement-stress 

state vector will be known at every point of the thl  layer. Here note that lT⎡ ⎤⎣ ⎦  is a constant matrix 

in the thl  layer, and the exponential matrix ( )lE z⎡ ⎤⎣ ⎦  is a diagonal matrix dependent on the 

vertical depth z, but independent of the horizontal distance x. ( )lC�  is the coefficient vector of 

the waves in the thl  layer. This means that the only x-dependence in the above equation for the 
thl  layer is in the term ikxe . Without loss of generality, we will set x 0=  for now, so that 

ikx 1e = , and will be omitted from the above equation. Omitting x, we will write the state vector 

as 

 

( )
0

( ) ( , ) 1 1 0
( ) ( , ) 0

                                                        ( )

l l

l l

i k z
l l l

i k z
l l l l l l lx

l l l

v z v x z Ce
z x z i k i k Ce

T E z C

+

−−
=

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥−⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

μ γ

μ γτ τ μ γ μ γ

�
  (4.2b) 

Further, at the top of the thl  layer, where 0z =  in the thl  local coordinate system, we have 

( )(0) 1 1
  

(0)
l l

l l
l l l l l l

v C
T C

i k i k C

+

−

⎛ ⎞⎛ ⎞ ⎡ ⎤
= = ⎡ ⎤⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎣ ⎦−⎝ ⎠ ⎣ ⎦ ⎝ ⎠τ μ γ μ γ

�    (4.3) 

since [ ]( ) (0)l lE z E I= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , the identity matrix at 0z = . Eliminating the coefficient vector 

( )lC� in Equations (4.2b) and (4.3) gives 

1( ) 1 1 1 1 (0)0
             

( ) (0)0

( )
 or                                                       (

( )

l l

l l

i k z
l l

i k z
l l l l l l l l l l

l
l l

l

v z ve
z i k i k i k i ke

v z
T E z

z

−

−

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦

⎛ ⎞
= ⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠

μ γ

μ γτ μ γ μ γ μ γ μ γ τ

τ
1 (0)

)
(0)

l
l

l

v
T − ⎛ ⎞

⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎣ ⎦
⎝ ⎠τ

     (4.4) 
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for  0 lz h≤ ≤ , at any point in the thl  layer. In particular, at the bottom point of the thl  layer, 

where lz h= , Equation (4.4) becomes: 

τ τ

τ τ

1( ) (0)
                     ( )

( ) (0)

( ) (0)
                               

( ) (0)

l l l
l l l l

l l l

l l l

l l l

v h v
T E h T

h

v h v
h

−⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠

lH
   (4.5) 

where 1( )l l l lT E h T −
⎡ ⎤ = ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦lH  is the Haskell propagator matrix that expresses the 

displacement-stress state vector at the bottom of the thl  layer in terms of that at the top of the 

layer. 

 
 Define a set of displacement-stress state vectors, for 1, 2, ,…l N= : 
 

0

( )
( )

l l

l l z

V v z
zτ

=

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟Τ⎝ ⎠ ⎝ ⎠      (4.6) 

 
which correspond to the state vector at the top of each layer. Since the stress-displacement state 

vectors are continuous across the interface from one medium to the one below, 

one can write Equation (4.5) as  
 

1,  2,  ,  1…l N= −  
11

1

( )l l l
l l l l

l l l

V V V
T E h T −+

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Τ Τ Τ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

lH
   

(4.7a) 

 

In the reverse order, we also have 
 

11 1 1 1

1 1

( )l l l
l l l l

l l l

V V V
T E h T

−− − + +

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Τ Τ Τ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

lH    (4.7b) 

 
The displacement-stress vector at the top of the last (semi-infinite) layer can then be expressed in 
terms of that at the top of the 1st surface layer: 
 

V V⎛ ⎞ ⎛ ⎞
= ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦Τ Τ⎝ ⎠⎝ ⎠

1N
1N-1 N-2

1N

H H H…   (4.8a) 

or in the reverse order   
1 1 1 VV − − − ⎛ ⎞⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ΤΤ⎝ ⎠ ⎝ ⎠
1 N

1 N-2 N-1
1 N

H H H…      (4.8b) 
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Equations (4.4) through (4.8) allow the displacement-stress vector to be calculated at every point 

of every layer in the layered half space. 

 

(2) Rayleigh Waves 

 

 The case of Rayleigh, P and SV waves will next be considered.  Start again with the 

 layer,   thl l 1,2, , N= …  (Figure III.1): 
 

( )
( )

l l

l l

l l l l l

l l l l l

ika z ika z ikx

ikb z ikb z ikx

A A

B B

e e e

e e e

ϕ ϕ ϕ

ψ ψ ψ

+ − + −

+ − + −

+ −

+ −

= + = +

= + = +
  Eqn. (3.1,2) above 

 
With  l la , b  defined in Equation (3.2), the displacement components at each point of the 

 layer,   thl l 1,2, , N= … , are then given by:  

              l l l l
l lu , w

x z z x
ϕ ψ ϕ ψ∂ ∂ ∂ ∂

= − = +
∂ ∂ ∂ ∂

    (4.9) 

 
In terms of the potentials in Equation (3.1), they take the form: 
 

( ) ( )
( ) ( )

     

    

j l l l

j l l l

l
l l l l l

l
l l l l l

ika z ika z ikb z ikb z ikx

ika z ika z ikb z ikb z ikx

u A A b B Bik
w a A A B Bik

e e e e e

e e e e e

+ − + −

+ − + −

+ − + −

+ − + −

⎡ ⎤= + − −⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

 (4.10) 

 
Next, the stress components ( )zx l

τ  and ( )z l
σ at each point of the  layer,   thl l 1,2, , N= … , are 

then given by:  

( )
( )

l

2 l
l l l2

z l l l zl

l ll zxzx l l

w
k

2 z
u w2
z x

αλ ϕ μσ λ ϕ μ ε
μ ετ μ

∂⎛ ⎞
− +⎜ ⎟⎛ ⎞ ⎛ ⎞∇ + ∂⎜ ⎟⎜ ⎟ = =⎜ ⎟⎜ ⎟⎜ ⎟ ∂ ∂⎜ ⎟⎛ ⎞⎝ ⎠⎝ ⎠ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

       (4.11) 

 
In terms of the potentials in Equation (3.1), they take the form: 
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( )
( )

( )( )
( )( )

( ) ( )

             

l l

l l

zz ll

zx zxl l

2 2
l l l l2 l l

l 2 2
l ll l l l

ika z ika z
ikx

ikb z ikb z

x , z

x , z

1 b 2b 1 b 2bA A
k

B B2a 1 b 2a 1 b
e e e
e e

σσ

τ τ

μ
+ −

+ −

+ −

+ −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤− − −⎛ ⎞ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎢ ⎥+⎜ ⎟ ⎜ ⎟⎜ ⎟− − − − −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

 

(4.12) 

 
Writing 

l

2
l lcβμ ρ=  for the shear modulus of the  layer,   thl l 1,2, , N= … , and normalizing the 

stresses in Equation (4.12), the stresses 
( )
( )

z l

zx l

σ

τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 take the form: 

( )
( )

( )
( )

( ) ( )

        

l l

l

l l

T

z zxl l
2 2

2 22
l l l ll l

2l 2 2
l ll l l l

ika z ika z
ikx

ikb z ikb z

kc kc

1 b 2b 1 b 2bc A A
c B B2a 1 b 2a 1 b

e e e
e e

β

σ τ

ρ
+ −

+ −

+ −

+ −

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤− − −⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎢ ⎥ ⎢ ⎥+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

(4.13) 

 

Defining  
2

l
l 2 c

βγ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, and from Equation (3.2),  

( ) ( )
2 2 22l l

2 2 2l l
l

c1 b 2 1c c
β β γβ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (4.14) 

 
equation (4.13) becomes 
 

( ) ( )

( ) ( )

l l

l l

2
z l l ll l l ll l

l2
l j l l l ll lzx l

ika z ika z
ikx

ikb z ikb z

kc 1 b 1 bA A
a 1 a 1B Bkc

e e e
e e

σ γ γ γ γ
ρ

γ γ γ γτ

+ −

+ −

+ −

+ −

⎛ ⎞ ⎛ ⎞− − ⎛ ⎞ ⎛ ⎞⎡ ⎤ −⎡ ⎤⎜ ⎟ = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟ − − −⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

    (4.15a) 

 
which will be switched in the order of x to z: 
 

( ) ( )

( ) ( )

j j

j j

2
zx j j j j j j j jl

j2
j j j j j jj jz l

ika z ika z
ikx

ikb z ikb z

kc a 1 A a 1 A

1 b 1 bB Bkc

e e
e

e e

τ γ γ γ γ
ρ

γ γ γ γσ

+ −

+ −

+ −

+ −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − −⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

    (4.15b) 

 
 In summary, the displacement and stress vector in the thl layer can be put into a matrix 

form as (Dunkin, 1965; Liu, 2010): 
1 2

l l l l l
3 4

l l l l l

ikxu ( x ,z ) T T E ( z ) 0 C
( x,z ) T T 0 E ( z ) C

e
σ

+ +

− −

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞
= ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

��
��

  (4.16) 
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where 
 
1) lu ( z )� and l ( z )σ�  are respectively the (normalized) displacement and stress vectors: 
 

( ) ( )

( ) ( )
             

2
zx ll

l l 2
l z l

( x , z ) kcu ( x , z ) ik
u ( x , z ) ( z )

w ( x , z ) ik ( x , z ) kc

τ
σ

σ

⎛ ⎞⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

� �   (4.17) 

 

2) 1
lT , 2

lT , 3
lT  and  4

lT  are all 2 x 2 matrices, so that  
1 2

l l
l 3 4

l l

T T
T

T T
⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

 is a 4 x 4 matrix 

given by,  
 

( ) ( )
( ) ( )

l l

l l
l

l l l l l l l l l l

l l l l l l l l l l

1 b 1 b
a 1 a 1

[T ]
a 1 a 1
1 b 1 b

ρ γ ρ γ ρ γ ρ γ
ρ γ ρ γ ρ γ ρ γ

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥− − −⎢ ⎥⎣ ⎦

   (4.18) 

Note that the 4 x 4 matrix 
1 2

l l
l 3 4

l l

T T
T

T T
⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

 is constant in the thl  medium. 

 
3) lE ( z )+

 and lE ( z )−  are respectively diagonal elements of the 4 x 4 diagonal matrix: 

    and    
l l

l ll l

ika z ika z

ikb z ikb z
0 0E ( z ) E ( z )

0 0
e e

e e
+ −

+ −

+ −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (4.19) 

Note that in each layer the exponents in these terms can either be real or imaginary. Take for 

example a case when l lc β α< < , then both la  and lb  (Equation (3.2)) will be imaginary, and so 

lika ze+  and likb ze+  are exponentials decaying in z, while lika ze−  and likb ze−  are exponentials 

increasing in z. 
 

4) jC +�
 and jC −�  are respectively 2 x 1 column vectors of the P and SV potentials: 

   and   j j
j j

j j

A A
C C

B B

+ −
+ −

+ −

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� �     (4.20) 

 

As shown in Equation (4.16), the only x-dependence in the above equation for the thl  

layer is, as with Love waves, again only in the term ikxe . Without loss of generality, we will set 
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x 0=  for now, so that ikx 1e =  and will be omitted from the above equation. Omitting x, we will 

write the state vector in Equation (4.16) as 

( )                                                    

1 2
l l l l l l

3 4
l l l l l lx 0

l l l

u ( z ) u ( x ,z ) T T E ( z ) 0 C
( z ) ( x ,z ) T T 0 E ( z ) C

T E ( z ) C

σ σ

+ +

− −
=

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

�� �
�� �

�
  (4.21) 

 

Further, at the top of the thl  layer, where 0z =  in the thl  local coordinate, we have 
 

( )
1 2

3 4

(0)
  

(0)
l l l l

l l
l l l l

u T T C
T C

T T C

+

−

⎛ ⎞⎡ ⎤⎛ ⎞
= = ⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟ ⎣ ⎦

⎝ ⎠ ⎣ ⎦ ⎝ ⎠σ

�� �
��

   (4.22) 

Since [ ]( ) (0)l lE z E I= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , becomes identity matrix at 0z = . Eliminating the coefficient 

vector ( )lC� in Equations (4.21) and (4.22) gives, at each of the  layers,   …thl l 1,2, , N=  

                        

or                                        

11 2 1 2
l ll l l l l

3 4 3 4
l ll l l l l

l
l l l

l

u ( z ) u ( 0 )T T E ( z ) 0 T T
( z ) ( 0 )T T 0 E ( z ) T T

u ( z )
T E ( z ) T

( z )

σ σ

σ

−+

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦ ⎣
⎝ ⎠

� �
� �

�
�

1 l

l

u ( 0 )
( 0 )σ

− ⎛ ⎞
⎜ ⎟⎦
⎝ ⎠

�
�

  (4.23) 

for  0 lz h≤ ≤ , at any point in the thl  layer below. In particular, at the bottom point of the thl  

layer, where lz h= , Equation (4.23) becomes: 

        

                   

1l l l
l l l l

l l l

l l l

l l l

u ( h ) u ( 0 )
T E ( h ) T

( h ) ( 0 )

u ( h ) u ( 0 )
( h ) ( 0 )

σ σ

σ σ

−⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

⎡ ⎤=⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠

lH

� �
� �

� �
� �

   (4.24) 

where 1( )l l l lT E h T −
⎡ ⎤ = ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦lH  is again the Haskell propagator matrix for Rayleigh waves, 

which expresses the displacement-stress state vector at the bottom of the thl  layer in terms of that 

at the top of the layer. 

 
 As for the case of Love waves, we define a set of displacement-stress state vectors, for 

1, 2, ,…l N= , one for each layer, as: 
 

0

( ) (0)
(0) (0)

l ll

l ll z

u z uU
σ σ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟Σ ⎝ ⎠ ⎝ ⎠⎝ ⎠

� � �
� � �     (4.25) 
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which corresponds to the state vector at the top of each layer. Since the stress-displacement state 

vectors are continuous across the interface from one layered medium to the one below, one can 

write Equation (4.24) as:  

1,  2,  ,  1…l N= −   
11

1

( )l l
l l l l

l l

U U
T E h T −+

+

⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Σ Σ⎝ ⎠ ⎝ ⎠

lH
� �
� �

   
(4.26a) 

 
In the reverse order, we also have 

11 1 1 1

1 1

( )l l l
l l l l

l l l

U U U
T E h T

−− − + +

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Σ Σ Σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

lH
� � �
� � �

   
(4.26b) 

 
The displacement-stress vector at the top of the last (semi-infinite) layer can then be expressed in 
terms of that at the top of the 1st surface layer: 
 

U U⎛ ⎞ ⎛ ⎞
= ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦Σ Σ⎝ ⎠⎝ ⎠

1N
1N-1 N-2

1N

H H H
� �

…� �    (4.27a) 

or in the reverse order 
1 1 1 VV − − − ⎛ ⎞⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ΣΣ⎝ ⎠ ⎝ ⎠
1 N

1 N-2 N-1
1 N

H H H… ��     (4.28b) 

  
Equations (4.24) through (4.28) allow the displacement-stress vector to be calculated at every 

point of every layer in the half space from top to bottom. 

 
In summary, this section gives a detailed step-by-step derivation of how the application 

of the continuity of stress and displacement boundary conditions between layers, as given in 

Section III above, leads to the above matrix equation, relating the state vector of stress and 

displacement at each layer to the coefficient vectors of SH displacements and the P and SV wave 

potentials 
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IV.2  The Improved Matrix Propagator Algorithm 
 

 The Thomson-Haskell propagator matrices derived above are based on the use of matrix 

multiplication in the frequency-wave number domain. In theory and in principle, this provides 

the tool for the computation of harmonic elastic waves in a layered, elastic media. It has been 

used to calculate the roots of the zero-determinant of the propagation matrices to determine the 

phase velocities of the Rayleigh and Love surface waves. Here, in our context, it can also be used 

to find the mode shapes of the displacement responses of the layered media in the vertical 

direction. Since its development in the 50’s, the study of wave propagation in a layered elastic 

media has generated much attention and widespread applications. 

 

 In the 60’s and 70’s, high-speed computations using mainframe computers become 

available. Computer programs were developed to perform the calculations of these matrices, as 

reported by Dorman et al (1960) and Press et al (1961). As seen from above, for the case of Love 

and SH waves, the matrices in each layer are of order two. For the cases of Rayleigh and P and 

SV waves, these matrices in each layer are of order four. For a N-layer media, these matrices are 

thus of order 2N for Love, SH (scalar) elastic waves and of order 4N for Rayleigh, P and SV 

(vector) waves. When the number of layers N becomes moderately large, it is thus seen that these 

calculations become cumbersome. Further, it is found from experience then that when the wave 

frequencies are large, the matrix components are very large and the exponential wave functions 

approach both overflow and underflow ranges numerically, making it impossible to obtain the 

roots and mode shapes accurately. Such numerical instabilities exist even at moderate wave 

frequencies for larger layer thickness. This problem is more noticeable in layers where the phase 

velocity is less than the wave speed, so that both waves that are exponentially increasing and 

decreasing in the vertical z-direction exist in the layer. The problem is more significant for vector 

(Rayleigh, P and SV) waves than scalar (Love and SH) waves. 

 

 Knopoff (1964) reported on such numerical problem, first calling attention to the long-

standing difficulty in the solution experienced by many workers and researchers in this subject 

area. Knopoff proposed an alternate matrix formulation to try to avoid the above-mentioned 
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numerical difficulties. Duncan (1965), at the same time, after reading a preprint of Knopoff’s 

paper, proposed another matrix formulation similar to that of Knopoff (1964). 

 

 Here is a brief summary of various proposed modifications of the solution methods for 

the direct Reflection-Transmission matrix method and the Thomson-Haskell propagator matrix 

method, to avoid the inherent numerical instability. This covers the period from the 1960s to 

2010. The published methods are developed mostly for the troublesome Rayleigh, P and SV 

vector waves, but the procedures can also be applied to the Love and SH scalar waves. 

 

Knopoff (1964), Duncan (1965), and Thrower (1965) replaced the original Thomson-

Haskell propagator matrix with its second-order minor matrices. Both Thrower (1965) and 

Randall (1967) reported success using the alternate formulation. Further modification of the 

method was proposed by Watson (1970). 

 

Later Kennet (1974) revisited the Reflection-Transmission (R-T) matrix method and 

derived a new recursive algorithm for generating the generalized reflection-transmission 

coefficients of the wave potentials to avoid the numerical instabilities. Those were subsequently 

updated in Kennet and Kerry (1979, Luco and Apsel (1983), Kennet (1983, 2001) and Chapman 

(2003). Those are now referred to as the generalized R-T coefficient method. 

 

Chapman and Phinney (1972) adopted the same Gram-Schmidt orthogonalization inner-

product method for radio waves developed by Pitteway (1965) to elastic waves, which claimed 

to improve the numerical stability of the propagator algorithm, under some imposed restrictions 

in the propagation step. Wang (1999) also proposed such othogonalization and normalization 

procedures in the propagation step. 

 

Recently, an efficient and elegant method which combines the second-order minor 

method of Knopoff (1965) and others with the Langer block-diagonal decomposition has been 

presented by Chapman (2003) in the paper titled, “ Yet another elastic Plane-wave Layer-matrix 

algorithm”. Ma et al (2012) just recently proposed another such method in formulating the 



R2-37 
 

Thomson-Haskell propagator matrix, also using the orthonormalization and the Langer block-

diagonal decomposition methods. 

 

With so many “efficient” and “elegant” methods for layered-media matrix calculations 

presented, it would be tedious and time consuming to study all of them, and implement them to 

evaluate which is the preferred method to be used.  As pointed out by Ma et al (2012), the three 

methods above, namely,  

1) recursive reflection-transmission matrix method, 

2) orthonormalization method, and 

3) minor matrix method 

are, as stated in their paper: “… all somewhat related and solve the numerical instability in the 

original Thomson-Haskell propagator matrix method equally well …” This makes a lot of sense 

since they are all numerical method implemented to solve the same boundary-valued problem 

with identical physics. 

 

 The numerical scheme used in this work is an improved modification of the Thomson-

Haskell transfer matrix method using the above methodology proposed recently by Liu (2010). 

The same method has successfully been generalized from layered elastic media to that of layered 

azimuthally anisotropic media (Liu et al, 2012). Instead of directly multiplying the Thomson-

Haskell propagator matrix, this method defines for each layer an intermediate stiffness matrix 

and state vector and performs the propagation through an intermediate step at each layer. This 

modified scheme keeps the simplicity of the original propagator method with the intermediate 

step able to efficiently avoid and exclude the exponential growth terms. Here is a brief summary 

of the scheme for Rayleigh waves as in Liu (2010). It is then modified to cover the case of 

incident P and SV body waves. 
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IV.3 The Improved Numerical Implementation for Rayleigh Waves 
  

Start with the Thomson-Haskell Propagator matrix, for 1,  2,  ,  1…l N= −   

 
11

1

( )l l
l l l l

l l

U U
T E h T −+

+

⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Σ Σ⎝ ⎠ ⎝ ⎠

lH
� �
� �

    
Equation (4.16) above 

with the matrices  lT⎡ ⎤⎣ ⎦  and  ( )l lE h⎡ ⎤⎣ ⎦  given in Equations (4.18) and (4.19). Following Kausel 

and Roesset (1981), express first the stress vector in terms of the displacement vector at each 

layer ,  1,  ,  l l N= …  by one involving a layered stiffness matrix lS , namely, ( ) ( )l l lS UΣ = ⎡ ⎤⎣ ⎦ �� , 

so that the displacement-stress state vector takes the form 

l
l

ll

IU
U

S
⎛ ⎞ ⎡ ⎤

=⎜ ⎟ ⎢ ⎥Σ ⎣ ⎦⎝ ⎠

�
�

�      (4.28) 

and the propagating Equation (4.16) becomes, for      l 1, 2, 3, , N 2, N 1= − −… : 

1
1

1

( )l l l l l l l
l l l

I I I
U T E h T U U

S S S
−

+
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
lH� � �       (4.29a) 

or,  in reverse order, for      l N 1, N 2, , 3, 2, 1= − − … : 

11 1
1 1

1 1

( )l l l l l l l
l l l

I I I
U T E h T U U

S S S
−− −

+ +
+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
lH� � �          (4.29b) 

with the 4 x 4 diagonal matrices 
0

( )
0
l

l l
l

E h
+

−

⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

E
E

  and  1 0
( )

0
l

l l
l

E h
−

−

+

⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

E
E

.  Here 

( )l l lE h+ +=E  and  ( )l l lE h− −=E  are both 2 x 2 diagonal matrices given in Equation (4.19) above. 
 

 Equation (4.29b) will be used to define the stiffness matrix sequentially, starting from   

the bottom semi-infinite layer, where l N= . For Rayleigh waves, the waves are surface waves 

with exponentially decaying amplitudes, and thus 0NC − = . Applying Equation (4.28), with 

l N= : 
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1 2

3 4

(0)
(0) 0

N N NN N
N

N N N NN

I v T TU C
U

S T T

+⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ Σ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

�
�

� τ
   

(4.30) 

gives  
13 1

N N NS T T
−

⎡ ⎤ ⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , the stiffness of the semi-infinite bottom layer, the half-space. Using 

Equation (4.29b), with l N 1= − , the stiffness matrix for the layer right above would be 

computed directly from the Thomson-Haskell Propagator matrix equation: 

1
1

1

0
0
l

l l l l
l ll

I I
U T T U

S S

−
−

++
+

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦⎣ ⎦

E
E

� �     (4.31) 

Direct substitution in the calculation would involve adding and subtracting expressions involving 

the exponential terms in l
−E  and l

+E .  As noted above for Equation (4.19), when lc α<   or 

lc β<  , or both, one or all of the exponents in the terms l
−E  and l

+E  would be real, making 

them respectively exponentially increasing and decreasing. It is the additions and subtractions of 

these exponentially increasing and exponentially decreasing terms together that makes the terms 

numerically unstable, with possible overflow and underflow, especially when the frequency is 

high and/or the layer is thick. 

 

 Liu (2010) proposed a step to avoid such numerical problem. From Equations (4.22), 

(4.25) and (4.28)  
(0)
(0)

ll l
l l

l ll l

I uU C
U T

S Cσ

+

−

⎛ ⎞⎛ ⎞⎡ ⎤ ⎛ ⎞
= = = ⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦Σ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠

�� ��
�� �

   (4.32a)  

Rewrite it in terms of an intermediate ‘auxiliary’ stiffness matrix lS⎡ ⎤⎣ ⎦ , and call l lU C += � : 

                                                            

where  from (4.31) 1
1

1

,

0
                   

0

l l l
l l

l
l l l

l ll

I I
U T U

S S

I I
U T U

S S

−
−

++
+

⎡ ⎤ ⎡ ⎤
= ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦⎣ ⎦

E
E

�

�
     (4.32b) 

{ 

to be rewritten as                      
1 1

1 12 2

0
                

0
l l l l

l l
l l l l

P P
U U

P P

− −

+ ++ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

E E
E E

� �     (4.33) 

where      
1

1l
l l2

l 1l

IP
P T

SP
−

+

⎡ ⎤ ⎡ ⎤
= =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦⎣ ⎦
      (4.34) 
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so that the intermediate Stiffness matrix is defined in terms of 1lS +⎡ ⎤⎣ ⎦ , the Stiffness matrix of the 

layer below. Solving for lS gives (Liu, 2010): 

12 1
l l l l lS P P

−+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E    (4.35) 

Note that the intermediate stiffness matrix lS  involves only the diagonal matrix term l
+⎡ ⎤⎣ ⎦E  and 

not l
−⎡ ⎤⎣ ⎦E  . This has the numerical advantage that should the waves in the layer be surface-wave 

type and non-harmonic ( )or   c cα β< < , the terms in l
+⎡ ⎤⎣ ⎦E  would be exponentially decaying, 

and hence would tend to zero, especially when the layer thickness or the wave frequency is large. 
 

With this intermediate step, the intermediate stiffness matrix N 1S −⎡ ⎤⎣ ⎦  can be found from 

Equation (4.35), without any numerical problem. Using equation (4.32), this in turn gives the 

stiffness matrix N 1S −⎡ ⎤⎣ ⎦  in the same layer. This procedure can be repeated until the top layer is 

reached. 
 

 At the top layer, Liu (2010) pointed out that by imposing 1 1S det S 0= =⎡ ⎤⎣ ⎦ , this becomes 

a new efficient procedure to estimate the root of the phase velocity of the Rayleigh waves. Also, 

with the stiffness matrix known here, one can also assume a displacement value of 

0 z 0
W W ( z ) 1

=
= =  (to be scaled later). The zero-determinant equation 1 1S det S 0= =⎡ ⎤⎣ ⎦  also 

gives the ratio 0 0U W , so that the horizontal motion 0U  at the surface is also known. One can 

then proceed down the layer to get the displacement state vector, Equation (4.28), at each layer. 

The motions everywhere are thus computed.  
 

 The case of Love surface waves proceeds the same way, except the matrices are half the 

size, namely 2 x 2 instead of 4 x 4, and scalar instead of 2 x 2 matrices. 
 

In summary, the use of the intermediate stiffness matrix avoided the numerical problem 

encountered by the original Thomson-Haskell propagator matrix for Rayleigh waves. 
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IV.4  The New Numerical Implementation for P and SV Body Waves 
 

 The procedure for P and SV body waves follows the same concept, but is applied in a 

different order. It is different from Rayleigh waves because, instead of surface waves at the 

bottom semi-infinite layer, we now have incident P or SV body waves coming from the layers 

below. We thus will not be able to start by writing down the stiffness matrix NS⎡ ⎤⎣ ⎦  of the bottom 

layer, as in the case of Rayleigh waves. Instead, we will start from the top layer. 
 

At each layer 1,  2,  ,  l N= … , from Equation (4.21) above: 

( )                                                    

1 2
l l l l l l

3 4
l l l l l lx 0

l l l

u ( z ) u ( x ,z ) T T E ( z ) 0 C
( z ) ( x ,z ) T T 0 E ( z ) C

T E ( z ) C

σ σ

+ +

− −
=

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

�� �
�� �

�
  (4.21) above 

Rewrite it as: 

( )                        

1 2
l l l l l

3 4
l l l l l

1
l l l

u ( z ) E ( z ) 0 C
( z ) 0 E ( z ) C

E ( z ) C

σ

− −

+ +

−

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ Γ Γ
= ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ Γ Γ⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= Γ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦
∓

��
��

�
   (4.35a) 

where ( ) l
l

l

C
C

C

−

+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∓
�

�
�  is obtained by switching the order of the terms lC +�  and lC −�  in the 

coefficient matrix, so that the 2 x 2 sub-matrix lE ( z )+  and lE ( z )− are also switched in the 
middle matrix lE ( z )⎡ ⎤⎣ ⎦ , and  lΓ⎡ ⎤⎣ ⎦  is the new transformation matrix given by 

1 2 2 1
l l l l

l 3 4 4 3
l l l l

T T
T T

⎡ ⎤ ⎡ ⎤Γ Γ
Γ = =⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ Γ Γ⎣ ⎦ ⎣ ⎦

    (4.35b) 

obtained by switching the 3rd and 4th columns with the 1st and 2nd columns in the lT⎡ ⎤⎣ ⎦ matrix. 

With this new matrix, lΓ⎡ ⎤⎣ ⎦ , the displacement-stress state vector at the top ( 0)z =  and bottom 

( )lz h=  of the thl layer is given by: 

( ) ( )

( )            

1l
l l l l l

z 0l

1l l
l l l l

l l

u ( 0 )
E ( z ) C C

( 0 )

u ( h )
E ( h ) C

( h )

σ

σ

−

=

−

⎛ ⎞
= Γ = Γ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎝ ⎠
⎛ ⎞

= Γ⎡ ⎤⎡ ⎤⎜ ⎟ ⎣ ⎦⎣ ⎦
⎝ ⎠

∓ ∓

∓

� � �
�

� �
�

    (4.36a) 
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so that   
1 1l l l

l l l l
l l l

u ( h ) u ( 0 )
E ( h )

( h ) ( 0 )σ σ
− −⎛ ⎞ ⎛ ⎞

= Γ Γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎝ ⎠ ⎝ ⎠

� �
� �

   

(4.36b) 

or, in terms of the state vectors defined at each layer in Equation (4.25) above: 

 11

1

0
0
ll l

l l
ll l

U U−
−+

+
+

⎛ ⎞ ⎛ ⎞⎡ ⎤
= Γ Γ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦Σ Σ⎣ ⎦⎝ ⎠ ⎝ ⎠

E
E

� �
� �     (4.37a) 

where, with  
0

( )
0
l

l l
l

E h
+

−

⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

E
E

,  it follows that  1 0
( )

0
l

l l
l

E h
−

−

+

⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

E
E

.  Here 

( )l l lE h+ +=E  and  ( )l l lE h− −=E  are both 2 x 2 matrices given in Equation (4.19) above. 

In terms of the stiffness matrix lS  , namely, from Equation (4.28), ( ) ( )l l lS UΣ = ⎡ ⎤⎣ ⎦ �� :  

1
1

1

0
0
l

l l l l
l ll

I I
U U

S S

−
−

+ +
+

⎡ ⎤⎡ ⎤ ⎡ ⎤
= Γ Γ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦⎣ ⎦

E
E

� �     (4.37b) 

Equation (4.37b) is in the same form as Equation (4.29b) for Rayleigh waves, which goes from 

bottom up, expressing lU�  in terms of 1lU +
� , except we are now in the opposite order, going from 

top down, expressing 1lU +
�  in terms of lU� . 

 

 Equation (4.37b) will be used to define the stiffness matrix starting from the surface of 

the top layer. As in the case of Equation (4.29b) for Rayleigh waves, introduce in Equation 

(4.37b) a new (different) intermediate ‘auxiliary’ stiffness matrix lS⎡ ⎤⎣ ⎦  , and a new auxiliary 

displacement vector lU  can be defined as: 

                                                    

where            

1
1

1

,

0
                         

0

l l l
l l

l
l l l

l ll

I I
U U

S S

I I
U U

S S

+
+

−
−

+

⎡ ⎤ ⎡ ⎤
= Γ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤

= Γ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦⎣ ⎦

E
E

�

�
         (4.38) 

{ 

to be rewritten as                     
1 1

2 2

0
                

0
l l l l

l l
l l l l

Q Q
U U

Q Q

− −

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

E E
E E

� �      (4.39) 
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where     
1

1l
l l2

ll

IQ
Q

SQ
Γ −⎡ ⎤ ⎡ ⎤

= =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦⎣ ⎦

        (4.40) 

The intermediate stiffness matrix lS⎡ ⎤⎣ ⎦  is thus written in terms of the stiffness matrix lS⎡ ⎤⎣ ⎦  of the 

same layer. Solving for lS gives, as in Equation (4.35) for the case of Rayleigh waves: 

12 1
l l l l lS Q Q

−+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E    (4.41) 

Note that again the intermediate stiffness matrix lS  involves only the matrix term l
+⎡ ⎤⎣ ⎦E  and not 

l
−⎡ ⎤⎣ ⎦E  . As stated above, the terms in l

+⎡ ⎤⎣ ⎦E  would only be harmonic, or be exponentially 

decaying, which would tend to zero, especially when the layer thickness or the wave frequency is 

large. Using equation (4.38), this in turn gives the stiffness matrix l 1S +⎡ ⎤⎣ ⎦   in the layer. This 

procedure can be repeated until the bottom semi-infinite layer is reached. 

 

The case of incident SH body waves proceeds the same way, except the matrices are half 

the size, namely 2 x 2 instead of 4 x 4, and scalar instead of 2 x 2 matrices. 

 

In summary, the use of the intermediate stiffness matrix avoids the numerical problem 

encountered by the original Thomson-Haskell propagator matrix for P and SV body waves. 
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V. Love and SH Body Wave Mode Shapes 

 
 

Figure I.1 in section I above shows the computed phase velocities for 5 modes of Love 

waves (dashed lines) and 5 modes of Rayleigh waves (solid lines) at the Imperial Valley El 

Centro 6-layered media. With the modified Thomson-Haskell propagator matrix defined in 

Section IV above, the relative amplitudes can now be computed for each mode of the Love 

waves for each frequency where the waves exist at each layer of the half-space. Assuming the 

displacement amplitude to be one at the half-space surface. 

 
 The next sub-section will be a description of the Love Waves mode #1 to mode #5, the 

five modes for which the calculations were made to obtain the phase velocities ( )c c T=  for a 

range of periods starting from 15sec down to 0.04sec.This is followed by another sub-section of 

the mode shapes resulting from body SH waves for a given incident angle. This will be taken to 

be a “6th mode” of waves to be included in the generation of synthetic translational motions in 

the (anti-plane, SH) transverse direction. 

 

 A complete set of graphs of mode shapes for all the periods of all five modes of Love 

waves and body SH waves for a selected incident angle are given in Appendix A at the end of 

this report. 
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V.1  Love Waves Mode #1 to Mode #5 

 
 Mode #1 has phase velocities for all 91 periods in the range from 15 sec down to 0.04 sec. 

The Thomson-Haskell computation gives the mode shapes of the Mode#1 Love waves in the 

same wide period range. Figure V.1 shows the plots of such Love wave mode shape amplitudes 

at four selected periods: 5,  1.0,  0.5,  and 0.1 T s= .  

 

 As stated above, the amplitude of the mode shape is normalized to be one at the surface 

of the half-space, so that the mode shape values are the scaling factors or transfer function values 

of the waves along different depths from the half-space surface for mode #1 waves. Each graph 

shows the mode shape amplitudes versus the distance z, which is the depth in kilometers below 

the half-space surface. 

 
 As expected for Mode #1 mode shapes, all curves that started with unit amplitude at 

0z = , at the surface, stay positive all the way, and finally decay to zero down below. The waves 

at long periods (short frequencies) decay slower than the waves at short periods (high 

frequencies). Note that the amplitudes stay below unity all the way. 

 

As an example, the mode shape for the waves at ( )5sec  0.2T hz=  period in the top-left 

graph decays slowly and stays above zero all the way down to 6z km= , which is just inside the 

semi-infinite half-space medium, the 6thlayer in the model, where 5.58z km> .  The mode shape 

for the waves at ( )1sec  1.0T hz=  period in the top-right graph decays a bit faster and stays 

above zero only down to 1.5z km∼ , which is just inside the 3rdlayer in the model, where 

0.73 1.71z km≤ ≤ . The mode shape for the waves at ( )0.5sec  2.0T hz=  period in the bottom-

left graph now decays much faster and stays above zero only down to 0.7z km∼ , which is close 

to the bottom of the 2ndlayer in the model, where 0.18 0.73z km≤ ≤ . Finally, the mode shape for 

the waves at ( )0.1sec  10.0T hz=  period in the bottom-left graph now decays so fast that it 

stays above zero only down to 0.2z km∼ , which is just inside the 2ndlayer in the model, with the 

1st layer in the range 0.0 0.18z km≤ ≤ .  
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Figure V.1 Mode#1 Love Waves Mode Shapes at 5,  1.0,  0.5,  and 0.1 T s=  
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 The mode shapes for all 91 periods of Mode #1 of Love Waves can be found in Appendix 

A-1. 

 

 Mode #2 has phase velocities for all 70 periods in the range from 3.8 sec down to 0.04 

sec. The Thomson-Haskell computation thus gives the mode shapes of the Mode#2 Love waves 

in the same wide period range. Figure V.2 shows the plots of such Love wave mode shape 

amplitudes at four selected periods: 3.8,  1.0,  0.3,  and 0.1 T s= .  

 

 Again, as for Mode #1, the amplitude of the mode shape is normalized to one at the 

surface of the half-space, so that the mode shape values are again the scaling factors of transfer 

function values of the waves along the depth for mode #2 waves. Each graph shows the mode 

shape amplitudes versus the distance z, measured as depth in kilometers below the half-space 

surface. 

 

The mode #2 mode shape starts with unit amplitude at 0z =  on the surface. Unlike Mode 

#1, which started positive and stayed positive before decaying to zero, the mode #2 will decay to 

negative values at some depth and stay negative before decaying to zero. The shape at long 

periods (short frequencies) decays slower than the shape at short periods (high frequencies). Note 

that at some periods, the mode shape amplitudes can go below -1.0 in the negative range, 

resulting in larger amplitudes of motion below the surface. As an example, the mode shape for 

the waves at ( )3.6sec  0.28T hz=  period in the top-left graph decays slowly, turns negative in 

the 3rd layer, 0.73 1.71z km≤ ≤ , at around ~ 1.5z km , reaching a negative minimum (no more 

than -0.5) in the 4th layer around ~ 3z km . It stays negative all the way down beyond 10z km= , 

outside the range of the plots, way below in the half-space medium, the 6thlayer in the model, 

where 5.58z km> .   



R2-48 
 

Figure V.2 Mode#2 Love Waves Mode Shapes at 3.6,  1.0,  0.3,  and 0.1 T s=  



R2-49 
 

 
The mode shape for the waves at ( )1sec  1.0T hz=  period, in the top-right graph, decays 

a bit faster to negative values around ~ 0.5z km , in the 2nd layer, 0.18 0.73z km≤ ≤ . It stays 

negative, with the negative minimum (close to -1.0) right at the start of the 3rd layer at 

0.73z km= , then decays to zero right at the interface of the 4th and 5th layer at 2.90z km= .  

 

The mode shape for the waves at ( )0.3sec  3.33T hz=  period, shown in the bottom-left 

graph, now decays much faster to negative values around ~ 0.15z km in the top 1stlayer 

0.0 0.18z km≤ ≤ . It stays negative, reaching a negative minimum below -1.5, around 

~ 0.5z km in the 2nd layer,  0.18 0.73z km≤ ≤ . It then decays to zero right at the start of the 3rd 

layer, 0.73 1.71z km≤ ≤ , before ~ 0.8z km . 

 

Finally, the mode shape for the waves at ( )0.1sec  10.0T hz=  period in the bottom-right 

graph decays so fast that it goes negative right in the top 1st layer, 0.0 0.18z km≤ ≤ , reaches its 

negative minimum close to the interface of the 1st and 2nd layers at 0.8z km= and immediately, 

decays to zero in the same 2nd layer. The mode shapes for all 70 periods of Mode#2 of Love 

waves can be found in Appendix A-2.  

 
 Mode #3 has phase velocities for all 61 periods in the range from 2.0 sec down to 0.04 

sec. The Thomson-Haskell computation gives the mode shapes of the Mode#3 of Love waves in 

the same period range. Figure V.3 shows the plots of mode shape amplitudes at four selected 

periods: 2.0,  0.75,  0.2,  and 0.075 T s= . The mode shapes have the right feature expected for 

the 3rd mode, namely, all graphs cross the zero line twice before decaying to zero at some depth. 

The mode shapes for all 61 periods of Mode #3 Love Waves are found in Appendix A-3. Finally 

the mode shapes for all available periods of Mode #4 and Mode #5 are respectively plotted in 

Appendices A-4 and A-5. 
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Figure V.3 Mode#3 Love Waves Mode Shapes at 2.0,  0.75,  0.2,  and 0.075 T s=  
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V.2  Body SH Waves with a Given Incident Angle 
 

Figure V.4 shows the plots of SH body wave mode shape amplitudes at four selected 

periods: 5.0,  1.5,  0.50,  and 0.15 T s= , assuming a given angle of incidence of body SH waves 

at 85oγ =  with respect to the vertical direction from the bottom semi-infinite 6th layer. Such 

mode shapes can be computed at all 91 periods in the range from 15.0 T s=  down to 0.04 T s= .  

 

This corresponds to an almost horizontal angle of incidence. The actual angle of 

incidence  will be different in each case, and will depend on  
 

1) the actual location and focal depth of the earthquake source, 
2) the actual location of the recording site and its epicentral distance from the source. 

 
The next two sections will illustrate two cases where either 
 

1) the site is in the near-field of the source, with hypocentral distance 10D km≈ , or  

2) the site is in the far-field from the source, with hypocentral distance 40D km≈ . 

 

In each case, a ray path is traced so that the ray will take the shortest time to travel from 

the source to the site, and as the next section shows, each ray will have an angle of incidence 

different, but close to the angle of incidence of body SH waves at 85oγ =  , selected for this 

example. 

 

 In each case, the mode shapes are normalized to have amplitude one at the half-space 

surface of 0z = . At depth, the body SH waves will then all have amplitudes that oscillate. 

Unlike the surface Love waves, these are body waves and hence the mode shape amplitudes will 

not decay to zero. 

 
The mode shapes for all available periods of body waves from incident SH-waves are 

plotted in Appendix A-6. 
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Figure V.4    SH Body Waves at 5.0,  1.5,  0.50,  and 0.15 T s=  
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VI. Rayleigh and P and SV Body Wave Mode Shapes 
 
 

Next we illustrate the mode shapes for the five modes of Rayleigh surface waves. As in 

the case of Love waves, with the modified Thomson-Haskell propagator matrix defined in 

Section IV above, the relative amplitudes can now be computed for each mode of the Rayleigh 

waves for each frequency where the waves exist and in each layer of the half-space. There will 

now be 2 components of in-plane motions, the horizontal x-component and the vertical z-

component. We will normalize the displacement amplitude of both components with respect to 

the vertical z-component of motion at the half-space surface. 

 

 The next sub-sections will describe the Rayleigh waves mode #1 to mode #5, for the 

phase velocities ( )c c T=  , in the range of periods starting from 15sec down to 0.04sec. This will 

be followed by a sub-section of the mode shapes of body P and SV waves for a given incident 

angle. This will be taken to be the “6th and 7th modes” of waves to be included in the generation 

of synthetic translational motions in the (in-plane, P and SV) radial and vertical directions. A 

complete set of figures of mode shapes for all the periods of all five modes of Rayleigh waves 

and body P and SV waves for a selected incident angle are given in Appendix B at the end of this 

report. 
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VI.1  Rayleigh Waves Mode #1 to Mode #5 
 

 The mode #1 of Rayleigh waves has phase velocities for all 91 periods from 15 sec down 

to 0.04 sec. The Thomson-Haskell computation gives the mode shapes of the mode#1 of 

Rayleigh waves in the same wide period range at every specified point below the surface. Figure 

VI.1 shows the plots of two components (x- and z-) of such Rayleigh wave mode amplitudes at 

four selected periods: 5,  1.0,  0.5,  and 0.1 T s= . 
 

 The amplitudes of the mode shapes of both components are normalized with respect to 

the vertical component of motion at the surface of the layered half-space, so that the mode shape 

values are the scaling factors or transfer function values of the waves at different depths from the 

half-space surface. Each graph has two components of plots of the mode shape amplitudes versus 

the distance z, measured in kilometers below the half-space surface. Note that at the half-space 

surface, with the z-component of motion 
0

( ) 1
z

W z
=
= , the x-component of motion, 

0 0
( ) ( )

z z
U z i W z iγ γ

= =
= = , is an imaginary number, where γ  is a ratio computed from the 

Haskell algorithm for estimating phase velocities of Rayleigh waves. With this normalization, 

( )W z will stay real, while ( )U z will stay imaginary for all z. Without loss of generality, only the 

imaginary part of ( )U z  will be plotted here. 

 
 As expected for Mode #1 mode shape, all amplitudes start at 0z = , on the surface, 

maintain the same sign without crossing the zero line, and decay to zero at some depth below the 

surface. The waves at long periods (short frequencies) decay slower than the waves at short 

periods (high frequencies).  
 

As an example, the z-component of the mode shape for the waves at ( )5sec  0.2T hz=  

period is shown in the top-left graph of Fig. VI.1. It starts with unit amplitude on the surface, 

decays slowly and stays above zero all the way down to 3z km∼ , which is just inside the 5th 

layer. The (imaginary part of) x-component of the mode shape, on the other hand, starts at 

1.6−∼ , and stays negative before decaying to zero around 5z km∼ , near the bottom of the 5th 

layer.  
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Figure VI.1 Mode#1 of Rayleigh Waves.  x- and z- Mode Shapes at 5,  1.0,  0.5,  and 0.1 T s=  
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The mode shapes for both components at 1secT = period ( )1.0hz in the top-right graph decay a 
bit faster to zero around 0.75z km∼ , which is just inside the 3rdlayer in the model, where 
0.73 1.71z km≤ ≤ . The mode shapes for the waves at ( )0.5sec  2.0T hz=  period in the bottom-
left graph decay much faster and stay above zero only down to 0.5z km∼ , inside the 2nd layer, 
where 0.18 0.73z km≤ ≤ . Finally, the mode shapes for the waves at ( )0.1sec  10.0T hz=  
period, in the bottom-right graph decay so fast that they both decay to zero before 0.15z km∼ , 
which is inside the 1st layer of the model, 0.0 0.18z km≤ ≤ .  
 
One interesting difference between this and the Love wave mode shapes is that the amplification 
factor (normalized mode shape amplitude) can be above one for one or both of the components 
of motion. The mode shapes for all 91 periods of Mode #1 of Rayleigh Waves can be found in 
Appendix B-1. 
 
  
 Mode #2 of Rayleigh waves has phase velocities for all 74 periods in the range from 4.6 

sec down to 0.04 sec. The Thomson-Haskell computation gives the mode shapes of the Mode#2 

in the same wide period range. Figure VI.2 illustrates the plots of both components of Rayleigh 

wave mode shape amplitudes at four selected periods: 3.0,  1.0,  0.3,  and 0.1 T s= . The z-

component mode shape amplitude is normalized to one at the surface of the half-space, so that 

the mode shape values again become the scaling factors or transfer function values of the waves 

along the depth for mode #2 waves. Each graph shows plots of the mode shape amplitudes for 

both components versus depth in kilometers. 

 

Unlike the Mode #1 mode shapes, the mode #2 shapes will change sign and cross the 

zero line before decaying to zero at some depth below. The waves at long periods (low 

frequencies) decay slower than the waves at low periods (high frequencies). Note again that at 

some periods, the mode shapes go below -1.0 in the negative range, resulting in higher 

amplitudes of motion below the surface than at the surface. 

 

The mode shape for both x- and z- components at ( )3.0sec  0.33T hz= , shown in the 

top-left graph, decays slowly. The horizontal x-component starts positive at the top surface, turns 

negative down below, and reaches a negative maximum amplitude of almost -8 at or close to the 

start of the 3rd layer around 0.73z km= . The negative z- component starts at the normalized  
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Figure VI.2 Mode#2 of Rayleigh Waves. x- and z- Mode Shapes at 3,  1,  0.3,  and 0.1 T s=  
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amplitude of 1.0, turns negative in the 1st layer before 0.18z km= , and reaches a negative 

minimum amplitude of almost -8 right after the start of the 4th layer, beyond 1.71z km= . After 

the negative maxima, both components then gradually oscillate and cross the zero line one more 

time before decaying to zero right after the start of the bottom of 6th semi-infinite layer, where 

5.58z km> . Thus mode #2 has amplitudes with magnitudes much greater than one, the 

normalized amplitude for the z- component at the surface. This can occur for all the modes of 

Rayleigh waves beyond mode #1. 

 

The mode shapes for all available periods of Modes #2 to Modes #5 of Rayleigh Waves 

are found respectively in Appendix B-2 through B-5. 

 
 
VI.2  Body P and SV Waves of a Given Incident Angle 
 

Figure VI.3 shows the plots of P and SV body wave mode shapes at four selected periods: 

5.0,  1.5,  0.50,  and 0.15 T s= , assuming a given angle of incidence for P- waves at 85oγ =  

with respect to the vertical direction from the bottom semi-infinite 6th layer. Such mode shapes 

are available at all 91 periods in the range from 15.0 T s=  down to 0.04 T s= .  

 

As for the body SH- waves, this corresponds to an almost horizontal angle of incidence. 

The actual angle of incidence used will be different for each case, and will dependent on   
 

3) the actual location and focal depth of the earthquake source, 
4) the actual location of the recording site and its epicentral distance from the source. 

 
The next two sections will illustrate two cases where either 
 

3) the site is in the near-field of the source, with hypocentral distance 10D km≈ , or  

4) the site is in the far-field from the source, with hypocentral distance 40D km≈ . 

 

In each case, a ray path is traced so that the ray will take the shortest travel time from 

source to the site, and as the next section will show, they each will have an angle of incidence 

close to the angle of incidence of body P waves at 85oγ =  selected for this example. 
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Figure V.3 P and SV Body Wave modes for Incident P Waves at 
5.0,  1.5,  0.50,  and 0.15 T s=  
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Figure V.4    P and SV Body Wave modes for Incident SV-Waves at 

5.0,  1.5,  0.50,  and 0.15 T s=  
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With the mode shapes and Transfer functions available for the 5 modes of Love waves 

and 1 “mode” of Body SH waves, the procedures of Section II are now ready to generate the 

synthetic transverse components of acceleration at all depths z below the surface. We will pick 

the same El Centro 6-Layered elastic model and select the following two cases of parameters for 

the earthquake source and site characteristics: 

 

1) Case 1:   6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  

2) Case 2:  6.5,  40.0 ,  9.0 ,  0,  2LM R km H km s s= = = = =  

where 
 

M = earthquake magnitude 

R = epicentral distance 

H = focal depth of earthquake 

s = geologic site condition of the recording site, where 

  s = 0, alluvial site, s = 1, intermediate site and s = 2, rock site 

Ls = soil condition of the recording site, where 

  Ls = 0, rock soil, Ls =1, stiff soil and Ls =2, deep soil  

 

The two cases are on the same site, with the same geological and soil site conditions, and are 

subjected to an earthquake of the same magnitude. They differ only in the epicentral distances 

and the earthquake focal depths. Case 1 illustrates near-field motions with small epicentral 

distance and shallow focal depth. Case 2 has larger epicentral distance and slightly deeper source.  

 

VII.1  Case 1: ( )6.5,  8.0  &  6.0  10.0 ,  0,  2LM R km H km D km s s= = = = = =  

  
 As described in the above sections, the time history at the top surface 0z =  will be 

generated by the SYNACC method (Trifunac, 1971b; Wong and Trifunac, 1978, 1979; Lee 

and Trifunac, 1985, 1987), using the currently developed SYNACC algorithm, which includes a 

VII. The Synthetic Transverse Translational Motions
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mode of SH body waves. Figure VII.1 is a plot of the ray path taken by the SH body waves from 

the earthquake source to arrive at the recording site. 

Figure VII.1 SH Body Waves Ray Path from Source 

 
 The ray path is chosen so that the phase velocities at each layer of the 6-layered media is 

the same, or that the angles of the ray travel are determined so that Snell’s Law is satisfied at 

each interface, namely, for each layer 1,  2,  ,  6i = … : 

( )sin 3.72 km/s,  a constanti ic β γ= =    (VII.1) 

where iβ  = shear wave speed,  and iγ  = angle the ray makes with respect to the vertical direction 

at the thi layer. It shows that the ray will start at an angle of 6 83.4oγ ∼ with respect to vertical, 

with almost horizontal path, and bend up into the layered media so that it arives at the site with 

1 15.3oγ ∼ , with respect to the vertical. 
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Figure VII.2    SH Body Waves at 3.6,  1.5,  0.36,  and 0.15 T s=  
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 Figure VII.2 shows the SH body wave mode shapes at four selected periods: 

3.6,  1.5,  0.36,  and 0.15 T s= . Such mode shapes are available at all 91 periods in the range 

from 15.0 T s=  down to 0.04 T s= . This allows us to generate “an extra mode of body SH 

waves”, which together with the 5 modes of Love waves, can be used to generate the transverse 

components of synthetic translational motions at all depths on and below the surface. 
 

Figure VII.3 shows a synthetic acceleration calculated at the El Centro cite, with six-

layers, at 100 points equally spaced from the surface to a depth of almost 6km below. At an 

epicentral distance of 8.0R km=  from an earthquake source of focal depth 6.0H km= , which 

corresponds to the hypocentral distance of ( ) ( )1 2 1 22 2 2 28.0 6.0 10.0 .D R H km= + = + =  The 

SYNACC program determines that the appropriate duration of the accelerogram record should 

be just above 40 seconds.  The depth of each accelerogram is labeled at intervals 0.6 km apart. 

Of the 100 acceleration time histories, six are plotted green, and labeled 0 to 5. The one labeled 0 

is the accelerogram at the top surface 0z = , while the ones labeled 1 to 5 are those at depths, 

which are closest to the interfaces between adjacent layered media. 

 

Note that the actual time scale of the above time histories has been shifted to have a 

common time scale, where 0 secT = is defined by SYNACC to be the time maxD c , where D is 

the hypocentral distance and maxc is the maximum phase velocity of the waves. 

 

Perusal of Figure VII.3 shows that, at such a short distance, 10.0D km= , both the Love 

waves and body waves arrive within a few seconds. The SH body waves have the same phase 

velocity at all periods and the figure shows that the direct arrival time of the SH body waves is 

4.49T s= . The arrival times for Love waves will be different for different modes, and for waves 

at different periods, since the phase velocities ( )c c T= , depend on the period of the waves, as 

shown by the dispersion curves in Figure I.1. The acceleration time histories show that the 

strong-motions arrives by about 5.0T s= , which follows the direct arrival time of body waves at 

4.49T s= .  
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Figure VII.3 Synthetic Acceleration: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =  
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The strong-motion is observed at depths in the first two top layers, up to 0.7z km∼ . 

Smaller motions are in the 3rd layer up to 1.7z km∼ , beyond which the motions become small. 

This is consistent with the mode shape amplitudes of Love waves (Section V), where it was 

found that, for all modes, at moderate periods, the motions stay close to, but are always less than 

those at the top surface, in the first two layers, and then began to die down further below. The 

attenuation is faster for the waves at higher frequencies. 

 

Figure VII.4 shows the corresponding synthetic velocity. The actual depth of each 

velocity time function is labeled at each 0.6 km apart. Of the 100 velocity time histories, six of 

them are plotted green, and labeled 0 to 5. The one labeled 0 is the velocity at the top 

surface 0z = , while the ones labeled 1 to 5 are those time histories at depths on or closest to the 

interfaces between adjacent layered media. 

 
The new SYNACC program computes the velocity at all depths from the corresponding 

acceleration time histories from the Fourier transform in the frequency domain to get the velocity 

spectra, and then taking its inverse Fourier transform. 

 

Figure VII.5 shows the corresponding displacements calculated at the same El Centro site. 

The actual depth of each displacement is again labeled at depths 0.6 km apart. Of the 100 

displacement time histories, six of them are again plotted green, and labeled 0 to 5. The one 

labeled 0 is the displacement at the top surface 0z = , while the ones labeled 1 to 5 are again 

those at depths on or closest to the interfaces between adjacent layered media. The new 

SYNACC program computes the displacement at all depths from the corresponding acceleration 

time histories in the frequency domain to get the displacement spectra, and then taking its inverse 

Fourier transform.  
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Figure VII.4 Synthetic Velocity: 6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
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Figure VII.5 Synthetic Displacement:  6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
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 It is instructive to plot the above two-dimensional (2-D) time histories of acceleration, 

velocity and displacement in Figures VII.3, 4 and 5, as three-dimensional (3-D) figures.  

 

Figure VII.6 in the next page is the 3-D plot of the translational motions of the same 100 

accelerations corresponding to Figure VII.3. The two horizontal longitudinal and transverse 

coordinate axes are now correspondingly the time axis and the depth below surface. The vertical 

axis shows the amplitude of acceleration in 2/cm s . The five green lines, labeled 0 to 5, again 

correspond to the positions where the layers meet.  

 

 Figures VII.7 and VII.8 in the two pages following show the 3-D representation of 

synthetic velocities and displacements corresponding to the 2-D plots of Figures VII.4 and VII.5 
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Figure VII.6 Synthetic Acceleration for 6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
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Figure VII.7 Synthetic Velocity for 6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
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Figure VII.8 Synthetic Displacement for 6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
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VII.2     Case 2: ( ) 6.5,  40.0 ,  9.0  41.0 ,  0,  and 2LM R km H km D km s s= = = = = =  
 

We now consider an example of far field motion, for epicentral distance 40.0R km= and 

an earthquake source at a focal depth of 9.0H km= . This corresponds to a hypocentral distance 

of ( ) ( )1 2 1 22 2 2 240.0 9.0 41 kmD R H= + = + = . Figure VII.9 shows a plot of the path taken by 

the SH body waves from the earthquake source to the recording site. As before, the path is 

chosen so that the phase velocities in each layer is the same, or that the angles the ray travels are 

determined so that Snell’s Law is satisfied at each interface (Equation VII.1).  

Figure VII.9 SH Body Waves Ray Path from Source to Site 

 

This results in the ray starting with an angle of 6 84.5oγ ∼ with respect to vertical, and 

incident at the site with 1 15.3oγ ∼ . Figure VII.10 shows the SH body wave mode shapes at four 

selected periods: 5.0,  1.5,  0.50,  and 0.15 T s= . As in Case 1, this allows us to generate an 

extra mode of body SH waves, which, together with the 5 modes of Love waves, can be used to 

generate the transverse components of synthetic translational motions at all depths at and below 

the surface. 
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Figure VII.10    SH Body Waves at 5.0,  1.5,  0.50,  and 0.15 T s=  
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In the following we present only 3-D plots for this case. Figure VII.11 shows the 

synthetic acceleration calculated at the El Centro site for case 2 earthquake parameters. Again 

the SYNACC computer program determined that the appropriate duration of the accelerogram 

record should be just above 40 seconds.  As in case 1, the two horizontal longitudinal and 

transverse coordinate axes are correspondingly the time axis and to the depth in km below the 

surface. The vertical axis gives the amplitudes of accelerationin in 2/cm s . The five green lines, 

labeled 1 to 5, again correspond to the positions where the layers meet. Recall that the actual 

time scale of the time histories has all been shifted to have a common time scale, where 

0 secT =  is defined by SYNACC to be the time maxD c , where D is the hypocentral distance 

and maxc is the maximum phase velocity of the waves. 

Perusal of Figure VII.11 shows that, in far-field at distance 41.0D km= , the Love 

surface waves and body SH waves arrive at different times. The SH body waves have the same 

phase velocity at all periods and Figure VII.9 shows that the direct arrival time of the body SH 

waves is 13.18T s= . The arrival times for the Love waves will be different for the different 

modes, and for waves at different periods, as shown by the dispersion curve in Figure I.1. The 

acceleration curves show that the noticeable surface waves did not arrive until after 20s from the 

start of the earthquake. 

 

The strong-motion surface waves, beyond the 20sec, are observed at depths of the first 

three top layers, up to 1.7z km∼ . The first two layers have stronger motions than the 3rd layer, 

with negligible motions observed beneath the 3rd layer. This is consistent with the mode shapes 

of Section V. The decrease of motions is even faster for waves at higher frequencies. However, 

the body SH waves before 20sec are noticeable at all depths, consistent with Figure VII.10. 

 

Figures VII.12 and VII.13 show the 3-D plots of the corresponding synthetic velocity and 

displacement, computed from the synthetic acceleration, same way as in case 1. Strong motions 

are again observed, as in acceleration, in the 1st 3 top layers, and body waves arrive much earlier 

than the surface waves. 
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Figure VII.11 Synthetic Acceleration for 6.5,  40. ,  9. ,  0,  and 2LM R km H km s s= = = = =  
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Figure VII.12 SyntheticVelocity for 6.5,  40. ,  9. ,  0,  and 2LM R km H km s s= = = = =  
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Figure VII.13 Synthetic Displacements for 6.5,  40. ,  9. ,  0,  and 2LM R km H km s s= = = = =  
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             The contributions of the synthetic motions from body waves and surface waves are 

easier visualized by plotting them separately, as in Figures VII.14, VII.15, VII.16, in the next 

three pages, for synthetic acceleration, velocity and displacement.  

 

The two 3-D graphs in Figure VII.14 represent the acceleration time histories of the body 

waves and of surface waves. The body wave time histories on the left show that the waves arrive 

at the beginning and dominate the motions at all depths within the first 10+ seconds. The body 

wave motions are also seen at all depths below the surface. The surface wave time histories on 

the right show the motions, which arrive later, at about 20 seconds after the earthquake. In this 

example the body wave peak acceleration has a smaller maximum compared with that of the 

surface waves. This results from the fact that the weights assigned to the five modes of surface 

Love waves are higher than the weight assigned to the mode #6 of body waves. Combining the 

motions of the body waves and of surface waves results in the complete acceleration time 

histories, which are shown in Figure VII.11. 

 

The two 3-D graphs in Figure VII.15 represent the velocity time histories of the body 

waves and the surface waves. As for the acceleration time histories, the body wave velocity time 

histories on the left display noticeable motions only during the first 10 seconds, after which the 

motions die out. These motions are clearly noticeable at all depths. The surface wave velocity 

time histories on the right show strong motions only in the top 3 layers and the maximum 

motions occur there after about 20 seconds from the earthquake origin time. 

 
The two 3-D graphs in Figure VII.16 represent the displacement time histories of the 

body waves and of the surface waves. Unlike the acceleration time histories, the body wave 

displacement time histories (on the left) show only few noticeable motions at all depths, even 

during the first 10 seconds. The surface wave displacement time histories on the right are more 

dominant, especially in the top 3 layers and the maximum motions again occur there beyond the 

20 seconds after the earthquake origin time. 
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Figure VII.14   Contributions of Body and Surface Waves to Total Synthetic Acceleration 
 

Body Waves          Surface Waves 
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Figure VII.15   Contributions of Body and Surface Waves to Total Synthetic Velocity 
 

Body Waves          Surface Waves 
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Figure VII.16   Contributions of Body and Surface Waves to Total Synthetic Displacement 
 

Body Waves          Surface Waves 
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VIII.              The Synthetic Radial and Vertical Translational Motions 
 

We will select again the same El Centro 6-Layered elastic model for a site and will 

consider the following two cases of earthquake source and site characteristics: 

 

1) Case 1:  6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  

2) Case 2:  6.5,  40.0 ,  9.0 ,  0,  2LM R km H km s s= = = = =  

where the earthquake parameters ,  ,  ,  ,  LM R H s s  are defined as in Section VII for Synthetic 

Transverse Translational motions. The two cases differ only in the epicentral distances and the 

earthquake focal depths. Case 1 is the case of near-field motions, while case 2 is the case of 

motions further away. 

 

VIII.1     Case 1: ( ) 6.5,  8.0 ,  6.0  10.0 ,  0,  and 2LM R km H km D km s s= = = = = =  
 

As before, the time histories at the top surface 0z =  are generated by the existing 

SYNACC method, and the current SYNACC algorithm is used to include the modes of 

longitudinal, P waves (mode #6) and shear, SV waves (mode #7).  

Figure VIII.1a shows the ray path taken by the P-waves from the earthquake source to the 

recording site. The ray path is chosen so that the phase velocities at each layer of the 6-layered 

media are the same, or that the angles the ray travels are determined so that Snell’s Law is 

satisfied at each interface, for the layers 1,  2,  ,  6i = … : 

( )sin 6.44 km/s,  a constanti ic α γ= =    (VIII.1) 

where iα  = are the compressional wave speeds, and iγ  = angles the ray makes with respect to 

the vertical direction at the thi layer. It shows the ray starting at an angle of 6 83.4oγ ∼ with 

respect to the vertical, and progressing up the layered media and ariving at the site with 

1 15.3oγ ∼ . 
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Figure VIII.1a   P- Body Waves Ray Path from Source to Site 

 

Figure VIII.1b shows the ray path taken by the (slower) SV body waves. The ray path is 

again chosen so that the phase velocities in each layer of the 6-layered media are the same 

(Equation VII.1 of Section VII). It shows that the ray will start with an angle 6 83.4oγ ∼ with 

respect to vertical, and then progress up the layered media arriving at the site with 1 15.3oγ ∼  

Note that P-waves have almost the same starting angle at the source and ending angle at the site. 
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Figure VIII.1b   SV- Body Waves Ray Path from Source to Site 

Figure VIII.2a shows the displacement mode shapes from incident P-waves at four 

selected periods: 3.6,  1.5,  0.36,  and 0.15 T s= . Such mode shapes are available at all 91 

periods in the range from 15.0 T s=  down to 0.04 T s= . This allows us to generate the mode#6 

for incident P-waves to be used in generation of the transverse components of synthetic 

translational motions at all depths at and below the surface. 
 

 Note that for 0.36 T s= , with the vertical component ( )W z  normalized to have unit 

amplitude at the half-space surface, the corresponding horizontal ( )U z  has the corresponding 

starting amplitude of over 7.0 at the surface. 
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Figure VIII.2a Incident P-Waves at 3.6,  1.5,  0.36,  and 0.15 T s=  
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Figure VIII.2b Incident SV-waves at 3.6,  1.5,  0.36,  and 0.15 T s=  
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Figure VIII.2b shows the mode shapes for incident SV- waves at four selected periods: 

3.6,  1.5,  0.36,  and 0.15 T s= . Such mode shapes are again available at all 91 periods in the 

range from 15.0 T s=  down to 0.04 T s= . This allows us to generate the mode shape for 

incident SV- waves to be used as mode #7 in generation of the transverse components of 

synthetic translational motions at all depths. In the graphs the x-component ( )U z for incident 

body SV waves is now normalized to have unit amplitude at 0z = . Note that for 0.15 T s= , 

with the horizontal component ( )U z  normalized to have unit amplitude at the half-space surface, 

the corresponding horizontal ( )U z  and vertical ( )W z motions both have maximum amplitude of 

over 2.0 in the top two layers. 

 
 With both the P- and SV- waves generating an extra mode in the layered media, together 

with the five modes of Rayleigh waves, can now be used to generate the radial and vertical 

components of synthetic translational motions at all depths on and below the surface. 

 
Figures VIII.3a and b are plots of such synthetic accelerations respectively for both the 

horizontal ( )U z  and vertical ( )W z  components, calculated for the El Centro six-layered site 

model, at 100 depths equally spaced from the surface to almost 6 km below the surface, and for 

Case 1. At the hypocentral distance of 10.0D km= , the SYNACC computer program 

determines that the appropriate duration of the accelerogram record should be just above 40 

seconds.  

 

As in the examples of the transverse components of motion, in Section VII, the depth of 

each accelerogram is labeled at 0.6 km spacing. Of the 100 acceleration time histories, six of 

them are plotted green, and labeled 0 to 5. The one labeled 0 is the accelerogram at the top 

surface 0z = , while the ones labeled 1 to 5 are at depths at or closest to the interfaces between 

adjacent layered media. 
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Figure VIII.3a    Synthetic Acceleration for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 
Horizontal, Radial Motions  
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Figure VIII.3b    Synthetic Acceleration for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 
Vertical Motions  
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Recall that the time scale of the time histories has been shifted to have a common time 

origin, where 0 secT = is defined by SYNACC to be the time maxD c , where D is the 

hypocentral distance and maxc is the maximum phase velocity of the waves. Perusal of Figures 

VIII.3a and b will show that, for near filed distance with 10.0D km= , both the Rayleigh waves 

and incident and reflected P- and SV-body waves arrive within a few seconds of the start of the 

earthquake. The body waves have the same phase velocity at all periods and the direct arrival 

time of the P-waves (Figure VIII.1a) is 2.60T s= , while the arrival time for the SV- waves 

(Figure VIII.1b) is 4.49T s= . The arrival times for the Rayleigh waves will be different for 

different modes, and for different periods, since the phase velocities ( )c c T= , depend on the 

periods, as shown by the dispersion curves in Figure I.1. The plots of acceleration curves do 

show that the strong-motions are all within the first 10 seconds from the start of the earthquakes. 

 
Another point to note is that, for the horizontal component, the strong-motions are seen at 

the depths of the first two top layers, up to 0.7z km∼ . Smaller horizontal motions are observed 

in the 3rd layer up to 1.7z km∼ , beyond which the motions become small. For the vertical 

motions, the strong motions are observed in the first three top layers up to 1.7z km∼ , and the 

maximum motions are taking place in the 3rd layer from the top. 

 

For the transverse component in Section VI, the motions below the surface are 

never higher than those at the surface. For the radial and vertical components in the 

example considered here, it is observed that the motions for the six-layered model at El 

Centro site can be much higher at depths than those at the surface. 

 

This is consistent with the mode shape curves of Rayleigh waves in Section VI and in 

Appendix B, where it is found that, for all modes of Rayleigh waves, at moderate periods, large 

motions occur in the first three top layers, and then began to die down at greater depths. The 

decay of amplitudes with depth is even faster for waves with higher frequencies. For the 

horizontal component, it is noted that the maximum motions are observed in the 2nd layer from 

top for most periods. For the vertical component, the maximum motions are observed in the 3rd 

layer from top. 
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Figure VIII.4a    Synthetic Velocity for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 

Horizontal, Radial Motions  
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Figure VIII.4b    Synthetic Velocity for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 

Vertical Motions 



R2-94 
 

Figures VIII.4a and b show the synthetic velocity calculated for the El Centro six-layered site 

model for both horizontal ( )U z  and vertical ( )W z  components of motion. The depth of each velocity 

trace is labeled at points 0.6 km apart. Of the 100 velocity time histories, six are plotted green, and 

labeled 0 to 5. The one labeled 0 is the velocity at the top surface 0z = , while the ones labeled 1 to 5 are 

at depths at or closest to the interfaces between adjacent layers. The new SYNACC program computes 

the velocity at all depths from the corresponding acceleration time histories from the Fourier transform 

in the frequency domain, to get the velocity spectra, and then taking its inverse Fourier transform. 

 

The same observations for velocity can be made as for accelerations, namely, the strong-motions 

are again observed in the first two layers of this site, up to 0.7z km= . Unlike acceleration, the velocity 

motions, especially for the vertical component, do not completely die down even at larger depths. 

 

Figures VIII.5a and b show the plots of the corresponding synthetic displacement of the 2 

components of motions. The depth for all displacements is again labeled at intervals of 0.6 km apart. Of 

the 100 displacement time histories, six are plotted green, and labeled 0 to 5. The one, which is labeled 0 
is the displacement at the top surface 0z = , while the ones labeled 1 to 5 are those at depths 

corresponding to or closest to the interfaces between adjacent layers. The new SYNACC program 

computes the displacement at all depths from the corresponding acceleration time histories in the 

frequency domain to get the displacement spectra, and then taking its inverse Fourier transform.  

 

The same observations for displacement time histories can be made as for accelerations, namely, 

the strong-motions are observed in the first three layers of the site model, up to 1.7z km= . Unlike 

accelerations, the displacements, especially for the vertical components, do not completely die down 

even at large depths. 
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Figure VIII.5a    Synthetic Displacement for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 

Horizontal, Radial Motions 
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Figure VIII.5b    Synthetic Displacement for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 

Vertical Motions 
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 As for the transverse components in Section VII, the same time histories of synthetic 

acceleration, velocity and displacement motions, from Figures VIII.3, 4 and 5, will now be 

presented as three-dimensional (3-D) figures.  

 

Figures VIII.6a and b are the 3-D plots of synthetic translational motions respectively of 

the horizontal radial and vertical components for the same 100 acceleration time histories 

corresponding to Figure VIII.3.  

 

Figure VIII.6a    Synthetic Acceleration for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 

Horizontal, Radial Motions  
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Figure VIII.6b    Synthetic Acceleration for M=6.5, R=8.0km, H=6.0km, s=0, and soil=2 

Vertical Motions 

 

 

 

 



R2-99 
 

Figures VIII.7a and b show the 3-D views of velocity respectively for the horizontal and vertical components corresponding to 

the 2-D plots in Figures VIII.4a and b.  

 

Figure VIII.7    Synthetic Velocity for 6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
(a) Horizontal, Radial Motions (b) Vertical Motions 
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Figures VIII.8a and b show the 3-D views of displacement respectively for the horizontal and vertical components 

corresponding to the 2-D plots in Figures VIII.5a and b.  

 

Figure VIII.8   Synthetic Displacement for 6.5,  8.0 ,  6.0 ,  0,  and 2LM R km H km s s= = = = =  
(a) Horizontal, Radial Motions (b) Vertical Motions 
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VIII.2  Case 2: ( )6.5,  40.0 ,  9.0  41.0 ,  0,  and 2LM R km H km D km s s= = = = = =  
 

We now consider the far field motions, with epicentral distance of 40.0R km= and an 

earthquake source at a focal depth of 9.0H km= . This corresponds to a hypocentral distance of 

( ) ( )1 2 1 22 2 2 240.0 9.0 41 kmD R H= + = + = . 

Figure VIII.9a P Waves Ray Path from Source to Site 

 
 

Figure VIII.9a shows a plot of the ray path taken by the (faster) P waves, from the 

earthquake source to the recording site. As before, the ray path is chosen so that the phase 

velocities at each layer of the 6-layered media are the same. 

( )sin 6.43 km/s,  a constanti ic α γ= =    (VIII.2) 
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where iα  =  P wave speed,  and iγ  = angle the ray makes with respect to the vertical direction at 

the thi layer. The ray will start with an angle 6 84.5oγ ∼ with respect to vertical direction, and 

progress up the layered media arriving at the site with 1 15.3oγ ∼ . The phase velocity at all layers 

is the same, 6.43 /c km s= . 

 
Figure VIII.9b shows the ray path taken by the (slower) SV waves from the earthquake 

source to the recording site.  

Figure VIII.9b Ray Path of SV Waves from Source to Site 
 

 
 

This results in the ray starting with an angle of 6 84.5oγ ∼ with respect to vertical, and 

progressing up the layered media and arriving at the site with 1 15.3oγ ∼ . These are practically 
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the same angles as for the incident P-waves, even though the phase velocity is slower: 

3.72 /c km s= . 

 

Figure VIII.10a shows the typical plots of mode shape amplitudes for incident P-waves at 

four selected periods: 5.0,  1.5,  0.50,  and 0.15 T s= . Such mode shapes are available at all 91 

periods in the range from 15.0 T s=  down to 0.04 T s= . They are similar to the mode shapes 

of incident body P-waves in Figure VIII.2a of Case 1, the only difference being that the incident 

angle, from Figure VIII.9a, is now 84.5o  with respect to the vertical from the bottom semi-

infinite layer #6. As in Case 1, this allows us now to generate an extra mode for incident P-waves, 

which together with the 5 modes of Rayleigh waves, can be used to generate the horizontal radial 

and vertical components of synthetic translational motions at all depths on and below the surface. 

Figure VII.10b presents the typical plots of such mode shape amplitudes for incident SV-

waves at four selected periods: 5.0,  1.5,  0.50,  and 0.15 T s= . Such mode shapes are again 

available at all 91 periods in the range from 15.0 T s=  down to 0.04 T s= . As in Case 1, this 

allows us how to generate the mode for incident SV-waves, which together with the 5 modes of 

Rayleigh waves, can be used to generate the horizontal radial and vertical components of 

synthetic translational motions at all depths at and below the surface. 
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Figure VIII.10a Incident P- Waves at 5.0,  1.5,  0.50,  and 0.15 T s=  
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Figure VIII.10b Incident SV- Waves at 5.0,  1.5,  0.50,  and 0.15 T s=  
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Figures VIII.11a and b are the 3-D plots of the synthetic translational motions of the 

horizontal radial and vertical components calculated for the El Centro six-layered site for case 2 

earthquake parameters. Again the SYNACC program determines that the appropriate duration of 

the accelerogram record should be above 40 seconds. The 3-D plot has the two horizontal 

longitudinal and transverse coordinate axes correspond to the time and to the depth in km below 

the surface. The vertical axis is the acceleration in 2/cm s . The five green lines, labeled 1 to 5, 

correspond to the positions of the boundaries between the layers.  

 
 

Figure VIII.11a    Synthetic Acceleration for M=6.5, R=40.km, H=9.km, s=0, and soil=2 

Horizontal, Radial Motions 

 



R2-107 
 

 
 
 

Figure VIII.11b    Synthetic Acceleration for M=6.5, R=40.km, H=9.km, s=0, and soil=2 

Vertical Motions 

 

 

 
 

 

 
Perusal of Figures VIII.11a and b will show that, at far-field distance, here 41.0D km= , 

the Rayleigh surface waves and body P and SV waves arrive at different times from the 

earthquake origin time. The P waves have the same phase velocity at all periods and Figure 
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VIII.9a shows that the arrival time of the P waves is 7.62T s= , while the arrival time for the SV 

waves, from Figure VIII.9b, is 13.18T s= . Recall that the actual time scale of the time histories 

has been shifted to have a common time scale, where 0 secT = is defined by SYNACC to be the 

time maxD c , where D is the hypocentral distance and maxc is the maximum phase velocity of the 

waves. 

 

The arrival times for the Rayleigh waves will be different for the different modes, and for 

waves at different periods, since the phase velocities ( )c c T= , depend on the period, as shown 

by the dispersion curves in Figure I.1. The accelerations show that the noticeable surface waves 

do not arrive until after 20s from the start of the earthquake. 

 

The strong-motion surface waves beyond the 20sec, are observed at depths of the first 

three top layers, up to 1.7z km∼ . The first two layers contain stronger motions than the 3rd 

layer, with negligible motions being observed deeper than the 3rd layer. As in Case 1, for the 

radial and vertical components here, it is observed that the motions can be larger at depths than 

at the surface. 

 

As in Case 1, this is consistent with the nature of mode shapes of Rayleigh waves of 

Section VI and Appendix B, where it is found that, for all modes of Rayleigh waves, at moderate 

periods, large motions can occur in the layers near top surface, before the amplitudes begin to die 

down with depth. The decay of amplitudes with depth is even faster for waves at higher 

frequencies. For the horizontal component, and the example site presented here, it is noted that 

the maximum motions occur in the 2nd layer from top, for most periods. For the vertical 

component, the maximum motions are observed in the 3rd layer from top. 

 
Figures VIII.12a and b show the 3-D synthetic motions of the horizontal radial and 

vertical components of the velocity time histories. They are computed by SYNACC, from 

synthetic accelerations, the same way as in Case 1. 

 

 The velocity time histories show that the body waves and surface waves arrive at 

different times. The body waves are present in the first 10 seconds of the record, while the 
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surface waves appear after 20 seconds. For both velocity and displacement, the body waves are 

significant at all depths, while the surface waves are more noticeable only on the top 3 layers, up 

to 1.7z km= . 

 

 

Figure VIII.12a Synthetic Velocity for M=6.5, R=40.km, H=9. km, s=0, and soil=2 

Horizontal, Radial Motions 
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Figure VIII.12b Synthetic Velocity for M=6.5, R=40.km, H=9. km, s=0, and soil=2 

Vertical Motions 
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Figures VIII.13a and b show the 3-D synthetic motions of the horizontal radial and vertical components of displacement time 

histories. They are computed by SYNACC, from synthetic accelerations, the same way as in Case 1. 

 

Figure VIII.13   Synthetic Displacement for M=6.5, R=40.km, H=9. km, s=0, and soil=2 
 

(a) Horizontal, Radial Motions (b) Vertical Motions 
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The contributions of the synthetic motions from body waves and surface waves can be 

better visualized by plotting them separately, as in Figures VII.14, 15 and 16a and b below. 
 

Figure VIII.14a shows the horizontal, radial x-component acceleration, velocity and 

displacement time-histories of both the body waves and surface waves, plotted in separate graphs.  

Figure VIII.14b shows the corresponding plots for the vertical z- component of motion. 
 

In both figures, Figures VIII.14a (x-comp) and 14b (z-comp), the two 3-D graphs 

represent the acceleration time histories of the body waves and of surface waves. The body 

waves (at the left) arrive at the very beginning and dominate the motions at all depths within the 

first 10+ seconds. The surface waves (on the right) arrive later, with the motions not seen until 

20 seconds after the record starts. Combining the motions of the body waves and surface waves 

results in the acceleration time histories of the total x-component synthetic motions as shown in 

Figure VIII.11, where the two types of motions are clearly distinguishable. 
 

The two 3-D graphs of Figures VIII.15a (x-comp) and VIII.15b (z-comp) represent the 

velocity time histories of the body waves and of surface waves. The trend of the velocity time 

histories is as in that of the accelerations. The surface wave velocity time histories (on the right) 

have strong motions only at the top 3 layers of the media and the maxima occur there beyond the 

20 seconds after the earthquake starts. 

 
The two 3-D graphs in Figures VIII.16a (x-comp) and VIII.16b (z-comp) show the 

displacement time histories of the body waves and of surface waves. Unlike the acceleration time 

histories, the displacement time histories of body wave (on the left) have small motions at all 

depths, even during the first 10 seconds. The surface wave displacement time histories (on the 

right) are more dominant, especially in the top 3 layers, and the maxima occur there beyond the 

20 seconds after the earthquake starts. 
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Figure VIII.14a  Contributions of Body and Surface Waves to x-Comp. of Acceleration 
 
 

Body Waves           Surface Waves 
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Figure VIII.14b    Contributions of Body and Surface Waves to z-Comp. of Acceleration 
 

Body Waves           Surface Waves 
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Figure VIII.15a  Contributions of Body and Surface Waves to x-Comp. of Velocity 
 

Body Waves            Surface Waves 
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Figure VIII.15b  Contributions of Body and Surface Waves to z-Comp. of Velocity 
 

Body Waves            Surface Waves 
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Figure VIII.16a  Contributions of Body and Surface Waves to x-Comp. of Displacement 
 

Body Waves            Surface Waves 
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Figure VIII.16b  Contributions of Body and Surface Waves to z-Comp. of Displacement 
 

Body Waves            Surface Waves 
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Appendix A-1 – Mode #1 Love Waves Mode Shapes 
 
 
 

Fig. A-1.1     Love Wave Mode #1, Page 1 of 11  T=15.0-8.5s 
Fig. A-1.2     Love Wave Mode #1, Page 2 of 11  T=8.0-4.6s 
Fig. A-1.3     Love Wave Mode #1, Page 3 of 11  T=4.4-2.8s 
Fig. A-1.4     Love Wave Mode #1, Page 4 of 11  T=2.6-1.5s 
Fig. A-1.5     Love Wave Mode #1, Page 5 of 11  T=1.4-0.8s 
Fig. A-1.6     Love Wave Mode #1, Page 6 of 11  T=0.75-0.44s 
Fig. A-1.7     Love Wave Mode #1, Page 7 of 11  T=0.42-0.26s 
Fig. A-1.8     Love Wave Mode #1, Page 8 of 11  T=0.24-0.14s 
Fig. A-1.9     Love Wave Mode #1, Page 9 of 11  T=0.130-0.075s 
Fig. A-1.10   Love Wave Mode #1, Page 10 of 11  T=0.070-0.042s 
Fig. A-1.11   Love Wave Mode #1, Page 11 of 11  T=0.040s 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Fig. A-1.1   Love Wave Mode #1, Page 1 of 11  T=15.0-8.5 s 
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Fig. A-1.2              Love Wave Mode #1, Page 2 of 11  T=8.0-4.6s 
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Fig. A-1.3              Love Wave Mode #1, Page 3 of 11  T=4.4-2.8s 
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Fig. A-1.4              Love Wave Mode #1, Page 4 of 11  T=2.6-1.5s 
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Fig. A-1.5              Love Wave Mode #1, Page 5 of 11  T=1.4-0.8s 
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Fig. A-1.6              Love Wave Mode #1, Page 6 of 11  T=0.75-0.44s 
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Fig. A-1.7              Love Wave Mode #1, Page 7 of 11  T=0.42-0.26s 
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Fig. A-1.8              Love Wave Mode #1, Page 8 of 11  T=0.24-0.14s 
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Fig. A-1.9              Love Wave Mode #1, Page 9 of 11  T=0.130-0.075s 
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Fig. A-1.10              Love Wave Mode #1, Page 10 of 11  T=0.070-0.042s 
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Fig. A-1.11              Love Wave Mode #1, Page 11 of 11  T=0.040s 
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Appendix A-2 – Mode #2 Love Waves Mode Shapes 
 
 
 
 

Fig. A-2.1     Love Wave Mode #2, Page 1 of 8  T=3.8-2.2s 
Fig. A-2.2     Love Wave Mode #2, Page 2 of 8  T=2.0-1.2s 
Fig. A-2.3     Love Wave Mode #2, Page 3 of 8  T=1.1-0.65s 
Fig. A-2.4     Love Wave Mode #2, Page 4 of 8  T=0.60-0.38s 
Fig. A-2.5     Love Wave Mode #2, Page 5 of 8  T=0.36-0.20s 
Fig. A-2.6     Love Wave Mode #2, Page 6 of 8  T=0.19-0.11s 
Fig. A-2.7     Love Wave Mode #2, Page 7 of 8  T=0.10-0.06s 
Fig. A-2.8     Love Wave Mode #2, Page 8 of 8  T=0.055-0.040s 



Fig. A-2.1              Love Wave Mode #2, Page 1 of 8  T=3.8-2.2s 
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Fig. A-2.2              Love Wave Mode #2, Page 2 of 8  T=2.0-1.2s 
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Fig. A-2.3              Love Wave Mode #2, Page 3 of 8  T=1.1-0.65s 

 
 R2-140



Fig. A-2.4              Love Wave Mode #2, Page 4 of 8  T=0.60-0.38s 
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Fig. A-2.5              Love Wave Mode #2, Page 5 of 8  T=0.36-0.20s 
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Fig. A-2.6              Love Wave Mode #2, Page 6 of 8  T=0.19-0.11s 
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Fig. A-2.7              Love Wave Mode #2, Page 7 of 8  T=0.10-0.06s 
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Fig. A-2.8              Love Wave Mode #2, Page 8 of 8  T=0.055-0.040s 
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Appendix A-3 – Mode #3 Love Waves Mode Shapes 
 
 
 
 

Fig. A-3.1     Love Wave Mode #3, Page 1 of 7  T=2.0-1.2s 
Fig. A-3.2     Love Wave Mode #3, Page 2 of 7  T=1.1-0.65s  
Fig. A-3.3     Love Wave Mode #3, Page 3 of 7  T=0.60-0.38s  
Fig. A-3.4     Love Wave Mode #3, Page 4 of 7  T=0.36-0.20s 
Fig. A-3.5     Love Wave Mode #3, Page 5 of 7  T=0.19-0.11s 
Fig. A-3.6     Love Wave Mode #3, Page 6 of 7  T=0.10-0.06s 
Fig. A-3.7     Love Wave Mode #3, Page 7 of 7  T=0.055-0.040s 

 



Fig. A-3.1              Love Wave Mode #3, Page 1 of 7  T=2.0-1.2s 
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Fig. A-3.2              Love Wave Mode #3, Page 2 of 7  T=1.1-0.65s  
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Fig. A-3.3              Love Wave Mode #3, Page 3 of 7  T=0.60-0.38s  
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Fig. A-3.4              Love Wave Mode #3, Page 4 of 7  T=0.36-0.20s  
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Fig. A-3.5              Love Wave Mode #3, Page 5 of 7  T=0.19-0.11s  
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Fig. A-3.6              Love Wave Mode #3, Page 6 of 7  T=0.10-0.06s 
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Fig. A-3.7              Love Wave Mode #3, Page 7 of 7  T=0.055-0.040s 
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Appendix A-4 – Mode #4 Love Waves Mode Shapes 
 
 
 
 
 
 
 
 

Fig. A-4.1 Love Wave Mode #4, Page 1 of 7  T=1.4-0.80s 
Fig. A-4.2 Love Wave Mode #4, Page 2 of 7  T=0.75-0.44s 
Fig. A-4.3 Love Wave Mode #4, Page 3 of 7  T=0.42-0.26s 
Fig. A-4.4 Love Wave Mode #4, Page 4 of 7  T=0.24-0.14s 
Fig. A-4.5 Love Wave Mode #4, Page 5 of 7  T=0.130-0.075s 
Fig. A-4.6 Love Wave Mode #4, Page 6 of 7  T=0.070-0.042s 
Fig. A-4.7 Love Wave Mode #4, Page 7 of 7  T=0.040s 
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Fig. A-4.1              Love Wave Mode #4, Page 1 of 7  T=1.40-0.80s  
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Fig. A-4.2              Love Wave Mode #4, Page 2 of 7  T=0.75-0.44s  
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Fig. A-4.3              Love Wave Mode #4, Page 3 of 7  T=0.42-0.26s 
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Fig. A-4.4              Love Wave Mode #4, Page 4 of 7  T=0.24-0.14s 
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Fig. A-4.5              Love Wave Mode #4, Page 5 of 7  T=0.130-0.075s  
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Fig. A-4.6              Love Wave Mode #4, Page 6 of 7  T=0.070-0.042s  
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Fig. A-4.7              Love Wave Mode #4, Page 7 of 7  T=0.040s  
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Fig. A-5.4              Love Wave Mode #5, Page 4 of 6  T=0.18-0.10s  
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Fig. A-5.5              Love Wave Mode #5, Page 5 of 6  T=0.095-0.055s  
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Fig. A-6.1              Body SH Waves (Mode#6), Page 1 of 11  T=15.0-8.5s 
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Fig. A-6.3              Body SH Waves (Mode#6), Page 3 of 11  T=4.4-2.8s 
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Fig. A-6.4              Body SH Waves (Mode#6), Page 4 of 11  T=2.6-1.5s 

 R2-173
 



Fig. A-6.5              Body SH Waves (Mode#6), Page 5 of 11  T=1.40-0.80s 
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Fig. A-6.6              Body SH Waves (Mode#6), Page 6 of 11  T=0.75-0.44s 
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Fig. A-6.8              Body SH Waves (Mode#6), Page 8 of 11  T=0.24-0.14s 

 
 

 R2-177



 
Fig. A-6.9              Body SH Waves (Mode#6), Page 9 of 11  T=0.130-0.075s 

 R2-178
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Fig. A-6.11              Body SH Waves (Mode#6), Page 11 of 11  T=0.040s 
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Fig. B-1.1 Rayleigh Wave Mode #1, Page 1 of 11  T=15.0-8.5s 

 

 R2-183



Fig. B-1.2 Rayleigh Wave Mode #1, Page 2 of 11  T=8.0-4.6s 
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Fig. B-1.5 Rayleigh Wave Mode #1, Page 5 of 11  T=1.4-0.8s 
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Fig. B-2.2 Rayleigh Wave Mode #2, Page 2 of 9  T=2.8-1.6s 
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Fig. B-2.7       Rayleigh Wave Mode #2, Page 7 of 9  T=0.140-0.080s 
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Fig. B-2.8       Rayleigh Wave Mode #2, Page 8 of 9  T=0.075-0.044s 
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Fig. B-3.2     Rayleigh Wave Mode #3, Page 2 of 8  T=2.0-1.2s 
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Fig. B-3.4     Rayleigh Wave Mode #3, Page 4 of 8  T=0.60-0.38s 
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Fig. B-3.7     Rayleigh Wave Mode #3, Page 7 of 8  T=0.10-0.06s 
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Fig. B-3.8     Rayleigh Wave Mode #3, Page 8 of 8  T=0.055-0.040s 
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Fig. B-4.2     Rayleigh Wave Mode #4, Page 2 of 7  T=1.1-0.65s  
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Fig. B-4.3     Rayleigh Wave Mode #4, Page 3 of 7  T=0.60-0.38s  
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Fig. B-4.4     Rayleigh Wave Mode #4, Page 4 of 7  T=0.36-0.20s 
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Fig. B-4.5     Rayleigh Wave Mode #4, Page 5 of 7  T=0.19-0.11s 
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Fig. B-4.6     Rayleigh Wave Mode #4, Page 6 of 7  T=0.10-0.06s 
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Fig. B-4.7     Rayleigh Wave Mode #4, Page 7 of 7  T=0.055-0.040s 
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Fig. B-5.4     Rayleigh Wave Mode #5, Page 4 of 6  T=0.22-0.13s 
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Fig. B-5.5     Rayleigh Wave Mode #5, Page 5 of 6  T=0.120-0.070s 
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Fig. B-5.6     Rayleigh Wave Mode #5, Page 6 of 6  T=0.065-0.040s 
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  Fig. B-6.2 Body P, SV Waves (Mode#6),  Page 2 of 11  T=8.0-4.6s
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Fig. B-6.11 Body P, SV Waves (Mode#6),  Page 11 of 11  T=0.040s 
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Abstract 
 

This, third report, Report #3, is a continuation of the Reports #1 and #2 (submitted 21 May and 
12 September 2012 respectively). In Report #1 we presented the theory and verification 
examples of computing synthetic strong earthquake ground motion for an array of points on the 
surface of the layered half space. The Report #2 presented, theory and verification examples of 
how to extend the synthesizing of translational strong ground motion along a vertical array of 
points, into the depth of the layered half space. This Report #3 complements and completes the 
results of Report #2 by including formulation and methodology for computing rotational, strain 
and curvature components of motion. With these tools it is now possible to calculate all 
components of strong motion as input into a finite element or finite difference numerical “box”, 
which can be used in time computations of earthquake response of complex linear and nonlinear 
soil structure interaction problems.  
 
Collectively Reports #1, 2 and 3 present all results, which were planed for proposed tasks 4.1 
through 4.7. The verification task 4.8 will be carried out interactively with the development of 
the work on tasks 4.9 and 4.10. It is necessary to run numerical simulations in the soil box to test 
and to refine further the details of the computed input motions. This work will be carried out 
during the remainder of 2013.  
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I. Synthetic Rotational Motions of Surface Waves in 

Layered Media at Points on the Half-Space Surface – A 
Review  

 
 
I.1 Introduction 

 

Observational and theoretical studies of strong ground motion in the late 1960’s and 

1970's showed that a typical strong motion record consists of near-field, intermediate-field, body 

and surface waves contributing different amounts to the total result, depending on the earthquake 

source mechanism and on the wave path (Trifunac, 1971a, 1971b; Trifunac, 1972a, 1972b; 

Trifunac, 1973). Empirical studies of spectral characteristics (Trifunac, 1976, 1979a, 1979b, 

1993, 1994, 1995a, 1995b; Trifunac and Anderson, 1977; Trifunac and Lee, 1978, 1985) and 

frequency-dependent duration (Trifunac and Westermo, 1976a, 1976b; Trifunac and Novikova, 

1994, 1995) have shown the nature of the dependence of strong motion on the geologic 

environment of the recording station. Consequently, realistic artificial accelerograms must have 

nonstationary frequency, amplitude and duration characteristics that agree with the trends 

present in the recorded accelerograms. 

 

In choosing a suitable accelerogram for a particular engineering analysis, many factors 

must be taken into account, for example, the distance between the source and the site, the size of 

the earthquake, and the geology surrounding the site. The recorded accelerograms cannot be 

modified in a simple way to satisfy the requirements at all sites (Lee and Trifunac, 1989), and 

thus, site-dependent artificial synthetic accelerograms are needed. 

 

 Since the first strong-motion recording of the 1933 Long Beach Earthquake, during the 

following 80 years of strong motion observation, over several thousands of significant strong 

motion accelerograms have been recorded, processed and analyzed, in the US and in the rest of 

the world. This data represents invaluable collection of strong-motion records, and serves as a 

library for strong earthquake ground motion studies and research, but does not cover all cases of 

different recording conditions. For many engineering applications, it is often necessary to 

estimate future shaking at a site, with site conditions that are outside the range of parameters in 
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the available library of recorded data (Trifunac and Lee, 1987). This happens, in particular in 

those parts of the world where recorded data is limited or is not yet processed. This situation is 

common even today, after many years of strong motion observation (Lee and Trifunac, 2012).  

 

 Our previous report (Report 2, Lee and Trifunac, 2012) has shown how it is possible to 

estimate the strong-motion recordings at a site, not just at the ground surface, but also at points 

below the ground surface, as long as the site geology, and the physical properties of the layers 

bellow the site surface are known. The present report is a continuation, and extension of the 

previous report (Report 2, Lee and Trifunac, 2012), which described synthetic translational 

motions at and below the ground surface. This report deals with the rotational (torsion and 

rocking), strain and curvature components of strong ground motions at and below the ground 

surface. Those are constructed in conjunction with the synthetic translational motions. Further 

details of the theory and steps for the construction of the synthetic translational motions at depth 

in the layered half space can be found in the previous report ((Report 2, Lee and Trifunac, 2012), 

which will subsequently in all following chapters be referred to as Report 2. 

 

I.2 The Total Translational Accelerogram 
 

Recall that the total tranlsational accelerogram in Report 2 (Lee and Trifunac, 2012) is 

derived from the corresponding Fourier Transform of the translational motions, where, within the 

frequency band n nω ω± Δ , the m th− mode of surface waves, it is assumed to have a Fourier 

transform  

( )
( )

( ) ( )

n nm n
n n

nm

nm nm

i t

A

A A

e
*

nm

*

A 2
0

            

                                            otherwise  

ω ω φπ ω ω ωω

ω ω

⎡ ⎤
⎢ ⎥⎣ ⎦

− − +⎧
− ≤ Δ⎪= ⎨

⎪⎩
− =

     Report 2 (1.2) 

where the phase nφ is assumed to be a random number in the interval [ ] ,,π π−  and 

( ) ( )nm m nt R R U* ω= is the arrival time of the m th− mode at frequency nω , with R the 

epicentral distance from the source to site, and  ( )m nU ω is the group velocity of the m th− mode 

of surface waves (for  to m 1 10= ), or the corresponding wave speed of the body waves (for 



R3-6 
 

 to m 11 13= ). The Anm is the relative amplitude of each mode at each band contributing to the 

total waves, as given by Equation (1.4) in Report 2. 

 
From Report I , Lee and Trifunac, 2012: Figure I.2 

 
Figure 1 Synthetic Translational Accelerogram Time Histories 

 

 
 
 

The inverse transform of Report 2 equation (1.2) is given by  

( )1( )
2nm nm

i ta t A de ωω ω
π

∞

−∞

= ∫    Report 2 (1.3a) 

which can be calculated to be  
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( )
( ) ( )

*

nm *

sin
( ) A cosn nm

nm n n
nm

t t
a t t

t t

ω
ω φ

Δ −
= +

−
  Report 2 (1.3b) 

 
From this the total translational accelerogram is expressed as   
 

N N
M

n n nmm
n n

a t a t a t
1

1 1
( ) ( ) ( )δ

=
= =

= =∑ ∑ ∑     Report 2 (1.6) 
 

where N is the total number of frequency bands, with frequencies within n nω ω± Δ at each band. 

nδ  is the scaling factor used to determine the final amplitude of the waves at each of the 

frequency bands. Equation (1.6) can further be written as 
 

( )
( ) ( )

N M
n nm

n n n
n m nm

t t
a t t

t t

*

nm *
1 1

sin
( ) A cos

ω
δ ω φ

= =

⎛ ⎞Δ −
⎜ ⎟= +
⎜ ⎟−⎝ ⎠

∑ ∑    Report 2 (1.7) 

 

Figure 1 above (from Figure I.2 of Report 2) is an example of one such synthetic 

translational accelerogram, taken to represent an earthquake from the El Centro in Imperial 

Valley of magnitude M .6 5= , at a site with site condition S 0=  and an epicicentral distance of 

R km10= . 

 
I.3 The Torsional and Rocking Accelerorams 

 

The importance of torsional and rocking excitations has been shown by the studies of 

Dravinski and Trifunac (1979, 1980), Kobori and Shinozaki (1975), Luco (1976), Bielak 

(1978), Lee (1979), Gupta and Trifunac (1987, 1988, 1990a, 1990b, 1990c, 1991), Todorovska 

and Lee (1989), and Todorovska and Trifunac (1989, 1990a, 1990b, 1992, 1993).  With the 

slow development of strong-motion instruments that record rotational components of strong 

motions (Hudson, 1983a.b; Trifunac and Todorovska, 2001), it became necessary to explore 

the possibility of estimating those in terms of the corresponding translational components of 

strong shaking. 

By considering the horizontal propagation of plane waves with constant velocity C, 

Newmark (1969) estimated the contribution to the displacements of a building foundation, 
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resulting from torsional earthquake ground motions. Tso and Hsu (1978) used a similar approach, 

in addition to assuming that the motions also included plane non-dispersive waves.  Nathan and 

MacKenzie (1975) discussed the possible averaging effects of foundation sizes on the resulting 

torsional excitations of buildings. These investigations, however, failed to consider the 

dependence of the phase velocity on the frequencies of the incoming Love waves. Their 

assumption that the incoming waves are of constant phase velocity at all frequencies makes 

their results useless. Lee and Trifunac (1985) included the effects of wave dispersion and 

transient arrivals in the estimation of torsional accelerograms in an elastic layered half-space. 

The earlier work of Trifunac (1982) in calculating the torsional component of incident plane 

SH-waves was extended to enable the calculation of torsion from surface Love waves. With this, 

Lee and Trifunac (1985) included the effects of wave dispersion and transient arrivals in the 

estimation of torsional accelerograms in an elastic layered half-space. 

 
For the m-th mode of the surface Love waves at frequency ω , within the frequency band 

n nω ω± Δ , the Fourier transform of the torsional motion, ( )nm ωΨ , is related to that of the 

horizontal translational (anti-plane) motion of Love waves, ( )nmH ω , by the ratio (Lee and 

Trifunac, 1985): 

 ( )
( ) 2

nm

nm nm

i
H c

ω ω
ω

Ψ −
=      (1) 

 
where ( )nm m nc c ω=  is the Love-wave phase velocity of the m-th mode at frequency nω ω= .  
 

With the Foruier transform of torsion defined, its time histories can next be calculated.  

Figure 2 is a plot of the Torsional acceleration, velocity and displacement at the same site as the 

corresponding translational motions in Figure 1. The units of Torsional acceleration, velocity and 

displacement are respectively  

2sec
rad , sec

rad  and  rad  all  510−×  
 

In exactly the same way, for the m-th mode of the surface Love waves at frequency ω  within 

the frequency band n nω ω± Δ , the Fourier transform of the rocking motion, ( )nm ωΦ , is related to 

that of the vertical motions of Rayleigh Loves, ( )nmV ω , by the ratio (Lee and Trifunac, 1987): 
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Fig.2  Artificial earthquake synthetic torsional accelerogram 
 

 

   ( )
( )

nm

nm nm

i
V c

ω ω
ω

Φ
=      (2) 

 
from which the rocking time histories can be constructed. Figure 3 is a plot of the rocking 

acceleration, velocity and displacement at the same site as the corresponding translational 

motions in Figure 1. 

 

Recently, Lee and Trifunac (2009) developed an alternate simple approximate algorithm 

for generating torsional and rocking Fourier spectral amplitudes from that of the corresponding 

translational accelerograms. Inverse Fourier transform can then be used to generate the rotational 
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torsion and rocking time histories. In short, algorithms exist for generating synthetic rotational 

torsion and rocking accelerograms from both synthetic or from actually recorded accelerograms. 

 
 

  
 

Fig.3  Artificial earthquake synthetic rocking accelerogram 
 
 

 
I.4 The Synthetic Surface Strains 
 
 

 Next we consider the estimation of surface strains associated with strong earthquake 

motions related to the translational components of body and surface Rayleigh and Love waves at 

the half-space surface. Studies of earthquake-induced damage to engineered structures show that 

there are cases of damage, which result from the differential motions caused by large strains 

associated with ground shaking (Trifunac, 1979b, 1997). In some cases, these strains are 
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superimposed on the dynamic response, and only contribute to the resultant total response. In 

other cases, when the characteristic frequencies of the system differ from the principal frequency 

content of strong motion, these local strains may affect the structural systems in a quasi-static 

manner. Long underground pipelines and railroad tracks may buckle, and bridges may collapse 

because of the excessive differential support motions, due to excessive local strains associated 

with earthquake ground shaking (Trifunac and Todorovska, 1997a, 1997b; Trifunac et al., 1996). 

Studies of the responses of long structures excited by ground shaking (Kojić et al., 1988; 

Todorovska and Trifunac, 1989, 1990a, 1990b; Trifunac and Todorovska, 1997a) have 

demonstrated the need for detailed description of motions at various points of single (or multiple) 

foundation(s), with emphasis on the differential motions associated with large surface strains.  

Expressions for surface strains were first described for incident P, SV and SH body 

waves (Trifunac, 1979b), and later extended to Rayleigh and Love surface waves (Lee, 1990). 

Again, the m-th mode of acceleration of horizontal (in-plane) motion, 1u��  for Rayleigh waves has 

Fourier Transform within the frequency band n nω ω± Δ  given by ( )nmH ω , and the corresponding 

Fourier transform of the m-th mode of surface strains, 11, ( )nm ωΕ  and 22, ( )nm ωΕ  in the same 

frequency band n nω ω± Δ  are given by (Lee, 1990): 
 

( )

( )
( )

11,

22, 2

        ( )   

2 ( )  1  

nm nm
nm

nm nm
nm

i H
c

i H
c

ω ω
ω

ω ω
ω α β

−
Ε = =

⎛ ⎞− ⎜ ⎟Ε = = −
⎜ ⎟
⎝ ⎠

   (3) 

 
where ( )nm m nc c ω=  is the Rayleigh-wave phase velocity of the m-th mode at frequency nω ω= .  

Similarly, with Fourier Transform of the m-th mode of acceleration of horizontal (anti-plane) 

motion, 3u��  for Love waves within the frequency band n nω ω± Δ given by ( )nmH ω , the 

corresponding Fourier transform of the m-th mode of surface strains, 13, ( )nm ωΕ  in the same 

frequency band n nω ω± Δ  is given by (Lee, 1990): 
 

( )13,  ( )      
2nm nm

nm

i H
c

ω ω
ω
−

Ε = =      (4) 
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where ( )nm m nc c ω=  is the Love-wave phase velocity of the m-th mode at frequency nω ω= .  

Equations (3) and (4) enable the Fourier transform of all 3strain components and the 

corresponding time histories to be generated. 

 

 
 

Fig.4 Artificial earthquake synthetic translation & surface strain accelerograms 
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 To illustrate the effect of  “large” strains, we modify the Westmoreland soil site model in 

Imperial Valley (Lee, 1990) to have a 50 m layer with shear wave velocity of 50 m/s (was 

980m/s) at the top, and a second 130 m layer with shear wave velocity of 300 m/s. For depths 

greater than 180 m, we adopt the material properties as in the old Imperial Valley Site model, 

which was considered in many of our previous examples on synthetic motions. As a result, for 

short periods, the phase and group velocities would be reduced from 0.98 km/s to 0.05 km/s. 

Thus modified site will exemplify “soft” soil and geologic conditions in which the strains can be 

“large”. We also consider large amplitudes of strong shaking, in the immediate vicinity of the 

epicenter.  

 
Figure 4 presents an example computed for the site intensity, MMI =XII, source at 

epicentral distance of 5kmR =  for s = 0 (site on alluvium) and sL= 2 (deep soil site), and for p = 

0.5, where p is the probability of exceedance for the empirically computed spectrum (Trifunac, 

1989a, 1989b). These conditions result in peak accelerations (37.3 m/s
2
 for radial, 31.9 m/s

2
 for 

transverse, and 18.5 m/s
2
 for vertical ground motions) larger than what has been recorded so far, 

and thus illustrate extreme response amplitudes and the associated strains. The resulting peak 

strains are, respectively, 0.03, 0.01 and 0.02. Because the strains are proportional to ku (=ωu/c), 

the overall appearance of strain versus time is similar to that of the ground motion velocity.  

 

I.5 The Synthetic Curvograms 

 Next we will describe the synthetic curvograms of earthquake ground motions. 
 

Analyses of the effects of strong earthquake shaking on engineered structures are 

typically only performed for dynamic forces that result from strong motion accelerations. 

However, pseudo-static deformations that result from wave passage under long structures may 

also contribute forces, which, in certain cases, may be larger than the dynamic forces (Kojić et 

al., 1988; Todorovska and Lee, 1989; Todorovska and Trifunac, 1989, 1990a, 1990b). Such 

loadings and the resulting response of structures depend on the nature of ground waves, 

inhomogeneities in the soil, sediments or rock under the foundation, the surface topography near 
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structure, and on the nature of the structure-foundation system. 

 
For ground waves that are long relative to the plan dimensions of a structure, it is 

possible to describe the strong ground motion in terms of the translational and rotational 

components of ground motion (Gupta and Trifunac, 1987, 1988; Lee and Trifunac, 1985, 1987; 

Trifunac, 1982). For short ground waves with wavelengths comparable to or shorter than the 

structural dimensions, the details of the wave passage analysis must be worked out to obtain 

realistic response analyses (Kojić et al., 1988; Todorovska and Trifunac, 1990b).  

 
This is illustrated in Figure 5, which shows the plane view of a rectangular foundation 

deformed into bending by the passing ground wave. Since the significance of such a deformation 

for structural response can be evaluated with sufficient accuracy, if the radius of curvature of 

ground deformation is known, in this section, we describe a method for evaluating the 

curvograms (plots of curvature versus time) on ground surface. Trifunac (1990) extended the 

method for generation of synthetic translational (Trifunac, 1971b; Wong and Trifunac, 1978, 

1979), rocking (Lee and Trifunac, 1987), torsional (Lee and Trifunac, 1985) accelerograms, and 

strain (Lee, 1990) time histories, to obtain curvograms of strong motion.  

 
 

 

 
 
 
 
 
 
 
 

Fig.5 Curvature  
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Let x1, x2 and x3 be the radial, vertical and transverse coordinates. Let c be the apparent phase 

velocity of wave motion in the radial 1x − direction. Let 1 2,  u u and 3u be the displacements in the x1, x2 

and x3directions. It can be shown that the curvature in the vertical plane, 2 ( )k t , is (Trifunac, 1990): 

 

( )

2 2 2
2 1 22

22 3 2
2 2 1

2 1

( )           (vertical)
1

u x uuk t x cu x

∂ ∂ ∂= ≈ =
∂⎡ ⎤+ ∂ ∂⎣ ⎦

��
       (5a) 

Likewise (Trifunac, 1990): 
2

33
23 2
1

1

( )                  (transverse)

          ( )  0                                 (radial)

uuk t x c
k t

∂≈ =
∂

≡

��

    (5b) 

 
The above equations show that, with Anm(ω) the translational components of m-th mode of 

surface (Rayleigh or Love) waves within the frequency band n nω ω±Δ , the corresponding 

Fourier component of curvature is  

2

( )
( ) nm

nm
nm

A
K

C
ω

ω =      (6) 

 
where, as before, Cnm is the phase velocity of the m-th mode of surface waves within the 

frequency band n nω ω±Δ . Combining all modes and frequencies again gives the total Fourier 

transform, and hence the time histories of curvatures. 

 
 Figure 6 shows an example, considering a site with earthquake MMI intensity = XII from 

a source at distance of R = 5 km. The site again is assumed to be on sediments (s = 0) and SL = 2 

(stiff-soil site conditions). As in the strain case, we picked the West Moreland site in Imperial 

Valley by modifying the top layer to consist of two ‘soft’ layers of thickness 50m and 130m and 

with shear wave velocities of 50 and 300 m/s respectively. Figure 6 plots the resulting radial, 

transverse and vertical accelergrams, together with the associated transverse and vertical 

curvograms. The smallest radii of curvature corresponding to 2,max
4 10.46 10k cm− −= ×  and 

3,max
4 10.68 10k cm− −= × , with the corresponding radii of curvatures being 2,min 217mρ =  and 

3,min 147mρ = . 
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Fig.6 Artificial earthquake synthetic accelerogram  
and curvature accelerogram 

 
 

With this, a comprehensive method for synthesizing realistic strong motion accelerograms 
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(translations and rotations), strains and curvatures at the surface of a layered half-space has been 

reviewed. The advantages of this method are that the results are consistent with all known 

characteristics of the recorded strong shaking. In particular, these accelerograms (translations 

and rotations, strains and curvatures) all have non-stationary characteristics in time, which are 

derived from the known dispersive properties of earthquake waves, guided through shallow low-

velocity layers of the earth crust. 

 
These dispersive characteristics can be introduced directly as an input into the computer 

program, and thus can portray directly the geologic environment of each specific site. Other 

scaling functionals, required for the synthesis of artificial accelerograms presented here, are: (i) 

the Fourier amplitude spectrum, and (ii) the frequency-dependent duration of strong shaking. 

These two functionals can be estimated via the empirical scaling relations developed either in 

terms of earthquake magnitude or in terms of Modified Mercalli Intensity.  

 
 

It has been shown how the rocking and torsional accelerograms can be generated from 

the synthetic translational accelerograms, by applying the straightforward exact physical 

principles of elastic wave propagation. The rotational accelerograms obtained in this way have 

realistic physical properties, and should resemble actual rotational ground motions, as long as the 

synthetic translational accelerograms, from which those are derived, have such corresponding 

physical properties.     

 
Using the linear theory of wave propagation, the strain amplitudes can be evaluated 

exactly in three-dimensions. When local geologic conditions are too complex to model near-

surface motions by the equivalent parallel layer models, the method presented here can be 

modified to give realistic representation of near-surface translations, rotations, and strains (e.g., 

see Moeen-Vaziri and Trifunac (1988a, 1988b)).  

 
The above example (Lee, 1990) in Figure 4 illustrates the strain amplitudes implied by 

the linear theory of wave motion, and can be taken to represent “average” or “typical” estimates, 

for magnitudes, site intensities, or local conditions considered. In general, the strain amplitudes 

will increase with an overall increase in the strong motion amplitudes, and with a decrease in 

shear wave velocities of soil and sedimentary layers near the ground surface. Time- dependence 
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of strain components near the ground surface is roughly proportional to the corresponding 

components of ground velocity, and thus, peak strains will also increase with peak ground 

velocity.  

 
Finally, the above example (Trifunac 1990) in Figure 7 shows that the radii of curvature 

in the range of one to several hundred meters may occur for very large accelerations (1-3 g), near 

epicenter, and when the local soil and geologic conditions are characterized by low wave 

velocities (e.g., 50 m/s). Such conditions correspond only to the instances of exciting very large 

amplitudes of waves with short wave lengths, and can be expected to occur for soft soil and 

geologic site conditions near epicenters of earthquakes with high stress drop.  
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II. Synthetic Rotational Motions of Surface and Body Waves in 

and Below a Layered Medium 
 

With the Surface and Body waves defined on and below the surface of a layered medium 

in Report 2, in this chapter we extend the representations of those waves to include the rotational 

(torsion and rocking), strain and curvature components of motion. We begin with a brief review 

of the translational waves from Report 2. 

 
II.1 Synthetic Translational Motions of Love and Body SH Waves On and 

Below a Layered Medium – a Brief Review 
 

 Let c c( )ω= be the wave speed of a mode of Love waves in the half-space with n elastic 

layers over half space. c is also the (horizontal) phase velocity of the waves in each layer of the 

elastic media above the half space (Figure II.1) 

   
     x             O 
  0z =  
   1h  1 1,  μ β   z                  1 1v v− +

   

  1z H=  
   2h  2 2,  μ β                     2 2v v− +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  ,  n nμ β                     n nv v− +  
  1Nz H −=  
         v∞   
  to ∞   ,  μ β       
 

 

Figure II.1 N-layered half-space with Love waves 

(From Figure II.1 of Report 2) 
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For each layer l, with l 1, , N  …= , the displacement of the Waves in the layer take the 

form (in the anti-plane, y-component direction): 

 1 1v , v :− +    
( )

( )

l

l

ik x z
l l

ik x z
l l

 C          

  C

v e

v e

γ

γ

−− −

++ +

=

=
   Report 2 (2.1) 

Those are respectively the upward and downward Love waves present in the thl layer. Here 

k k( ) c( )
ωω ω= =  is the horizontal wave number of the waves at frequency ω  and with phase 

velocity c c( ).ω= The term ikxe , which is also the same in each layer, is the horizontal 

component of the waves, which together with the time harmonic term i te ω , corresponds to the 

waves propagating in the –ve x direction. The terms l yike γ∓  are the vertical components of the 

waves with the negative term propagating upwards (–ve y) and the positive term propagating 

downwards (y). Here l l l( )γ γ β=  is given by

  

( )l l

1 1 122 2 2 2 2 2

l
l

k k k c1 1kk
β βγ β
− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

  Report 2 (2.2) 

so that lkγ  is the vertical wave number of the waves in the thl  layer of the medium with shear 

wave velocity lβ . In general, the wave velocities increase as one moves down through the layers, 

so that 1 2 nβ β β β< < < <… , with the semi-infinite half-space layer at the bottom having the 

highest shear wave speed β . With c c( )ω=  the wave speed of the surface Love waves there, 

c β< , and the surface waves take the form: 

( )ik x z ikx k zv   C   C          e eγ γ
∞ ∞ ∞

− −= =    Report 2 (2.3) 

where  
( ) ( )

1 1 122 2 2 2 2 2k k k c1 1kk
β βγ β

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
  Report 2 (2.4) 

γ is the complement of γ  and is real, so that the term ikx k ye γ−  in C∞  corresponds to a surface 

wave term whose amplitude is exponentially decaying with depth (in y) below the surface.  
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 The coefficients l lC ,  C− + , respectively of the waves, l lw ,  w− + , in each layer l, for l = 1 to 

n, are all related by the stress and displacement boundary conditions, as given in Chapter II of 

Report 2 and will not be repeated here. 

 

For the case of body SH waves incident from the semi-infinite medium, we will consider 

the model in Figure II.2. It is the same N-layered media model as in Figure II.1, for the case of 

Love surface waves, but now the waves in all layers are body waves. 
  
 
     x             O 
  0z =  
   1h  1 1,  μ β   z                  1 1v v− +

   

  1z H=  
   2h  2 2,  μ β                     2 2v v− +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  ,  n nμ β                     n nv v− +  
  1Nz H −=  
           
  to ∞   ,  μ β                     N Nv v− +

  
 

 

Figure II.2 n-layered half-space with incident body SH waves 

(From Figure II.2 of Report 2) 
 
 

The body SH waves in all layers have a common constant phase velocity c , now 

independent of frequency ω , and dependent only on the incident angle of the body SH waves. It 

is higher than max Nβ β= , the shear wave speed at the bottom semi-infinite Nth layer.  
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The wave Nv v∞=  in the bottom semi-infinite layer will also be replaced by the waves 

Nv− and Nv+ , respectively the incident and reflected body SH waves: 

N Nv ,  v :− +

  

( )

( )
   

   

zN N

zN N

ik x ik z ikx
N N N

ik x ik z ikx
N N N

C C

C C

v e e e

v e e e

γ γ

γ γ

− −− − −

+ ++ + +

= =

= =
  Report 2 (2.15) 

     
as in all the other layers 1,  2,  ,  1l N= −…  (Equation (2.1) above).  

 
 
II.2 Synthetic Translational Motions of Rayleigh and Body P and SV 

Waves On and Below Surface of a Layered Medium – a Brief Review 
 

We begin by a brief review from Chapter III of Report 2, and let c c( )ω=  be the phase 

velocity of a mode of Rayleigh waves in the half-space with N elastic layers.  c is also the 

(horizontal) phase velocity of both the P- and SV-waves in each layer of the elastic media above 

the half space such that max Nc β β< = , the shear wave speed at the bottom semi-infinite Nth layer 

(Figure II.3): 
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          ,  ϕ ψ∞ ∞   
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Figure II.3 N-layered half-space with Rayleigh waves 

(From Figure III.1 of Report 2) 
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For each layer l, with   …l 1, , N= , the P- and SV-Waves in the layer respectively take 

the form: 
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   Report 2  (3.1) 

They are the upward and downward propagating waves present in the lth layer. 

k k( ) c( )
ωω ω= =   is the horizontal wave number of the P- and SV-waves at frequency ω  and 

phase velocity c c( )ω= . The term ikxe , which is also the same in each layer, is the horizontal 

component of the waves, which together with the time harmonic term i te ω , corresponds to 

waves propagating in the –ve x direction. The terms lika ze∓ for the P-waves and likb ze∓  for the 

SV-waves are respectively the vertical components of the waves. The ones with the –ve exponent 

are propagating upwards (–ve y) and those with the +ve exponent are propagating downwards 

(+ve y). Here l l la a ( ,c )α= and l l lb b ( ,c )β= are respectively given by 
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  Report 2  (3.2) 

 

so that lka and lkb  are the vertical wave numbers of the P- and SV-waves in the thl layer of the 

medium with longitudinal wave speed lα  and shear wave velocity lβ . In general, the wave 

speeds increase as one goes down into the layers, so that 1 2 Nβ β β β< < < <… , with the semi-

infinite half-space layer at the bottom having the highest shear wave speed β .  The same can be 

said about the longitudinal wave speeds, so that 1 2 Nα α α α< < < <… , with isα the longitudinal 
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wave speed of the semi-infinite medium. With c c( )ω=  the wave speed of the surface Rayleigh 

waves, c β α< < , and the surface waves take the form: 
 

( )

( )
    

    

ik x az ikx kaz

ik x bz ikx kbz

A A

B B

e e

e e

ϕ

ψ

∞ ∞ ∞

∞ ∞ ∞

− −

− −

= =

= =
    Report 2  (3.3) 

where  

( ) ( )
( ) ( )

1 1 12 2 2 2 2 2 2

1 1 122 2 2 2 2 2

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  Report 2  (3.4) 

 

and  a , b  are respectively the complements of a, b  and both are real, so that the terms kaze−  in 

ϕ∞ and kbze−  in ψ∞  both correspond to surface wave terms with amplitudes that are 

exponentially decaying with depth below the surface.  

 

Chapter III of Report 2 gave a detailed derivation of the equations relating the 

coefficients l l l lA  A  B  B, , ,− + − +  of the wave potentials l l l l  , , ,ϕ ϕ ψ ψ− + − + in each of the thl  layer 

from l 1= on top to the semi-infinite layer l N=  at the bottom. They are related by the stress 

and displacement continuity equations between the layers. Please refer to Chapter III of Report 2 

for further details. 

 

For the case of body P or SV waves incident from the semi-infinite medium, we will 

consider the model here in Figure II.4, same as in Report 2 Figure III.2. It is the same N-layered 

model as in Figure II.3 above, for the case of Rayleigh surface waves, but now the P and SV 

waves in all layers are body waves. The body waves in all layers have a common constant phase 

velocity c , now independent of frequency ω , and dependent only on the incident angle of P or 

SV waves. For incident P waves, 0Nψ − = at the bottom layer, and c is higher than max Nα α= , the 

longitudinal P wave speed at the bottom semi-infinite Nth layer. For incident SV waves, 0Nϕ
− = , 

and the phase velocity c is higher than max Nβ β= , the shear SV wave speed at the bottom semi-

infinite Nth layer (Report 2 Figure III.2). 
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    x             O 
  0z =  
   1h  1 1 1, ,  μ α β  z 1 1 1 1,,                      ϕ ψ ψ ϕ− − + +

   

  1z H=  
   2h  2 2 2, ,  μ α β   2 2 2 2,,                      ϕ ψ ψ ϕ− − + +  
 

  2z H=  

    
#
#  

 

    
#
#
 

  2Nz H −=  
 
  1n Nh h −=  , ,  n n nμ α β   ,,                      n n n nϕ ψ ψ ϕ− − + +  
  1Nz H −=  
            
  to ∞   , ,  μ α β       

,,                      n n n nϕ ψ ψ ϕ− − + +  
 

Figure II.4 n-layered half-space with Body P and SV waves 
(From Figure III.2 of Report 2) 

 
 
The Rayleigh waves Nϕ ϕ∞= and Nψ ψ∞= at the bottom semi-infinite layer will now be 

replaced by the body P waves Nϕ
− and Nϕ

+ , and SV waves Nψ − and Nψ + respectively, the incident 
and reflected body P and SV waves: 

 

   N N N N, , , :ϕ ϕ ψ ψ− + − +    

( )

( )

( )

( )

          

  

          

  

N

N

N

N

ik x a z
N N

ik x a z
N N

ik x b z
N N

ik x b z
N N

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

 Report 2 (3.15) 

     
as in all the other layers 1,  2,  ,  1l N= −… , in Equation (3.1) of Report 2.  

With all the surface and body waves available at each layer, we are now ready to describe 

the associated rotational components of motions.  
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II.3 Synthetic Rotational Motions of Surface and Body Waves On and 
Below Surface of a Layered Medium 
 

Starting with the translational components of motions, ( )U U V W, ,=� , the rotational 
components of motion are defined by 

 
i j k i j k

U x y z x z
U V WU V W

1 1 1 02 2 2
∂ ∂ ∂ ∂ ∂Ω = ∇× = =∂ ∂ ∂ ∂ ∂

� � �   (2.1) 

 
since U U x z( , )= , V V x z( , )=  and W W x z( , )= , and all components of motions are dependent 

only on x and, with ( ) 0.y
∂ =∂  Thus 

Rotational Motion:    
x

y

z

V
z

U W
z x
V

x

1
2

∂⎛ ⎞−⎛ ⎞ ∂Ω ⎜ ⎟
⎜ ⎟ ⎜ ⎟∂ ∂Ω = Ω = −⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟Ω ∂⎝ ⎠ ⎜ ⎟∂⎝ ⎠

�     (2.2) 

with    
 

 

x
V

z
1

2
∂Ω = − ∂  

 

 
 

= 

 

Anti-plane Rocking component of the Love and body SH 
waves in the x-direction, 

 

( )y
U W

z x
1

2
∂ ∂Ω = −∂ ∂  

 
 

=  
 

In-plane Rocking component of the Rayleigh and body P, SV 
waves in the x-z plane, or the y- direction, and 

 

z
V

x
1

2
∂Ω = ∂  

 
 

= 

 

Anti-plane Torsional component of the Love and body SH 
waves in the vertical z-direction. 

 
 
 As in the cases of Torsional (Lee and Trifunac, 1985) and Rocking (Lee and Trifunac, 

1987) accelerograms at the half-space surface, we can also compute the 1st and 2nd time 

derivatives of the Torsional and Rocking motions to obtain the Torsional and Rocking 

accelerogram time-histories at points below the half-space surface in the layered media. The 

three components can be called the rotational accelerogram time histories associated with the 

translational motions: 

 

Torsional and Rocking Velocities: 
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x

y

z

V
z

U W
z xt
V

x

1
2

⎛ ⎞∂− ∂⎜ ⎟⎛ ⎞Ω
⎜ ⎟ ⎜ ⎟∂Ω ∂ ∂= Ω = −⎜ ⎟ ⎜ ⎟∂ ∂∂ ⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ∂⎜ ⎟

∂⎝ ⎠

�
�

� ��

� �

      (2.3) 

and 

Torsional and Rocking Accelerations: 

      
x

y

z

V
z

U W
z xt
V

x

2

2
1

2

⎛ ⎞∂− ∂⎜ ⎟⎛ ⎞Ω
⎜ ⎟ ⎜ ⎟∂ Ω ∂ ∂= Ω = −⎜ ⎟ ⎜ ⎟∂ ∂∂ ⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ∂⎜ ⎟

∂⎝ ⎠

��
��

�� ����

�� ��

      (2.4) 

  

The computation of the 1st and 2nd time derivatives of the torsional and rocking motions 

do not require much of additional work. This is because, as in the case of Torsional (Lee and 

Trifunac, 1985) and Rocking (Lee and Trifunac, 1987) accelerograms at the half-space surface, 

the Torsional and Rocking accelerations can be first computed, in the frequency domain, directly, 

as x
∂
∂ and z

∂
∂  derivatives, from the corresponding translational acceleration components, as 

given in Report 2, from which the Torsional and Rocking velocity, and Torsional and Rocking 

displacement motions can also be computed in the frequency domain. 

 
  

Similarly the strain components of motions are given by the symmetric matrix: 
 

[ ]
x xy xz

yx y yz

zx zy z

U U
x y

1
2

ε ε ε

ε ε ε ε

ε ε ε

∂ ∂
∂ ∂

⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
yx

V U W
x z x

V
y

1
2

ε

⎛ ⎞∂ ∂ ∂+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
∂

V W
z y

1
2

∂ ∂+∂ ∂

zx zy
W

zε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂
⎣ ⎦

      (2.5) 

 
again with all components of motions being dependent only on x and, with ( ) 0y

∂ =∂ .  Thus 
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[ ]
( )

x xy xz

yx y yz yx

zx zy z
zx zy

U V U W
x x z x

V
z

W
z

1 1
2 2

10 2

ε ε ε

ε ε ε ε ε

ε ε ε ε ε

⎡ ⎤∂ ∂ ∂ ∂+⎡ ⎤ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥ ⎢ ⎥∂= =⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥

∂⎣ ⎦ ⎢ ⎥∂⎣ ⎦

       (2.6) 

 
Taking symmetry into account, five out of six components of the strain matrix exist, with 

the only component of strain that vanishes everywhere being yε , the normal strain in the anti-

plane y- direction. Note that before, when strain is calculated at the half-space surface (Lee, 

1990), the shear strain xz 0ε = , since the corresponding shear stress xz xz2 0τ με= =  at the half-

space surface. 

 
 In the same way as in the computation of the Torsional and Rocking accelerograms in 

Equations (2.3) and (2.4) above, one can compute the first and second time derivatives of the 

strain matrix to obtain the strain accelerogram time histories at points below the half-space 

surface in the layered medium: 

 

Strain velocities: 

 

[ ] [ ]

( )
x xy xz

yx y yz yx

zx zy z
zx zy

U V U W
x x z x

V
zt

W
z

1 1
2 2

10 2

ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε

⎡ ⎤∂ ∂ ∂ ∂+∂ ∂ ∂ ∂⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥∂ ∂= = = ⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥
⎢ ⎥∂⎣ ⎦

∂⎢ ⎥⎣ ⎦

� � � �
� � �

�� � � � �

� � � �� �

         (2.7) 

and  
 
Strain accelerations: 

[ ] [ ]

( )
x xy xz

yx y yz yx

zx zy z
zx zy

U V U W
x x z x

V
zt

W
z

2

2

1 1
2 2

10 2

ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε

⎡ ⎤∂ ∂ ∂ ∂+∂ ∂ ∂ ∂⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥∂ ∂= = = ⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥
⎢ ⎥∂⎣ ⎦

∂⎢ ⎥⎣ ⎦

�� �� �� ��
�� �� ��

���� �� �� �� ��

�� �� �� ���� ��

         (2.8) 

 
 

The computations of the 1st and 2nd time derivatives of the strain motions also do not 

require much extra work. This is because, as in the case of Torsional (Lee and Trifunac, 1985) 
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and Rocking (Lee and Trifunac, 1987) accelerograms and the strain computations (Lee 1990) at 

the half-space surface, the strain accelerations can be first computed, in the frequency domain, 

directly, as x
∂
∂ and z

∂
∂  derivatives, from the corresponding translational acceleration 

components, as given in Report 2, from which the strain velocity, and Torsional and Rocking 

displacement motions can then be computed in the frequency domain. 

 
As in Trifunac (1990), the curvature in the radial, transverse and vertical directions are 

respectively given by: 

 Radial Curvature:         
UUK t    x c

2
21 2( ) ∂≈ =

∂

��
     (2.9) 

Transverse Curvature:      VVK t     x c
2

22 2( ) ∂≈ =
∂

��

        

       (2.10) 

 
and 

Vertical Curvature:  
( )

W x WWK t     x cW x

2 2 2
23 3 2

2 2
( )

1

∂ ∂ ∂= ≈ =
∂⎡ ⎤+ ∂ ∂⎣ ⎦

��
           (2 .11) 

 
Those are all computed directly from the translational components, the numerical 

implementation of which is summarized in the next section. In fact, they each correspond to the 

2nd derivative of the translational motion with respect to x in the radial direction. 

 

II.4 The Numerical Implementation of Translational Motions – a Brief Review 
 
 

The following is derived from Section IV.1 of Report 2: “The Original Thomson-

Haskell’s Transfer Matrix Method” (Thomson, 1950 and Haskell, 1953). The results are 

summarized briefly as follows. 

 

(1) Love Waves 

 

In Section IV.1 of Report 2, we used the following equation for Love Waves in each layer l, 

for 1, 2, ,…l N= :  
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l l

l l

i k z
l l

i k z
l l l l l l l l l l

l l
l l l

l l

v z ve
z i k i k i k i ke

v z v
T E z T

z

μ γ

μ γτ μ γ μ γ μ γ μ γ τ

τ τ

1

1

( ) 1 1 1 1 (0)0
( ) (0)0

( ) (0)
or                                         ( )

( ) (0)

−

−

−

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
⎟

Report 2 (4.4) 

for local coordinate 0 lz h≤ ≤ , at any point in the thl  layer. In particular, at the bottom point of 

the thl  layer, where lz h= , Report 2, Equation (4.4) becomes: 

τ τ

τ τ

1( ) (0)
                     ( )

( ) (0)

( ) (0)
                               

( ) (0)

l l l
l l l l

l l l

l l l

l l l

v h v
T E h T

h

v h v
h

−⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠

lH
  Report 2 (4.5) 

where 1( )l l l lT E h T −
⎡ ⎤ = ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦lH  is the Haskell propagator matrix that expresses the 

displacement-stress state vector at the bottom of the thl  layer in terms of that at the top of the 

layer. 

 

Next, define a set of displacement-stress state vectors, for 1, 2, ,…l N= : 
 

0

( )
( )

l l

l l z

V v z
zτ

=

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟Τ⎝ ⎠ ⎝ ⎠     Report 2 (4.6) 

 
which corresponds respectively to the state vector at the top of each layer. Since the stress-

displacement state vectors are continuous across the interface from one medium to the one below, 

one can write Equation (4.5) as  
 

1,  2,  ,  1…l N= −  
11

1

( )l l l
l l l l

l l l

V V V
T E h T −+

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Τ Τ Τ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

lH
 

Report 2 (4.7a) 

 

In the reverse order, we also have 
 

11 1 1 1

1 1

( )l l l
l l l l

l l l

V V V
T E h T

−− − + +

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Τ Τ Τ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

lH    Report 2 (4.7b) 

 
The displacement-stress vector at the top of the last (semi-infinite) layer can then be expressed in 
terms of that at the top of the 1st surface layer: 
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V V⎛ ⎞ ⎛ ⎞
= ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦Τ Τ⎝ ⎠⎝ ⎠

1N
1N-1 N-2

1N

H H H…      Report 2 (4.8a) 

or in the reverse order   
1 1 1 VV − − − ⎛ ⎞⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ΤΤ⎝ ⎠ ⎝ ⎠
1 N

1 N-2 N-1
1 N

H H H…          Report 2 (4.8b) 

  
Report 2 Equations (4.4) through (4.8) allow the displacement-stress vector to be calculated at 

every point of every layer in the layered half space. 

 

(2) Rayleigh Waves 

 

In Section IV.1 of Report 2, we derive the following equation for Love Waves at each layer l, 

for 1, 2, ,…l N= :  

                        

or                                        

11 2 1 2
l ll l l l l

3 4 3 4
l ll l l l l

l
l l l
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u ( z ) u ( 0 )T T E ( z ) 0 T T
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⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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⎝ ⎠
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� �
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�
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⎝ ⎠

�
�

Report 2 (4.23) 

for local coordinate 0 lz h≤ ≤ , at any point in the thl  layer below. In particular, at the bottom 

point of the thl  layer, where lz h= , Report 2 Equation (4.23) becomes: 

        

                   

1l l l
l l l l

l l l

l l l

l l l

u ( h ) u ( 0 )
T E ( h ) T

( h ) ( 0 )

u ( h ) u ( 0 )
( h ) ( 0 )

σ σ

σ σ

−⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

⎡ ⎤=⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠
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� �
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  Report 2 (4.24) 

where 1( )l l l lT E h T −
⎡ ⎤ = ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦lH  is again the Haskell propagator matrix for Rayleigh waves, 

that expresses the displacement-stress state vector at the bottom of the thl  layer in terms of that at 

the top of the layer. 

 
 As for the case of Love waves, we define a set of displacement-stress state vectors, for 

1, 2, ,…l N= , one for each layer, as: 
 

0

( ) (0)
(0) (0)

l ll

l ll z

u z uU
σ σ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟Σ ⎝ ⎠ ⎝ ⎠⎝ ⎠

� � �
� � �        Report 2 (4.25) 
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which corresponds to the state vector at the top of each layer. Since the stress-displacement state 

vectors are continuous across the interface from one layered medium to the one below, one can 

write Equation (4.24) as:  

1,  2,  ,  1…l N= −         
11

1

( )l l
l l l l

l l

U U
T E h T −+

+

⎛ ⎞ ⎛ ⎞
= = ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Σ Σ⎝ ⎠ ⎝ ⎠

lH
� �
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Report 2 (4.26a) 

 
In the reverse order, we also have 
 

11 1 1 1

1 1

( )l l l
l l l l

l l l

U U U
T E h T

−− − + +

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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lH
� � �
� � �

  
Report 2 (4.26b) 

 
The displacement-stress vector at the top of the last (semi-infinite) layer can then be expressed in 
terms of that at the top of the 1st surface layer: 
 

U U⎛ ⎞ ⎛ ⎞
= ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦Σ Σ⎝ ⎠⎝ ⎠

1N
1N-1 N-2

1N

H H H
� �

…� �           Report 2 (4.27a) 

 

or in the reverse order         
1 1 1 VV − − − ⎛ ⎞⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ΣΣ⎝ ⎠ ⎝ ⎠
1 N

1 N-2 N-1
1 N

H H H… ��          Report 2 (4.27b) 

  
Equations (4.24) through (4.28) allow the displacement-stress vector to be calculated at every 

point of every layer in the half space from top to bottom. 

 
 

 In Report 2, Section IV.2 on “The Improved Matrix Propagator Algorithm”, the method 

of Liu (2010) was adopted to derive an improved Thomson-Haskell transfer matrix method. 

Instead of directly multiplying the Thomson-Haskell propagator matrix, this method defines for 

each layer an intermediate stiffness matrix and state vector and performs the propagation through 

an intermediate step at each layer. This modified scheme keeps the simplicity of the original 

propagator method with the intermediate step able to efficiently avoid and exclude the 

exponential growth terms. The following is a brief summary of the scheme for Rayleigh waves 

as in Liu (2010). It is also modified to cover the case of incident P, SV body waves (see Chapter 

III, Report 2). 

 



R3-33 
 

 The state vector in Report 2 Equations (4.26a) and (4.26b) above is written in terms of a 

layered stiffness matrix lS , namely, ( ) ( )l l lS UΣ = ⎡ ⎤⎣ ⎦ ��  expressing the stress vector in terms of 

the displacement vector, so that 

l
l

ll

IU
U

S
⎛ ⎞ ⎡ ⎤

=⎜ ⎟ ⎢ ⎥Σ ⎣ ⎦⎝ ⎠

�
�

�      Report 2 (4.28) 

and the Thomson-Haskell Propagator matrix equation takes the form: 

1
1

1

0
0
l

l l l l
l ll

I I
U T T U

S S

−
−

++
+

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦⎣ ⎦

E
E

� �    Report 2 (4.31) 

Direct substitution in the calculation would involve adding and subtracting expressions involving 

the exponential terms in l
−E  and l

+E .  As pointed out in Report 2, when lc α<  or lc β< , these 

exponents are real, and so the additions and subtractions of these exponentially increasing and 

exponentially decreasing terms together makes the terms numerically unstable, with possible 

overflow and underflow, especially when the frequency is high and/or the layer is thick. 

 

Liu (2010) proposed a step to avoid such numerical problem. From Equations (4.22), 

(4.25) and (4.28)   

(0)
(0)

ll l
l l

l ll l

I uU C
U T

S Cσ

+

−

⎛ ⎞⎛ ⎞⎡ ⎤ ⎛ ⎞
= = = ⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦Σ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠

�� ��
�� �

  Report 2 (4.32a) 

Rewrite it in terms of an intermediate ‘auxiliary’ stiffness matrix lS⎡ ⎤⎣ ⎦ , and call l lU C += � : 

                                                            

where  from (4.31) 1
1

1

,

0
                   

0

l l l
l l

l
l l l

l ll

I I
U T U

S S

I I
U T U

S S

−
−

++
+

⎡ ⎤ ⎡ ⎤
= ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦⎣ ⎦

E
E

�

�
       Report 2 (4.32b) 

Define another intermediate lP⎡ ⎤⎣ ⎦  matrix for each layer l :
 
 

1
1l

l l2
l 1l

IP
P T

SP
−

+

⎡ ⎤ ⎡ ⎤
= =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦⎣ ⎦
            Report 2 (4.33) 



R3-34 
 

and solving for lS gives (Liu, 2010): 

12 1
l l l l lS P P

−+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E        Report 2 (4.35) 

This has the numerical advantage that should the waves in the layer be surface-wave type and 

non-harmonic ( )or   c cα β< < , the terms in l
+⎡ ⎤⎣ ⎦E  would be exponentially decaying, and 

hence would tend to zero, especially when the layer thickness or the wave frequency is large. 

 

The case of Love surface waves proceeds the same way, except the matrices are half the 

size, namely 2 x 2 instead of 4 x 4, and scalar matrices. 

 

 Section IV.4 of Report 2: “The New Numerical Implementation for P, SV Body Waves” 

shows that the procedure for P, SV body waves follows the same concept but is applied in a 

different order. It is different from Rayleigh waves because, instead of surface waves at the 

bottom semi-infinite layer, we have incident P or SV body waves coming from below. The 

reader is referred to that section for a complete description. 
 

The case of incident SH body waves also proceeds the same way, except the matrices are 

half the size, namely 2 x 2 instead of 4 x 4, and scalar matrices. 

 

 

IV.5 Numerical Implementation of the derivatives of the Tanslational Motions 

 

If is seen from the above equations (Equations (2.1) – (2.8)) that the computation of the 

Torsion, Rocking and Strain time histories all involve either or both of the d
dx and d

dz  

derivatives of the corresponding translational acceleration ( )T
U V W, ,�� �� �� , velocity ( )U V W, ,� � �  and 

displacement ( )U V W, ,  time histories.  
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The numerical procedure for computing the d
dx and d

dz  derivatives of the 

corresponding translational motions follow along the same line as those of the corresponding 

translational motions as described in Chapter IV: “The Numerical Implementation” of Report 2.  

 

 For the case of Love and Body SH Waves, we consider Equation (4.4) of Report 2 above 

for each layer l, with l N1,  2,  ,  …= , this time re-introducing the x-dependence term ikxe  into 

both sides of the equation: 
 

l l

l l

i k z
l l

i k z
l l l l l l l l l l

ikx ikxv z ve
z i k i k i k i ke

e e
μ γ

μ γτ μ γ μ γ μ γ μ γ τ

1( ) 1 1 1 1 (0)0
( ) (0)0

−

−

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦

 l l
l l l

l l

ikx ikxv z v
T E z T

z
e e

τ τ
1( ) (0)

or                                        ( )
( ) (0)

−⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
    Report 2 (4.4)

 
 

so that the x-derivative takes the simple form: 
 

l l l
l l l

l l l

ikx ikx ikxv z v z vd ik ik T E z T
z zdx

e e e
τ τ τ

1( ) ( ) (0)
  =    ( )

( ) ( ) (0)
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (2.12) 

 

and the numerical implementation of the x-derivative of the Love waves and Body SH waves 

proceed in the same way as for the translational waves, with the additional factor ik  multiplied 

at each frequency. 

 

 Similarly for the z-derivative: 
 

l l l
l l l

l l l

ikx ikx ikxv z v z vd T E z T
z zdz

e e e
τ τ τ

1( ) ( ) (0)
  =    ( )

( ) ( ) (0)
−′⎛ ⎞ ⎛ ⎞ ⎛ ⎞

′= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦′⎝ ⎠ ⎝ ⎠ ⎝ ⎠
         (2.13) 

with 

l l l l

l l l l

i k z i k z

l l l li k z i k z

e ed dE z E z i k
dz dz e e

μ γ μ γ

μ γ μ γμ γ
0 0

( ) ( )
0 0− −

⎡ ⎤ ⎡ ⎤
′ = = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎣ ⎦ ⎣ ⎦

  (2.14) 
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Again the numerical implementation of the z-derivative of the Love waves and Body SH waves 

proceed in the same way as for the translational waves, with the matrix lE z( )′⎡ ⎤⎣ ⎦  replacing 

lE z( )⎡ ⎤⎣ ⎦  at each frequency. 

 

 For the case of Rayleigh waves and P, SV body waves, we consider Report 2 Equation 

(4.23) above for each layer l, with l N1,  2,  ,  …= , this time re-introducing the x-dependence 

term ikxe  into both sides of the equation: 
 

11 2 1 2
l ll l l l l

3 4 3 4
l ll l l l l

1l
l l l

l

ikx

u ( z ) u ( 0 )T T E ( z ) 0 T T
( z ) ( 0 )T T 0 E ( z ) T T

u ( z )
T E ( z ) T

( z )
e

                        

or                                 

� �
� �

�
�

σ σ

σ

−+

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎛ ⎞

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎝ ⎠

l

l

ikxu ( 0 )
( 0 )

e
�
�σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

Report 2 (4.23) 

 

so that the x-derivative takes the form: 
 

1l l l
l l l

l l l

ikx ikx ikxu ( z ) u ( z ) u ( 0 )d ik ik T E ( z ) T
( z ) ( z ) ( 0 )dx

e e e   =    
� � �
� � �σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (2.15) 

 

and the numerical implementation of the x-derivative of the Rayleigh waves and body P and SV 

waves proceed in the same way as for the translational waves, with the additional factor ik  

multiplied at frequency. 

 

 Similarly for the z-derivative, with l
l

l

E ( z ) 0
E ( z )

0 E ( z )

+

−

⎡ ⎤′
⎢ ⎥′ =⎡ ⎤⎣ ⎦ ⎢ ⎥′⎣ ⎦

: 

 

1l l l l
l l

l l ll

ikx ikx ikxu ( z ) u ( z ) E ( z ) 0 u ( 0 )d T T
( z ) ( z ) ( 0 )dz 0 E ( z )

e e e   =    
� � �
� � �σ σ σ

+
−

−

⎡ ⎤′′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦′ ⎢ ⎥′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

     (2.16) 

 

and from Report 2, Equation (4.19): 
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and                                  

l

l

l

l

l l

l l

ika z
l

ikb z
l

ika z
l

ikb z
l

0d E ( z ) E ( z )
dz 0

0d E ( z ) E ( z )
dz 0

ika e
ikb e

ika e
ikb e

+ +

− −

+

+

−

−

⎡ ⎤′= = ⎢ ⎥
⎣ ⎦
⎡ ⎤′= = ⎢ ⎥
⎣ ⎦

+
+

−
−

   (2.17) 

 

The numerical implementation of the z-derivative of the Rayleigh waves and body P and SV 

waves proceed in the same way as the translational waves, with the matrix 

l
l

l

E ( z ) 0
E ( z )

0 E ( z )

+

−

⎡ ⎤′
⎢ ⎥′ =⎡ ⎤⎣ ⎦ ⎢ ⎥′⎣ ⎦

 replacing lE z( )⎡ ⎤⎣ ⎦  at each frequency. 

 

 In the next chapter we will use the above-modified Thomson-Haskell propagator matrix 

adopted from Section IV of Report 2 for the Rotational Motions defined above. Since all the 

Torsional, Rocking and Strain motions are linear combinations of these d
dx  

and d
dz  

derivatives of the corresponding translational motions, we will refer to these d
dx  

and d
dz  

derivatives in all subsequent chapters as “Rotational motions”. 
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III. Surface and Body Waves Rotational Mode Shapes 

 
 
III.1  Introduction 
 
 

As in Report I, we will use the computed phase velocities for the 5 modes of Love waves 

and 5 modes of Rayleigh waves at the Imperial Valley El Centro 6-layered site model. Using the 

modified Thomson-Haskell propagator matrix adopted from Section IV of Report 2 for the 

Rotational Motions defined in the previous chapter, the relative rotation amplitudes can be 

computed for each mode of the Love waves for each frequency where the waves exist and in 

each layer of the half-space. We will assume the displacement amplitude to be one at the half-

space surface. 

 
 Section III.2 will describe the Love Wave Rotational modes #1 to #5, the five modes for 

which the calculations were made to obtain the phase velocities ( )c c T= , for the range of 

periods starting from 15sec down to 0.04sec. The rotational motions will be the d
dx  

and 

d
dz motions. Those will be the motions computed by normalizing the transverse displacement 

amplitudes to be ‘one’ at the half-space surface. Those will be followed by Section III.3 of the 

mode shapes of body SH waves for a given incident angle. Those will be taken to be the “13th 

mode” of waves to be included in the generation of synthetic translational motions in the (anti-

plane, SH) transverse direction. For brevity, the graphs of mode shapes for all the periods of all 

five modes of Love waves and body SH waves of a selected incident angle is not included here. 

 
Next in Section III.4 we illustrate the mode shapes for the five modes of Rayleigh surface waves. 

As in the case of Love waves, the relative rotational amplitudes are now be computed for each 

mode of the Rayleigh waves for each frequency where the waves exist and in each layer of the 

half-space. There will be two components of in-plane rotational motions, the d
dx  

and  

d
dz (rotational) motions. We will normalize the displacement amplitude of both components 

with respect to the vertical z-component of motion at the half-space surface. They will be 
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rotational motions from Rayleigh waves of mode#1 and 2 for the phase velocities ( )c c T= , in 

the range of periods starting from 15sec down to 0.04sec. This is followed by Section III.5 on the 

mode shapes of body P and SV waves for a given incident angle. This will be taken to be the 

“11th and 12th modes” of waves to be included in the generation of synthetic translational 

motions in the (in-plane, P and SV) radial and vertical directions. Again, for brevity of this 

presentation, the graphs of mode shapes for all the periods of all five modes of Rayleigh waves 

and body P and SV waves of a selected incident angle will not be included here. 

 

 In summary, modes #1 to #5 are the Love wave rotational modes, modes #6 to #10 are 

the Rayleigh wave rotational modes. Modes #11 and #12 are the body in-plane rotational modes 

respectively for incident P- and SV-waves. Finally mode #13 is the body anti-plane rotational 

mode for incident SH-waves. 

 

Note also that both the x- and z- distances are measured in km, while the trnalsational 

modes  and  U  V W, are measured in cm, the derivatives d
dx  

and d
dz  

of the mode shapes 

 and  U  V W, all thus have a built-in factor of 
2 5

3
10 1010

cm m
km m

− −= = . This is why in all 

rotational plots; the modes are labeled as ( )510 d d
dx dz,  to reflect the fact that amplitude of   4 

(for example) actually means 54 10−× . 

 

III.2  Love Waves Rotational Modes 

 
 Mode #1 has phase velocities for all 91 periods in the range from 15 sec down to 0.04 sec. 

The Thomson-Haskell computation gives the mode shapes of the Mode#1 Love waves in the 

same wide period range. Figure III.1 shows the plots of such Love wave d
dx  

and 

d
dz (rotational) mode shape amplitudes at four selected periods: 5,  1.0,  0.5,  and 0.1 T s= .  

 

 As stated above, the displacement amplitude of the mode shape (Report 2) is normalized 

to be one ( 1cm= ) at the surface of the half-space, so that the translational mode shape in Report 
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2 and the rotational mode shape values here have the scaling factors or transfer function values 

of the waves amplitudes along the depth from the half-space surface. Each graph shows the 

dV
dx  

and dV
dz mode shapes versus the distance z, which is the depth in kilometers below the 

half-space surface. 

 

 Since dV ikVdx = , the dV
dx  (dashed line) mode shapes are just scaled versions of the 

displacement (V ) mode shapes, scaled by the wave number k . Since V 1=  at 0z = , the half-

space surface, the imaginary part of dV
dx starts equal to k at the half-space surface, and just like 

the translational mode, stays positive all the way, and finally decays to zero down below. The 

waves at long periods decay slower than the waves at short periods. Note that the amplitudes stay 

below the initial value of k all the way. 

 

As an example, the dV
dx mode shape for the waves at ( )5sec  0.2T hz=  period in the 

top-left graph starts at ( ) ( )5 510 0 6 10k .− −× = × , at the surface, decays slowly and stays above 

zero all the way down to 6z km= , which is just inside the semi-infinite half-space medium, the 

6th layer in the model, where 5.58z km> .  The mode shape for the waves at ( )1sec  1.0T hz=  

period in the top-right graph decays a bit faster from initial value of ( ) ( )5 510 5 58 10k .− −× = × and 

stays above zero only down to 1.5z km∼ , which is just inside the 3rd layer in the model, where 

0.73 1.71z km≤ ≤ . The mode shape for the waves at ( )0.5sec  2.0T hz=  period in the bottom-

left graph decays much faster and stays above zero only down to 0.7z km∼ , which is close to 

the bottom of the 2ndlayer in the model, where 0.18 0.73z km≤ ≤ . Finally, the dV
dx  

mode 

shape for the waves at ( )0.1sec  10.0T hz=  period, in the bottom-left graph, decays so fast that 

it stays above zero only down to 0.2z km∼ , which is inside the 2nd layer in the model, with the 

1st layer in the range 0.0 0.18z km≤ ≤ .  
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Figure III.1 Mode #1.  Love Wave Rotational Mode Shapes at 5,  1.0,  0.5,  0.1 T s=  
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The solid lines in each graph are the dV
dz  mode shapes. They represent the shear 

strain 2yz yz
V

zγ ε ∂= = ∂ at each point on or below the half-space surface. Since the shear stress 

2 0yz yzτ με= =  at the half-space surface, so does the strain  dV
dz . In going down from the 

surface along z, the strain goes from one layer to another and exhibits jumps at the layered 

interface. This is because the shear stresses are continuous at the interface, and because of the 

differences in the shear moduli from layer to layer, the strains are discontinuous at the interface. 

Far from the surface, just like the dV
dx  

mode shape amplitudes decay to zero. 

 

 Mode #2 has phase velocities for all 70 periods in the range from 3.8 sec down to 0.04 

sec. The Thomson-Haskell computation gives the mode shapes of the Mode #2 Love waves in 

the same wide period range. Figure III.2 shows the plots of such Love wave dV
dx  

and  dV
dz  

mode shape amplitudes at four selected periods: T s3.0,  1.0,  0.3,  and 0.1 = . As for Mode #1, 

each graph shows the mode shape amplitudes versus the distance z, measured as depth in 

kilometers below the half-space surface. 

 

The mode #2 dV
dx  (dashed line) mode shapes, like the mode #1 mode shape, starts 

with mode number k at 0z = on the surface. Unlike Mode #1, which started positive and stayed 

positive before decaying to zero, the dV
dx  

mode #2 will decay to negative values at some depth 

and stay negative before decaying to zero. The mode shape at long periods decays slower than 

the mode shape at short periods. As an example, the mode shape for the waves at 

( )3.6sec  0.28T hz=  period in the top-left graph decays slowly, turns negative in the 3rd layer, 

0.73 1.71z km≤ ≤ , at around ~ 1.5z km , reaching a negative minimum in the 4th layer around 

~ 3z km . It stays negative all the way down beyond 10z km= , outside the range of the plots, 

way below the half-space medium, the 6th layer in the model, where 5.58z km> .   
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Figure III.2 Mode #2. Love Wave Mode Shapes at T s3.0,  1.0,  0.3,  0.1 =  

 
The dV

dx mode shape for the waves at ( )1sec  1.0T hz=  period, in the top-right graph, 

decays a bit faster to negative values around ~ 0.5z km , in the 2nd layer, 0.18 0.73z km≤ ≤ . It 

stays negative, with the negative minimum (close to but above k− ) right at the start of the 3rd 
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layer at 0.73z km= , then decays to zero right at the interface of the 4th and 5th layer at 

2.90z km= .  

 

Figure III.3 Mode#3 Love Waves Mode Shapes at 2.0,  0.75,  0.2,  0.075 T s=  
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The dV
dx mode shape for the waves at ( )0.3sec  3.33T hz=  period, shown in the 

bottom-left graph, starts at 17 86k .= and decays much faster to negative values around 

~ 0.15z km  in the top 1st layer 0.0 0.18z km≤ ≤ . It stays negative, reaching a negative 

minimum below 1 5k.− , around ~ 0.5z km in the 2nd layer, 0.18 0.73z km≤ ≤ . It then decays to 

zero right at the start of the 3rd layer, 0.73 1.71z km≤ ≤ , before ~ 0.8z km . 

 

Finally, the dV
dx mode shape for the waves at ( )0.1sec  10.0T hz=  period in the 

bottom-right graph decays so fast that it goes negative right in the top 1st layer, 0.0 0.18z km≤ ≤ , 

reaches its negative minimum close to the interface of the 1st and 2nd layers at 0.8z km= and 

then, decays to zero in the same 2nd layer. The dV
dz  (solid line) mode shapes for all graphs start 

small at the top, decaying to negative values and then to zero just like the dV
dx mode shapes. 

  

 

 Mode #3 has phase velocities for 61 periods in the range from 2.0 sec down to 0.04 sec. 

The Thomson-Haskell computation gives both dV
dx and dV

dz  rotational mode shapes of the 

Mode #3 of Love waves in the same period range. Figure III.3 shows the plots of these mode 

shape amplitudes at four selected periods: 2.0,  0.75,  0.2,  and 0.075 T s= . The rotational mode 

shapes, like those of translations, have the features expected for the 3rd mode, namely, each 

graph cross the zero line twice before decaying to zero at some depth below.  
 
III.3  Body SH Rotational Waves with a Given Incident Angle 
 
 

Figure III.4 shoes the plots of SH body wave mode shape amplitudes at four selected 

periods: 5.0,  1.5,  0.50,  and 0.15 T s= , assuming a given angle of incidence of body SH waves 

at o84γ =  with respect to the vertical direction from the bottom semi-infinite 6th layer. Such 

dV
dx and dV

dz  
mode shapes can be computed at all 91 periods in the range from 15.0 T s=  

down to 0.04 T s= .  
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Figure III.4    SH Body Waves (Incidence at 84o) at 5.0,  1.5,  0.50,  0.15 T s=  

 
This corresponds to an almost horizontal angle of incidence. The actual angle of 

incidence used will be different in each case, dependent on  
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1) The location and focal depth of the earthquake source, 
2) The location of the recording site and its epicentral distance from the source. 

 

 In each case, the mode shapes are normalized to have amplitude one at the half-space 

surface of 0z = . At depth, the body SH waves will then all have amplitudes that oscillate. 

Unlike the surface Love waves above, these are body waves and hence the mode shape 

amplitudes will not decay to zero as depth increase. 

 
The next chapter will consider one case where the site is in the near field of an 

earthquake source, with hypocentral distance 10D km≈ . In such a case, a ray path is traced so 

that the ray will take the shortest time to travel from the source to the site, and as the next section 

shows, each ray will have a different angle of incidence. 

 

III.4 Rayleigh Waves Rotation Mode Shapes 
 
 

Next we illustrate the dV
dx and dV

dz  
(rotational) mode shapes for the first two modes 

of Rayleigh surface waves. As in the case of Love waves, with the modified Thomson-Haskell 

propagator matrix defined in Chapter II above, the relative rotation amplitudes can now be 

computed for each mode of the Rayleigh waves for each frequency where the waves exist and in 

each layer of the half-space. There will now be 2 components of in-plane motions, the horizontal 

x-component and the vertical z-component. As in Report 2, we will normalize the translational 

displacement amplitude of both components with respect to the vertical z-component of motion 

at the half-space surface (Report 2). 

 

 This section will describe the Rayleigh Waves dV
dx and dV

dz  
(rotational) mode #1 

and mode #2, for the phase velocities ( )c c T= , in the range of periods starting from 15sec down 

to 0.04sec. This is followed by Section III.5 with the rotation mode shapes of body P and SV 

waves for a given incident angle. This will be taken to be the “11th and 12th modes” of waves to 

be included in the generation of synthetic translational motions in the (in-plane, P and SV) radial 

and vertical directions.  
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 The mode #1 of Rayleigh waves has phase velocities for all 91 periods from 15 sec down 

to 0.04 sec. The modified Thomson-Haskell computation thus gives the d U W
dx

( , ) and 

d U W
dz

( , )
 
(rotational) mode shapes of the mode #1 of Rayleigh waves in the same wide period 

range at every specified point below the surface. Figure III.5 shows the plots of two components 

(x- and z-) of such Rayleigh wave d U W
dx

( , ) and d U W
dz

( , )
 
mode shapes at the same four 

selected periods: 5,  1.0,  0.5,  and 0.1 T s= . 
 

 The amplitudes of the mode shapes of both components are normalized with respect to 

the vertical component W of motion at the surface of the layered half-space, so that the mode 

shape values become the scaling factors for transfer function values of the waves at different 

depths starting with the amplitudes on the half-space surface. Each graph has two components of 

the mode shape amplitudes versus the distance z, measured in km below the half-space surface. 

Recall from Report 2, where it was noted that at the half-space surface, with the z-component 

motion cm
z

W z
0

( ) 1 
=
= , the x-component of motion, 

0 0
( ) ( )

z z
U z i W z iγ γ

= =
= = , is an 

imaginary number, where γ  is a ratio computed from the Haskell algorithm for estimating phase 

velocities of Rayleigh waves. With this normalization, ( )W z will stay real, while ( )U z will stay 

imaginary for all z. In Report 2, without loss of generality, only the imaginary part of ( )U z  and 

the real part of ( )W z  were plotted. 

 
 Consider the dU

dx  and dW
dx  mode shapes in Figure III.5. Since dW ikWdx = , and 

the fact that ( )W z is taken to be real for all z, this makes dW
dx  imaginary and so only the 

imaginary part of dW
dx  is plotted and it is k times that of W. Similarly dU ikUdx = , and the 

fact that ( )U z  is imaginary, dU
dx  is real and of opposite sign to the imaginary part of ( )U z , 

and it is k−  times that of  the imaginary part of U. 
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Figure III.6 Mode#1 of Rayleigh Waves.  Rotation Mode Shapes at 5,  1.0,  0.5,  0.1 T s=  
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As expected for Mode #1 mode shape, all d dx  start at 0z = , on the surface, maintain 

the same sign without crossing the zero line, and decay to zero at some depth below the surface. 

The waves at long periods decay slower than the waves at short periods.  

 
The (imaginary part of) dW

dx  
(dashed line) mode shape for the waves at 

( )5sec  0.2T hz=  period is shown in the right part of the top-left set of Fig. III.5. It starts with 

amplitude k on the surface, decays slowly and stays positive above zero all the way down to 

z km6∼ , which is just inside the bottom, semi-infinite 6th layer. The (real) dU
dx the mode 

shape, on the other hand, starts at k1.6 ~ 0.85∼ − − , and stays negative before decaying to zero 

around 5z km∼ , near the bottom of the 5th layer.  

 

The dU
dx  and dW

dx  mode shapes for both components at 1secT = period ( )1.0hz in 

the top-right graph decay a bit faster to zero around 0.75z km∼ , which is just inside the 3rdlayer 

in the model, where 0.73 1.71z km≤ ≤ . The mode shapes for the waves at ( )0.5sec  2.0T hz=  

period in the bottom-left graph decay much faster and stay above zero only down to 0.5z km∼ , 

inside the 2nd layer, where 0.18 0.73z km≤ ≤ . Finally, the mode shapes for the waves at 

( )0.1sec  10.0T hz=  period, in the bottom-right graph decay so fast that they both decay to zero 

before 0.15z km∼ , which is inside the 1st layer of the model, 0.0 0.18z km≤ ≤ .  

 

Both the dU
dz  and dW

dz  mode shapes exhibit the same decaying behavior as the d dx  

mode shapes, with the additional property that they both have jumps at the layer interfaces, a 

property already observed for the anti-plane dV
dz  mode shapes, because of the discontinuous 

shear moduli across the interfaces. 

 
One interesting similarities between this and the Love wave mode shapes is that the 

amplification factor can be quite large compared with that of the translational components 

because the translational mode shapes can have large, steep slopes and hence these derivatives 

are large.  
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Figure III.6 Mode#2 of Rayleigh Waves. x- and z- Mode Shapes at 

3,  1,  0.3,  0.1 T s=  

 
 

Mode #2 of Rayleigh waves has phase velocities at 74 periods in the range from 4.6 sec 

down to 0.04 sec. The Thomson-Haskell computation gives the mode shapes of the Mode #2 in 
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the same wide period range. Figure III.6 illustrates the plots of d
dx and d

dz of both horizontal 

U and vertical W components of Rayleigh wave mode shape amplitudes at four selected periods: 

3.0,  1.0,  0.3,  and 0.1 T s= . The translational z-component displacement amplitude is 

normalized to one at the surface of the half-space, so that the mode shape values again become 

the scaling factors or transfer function values of the waves along the depth for mode #2 waves. 

Each graph shows plots of the rotational mode shape amplitudes for both components versus 

depth in kilometers. 

 

As in the case of translational motions, the mode #2 shapes will change sign and cross the 

zero line before decaying to zero at some depth below. Also, the waves at long periods decay 

slower than the waves at low periods.  

 

Note that the jumps for the d/dz rotational motions across each layer interface are more 

pronounced for Mode #2 than for Mode #1, especially at longer periods. All the motions also die 

down beyond the 3rd layer from top.  For shorter periods, or higher frequencies in the bottom two 

graphs, they are already negligible right after the 2nd layer. The rotational mode shapes for Mode 

#3 to Mode #5 all show the same similar trend.  

 

III.5  Body P and SV Rotational Mode Shapes of a Given Incident Angle 
 
 

Figure III.7 illustrates the plots of P and SV body wave rotational mode shapes at four 

selected periods: 5.0,  1.5,  0.50,  and 0.15 T s= , assuming a given angle of incidence for P- 

waves at o84γ =  with respect to the vertical direction from the bottom semi-infinite 6th layer. 

Such mode shapes exist at all 91 periods in the range from 15.0 T s=  down to 0.04 T s= .  

 

Figure III.8 is the corresponding plot of P and SV body rotational wave mode shapes at 

the same four selected periods: 5.0,  1.5,  0.50,  and 0.15 T s= , assuming the same given angle 

of incidence, this time for SV- waves at o84γ = .  
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As for the body SH- waves, this corresponds to an almost horizontal angle of incidence. 

The angle of incidence used will be different for each case, and will dependent on   
 

Figure III.7     P and SV Body Wave modes for Incident P Waves at 
o84γ = 5.0,  1.5,  0.50,  and 0.15 T s=  
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Figure III.8    P and SV Body Wave modes for Incident SV-Waves at 
o84γ = 5.0,  1.5,  0.50,  and 0.15 T s=  

 
1) The location and focal depth of the earthquake source, 
2) The location of the recording site and its epicentral distance from the source. 
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For example, the incident angles from the bottom semi-infinite media from very small to 

very large hypocentral distances, say from 10D km=  to 70D km=  for the El Centro layered 

model considered in this report, are between o83γ =  and o85γ = .  

 
 

 
 

 
IV.1  Introduction 
 

With the rotational mode shapes and Transfer functions available for the 5 modes of Love 

waves and 1 “mode” of Body SH waves from the last chapter, the procedures of Report 2 for 

generating the synthetic transverse components of acceleration at all depths z below the surface 

can now be extended to the transverse components of rotational motions. We will pick the same 

El Centro 6-Layered elastic model and select the following two Case Studies for the earthquake 

source and site characteristics: 

 

Case Studies: 

1) Case Study 1:  6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  

2) Case Study 2:  6.5,  40.0 ,  9.0 ,  0,  2LM R km H km s s= = = = =  

where 
 

M = earthquake magnitude 

R = epicentral distance 

H = focal depth of earthquake, corresponding to a hypocentral distance of  

( ) ( )D R H km
1 2 1 22 2 2 28.0 6.0 10.0= + = + =  

s = geologic site condition of the recording site, with 

  s = 0, alluvial site, s = 1, intermediate site and s = 2, rock site 

Ls = soil condition of the recording site, with 

  Ls = 0, rock soil, Ls =1, intermediate soil and Ls =2, soft soil type 

 

IV. The Synthetic Transverse Rotational Motions 
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The two cases are for the same site, with the same geological and soil site conditions, and 

are subjected to an earthquake of the same magnitude. They differ only in the epicentral 

distances and the earthquake focal depths. Case Study 1 illustrates near-field motions with small 

epicentral distance and shallow focal depth. Case Study 2 has larger epicentral distance and 

slightly deeper focal depth.  

In both Case Studies 1 and 2, we compute the Translational motions as in Report 2, and 

now the Rotational motions at points on and below the surface along a vertical line ( 0)x =  from 

the surface ( 0)z =  down to a depth of 6z = km below. The revised computer program, 

SYNACCS, will be used to compute the Translational and Rotational motions at any point ( , )x z  

on or below the surface. At a point ( , )x z  where 0x ≠ and further to the right, the Fourier 

Transform of the various acceleration components, here and in Report 2, all include the term ikxe  

to account for the time shift resulting from the waves arriving at the point further and further 

away. However, the fact that digital Fast Foruier Transform (FFT) of the finite sequence of 

Fourier terms is used in the calculation, this will result in all time series at all points to have 

nonzero amplitudes starting at 0t = , although this beginning portion of the time series up to the 

arrival of the fastest waves is physically associated only with the processing noise. To account 

for the actual time arrival of time series at points to the right of the line 0,x =  we use the 

following procedure to put zeros at points at the beginning of the record: 

 

Suppose a component of the synthetic time series is defined at a horizontal distance of 

x H= km to the right of the vertical line 0x = , and that the fastest waves of all modes that 

contribute to the component have a phase velocity of ( )c T c= km/s. The fastest waves would 

thus have to take a time of /T H c=  seconds to arrive at the point. This component of record is 

then assumed to have a time delay of T sec. We define a step function ( )H T  as 

0
( )

1
            
            

t T
H t

t T
<⎧

= ⎨ ≥⎩
      (4.1) 

and multiply the time series of the component by this step function, so that it is essentially zero 

before the fastest waves arrive. This elimination of small but negligible amplitudes in the time 

series is important for proper starting of calculations in the cases where SYNACCS is used to 
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define input motions into the finite element or finite difference “boxes” of soil surrounding the 

structures in soil-structure response analyses. 

 

 The Updated program SYNACCS can now generate time series from each mode of 

surface Rayleigh and Love waves, and each mode of body P, SV and SH waves. The above 

procedure can also be applied separately to the data from each mode of body or surface waves, 

since each mode has a slightly different phase velocity. 

 

IV.2         Case Study 1: ( ) 6.5,  8.0  &  6.0  10.0 ,  0,  2LM R km H km D km s s= = = = = =  

  
 As described in Section VII.1, Report 2, the time history at the top surface 0z =  will be 

generated by the SYNACC method (Trifunac, 1971b; Wong and Trifunac, 1978, 1979; Lee 

and Trifunac, 1985, 1987), using the current SYNACCS algorithm, which includes a mode of 

SH body waves (Mode #13). Figure IV.1 (Figure VII.1 of Report I) here is a plot of the ray path 

taken by the SH body waves from the earthquake source to the recording site. 

Figure IV.1 (Figure VII.1of Report I) SH Body Waves Ray Path from Source 
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 The ray path is chosen so that the phase velocities at each layer of the 6-layered media 

are the same, or that the angles of the ray travel are determined so that Snell’s Law is satisfied at 

each interface, namely, for the layer 1,  2,  ,  6i = … : 

( )sin 3.72 km/s,  a constanti ic β γ= =   Report 2 (VII.1) 

where 

iβ  = shear wave speed, and  

iγ  = angle the ray makes with respect to the vertical directional the thi layer.  

 

It shows that the ray will start at an angle of 6 83.4oγ ∼ with respect to vertical direction, 

with almost horizontal path, and bend up into the layered media so that it arrives at the site with 

1 15.3oγ ∼ , with respect to the vertical direction. 

 

Figure IV.2 gives the synthetic V
x

∂
∂
��  and V

z
∂

∂
��

 
rotational acceleration time-histories 

calculated using the earthquake parameters of the Case Study 1 in Section IV.1 above. It 

corresponds to a hypocentral distance of ( ) ( )1 2 1 22 2 2 28.0 6.0 10.0 .D R H km= + = + =  the 

SYNACCS program determines that the appropriate duration of the accelerogram record should 

be just above 40 seconds.  The depth of each accelerogram is labeled at intervals 0.5km apart. Of 

the 120 accelerogram time histories, five of them are plotted green, and labeled 1 to 5. The ones 

labeled 1 to 5 are those at depths, which are closest to the interfaces between adjacent layers in 

the site model. The corresponding acceleration time histories of the transverse translational 

component, ‘V z( )�� ’, can be found in Figure VII.3 of Report 2. 

 

Note that, as in Report 2, the actual time scale of the above time histories has been shifted 

to have a common time scale, where 0 secT = is defined by SYNACCS to be the arrival time 

maxR c , where R is the epicentral distance and maxc is the maximum velocity of the waves.  
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This synthetic component of rotational motion, V
x

∂
∂  and its 1st and 2nd time derivatives, 

V
x

∂
∂
�  and V

x
∂

∂
�� , correspond to the time-histories of synthetic shear strain, 2yx yxγ ε= .  From 

equation (2.2) above, z
V

x
1

2
∂Ω = ∂ , also represents the synthetic antiplane component of 

Torsional motion, the z-component of rotation. 

 

Similarly, the synthetic component of rotational motion, V
z

∂
∂  and its 1st and 2nd time 

derivatives, V
z

∂
∂
�  and V

z
∂

∂
�� , correspond to the time-histories of synthetic shear strain, 

2yz yzγ ε= . From equation (2.2) above, x
V

z
1

2
∂Ω = − ∂ , represent the synthetic antiplane 

component of Rocking motion, the x-component of rotation. 

 

Perusal of Figure IV.2 here, together with Figure VII.3 of Report 2, shows that, at such 

short distance of 10.0D km= , both the Love waves and body waves arrive within a few seconds.  

 

For the V
x

∂
∂
��

 
motions on the left, the SH body waves have the same phase velocity at 

all periods and the figure shows that the direct arrival time of the SH body waves is around 

T s4.49∼ . The arrival times for Love waves will be different for different modes, and for waves 

at different periods, since the phase velocities ( )c c T= , depend on the period of the waves. The 

rotation time histories show that the strong-motions arrive at aboutT s5.0∼ , which follows right 

after the direct arrival time of body waves. They are thus not very distinguishable in the near-

filed, due to short hypocentral distance. 

 

The V
z

∂
∂
��

 
motions on the right do show the arrival of two sets of waves, namely the 

rotational component of body transverse SH- waves and the surface Love waves. Here the body 

SH waves arrive first, with the surface waves arriving about 6 seconds later. 
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Figure IV.2 

 

V
x

∂
∂
��         Synthetic  Acc.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =          

V
z

∂
∂
��
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The strong motion of rotation
 

V
x

∂
∂
��  is observed at depths in the first two top layers, up 

to 0.7z km∼ . Smaller motions are in the 3rd layer up to 1.7z km∼ , beyond which the motions 

become small and negligible. This is consistent with the mode shape amplitudes of Love waves 

(Section V Report 2), where it was found that, for all modes, at moderate periods, the motions 

stay close to, but are always less than, those at the top surface, in the first two layers, and then 

began to die down further below. The attenuation is faster for the waves at higher frequencies. 

The strong motion rotations V
z

∂
∂
��

 
decay even faster with depth, showing the strong motions 

only in the 1st layer and the beginning of the 2nd layer, around up to z km0.3∼ . The body SH 

wave motions of V
z

∂
∂
�� , on the other hand, are more noticeable down to, and beyond the 3rd 

layer at 1.7z km∼ .  

 

Figure IV.3 shows the corresponding synthetic rotational motions V
x

∂
∂
�  and V

z
∂

∂
�  

(velocity). The actual depth of each velocity time function is labeled at each 0.5 km apart. Of the 

100 velocity time histories, six of them are plotted green, and labeled 1 to 5. They are those 

rotation time histories at depths on or closest to the interfaces between adjacent layers. 

 
The new SYNACCS program computes the rotational velocity at all depths from the 

corresponding rotational acceleration time histories from the Fourier transform in the frequency 

domain, and then taking its inverse Fourier transform. 

 

Figure IV.4 shows the corresponding synthetic rotational motions V
x

∂
∂  and V

z
∂

∂  

(displacements) calculated for the same El Centro site. The consecutive depths of each plotted 

displacement are again 0.5km apart. Of the 120 displacement time histories, five are again 

plotted green, and labeled 1 to 5., and correspond to those at depths, which are closest to the 

interfaces between adjacent layers. The new SYNACCS computer program computes the 

rotational displacement at all depths from the corresponding rotational acceleration time histories 

in the frequency domain, and then takes its inverse Fourier transform.  
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Figure IV.3 

 

V
x

∂
∂
�         Synthetic  Vel.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =          

V
z

∂
∂
�
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Figure IV.4 

 

V
x

∂
∂         Synthetic  Disp.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =          

V
z

∂
∂  
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IV.3 The Three-Dimensional (3-D) Plots for Case Study 1 

 

 It is instructive also to plot the above two-dimensional (2-D) time histories of rotational 

acceleration V
x

∂
∂
�� , V

z
∂

∂
��

 
, velocity V

x
∂

∂
� , V

z
∂

∂
�  and displacements V

x
∂

∂ , V
z

∂
∂ , 

respectively in Figures IV.2, 3 and 4, as three-dimensional (3-D) time histories figures.  

 

Figure IV.5 in the next page is the 3-D plot of the translational motions of the same 120 

accelerations corresponding to Figure IV.2. The two horizontal longitudinal and transverse 

coordinate axes are now correspondingly the time axis and the depth below surface. The vertical 

axis shows the amplitude of acceleration in 2/cm s . The five green lines, labeled 0 to 5, again 

correspond to the positions where the layers meet. Figures IV.6 and IV.7, which follow, show 

the 3-D representation of rotational synthetic velocities and displacement, corresponding to the 

2-D plots of Figures IV.3 and IV.4. 

 
IV.4  Separating the Body and Surface Waves Plots of Case Study 1 

 

Since it is known that the body waves and surface waves arrive at different times, their 

contributions to the synthetic motions are thus best visualized by plotting them separately. The 3-

D plots in Figure IV.8 represent the rotational acceleration time histories V
x

∂
∂
��  and V

z
∂

∂
��  of 

the body waves and of surface waves. The body wave time histories on the left show that the 

waves arrive at the beginning and dominate the motions at all depths within the first 5- seconds. 

The body wave rotational motions are also seen at all depths below the surface. The surface 

wave time histories on the right show that the motions which arrive later, at about 7 seconds after 

the first arrival time. In this example the body wave rotational peak acceleration has a much 

smaller maximum compared with that of the surface waves. This results from the fact that the 

weights assigned to the five modes of surface love waves are higher than the weight assigned to 

the mode of body waves. Combining the motions of the body waves and of surface waves results 

in the complete acceleration time histories, which are shown in Figure IV.5 and repeated as the 

plot in the last row at the bottom. 
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Figure IV.5     Synthetic Rotational Acceleration at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = = =  

V
x

∂
∂
��  

 

V
z

∂
∂
��  
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Figure IV.6       Synthetic Rotational Velocity at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = = =  

V
x

∂
∂
�  

 

V
z

∂
∂
�  
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Figure IV.7     Synthetic Rotational Displacement at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = = =  
V

x
∂

∂  

 
V

z
∂

∂  
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The two columns of 3-D graphs in Figure IV.9 represent the velocity time histories 

V
x

∂
∂
�  and V

z
∂

∂
� of the body waves and the surface waves. As for the acceleration time 

histories, the body wave velocity time histories in the top row, especially the V
z

∂
∂
�  motions, 

display noticeable motions only during the first 8 seconds, after which the motions die out. These 

motions are also noticeable at all depths. The surface wave velocity time histories in the middle 

row show strong motions only in the top two layers and the maximum motions occur at around 

10 seconds from the earthquake origin time. The last row again shows the total motions.  

 

Figure VI.10 shows the rotational V
x

∂
∂  and V

z
∂

∂  displacement time histories of the 

body waves and of the surface waves. The V
x

∂
∂  component shows that the motions are 

completely dominated by the surface waves, with the body waves at all depths being very small. 

The V
z

∂
∂  component is different. It shows that the motions are completely dominated by the 

body waves at all depths. 

 

IV.5     Case Study 2: ( ) 6.5,  40.0 ,  9.0  41.0 ,  0,  and 2LM R km H km D km s s= = = = = =  
 

We now consider an example of far field motion, for epicentral distance 40.0R km= and 

an earthquake source at a focal depth of 9.0H km= . This corresponds to a hypocentral distance 

of ( ) ( )1 2 1 22 2 2 240.0 9.0 41 kmD R H= + = + = . Figure IV.11 (same as Report 2, Figure 

VII.9) shows a plot of the path taken by the SH body waves from the earthquake source to the 

recording site. As before, the path is chosen so that the phase velocities in each layer are the 

same, or that the angles the ray travels are determined so that Snell’s Law is satisfied at each 

interface. 
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Figure IV.8    Contributions of Body and Surface Waves to Total Synthetic Rotational Acceleration 
V x∂ ∂��                             Body Waves                  5 2V z        10 rad s−∂ ∂��  

  
V x∂ ∂��                             Surface Waves                  5 2V z        10 rad s−∂ ∂��  

  
      V x∂ ∂��                     All (Body + Surface) Waves           5 2V z        10 rad s−∂ ∂��  
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Figure IV.9    Contributions of Body and Surface Waves to Total Synthetic Rotational Velocity 
V x∂ ∂�                                Body Waves                        510V z       rad s−∂ ∂�  

  
      V x∂ ∂�                          Surface Waves                       510V z       rad s−∂ ∂�  

  
       dV dx�              All (Body + Surface) Waves               510V z       rad s−∂ ∂�  

 



R3-71 
 

Figure IV.10    Contributions of Body and Surface Waves to Total Synthetic Rotational Displacement 
V x∂ ∂                          Body Waves                   510V z       rad−∂ ∂  

  
 V x∂ ∂                             Surface Waves                   510V z       rad−∂ ∂  

 
  V x∂ ∂                   All (Body + Surface) Waves                   510V z       rad−∂ ∂  
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This results in the ray starting at an angle of 6 84.5oγ ∼ with respect to vertical, and 

propagating up the layered media so that it is incident at the site with 1 15.3oγ ∼ with respect to 

vertical, a case of near vertical incidence. 

 

Figure IV.11 SH Body Waves Ray Path from Source to Site 

 

The surface waves, on the other hand, have a phase velocity at each frequency that is lower than 

the phase velocity of the body SH waves, which is 3 7 km s. /∼ . Not traveling as fast as the body 

waves, they arrive at the site at a later time. For the case considered here of an epicentral distance 

40R km= , some of the modes of Love waves may have a phase velocity of 1 0 km s. /  or less at 

some dominant frequencies, and thus would take more than 40 sec  to arrive at the site. Note that 

for the in-plane P and SV body waves, the first arrival time is faster ( 7 6 s. ec∼ as described in 
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the next chapter).  During many earthquakes, strong surface waves can arrive sooner than this, 

even at large epicentral distances. This can be attributed to the fact that the surface and body 

waves are often generated not just at the earthquake source, but also at the edge of an alluvial 

valley, which can be closer to the site. 

  To account for such modeling, SYNACCS is programmed to have two 

“hypocentral distances” to be defined by the user. The first hypocentral distance is the (actual) 

epicentral distance from the earthquake source to the site. The second “hypocentral distance” is a 

smaller distance from some representative edge of a valley where the site is located. The first 

hypocentral distance will be used as one of the parameters for the regression to estimate the 

Fourier amplitudes of the waves at the site. The second hypocentral distance can be used to 

estimate the arrival times of dominating surface waves. Since this second distance is closer, the 

travel time of thus modeled waves will be shorter and their duration shorter. 

 For our example in Case Study 2, the first hypocentral distance is 1 41D D  km= = , and 

the second  “hypocentral distance” is assumed to be 2 25D D  km= = . The body SH waves are 

assumed to be incident from the bottom layer at an angle of incidence of 84o  with respect to the 

vertical direction 

Figure IV.12 shows the synthetic V
x

∂
∂
��  and V

z
∂

∂
��

  
3D rotational acceleration time-

histories calculated using the earthquake parameters of the Case Study 1. It corresponds to a 

hypocentral distance of ( ) ( )D R H km
1 2 1 22 2 2 240.0 9.0 41.0 .= + = + =  for which the 

SYNACCS program determines that the appropriate duration of the accelerogram record should 

be above 40 seconds.  

 

 The two synthetic V
x

∂
∂
��  and V

z
∂

∂
��

  
3D rotational acceleration time-histories in the 

figure are plotted with the same scale. As in Case Study 1, the SH body waves are present during 

the first 10 seconds of motions, while the surface waves, using the 2nd distance of 2 25D  km=  to 

calculate the arrival times, have dominant motions between 10 and 30 seconds of the record. 

This is different from the corresponding acceleration time histories of the transverse translational 
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component, V z( )�� , in the 3D plot in Figure VII.11 of Report 2, where we considered only the 

hypocentral distance of 41D  km=  to calculate arrival time, so that the dominant motions are 

between 20 and 40 seconds in the record, due to later arrival of surface waves. It also shows that 

for the V
x

∂
∂
�� motions, the SH body waves are small compared with the surface waves, whereas 

for the V
z

∂
∂
�� motions, the SH body waves are more dominant.  

Figure IV.13 shows the corresponding synthetic V
x

∂
∂
�  and V

z
∂

∂
�

 
3D rotational 

velocity time-histories. Again both components are plotted with the same scale, showing that the 

V
x

∂
∂
�

 
motions are more significant than the V

z
∂

∂
�  , as for the acceleration rotations.  

Figure IV.14 shows the corresponding synthetic V
x

∂
∂
�   and V

z
∂

∂
�

  
3D rotational 

displacement time-histories, and shows a similar trend.  

 

IV.6  The Curvatures for Transverse Motions 

 Recall from Equation (2.10) in Chapter 2, where the curvature in the transverse 

direction is defined as 

Transverse Curvature:      VVK t     x c
2

22 2( ) ∂≈ =
∂

��

       

From  (2.10) 

 
 
It is computed directly from the translational components, computed together with the rotational 

motions. In fact, they each correspond to the 2nd derivative of the transverse translational 

motion with respect to x in the radial direction. 

 

 Figures IV.15 and 16 show the transverse curvatures at depths below the surface 

computed respectively for the two Case Studies: 1 and 2. 
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Figure IV.12     Synthetic Rotational Acceleration at LM R km H km s s6.5,  40  &  9 ,  0,  2= = = = =  

V
x

∂
∂
��  

 
V

z
∂

∂
��
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Figure IV.13     Synthetic Rotational Velocity at LM R km H km s s6.5,  40  &  9 ,  0,  2= = = = =  
V

x
∂

∂
�  

 

V
z

∂
∂
�
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Figure IV.14    Synthetic Rotational Displacement at LM R km H km s s6.5,  40  &  9 ,  0,  2= = = = =  
V

x
∂

∂  

 
V

z
∂

∂  
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 Note that the 2nd derivative of the transverse motions gives the curvature motions. Since 

the translational motions are in units of cm and the distances are measured in km, they have the 

units of cm
km2 , or cm

cm10 210 or rad
cm

1010− . 

 

 For Case Study 1, at near-field site ( D km10= ), Figure IV.15 shows that the 

curvature motions are of the order of rad
cm

920 10−× , and the motions are again significant 

only on the two top layers of the media, or down to 0.7km. Further, the strong motions occur 

around the 10-seconds mark of the record. 

 

For Case Study 2, at far-field site ( D km41= ), Figure IV.16 shows that the 

curvature motions are smaller, of the order less than rad
cm

910 10−× , and the motions are 

significant only in the top layer of the media, or down to 0.18km. The second layer, down to 

0.7km of depth, has smaller motion. Further, the strong motions occur later, around the 20-

seconds mark of the record. 

 

Finally, to be consistent with all other parts of this report, we will next plot the above two-

dimensional (2-D) time histories of these transverse curvatures for Case Studies 1 and 2 

respectively in Figures IV.17 and IV.18, as three-dimensional (3-D) time histories figures.  

 

Figure IV.17 is the 3-D plot of the transverse curvature motions of the same 120 

accelerations corresponding to Figure IV.15 for Case Study 1. The two horizontal longitudinal 

and transverse coordinate axes are now correspondingly the time axis and the depth below 

surface. The vertical axis shows the amplitude of curvatures, in unit of 910 rad
cm

− . The five 

green lines, labeled 0 to 5, again correspond to the positions where the layers meet.  
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 Figure IV.15       Synthetic Transverse Curvature at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = = =
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Figure IV.16    Synthetic Transverse Curvature at LM R km H km s s6.5,  40  &  9 ,  0,  2= = = = =  
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Figure IV.17       Synthetic Transverse Curvature at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = = =  

 
 
V.              The Synthetic Radial and Vertical Rotational Motions 
 
 
V.1  Introduction 

 

We will again select the same El Centro 6-Layered elastic model and will consider the 

following two Case Studies of earthquake source and site characteristics: 
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Figure IV.18    Synthetic Transverse Curvature at LM R km H km s s6.5,  40  &  9 ,  0,  2= = = = =  

 
 
 

Case Studies: 

3) Case Study 1:  6.5,  8.0 ,  6.0 ,  0,  2LM R km H km s s= = = = =  

4) Case Study 2:  6.5,  40.0 ,  9.0 ,  0,  2LM R km H km s s= = = = =  

 

where the earthquake parameters ,  ,  ,  ,  LM R H s s  are defined as in Chapter IV for the Synthetic 

Transverse Rotational motions. The two cases are again on the same site, with the same 

geological site and soil conditions, and are subjected to an earthquake of the same magnitude. 

They differ only in the epicentral distances and the earthquake focal depths. Case Study 1 studies 
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near-field motions with small epicentral distance and shallow focal depth. Case Study 2 has 

larger epicentral distance and slightly deeper focal depth.  

 

V.2     Case Study 1: ( ) 6.5,  8.0  &  6.0  10.0 ,  0,  2LM R km H km D km s s= = = = = =  
 

As before, the time histories at the top surface 0z =  are generated by the existing 

SYNACC method, and the current SYNACCS algorithm is used to include the five modes of 

Rayleigh surface waves (modes #1 to #5), and two modes of longitudinal, P waves (mode #11) 

and shear, SV waves (mode #12).  

Figure V.1 (Report 2, Figure VIII.1a) shows the ray path taken by the P-waves from the 

earthquake source to the recording site. The ray path is chosen so that the phase velocities at each 

layer of the 6-layered media are the same, or that the angles the ray travels are determined so that 

Snell’s Law is satisfied at each interface, for the layers 1,  2,  ,  6i = … : 

( )sin 6.44 km/s,  a constanti ic α γ= =     Report 2 (8.1) 
 

where iα  = are the compressional wave speeds, and iγ  = angles the ray makes with respect to 

the vertical direction at the thi layer. It shows the ray starting at an angle of 6 83.4oγ ∼ with 

respect to the vertical, and progressing up the layered media and arriving at the site with 

1 15.3oγ ∼ . 

Figure V.2 (Report 2, Figure VIII.1b) shows the ray path taken by the (slower) SV body 

waves. The ray path is again chosen so that the phase velocities at each layer of the 6-layered 

media are the same (Equation 7.1 of Report 2, Chapter VII). It shows that the ray will start at an 

angle of 6 83.4oγ ∼ with respect to vertical, and then progress up the layered media arriving at the 

site with 1 15.3oγ ∼ . Note that P-waves have almost the same starting angle at the source and 

ending angle at the site. 
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Figure V.1 (Report 2, Figure VIII.1a) P- Body Waves Ray Path from Source to Site 
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Figure V.2 (Report 2, Figure VIII, 1b) SV- Body Waves Ray Path from Source to Site 

 
With both the P- and SV- body waves generating an extra mode in the layered media, together 

with the five modes of Rayleigh waves, they can now be used to generate the radial and vertical 

components of synthetic rotational as well as the synthetic translational motions at all depths on 

and below the surface. 

   



 Figure V.3a shows the synthetic U
x

∂
∂
�� , U

z
∂

∂
��  rotational acceleration time histories 

derived from the horizontal (i kx tU z e( ) )ω+  motions, calculated for the El Centro six-layered site 

model, at 120 depths equally spaced from the surface to almost 6km below the surface, for the 

present Case Study, at the hypocentral distance 10.0D km= . The SYNACCS computer program 

again determines that the appropriate duration of the accelerogram record should be just about 40 

seconds. Similarly Figure V.3b shows the synthetic W
x

∂
∂

�� , W
z

∂
∂

��  rotational acceleration time 

histories derived from the corresponding vertical (i kx tW z e( ) )ω+  motions. As in the examples of 

the transverse (anti-plane) rotational components of motions in Chapter IV, the accelerograms 

are shown at 0.5km spacing. Of the 120 acceleration time histories, five are plotted green, and 

labeled 1 to 5, at depths closest to the interfaces between the adjacent layers. 

 

The synthetic component of rotational motion, U
x

∂
∂  and its 1st and 2nd time derivatives, 

U
x

∂
∂
�  and U

x
∂

∂
�� , correspond to the time-histories of synthetic normal strain, xε . Similarly, 

the synthetic component of rotational motion, W
z

∂
∂  and its 1st and 2nd time derivatives, W

z
∂

∂
�  

and W
z

∂
∂

�� , correspond to the time-histories of synthetic normal strain, zε . 

 

As for the two derivative components U
z

∂
∂ and W

x
∂

∂ , from equation (2.2) above, 

( )y
U W

z x
1

2
∂ ∂Ω = −∂ ∂  is the in-plane Rocking component of the Rayleigh and body P, SV 

waves in the x-z plane, or the y- component of rotation, while 
 ( )xz

U W
z x

1
2ε ∂ ∂= +∂ ∂  is the 

Shear Strain the x-z plane. Combinations (sums and differences) of these two derivative 

components, together with their 1st and 2nd time derivatives, U
z

∂
∂
�  , U

z
∂

∂
��  and W

x
∂

∂
�  W

x
∂

∂
�� , 

give the time histories of synthetic Rocking and Shear Strain xzε accelerations. 
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Figure V.3a 

 

U
x

∂
∂
��         Synthetic Rotational Acc.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =     

5
210U rad         z s

−∂
∂
��
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Figure V.3b 

 

dW
dx

��
     

Synthetic Rotational Acc.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =          
dW

dz
��  
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The corresponding acceleration time histories of the horizontal U z and vertical W z  

translational motions can be seen in Figures VIII.3a, b of Report 2. 

( ) ( )

 

Recall that the time scale of the time histories has been shifted to have a common time 

origin, where is defined by SYNACCS to be the time 0 secT = maxR c , with R  the epicentral 

distance and  the maximum phase velocity of the waves. In other words, is the 

arrival time of the first (fastest) wave. Perusal of Figure VIII.3a,b in Report 2 for the 

translational motions, together with the rotational motions here in Figures V.3a, b, will show 

that, for near filed distance with 

maxc 0 secT =

m10.0D k= , both the Rayleigh waves and P- and SV-body 

waves arrive within a few seconds after the start of the earthquake. The SH body waves have the 

same phase velocity at all periods and the direct arrival time of the P-waves (Figure V.1) is 

, while the arrival time for the SV- waves (Figure V.2) is 2.60T = s s4.49T = . The arrival times 

for the Rayleigh waves will be different for different modes, and for different periods, since the 

phase velocities, , depend on the periods, as shown by the dispersion curves in Report 

2 Figure I.1. The plots of acceleration curves show that the strong-motions are all within the first 

10 seconds from the first arrivals. 

( )c c T=

 
Another point to note is that, for all rotational components, the strong-motion is seen at 

the depths of just below the top layer, down to z km0.3∼ . Smaller rotational motions are 

observed in the 2rd layer up to z km0.7∼ , beyond which these motions become small.  

 

This is consistent with the mode shapes of Rayleigh waves in Chapter IV, where it is 

found that, for all modes of the x- and z- derivatives (rotational) of Rayleigh waves, at moderate 

periods, large motions occur practically in the first two top layers, and then began to die down at 

greater depths. The decay of amplitudes with depth is even faster for waves with higher 

frequencies. In the examples we considered for this writing the maximum of all components of 

rotational motions are observed in the first two layers from the top, for most periods.  
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Figure V.4a 

 

dU
dx
�         Synthetic Rotational Vel.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =          

dU
dz
�
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Figure V.4b 

 

    
dW

dx
�         Synthetic  Rotational Vel.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =         

dW
dz
�
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For the transverse and rotational components in Chapter IV and for the radial and vertical 

rotational components in the example considered here, it is observed that for the six-layered model in 

Imperial Valley, El Centro, large rotational motions occur mainly on or near the surface. This is 

consistent with the rotational mode shapes of Rayleigh waves in the last chapter, where it was found that, 

for all modes of Rayleigh waves, at moderate periods, large motions occur in the first two top layers, 

and then began to die down at greater depths. The decay of amplitudes with depth becomes faster for 

waves with higher frequencies.  

 

Figure V.4a, b shows the synthetic rotational velocity calculated for the El Centro six-layered 

site, respectively for the x- and z- derivatives of both the horizontal  and vertical  

components of motion. The velocity traces are again shown at depths 0.5km apart. Of the 120 velocity 

time histories, five are plotted green, and labeled 1 to 5. Those are at depths, which are closest to the 

interfaces between adjacent layers. The new SYNACCS program computes the velocity at all depths 

from the corresponding rotational acceleration time histories using the Fourier transform in the 

frequency domain, to get the velocity spectra, and then taking its inverse Fourier transform. 

( )U z ( )W z

 

These observations for velocity also apply to accelerations, namely, the strong-motion rotations 

are again observed in the top two layers of this cite, up to 0.7z km= . However, unlike acceleration, all 

components of the velocity rotational motions do not completely die down even at larger depths. 

 

Figures V.5a, b show the plots of the corresponding synthetic rotational displacement of the 

same components of motions. The new SYNACCS program computes the displacement at all depths 

from the corresponding acceleration time histories in the frequency domain to get the displacement 

spectra, and then taking its inverse Fourier transform. The same observations for displacement time 

histories can be made as for accelerations, namely, the strong-motions are observed in the first three 

layers of the example model, up to 1.7z km= . Unlike accelerations, the displacements, especially for 

the vertical components, do not quickly die down even at large depths.  
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Figure V.5a 

 

dU
dx          Synthetic Rotational Disp.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =          

dU
dz  
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Figure V.5b 

 

dW
dx      Synthetic  Rotational Disp.: 6.5,  8.0 ,   6.0 ,  0,  and 2LM R km H km s s= = = = =         

dW
dz   
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V.3 The Three-Dimensional (3-D) Plots for Case Study 1 

 

 As for the transverse rotational components in Chapter IV, the same time histories of 

synthetic rotational acceleration, velocity and displacements, from Figures V.3, 4 and 5, will now 

be presented as three-dimensional (3-D) figures.  

 

The next six pages will be the portrait 3-D figures corresponding to the six landscape 2-D 

figures above. 

 

Figure V.6a, b are the 3-D plots of synthetic rotational accelerations of the horizontal 

radial and vertical components for the same 120 acceleration time histories corresponding to the 

2-D  Figures V.3a, b.  

 
Figures V.7a, b and Figure V.8a, b show the 3-D views of the rotational velocity and 

displacement for the horizontal and vertical components corresponding to the 2-D plots in 

Figures V.4a, b and V.5a, b.  

 
 
V.4 Separating the Body and Surface Waves Plots for Case Study 1 
 
 
 In both the 2-D plots (Figures V.3a, b to Figures V.5a, b) and the 3-D plots (Figures 

V.6a, b to Figures V.8a, b), it is seen that in the synthetic accelartion, velocity and displacement 

rotation time histories, the body waves and surface waves arrive at different times, as in the case 

of the rotational transverse motions in Chapter IV and the tranlslational motions in Chapter VII 

and VIII of Report 2. As pointed out before, this is because the body waves have the highest 

phase velocities and hence much faster arrivals compared to all modes of surface waves at all 

periods. Further the body waves can be significant at all depths below surface, while the motions 

of all modes of surface waves decay from the surface towards increasing depth. For the 

translational motions studied in Report 2, the surface wave motions are noticeable only in the top 

three layers from the surface, up to 1.7z km= . For the rotational surface waves here, they decay 

even faster, and the motions are noticeable only on the top two layers, up to about z km0.7= . 
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Figure V.6a Synthetic Rotational Acceleration at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = =

 

=  
dU

dx
��

 

 
dU

dz
��
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Figure V.6b Synthetic Rotational Acceleration at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = =

 

=  
dW

dx
��

 

 
dW

dz
��
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Figure V.7a Synthetic Rotational Velocity at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = =

 

=  
dU

dx
�

 

 
dU

dz
�
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Figure V.7b Synthetic Rotational Velocity at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = =

 

=  
dW

dx
�

 

 
dW

dz
�
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Figure V.8a Synthetic Rotational Displacement at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = =

 

=  
dU

dx  

 
dU

dz  
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Figure V.8b Synthetic Rotational Displacement at 6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = =

 

=  
dW

dx  

 
dW

dz  
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The separate contributions to the synthetic motions from body waves and surface waves 

can be better visualized by plotting them separately, as in Figures V.9a, b, 10a, b and 11a, b 

below. 
 

Figure V.9a shows the derivatives, dU
dx
��  and dU

dz
��  of the horizontal, radial x-

component acceleration time-histories of the body waves, the surface waves, and the total sum 

waves, plotted in separate graphs. Figure V.9b shows the corresponding plots for the derivatives, 

dW
dx

��  and dW
dz

��  of the vertical z- component of motion.  

 

In both figures, Figures V.9a (x-comp) and V.9b (z-comp), the rotational body waves (in 

the top row) arrive at the very beginning and dominate the motions at all depths within the first 

10+ seconds. The surface waves (in the middle row) arrive later, with the motions not significant 

until 5-10 seconds after the record starts. Combining the motions of the body waves and surface 

waves results in the acceleration time histories of the total synthetic motions as shown in Figure 

V.6a, b, replotted here in the bottom row, where the two types of motions are clearly 

distinguishable. 
 

The graphs of Figures V.10a, b (x-comp) and (z-comp) represent the rotational velocity 

time histories of the body waves and of surface waves. The trend of the velocity time histories is 

the same as that of the accelerations. The surface wave velocity time histories (on the right) have 

strong motions only at the top two layers of the media and the maxima occur at around the 10 

seconds mark after the motons start. 

 
The two 3-D graphs of Figures V.11a, b (x-comp) and (z-comp) represent the rotational 

displacement time histories of the body waves and of surface waves. Unlike the acceleration time 

histories, the rotational displacement time histories of body wave (on the left) have smaller 

motions at all depths, even during the first 10 seconds, compared to that of the surface waves. 

The surface wave rotational displacement time histories (in the middle row) are more dominant, 

again only in the top two layers, and the maxima occur again at around the 10-seconds mark after 

the earthquake starts. 
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Figure V.9a    Contributions of Body and Surface Waves to Total Synthetic Rotational Acceleration 

dU dx��                                Body Waves                        dU dz��  

  
dU dx��                              Surface Waves                          dU dz��  

  
dU dx��                     All (Body + Surface) Waves                 dU dz��  
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Figure V.9b    Contributions of Body and Surface Waves to Total Synthetic Rotational Acceleration 
dW dx��                                Body Waves                        dW dz��  

dW dx��                              Surface Waves                          dW dz��  

dW dx��                     All (Body + Surface) Waves                 dW dz��  
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Figure V.10a    Contributions of Body and Surface Waves to Total Synthetic Rotational Velocity 
dU dx�                                Body Waves                        dU dz�  

dU dx�                              Surface Waves                          dU dz�  

 
dU dx�                     All (Body + Surface) Waves                 dU dz�  
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Figure V.10b    Contributions of Body and Surface Waves to Total Synthetic Rotational Velocity 
dW dx�                                Body Waves                        dW dz�  

dW dx�                              Surface Waves                          dW dz�  

dW dx�                     All (Body + Surface) Waves                 dW dz�  
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Figure V.11a    Contributions of Body and Surface Waves to Total Synthetic Rotational Displacement 
dU dx                                Body Waves                        dU dz  

 
dU dx                              Surface Waves                          dU dz  

dU dx                     All (Body + Surface) Waves                 dU dz  
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Figure V.11b    Contributions of Body and Surface Waves to Total Synthetic Rotational Displacement 
dW dx                                Body Waves                        dW dz  

 
dW dx                              Surface Waves                          dW dz  

 
dW dx                     All (Body + Surface) Waves                 dW dz  
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V.5     Case Study 2: ( ) 6.5,  40.0 ,  9.0  41.0 ,  0,  and 2LM R km H km D km s s= = = = = =

m

 

 
As in Chapter IV, We now consider an example of far field motion, for epicentral 

distance and an earthquake source at a focal depth of 40.0R k= 9.0H km= . This 

corresponds to a hypocentral distance of ( ) ( )1 2 1 22 2 2 240.0 9.0 41 kmD R H= + = + = . 

 
Figure V.12a (same as Report 2, Fig. VIII.9a) shows a plot of the ray path taken by the 

(faster) P waves, from the earthquake source to the recording site. As before, the ray path is 

chosen so that the phase velocities at each layer of the 6-layered media are the same. 

 
Figure V.12a (same as Report 2, Fig. VIII.9a) P Waves Ray Path from Source to Site 
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The phase velocity at all layers is given by 

( )sin 6.43 km/s,  a constanti ic α γ= =      Report 2 (VIII.2) 

where iα  =  P wave speed,  and iγ  = angle the ray makes with respect to the vertical direction at 

the layer. The ray will start at an angle with respect to vertical direction, and 

progress up the layered media arriving at the site with . The phase velocity at all layers 

is the same. 

thi 6 84.5oγ ∼

1 15.3oγ ∼

 
Figure V.12b (same as Report 2, Fig. VIII.9b) shows the ray path taken by the (slower) 

SV waves from the earthquake source to the recording site.  

 

Figure V.12b (same as Report 2, Fig. VIII.9b)   Ray Path of SV Waves from Source to Site 
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This results in the ray starting with an angle with respect to vertical, and 

progressing up the layered media and arriving at the site with . These are practically 

the same angles as for the incident P-waves, even though the phase velocity is slower: 

. 

6 84.5oγ ∼

1 15.3oγ ∼

3.72 /c km= s

 

As in Chapter IV, we note that in many recordings, the surface waves do arrive sooner 

than what would be expected from the calculation of arrival times using actual hypocentral 

distance between source and site. This can be attributed to the fact that significant portion of 

surface and body waves can be generated at the edge of an alluvial valley which is closer to the 

site than the source. SYNACCS accounts for this by allowing two hypocentral distances to be 

selected (see Chapter IV, Section IV.5). The first hypocentral distance is the distance from the 

earthquake source to the site, and the second “hypocentral distance” is the smaller distance from 

some (closer) edge of valley to the site. The first hypocentral distance will still be used as one of 

the scaling parameters in the regression equation used to estimate the Fourier amplitudes of the 

waves at the site. The second hypocentral distance will be used to estimate the arrival times of 

the modes of surface waves at each frequency.  

 

For Case Study 2 here, the first hypocentral distance is now 1 41D D  km= = , and the 

second (smaller) hypocentral distance is again assumed to be 2 25D D  km= = . The body P, SV 

waves are assumed to be incident from the bottom layer at an angle of 84  with respect to the 

vertical direction. Those will become almost vertical by the time they get to the site, at the 

surface. 

o

 

As in Figures V.3a, b for Case Study 1, Figure V.13a gives 2D plots of the synthetic 

U
x

∂
∂
�� , U

z
∂

∂
��  rotational acceleration time histories derived from the horizontal ( )i kx tU z e( ) ω+  

motions, calculated for the El Centro six-layered site model, at 120 depths equally spaced from 

the surface to almost 6km below the surface. The updated SYNACCS computer program again 

determines that the appropriate duration of the accelerogram record should be just about 40 

seconds. Similarly Figure V.13b gives the corresponding plots of the synthetic W
x

∂
∂

�� , W
z

∂
∂

��  

 
 

R3-111



rotational acceleration time histories derived from the corresponding vertical ( )i kx tW z e( ) ω+  

motions.  

 

Both figures show that the P and SV body waves, which are present in the first 10 seconds of the 

record, are small when compared with the surface Rayleigh waves portion of the record, which 

are dominant between 10 seconds to 30 seconds of the record. Further, the motions are only 

significant in the first layer of the media, up to 0.18km below the surface, and may be still 

noticeable in the 2nd layer, down to about 0.70km from the surface. Below that the rotational 

motions are smaller. The plots show that the U
x

∂
∂
��  and U

z
∂

∂
��  are comparable, but that the 

W
x

∂
∂

��
 
motions are slightly more significant than W

z
∂

∂
�� . 

 

 Figures V.14a, b show the corresponding synthetic U
x

∂
∂
�  , U

z
∂

∂
�

  
and W

x
∂

∂
�  , W

z
∂

∂
�

  

2D rotational velocity time-histories. The plots show that the U
x

∂
∂
�  and U

z
∂

∂
�  are comparable, 

but that the W
x

∂
∂
�

 
motions are again slightly more significant than W

z
∂

∂
�  , as for the 

acceleration rotations. 

 

 Figures V.15a, b show the corresponding synthetic U
x

∂
∂  , U

z
∂

∂   
and W

x
∂

∂  , W
z

∂
∂   

2D rotational displacement time-histories. They show similar trends as the corresponding 

rotational velocity and acceleration motions. 
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Figure V.13a U
x

∂
∂
��         Synthetic  Acc.: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =          

U
z

∂
∂
��   
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Figure V.13b W
x

∂
∂

��         Synthetic  Acc.: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =          
W

z
∂

∂
��   
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Figure V.14a U
x

∂
∂
�

         
Synthetic  Velocity: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =         

U
z

∂
∂
�   
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Figure V.14b W

x
∂

∂
�

         
Synthetic  Velocity: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =         

W
z

∂
∂
�   

  

 
 

R3-116



 

 
 

R3-117

 

Figure V.15a U
x

∂
∂          

Synthetic  Displacement: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =         
U

z
∂

∂   

 



 
 

Figure V.15b W
x

∂
∂          

Synthetic  Displacement: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =         
W

z
∂

∂   

 
 

 
R3-118



 Figures IV.19 and 20 show the radial and vertical curvatures at depths below the surface 

computed for the Case Study 1. 
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Figures V.16a, b, as in the previous sections, are the 3D plots of the rotational 

acceleration motions, U
x

∂
∂
�� , U

z
∂

∂
��  and W

x
∂

∂
�� , W

z
∂

∂
��  corresponding to the 2D rotational 

plots in Figures V.13a, b.  Those are included here for completeness. 

 

Figures V.17a, b, show the 3D plots of the rotational velocity motions, U
x∂

�∂ , U
z

∂
∂
�  

and W
x

∂
∂
� , W

z
∂

∂
�  corresponding to the 2D rotational plots in Figures V.14a, b.  Finally, 

Figures V.18a, b show the 3D plots of the rotational displacement motions, U
x∂

∂ , U
z

∂
∂  and 

W
x

∂
∂ , W

z
∂

∂  which correspond to the 2D rotational plots in Figures V.15a, b.  

 

V.6  The Curvatures for Radial and Vertical Motions 

 Recall from Equations (2.9) and (2.11), in Chapter 2, where the curvature in the radial 

and vertical directions were defined as 

Radial Curvature:         
UUK t    x c

2
21 2( ) ∂≈ =

∂

��
     (2.9) 

 
And 
 

Vertical Curvature:  
( )

W x WWK t     x cW x

2 2 2
23 3 2

2 2
( )

1

∂ ∂ ∂= ≈ =
∂⎡ ⎤+ ∂ ∂⎣ ⎦

��
           (2 .11) 

 
 
computed directly from the translational components, together with the rotational motions. In 

fact, those each correspond to the 2nd derivative of the radial and vertical translational motions 

with respect to x in the radial direction. 
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Figure V.16a U
x

∂
∂
��

LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2        Synthetic  Acc.: = = = = =          
U

z
∂

∂
��   

  
Figure V.16b W

x
∂

∂
��

LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2        Synthetic  Acc.: = = = = =          
W

z
∂

∂
��   

  



 

Figure V.17a U
x∂

�
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∂ 2
         

Synthetic  Velocity: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and = = = = =         
U

z
∂

∂
�   

  
 

Figure V.17b 
W

x
∂

∂
�

         
Synthetic  Velocity: LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =         

W
z

∂
∂
�   

  



 

  U
x

∂
∂
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Figure V.18a          
Synthetic  Displacement: LH km s s,   9.0 ,  0,  and 2M R km6.5,  40.0= = = = =         

U∂
z∂

  
 

Figure V.18b W∂ M R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2x∂          
Synthetic  Displacement: L= = = = = W

z
∂

        ∂   
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 Figures IV.21 and 22 show the radial and vertical curvatures at depths below the surface 

computed for the Case Study 2. 

 

 Note that, as for the transverse curvatures in Chapter IV, the 2nd derivative of the 

translational motions corresponds to the curvature motions. As before, since the translational 

motions are in units of cm and the distances are measured in km, they have the units of  cm
km2 , 

or cm or cm10 210
rad

cm
10−10 . 

 

 For Case Study 1, at a near-field site ( D km10= ), Figures IV.19 and 20 show that both 

curvatures are of the order of rad
cm

910−×20 , with the radial curvature higher than the vertical 

curvature. The motions are again large only on the top layer of the media, or down to about 

0.18km. The strong motions occur around the 10-seconds mark of the record. 

 

For Case Study 2, at a far-field site ( D km41= ), Figures IV.21 and 22 show that the 

curvatures are smaller. Being further away from the earthquake source, the radial curvature is of 

the order less than rad
cm

910 10−× , and smaller for the vertical curvatures. Also, the curvatures 

are significant only on the top layer of the media, or down to about 0.18km. The strong motions 

occur around and beyond the 20-seconds mark of the record. 

 

 

 

 

 

 

 

 

 

 



 
 

Figure V.19  Synthetic Radial Curvature at

 
 

R3-124

6.5,  8.0  &  6.0 ,  0,  2LM R km H km s s= = = = =

 



6.5,  8.0  &  6.0 ,  0,  2LM R km H km s sFigure V.20     Synthetic Vertical Curvature at = = = = =  
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LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =Figure V.21     Synthetic  Radial Curvature:   
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LM R km H km s s6.5,  40.0 ,   9.0 ,  0,  and 2= = = = =Figure V.22    Synthetic  Vertical Curvature:  
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Summary – Engineering Applications 
 

In this report we have described theory and numerical examples which use SYNACCS 

computer program, which for a given site and at a given epicentral distance from an earthquake, 

with given magnitude or seismic intensity, with known local site geology and soil 

characterization, can compute the in-plane x-, z- and out-of-plane y- components of translational 

strong motions, together with the d
dx  and d  derivatives of those translational motions at any 

point 

dz

( , )x z  on the surface or below the surface. 

 

), ,U V W  motions and their d  and For engineering applications, besides the translational ( dx

d
dz  derivatives, one also needs to know the “rotations” (torsion, rocking, normal and shear 

strain and curvature components) of those motions. In the following is a summary of how these 

“rotations”, as described in the above chapters, can be computed from the derivatives of 

translational motions: 

 

Chapter IV: 

z
V

x
1

2
∂Torsion:    Ω = ∂  

x
V∂1

2Ω = − z∂(Out-of-plane) Rocking:   
 

and their corresponding 1st and 2nd time derivatives (see Equations (2.2), (2.3) & (2.4)). 

 

Chapter V: 

( )y
U W

z x
1

2
∂ ∂Ω = −∂ ∂(In-plane) Rocking:    

and their corresponding 1st and 2nd time derivatives (see Equations (2.2), (2.3) & (2.4)). 

 

Note that the out-of-plane normal strain  0y
V

yε ∂= =∂ , as indicated in Equation (2.2). 
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The corresponding Strain components of motions are: 

 

Chapter IV: 

1
2xy

V
xε ∂= ∂(Out-of-plane) Shear Strain:  

1
2yz

V∂  ε =     z∂

and their corresponding 1st and 2nd time derivatives (see Equations (2.6), (2.7) & (2.8)). 

 

Chapter V: 

(In-plane) Normal Strain:  x
U

xε ∂=  ∂

z
W∂ε =  z∂

( )1
2xz

U W(In-plane) Shear Strain:  z xε ∂ ∂= +∂ ∂  
and their corresponding 1st and 2nd time derivatives (also see Equations (2.6), (2.7) & (2.8)). 

 
 

Finally the Curvatures of motion, first given in Chapter II: 

 

VVK t     x c
2

22 2( ) ∂≈ =
∂

��

        

       (2.10) Transverse Curvature:      

 
are computed and given in Chapter IV.6, and 
 

UUK t    x c
2

21 2( ) ∂≈ =
∂

��
     (2.9) Radial Curvature:         

 

Vertical Curvature:  
( )

W x WWK t     x cW x

2 2 2
23 3 2

2 2
( )

1

∂ ∂ ∂= ≈ =
∂⎡ ⎤+ ∂ ∂⎣ ⎦

��
           (2 .11) 

 
are computed and given in Chapter V.6. 
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Scattering and Diffraction by Irregular Layered Elastic Media 

- Part I: Love and Body SH Waves 
 

 
 
I. Introduction 
 
 
There are many studies reported in literature, which consider the seismic body and 
surface wave motions in the regions of sudden change in the thickness of surface layers 
(as in transition from oceanic to continental crust, for example) or more generally in the 
vicinity of irregular layers which depart significantly from the classical parallel 
representation of shallow earth crust. However, the excitations considered in these studies 
(incident wave motions) cannot easily be modified to work with the body and surface 
wave trains specified by SYNACC methodology, which is conveniently compatible with 
engineering specification of design earthquake motions, deterministically or via seismic 
hazard analysis. To this, in the following we outline a method for describing the motions 
in irregular shaped layers for input motions arriving from the parallel-layered half space, 
as specified by SYNACC method. In this Part – I, we consider only the out of plane 
motions, in two-dimensional representation of irregular layers for SH and Love wave 
excitation. We will address the in plane motions associated with P, SV and Rayleigh 
waves in the future reports. 
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II. Love Surface and Body SH Waves On and Below the 

Surface of an Elastic Layered Media 
 
 Recall that in Report I we considered an N-Layered half-space with Love waves 

or Body SH waves incident from the left (Report I, Figure II.1): 

   
       x             O 
   0z =
    1h 1 1,μ β    z                  1 1v v− +

   

   1z H=
    2h 2 2,μ β                     2 2v v− +  
 

   2z H=

    
#

 #
 

    
#
 
#

   2Nz H −=
 
   1n Nh h −= ,n nμ β                     n nv v− +  
   1Nz H −=
         v∞   
  to   ∞ ,μ β       
 

(Report I:  Figure II.1 N-layered half-space with Love waves) 
 
 

For each of these regular layers l, with =  l 1, , N… , the displacement of the 

Love surface Waves in the layer take the form (in the anti-plane, y-component): 

 1 1v , v :− +    
( )

( )

l

l

ik x z
l l

ik x z
l l

 C          

  C

v e

v e

γ

γ

−− −

++ +

=

=
   Report I (2.1) 

They are respectively the upward and downward propagating waves present in the 

layer. Here thl k k( ) c( )
ωω ω= =  is the horizontal wave number of the waves at 

frequency ω  and having phase velocity c c( ).ω= The terme , which is the same in ikx
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each layer, is the horizontal component of the waves, which together with the time 

harmonic term i te ω , corresponds to the waves propagating in the –ve x direction. The 

terms l yike γ∓  are the vertical components of the waves with the negative term 

propagating upwards (–ve y) and the positive term propagating downwards (y). 

Here l l l( )γ γ β=  is given by

  

( )l l

1 1 122 2 2 2 2 2

l
l

k k k c1kk
β βγ β
− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

1−   Report I (2.2) 

so that lkγ  is the vertical wave number of the waves in the  layer of the medium with 

shear wave velocity

thl

lβ . In general, the wave velocities increase as one moves down 

through the layers, so that 1 2 nβ β β< < < <… β , with the semi-infinite half-space layer 

at the bottom having the highest shear wave speed β . With c c( )ω=  the wave speed of 

the surface Love waves there, c β< , and the surface waves take the form: 

( )ik x z ikx k zv   C   C          e eγ γ
∞ ∞ ∞

− −= =    Report I (2.3)  

where  
( ) ( )

1 1 122 2 2 2 2 2k k k c1 1kk
β βγ β

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎟  Report I (2.4) 

γ  is the complement of γ  and is real, so that the term ikx k ye γ−  in  corresponds to a 

surface wave term whose amplitude is exponentially decaying with depth (in y) below the 

surface. With

v∞

lβ  the shear wave speed in the  layer of the medium, and c cthl ( ),ω=   the 

Love wave speed and also the (horizontal) phase velocity of the waves  in each layer of 

the elastic media above the  half space (Fig.1), we can have lc β≥  or lc β< . If  lc β≥ , 

the term ( )l l lγ γ β=  in Equation (2.2) is real and both waves lv+
 and  in Equation (1) 

will correspond to harmonic plane waves.  If, however, 

lv−

lc β<  then, as from Equation 

(2.2): 
1

2 2

1l
l

cγ β
⎛ ⎞⎛ ⎞= −⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎟ is imaginary and  
1

2 2

l
l

c1γ β
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is real  Report I (2.5)
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III. Love and Body SH Waves incident on an Irregular Layered 
Elastic Media 

 
  
 

                   x̂       ( )ˆ ˆˆ,O r θ   
        θ̂   

                ẑ
 
 
 
 
             r̂
 
                  x        O 

0z =  
                     z    1h                   1 1v− + s

1v 1 1,μ β  v

1z H=  
                            2h                   2 2v v− + s

2v 2 2,μ β  
 

2z H=  

   
#

         # 2 ( )y h x=
  

 

   
#
 
#

2Nz H −=  
       s

nv
1n Nh h −=                                                      n nv v− + ,n nμ β  

1Nz H −=  
   v         ∞ ∞

sv      

    to           ∞ ,μ β  
 

Figure 1 Irregular-Shaped N-layered half-space with Love waves 
 
  

The left part of the above figure shows Love waves propagating along an N-

layered half-space where the layers are perfectly flat. Next we consider the right segment 
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of the same figure, when this is not the case. Figure 1 shows a model where the parallel 

layers begin to depart from perfectly flat configuration. Without loss of generality, we 

will assume that each of the irregular surfaces, at each interface between the  and 

 layer, which extends from 

thl

( )1 thl + = −∞x  to = +∞x  can be represented by a curve 

= ( )lz h x . We assume that this curve will be the flat surface = lz H  almost everywhere, 

but will deviate from the flat surface within some finite region where it is defined 

numerically by a set of points ( ),i ix z . This curve can also be represented by polar 

coordinates ( )ˆˆ,r θ , with ( )ˆˆ ˆr r θ=  in a common coordinate system ( )ˆ ˆ,x z , with origin at 

some point  above the half space, as shown in Figure 1. Ô

 

With the surface Love waves − +
l lv , v  or body SH waves at each layer l  incident 

upon these irregular surfaces, additional scattered waves are generated, which can be 

represented by 

( 1 1 2 2
0

( ) ( ) ( ) ( )
, ,ˆ ˆ( ) ( ) coss

l l n n l l n n ln
v A H k r A H k r ) nθ∞

=
= +∑     (1) 

with both outgoing and  incoming waves, for each layer 1, 2, , 1l N= −… , all except the 

last semi-infinite layer. For the last semi-infinite layer, ,l N=  the scattered wave, 
s s

Nv v∞ = , takes the form  

1
0

( )
, ˆ( )coss s

N n nn
v v A H kr nθ∞

∞ ∞=
= = ∑       (2) 

with only outgoing waves, satisfying Somerfield’s radiation condition at infinity. 

 

The scattered waves, together with the free-field surface Love Waves, form the 

resultant waves in the layered media. Writing ff
l lv v vl

+ −= +  as the free-field surface Love 

or Body SH waves in the  media, the resultant wave in the same media is , 

which, together must satisfy the following set of boundary conditions below (Lee and Wu, 

1994a).  

thl ff s
l lv v v= + l
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1) On the half-space surface, 0 ( )y h x= , the resultant waves in the top layer 

1( )l =  must together satisfy the half-space surface free-field stress condition: 

( )1 11
1 1 0,

ˆ ˆ

ff s

nt

v vv
n n

τ μ μ
∂ +∂

= = =
∂ ∂

        (3a) 

1  or              
ˆ ˆ

1
s ffv v

n n
∂ ∂

= −
∂ ∂

      (3b) 

2) For − , at the interface between the thl  layer and the 1( )thl +  

layer below, ( )l

1 2 1, , ,l N= …

y h x=  , the resultant waves in these two layers must satisfy 

the continuity of displacement and stress at the interface: 

1 1 1+ + += + = + =  ff s ff s
l l l l l lv v v v v v       (4a)  

( )1+− = − −or            s s ff ff
l l l lv v v v 1+      (4b) 

1
1     

ˆ ˆ
μ μ +

+

∂
=

∂
∂ ∂

l
l l

v
n n

lv
      (5a) 

( ) ( )1 1
1

1 1
1 1

              
ˆ ˆ

or      
ˆ ˆ ˆ

μ μ

μ μ μ μ

+ +
+

+ +
+ +

∂ + ∂ +
=

∂ ∂
⎛ ⎞∂ ∂ ∂ ∂

− = − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

ff s ff s
l l l l

l l

s s ff
l l l

l l l l

v v v v
n n

v v v v
n n n ˆ

ff
l

n

      (5b) 

with the unknown wave functions on the left-hand side, and the known functions on the 

right-hand side. Here, in equations (3) and (5),  is the normal at a boundary point ( ,n̂ )x y  

where ( )ly h x= , and ( )
n̂
∂
∂

 is the corresponding normal derivative of the wave 

functions given by: 

( ) ( ) ( ) ( )sinˆ cos
ˆ

αα
θ

∂ ∂
= ∇ ⋅ = +

∂ ∂
� n

n r
∂
∂r

  (6a) 

where α  is the angle that the normal  makes with the radial vector, as shown in Figure 

2 (Lee and Wu, 1994a,b). For the free-field waves, which are given in rectangular 

coordinates, Eqn. (6) can also be expressed as 

n̂

( ) ( ) ( ) ( )ˆ
ˆ
∂ ∂

= ∇ ⋅ = +
∂ ∂

�
x yn n n

n x
∂
∂y

       (6b) 
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where the normal   is expressed in rectangular coordinates as  n̂   ˆ ˆ  yˆ= +x x yn n e n e ,  and 

are respectively the unit vectors in the x- and y- directions.   yˆ ˆ ,  xe e

 

 

              On the flat part of the interface between the  and (  layer, on the curve thl 1)thl +

( )ly h x= , where ly H= , since the Love waves already satisfy the continuity of 

displacement and stress conditions, only the scattered waves will appear in the continuity 

equations at those points. 

 

                   x̂      ( )ˆ ˆˆ,O r θ   
        θ̂

                ẑ
 
 
 
 
 
        
                                                 α   

            r          n  ˆ ˆ
 

Figure 2             Angle α  between radial vector and normal at a point 
 
 

Then, Equations (3b), (4b) and (5b) can be written as: 
 

1
1 0

1

0

 on an irregular surface point of

0 on a flat surface point of 0

                ( ),
ˆ

ˆ
                         ( )

ff
s

ff
vv y h x
nn y h x

τ
⎧ ∂

∂ − =⎪= − = ∂⎨∂ ⎪ = =⎩

         (7) 

( )1
1

on an irregular surface point of  ,

0 on a flat surface point of  

        ( )

                              ( )

ff ff
l l ls s ff

l l l

l l

v v y h x
v v v

y h x H
δ +

+

⎧− − =⎪− = − = ⎨
= =⎪⎩

        (8a) 
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1
1

1
1

and

on an irregular surface point of  ,

0 on a flat surface point of  

             

     ( )
     = 

                                            

s s
ffl l

l l l

ff ff
l l

l l l

v v
n n
v v

y h x
n n

μ μ δτ

μ μ

+
+

+
+

∂ ∂
− = −

∂ ∂
⎛ ⎞∂ ∂

− − =⎜ ⎟∂ ∂⎝ ⎠
( )l ly h x H

⎧
⎪
⎨
⎪ = =⎩

         (8b) 

 

To solve this boundary-valued problem, one would have to find a wave function, , as 

given in Equation (1) for each layer 

lv

1 2 1= −, ,…l N , and as in Equation (2) for the 

bottom semi-infinite layer .  =l N
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IV.        The Method of Weighted Residues (Moment) Method 

 
               This section will follow the approach previously described in Lee and Wu 

(1994a,b). It is included and summarized here for completeness of this presentation. It is 

seen from the above sections that the wave functions at each layer together have to satisfy 

the set of boundary conditions numerically at every point of the interface given in 

Equations (7), (8) and (9). Since the surfaces are now irregular, a numerical procedure 

has to be applied. 

 

               Harrington (1967) in his classical paper: “Matrix Methods for field Problems”, 

presented a well-defined unified treatment of most of the existing numerical methods for 

the above boundary-valued problems, which he called the “Moment Methods”. He 

applied the method to Electromagnetic waves problems. Following Fenlon (1969), with 

applications to acoustic wave problems, Lee and Wu (1994a,b) applied the method to 

elastic wave problems with arbitrary-shaped canyons in elastic half-space. Another 

common name for the “Moment Method” is the “Method of Weighted Residues”. Here is 

a brief summary of the  method, following Lee and Wu (1994a,b). 

 

              Assume that a general equation to be satisfied is of the form 
 

=f gL       (9) 

where is a linear operator, L f  is an unknown function to be solved, and  is a given 

known function. The boundary conditions in equations (7), (8) and (9) above are all of 

this form, with L  a linear combination of the identity and the derivative operators, 

g

f  a 

sum or difference of the unknown wave functions and their derivatives in adjacent media, 

and  the corresponding sum or difference of the known free-filed Love wave functions 

and their derivatives in adjacent media. Each of the unknown wave functions 

g

f  is here 

represented as a series of basis functions   0 1, , , , ,… … nf f f …

= ∑ n nn
f c f       (10) 
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with  a sequence of unknown coefficients to be determined. The range of the indices of 

the functions can either be infinite (

nc

to −∞ ∞ ) or semi-infinite ( ). Since L is a 

linear operator, Equation (10) takes the form, in terms of residues, 

0 to ∞

ε , to be set to zero:  

0ε = − =∑ n nn
c f gL         (11) 

Next, we choose a scalar inner product ,f g  to be defined on any pair of functions in 

the domain of L , and a set of weight functions  in the domain. We 

take the inner product of the residues with each weight function and equate it to zero: 

0 1, , , , ,… … nw w w …

0

, ,

   , ,   

so           , ,

m n n mn

n n m mn

n m n mn

w c f g w

c f w g w

f w c g w

ε = −

= −

=

∑
∑
∑ 

L

L

L

=       (12a) 

or in matrix form: 

{ } { }=⎡ ⎤⎣ ⎦mn n mA c g      (12b) 
 

with  ,mn n mA f w=⎡ ⎤⎣ ⎦ L  a matrix of infinite order, and { } ,m mg g w=  a known 

vector computed from the free-field surface Love waves or Body SH waves.  The matrix 

is composed of (2N-1) set of boundary conditions in Equations (7), (8) and (9) for the set 

of  (2N-1) coefficients from the (2N-1) wave functions in Equations (1) and (2) for the N-

Layered media. 

 

              Depending on the choice of the weight functions, these weight functions can also 

be considered as a set of basis functions, orthogonal with respect to the inner product, and 

with the residues expanded in terms of these basis functions, using the inner product, we 

set each term of the expansion to be zero. 

 

              Using the weighted residue method, the boundary conditions at each layer take 

the form: 

     1) Starting at the top layer, the half space surface, from Eqn. (3b): 

( ) 1
1 1

1 20

( ) ( )
,

,
ˆ ( )cos , ,

ˆ ˆ

ff
j j

n m n
jn

v
mH k r n w A w

n n
θ

∞

==

∂∂
= −

∂ ∂∑         (13a) 
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or in matrix form, at the top surface of the 1st layer (surface of the half-space): 

( ) ( )
1

11 2 1
1 1 2

0 1

( )
,( ) ( )

( )
,

ˆ ˆ( )cos , ( )cos , ,
ˆ ˆ

ff
n

n m n m
n n

A v
ˆ mH k r n w H k r n w w

An n
θ θ

∞

=

⎧ ⎫⎡ ⎤∂ ∂ ⎪ ⎪ = −⎨ ⎬⎢ ⎥∂ ∂ ⎪ ⎪⎣ ⎦ ⎩ ⎭
∑ n

∂
∂

(13b) 

   2) For the interface between the  and  layer, for thl 1( )thl + 1 2 3, ,l = …  from Eqns. (8a), 

and (8b): 

1 1
1 20

1

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ             ( )cos , ( )cos ,

                                     ,

j j j
n l m l n n l m l

jn

ff ff
l l m

H k r n w A H k r n w A

v v w

θ θ
∞

+ +
==

+

−

= − −

∑ j
n

      (14a) 

( ) ( )1 1
1 20

1
1 (14b)

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ ( )cos , ( )cos ,

ˆ ˆ

                           ,                                                    
ˆ ˆ

j j j
l n l m l n l n l m l

jn

ff ff
l l

l l m

H k r n w A H k r n w A
n n

v v
w

n n

μ θ μ θ

μ μ

∞

+ +
==

+
+

∂ ∂
−

∂ ∂

∂ ∂
= − −

∂ ∂

∑ 1
j

n+

  

or in matrix form, at each interface between the  and  layer, for : thl 1( )thl + 1 2 3, ,l = …

( ) ( )
1

1 20 11 1

1

( ) ( )
( )
,

( )( ) ( ), ,

ˆ ˆ( )cos , ( )cos ,

ˆ ˆ( )cos , ( )cos ,
ˆ ˆ

,
                              

ˆ

j j
n l m n l m j

l n
jj jjn l nl n l m l n l m

ff ff
l l m

ff
l

l

H k r n w H k r n w
A
AH k r n w H k r n w

n n

v v w

v
n

θ θ

μ θ μ θ

μ μ

+∞

== ++ +

+

⎡ ⎤−
⎧ ⎫⎢ ⎥ ⎪ ⎪
⎨ ⎬⎢ ⎥∂ ∂

− ⎪ ⎪⎩ ⎭⎢ ⎥∂ ∂⎣ ⎦

−

= − ∂
−

∂

∑

1
1

(14c)                                             
,

ˆ

ff
l

l m
v

w
n
+

+

⎧ ⎫
⎪ ⎪
⎨ ⎬∂
⎪ ⎪∂⎩ ⎭

 

 

Note that for the interface between layer 1N −  and the (bottom, last) semi-infinite layer 

, Eqns. (14a) and (14b) will have only the outgoing wave terms  and 

without the incoming wave terms  

N 1 0 1 2( )
, ,  , ,N nA n = …

2 0 1 2( )
, ,  , ,N nA n = …
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V.        Numerical  Implementation 
 
 In this section will demonstrate the numerical procedure used to apply to the 

system of complex equations derived in the last section, which uses the method of 

weighted residues. In studying the set of equations, it is observed that for an elastic half-

space with  layers, there are 1 (N ≥ ) )1(N −  interfaces in-between the layers, plus the 

topmost half-space with no elastic medium above.  

 

At this topmost half-space surface, there is one set of zero-stress equations (at 

)  (Eqn. (3)) involving the wave coefficients in the topmost 1st layer. At each of the 

 interfaces in-between the layers, there are 2 sets of the stress and displacement 

continuity equations (Eqns. (4) and (5)). There is thus a total of 2 1  

equations. Each of the top 

0z =

1(N − )

1

)

1 2( )N N− + = −

1(N −  layers has two sets of waves, the upward and 

downward going, or the outgoing and incoming waves (Eqn. (1)). They are represented 

by Hankel functions of the 1st and 2nd kind, the outgoing and incoming waves, 

respectively. On the other hand, the bottom-most semi-infinite layer has only one set of 

waves, the downward going or outgoing waves (Eqn. (2)). They are represented by 

Hankel functions of the 1st kind. This gives a total of 2 1 1 2( )N 1N− + = −  set of waves 

from all the layers.  

 

In summary, we have 2 1( N )−  set of equations for 2 1( N )− set of waves. If each 

of such set of waves has M terms, with M unknown coefficients, we will have a 

total of unknowns we need to solve. Ideally each set of waves has, 

2 1( N − )

)2 1(M N× − M = ∞ , 

or infinite number of terms and there are 2 1( N )∞× − number of equations. In reality, we 

have to truncate those to finitely many M terms for each set of waves, with the number M 

often dependent on the frequency of the waves and the complexity of the equations. With 

M finite, we have a task of solving the 2 1(M N )× − set of complex equations for the 

set of unknowns. 2 1(M N× − )
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 Numerically, we know that the Hankel functions of both the 1st and 2nd kinds are 

both complex, and increase in magnitudes with increasing order. Thus if all the 

 unknowns are put together in the 2 1(M N× − ) )2 1(M N× − complex equations, one 

would have a very large set of complex equations to solve, whose terms often have 

increasing magnitudes with increasing M. It would be very difficult to solve them all at 

once. 

 

 Since each set of equations at each interface involves only waves at each side of 

the interface, a simple, elegant numerical algorithm can be derived to allow each set of 

wave coefficients at each media to be solved separately, making the problem more simple 

numerically. In other words, we are solving M complex equation in M unknowns at each 

step. The following is a comprehensive description of this numerical procedure. 

 

 The idea is very simple. Starting from the top surface, where , we have the 

matrix equation for the zero-stress boundary condition along the whole (regular and 

irregular) surface of the half-space, in the form: 

0z =

{ } { } { }1 2
1 1 1 1 1 0

( ) * ( )      0
z

E A E A e
=

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦
� � � =     (15a) 

where from Eqn. (13b): 

1E⎡ ⎤⎣ ⎦   is the matrix with elements   ( )1
1

( ) ˆ( )cos ,
ˆ n mH k r n w
n

θ∂
∂

, 

1
*E⎡ ⎤⎣ ⎦  

is similarly the matrix with elements ( )2
1

( ) ˆ( )cos ,
ˆ n mH k r n w
n

θ∂
∂

 
 

{ }1
1
( )A� , {  are respectively the vectors }2

1
( )A� { } { }1 1 1 2 2 2

10 11 12 10 11 12
( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,A A A A A A… …  

and                (15b) 

{ }1e�  is the vector 1 ,
ˆ

ff

m
v w
n

∂
∂

 

 
Eliminating { , one has, at }2

1
( )A� 0 :z =   

 

  
{ } { } { }( )

{ } { }( )

12 1
1 1 1 1 1

0

1 1
1 1 1 10 0

( ) * ( )

* ( )

      

           ( ) ( )   ( )

z
A E E A e

E E A e

−

=

−

⎡ ⎤= − +⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= − +⎡ ⎤⎣ ⎦⎣ ⎦

� � �

� � 0
   (16) 
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In the interface between the 1st and 2nd layer, the continuity equations take the 

form:

{ } { } { } { } { } { }

( ) { } ( ) { } ( ){ }
1 1

1 2 1 2
1 1 1 1 1 2 2 2 2 2

1 2
1 1 1 1 1 1 1 1

or

(17)

( ) * ( ) ( ) * ( )

( ) * ( )

          ,  

                                                             

                

z h z h
E A E A e E A E A e

E h A E h A e h

= =
⎡ ⎤ ⎡ ⎤+ + = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

� � � �� �

� � �

( ) { } ( ) { } ( ){ }1 2
2 1 2 2 1 2 2 1

( ) * ( )             E h A E h A e h⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
� � �

for stress continuity. Similarly, for the displacement continuity equations: 

( ) { } ( ) { } ( ){ }
( ) { } ( ) { } ( ){ }

1 2
1 1 1 1 1 1 1 1

1 2
2 1 2 2 1 2 2 1

( ) * ( )

( ) * ( )

            

                          

D h A D h A d h

D h A D h A d h

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� � �

� � �

}

   (18) 

 

Using Eqn. (16), { can be eliminated from the L.H.S. of the stress Eqn. (17): 2
1
( )A�

 
{ } { } { }

{ } { } { }( )( ) {

{ } { }

1 2
1 1 1 1 1 1 1 1

11 1
1 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1

0 0 0

( ) * ( )

( ) * * ( )

( )

( )   ( )   ( )

( )   ( ) ( ) ( )   ( )   ( )  

                   ( )   ( )  

E h A E h A e h

E h A E h E E A e e h

h A h

−

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= +⎡ ⎤⎣ ⎦E e

� � �

� � � �

� �

}

}

⎤⎦

}

  (19a) 

where 

{ } { } {

1

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

0 0

0 0

* *

* *

( )     ( ) ( ) ( ) ( )

( )     ( ) ( ) ( ) ( )

h E h E h E E

h e h E h E e

−

−

⎡ ⎤ ⎡ ⎤= −⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦

E

e� � �
   (19b) 

 
In exactly the same way, { can be eliminated from the L.H.S. of the displacement 

Eqn. (18), resulting in: 

2
1
( )A�

 

 

{ } { } { }
{ } { } { }( )( ) {

{ } { }

1 2
1 1 1 1 1 1 1 1

11 1
1 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1

0 0 0

( ) * ( )

( ) * * ( )

( )

( )   ( )   ( )

( )   ( ) ( ) ( )   ( )   ( )  

                   ( )   ( )  

D h A D h A d h

D h A D h E E A e d h

h A h

−

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= +⎡ ⎤⎣ ⎦D d

� � �

� � �

��

}�

⎤⎦

 (20a) 

where 

{ } { } { }

1

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

0 0

0 0

* *

* *

( )     ( ) ( ) ( ) ( )

( )     ( ) ( ) ( ) ( )

h D h D h E E

h d h D h E e

−

−

⎡ ⎤ ⎡ ⎤= −⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦

D

d� � �
   (20b) 
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The continuity matrix equations at the interface of the 1st and 2nd layer now take the form, 

without the {  terms:  }2
1
( )A�

{ } { }
( ) { } ( ) { } ( ){ }

1
1 1 1 1 1

1 2
2 1 2 2 1 2 2 1

( )

( ) * ( )

     ( )   ( )

                  

h A h

E h A E h A e h

+⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

E e� �

� � �
  (21a) 

{ } { }
( ) { } ( ) { } ( ){ }

1
1 1 1 1 1

1 2
2 1 2 2 1 2 2 1

( )

( ) * ( )

     ( )   ( )

                  

h A h

D h A D h A d h

+⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

D d��

� � �
  (21b) 

 
In matrix form, Eqns. (21a) and (21b) become: 
 

( ) ( )
( ) ( ) { } ( )

( )

1
1 1 2 11 12 1 2 1 12

12
1 12 1 2 1 2 1 1 2 1

* ( )
( )

* ( )

( )( )
( ) ( )

h e hhE h E h A
A

hD h D h A h d h

⎧ ⎫−⎡ ⎤ ⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪= +⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥
−⎪ ⎪ ⎣ ⎦⎩ ⎭⎣ ⎦

⎪
⎬

⎪ ⎪⎩ ⎭

eE
D d

� ��
�

�� �     (22) 

 
which shows that both { and }1

2
( )A� { }2

2
( )A� of the coefficients of the waves in the 2nd layer 

can be expressed in terms of the single set of { }1
1
( )A� coefficients of waves in the top layer. 

One can thus write: 

 

( ) ( )
( ) ( ) { } ( )

( )

1
1 1 2 11 12 1 2 1 12

12
1 12 1 2 12 1 1 2 1

1*( )
( )

*( )

( )( )
( ) ( )

h e hhE h E hA
A

hD h D hA h d h

− ⎛ ⎞⎧ ⎫−⎡ ⎤⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟−⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎩ ⎭⎝ ⎠

eE
D d

� ��
�

�� �    (23a) 

 
so that such a transformation is obtained: 
 

{ }
1

21 121 1 12
12

22 12 22 1

( )
( )

( )

( )( )
( ) ( )

hhA
A

hA h

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜⎪ ⎪ ⎣ ⎦
⎟
⎟⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

tT
T t

��
�

� �         (23b) 

 
Repeating this iteration at each interface of layers proceeding downwards one can start 

with the continuity equations at interface between layer l and l+1, as in Eqns. (18a,b), at 

the interface lz h=  : 

 

( ) { } ( ) { } ( ){ }
( ) { } ( ) { } ( ){ }

1 2

1 2
1 1 1 1 1 1

( ) * ( )

( ) * ( )

    

                    

l l l l l l l l

l l l l l l l l

E h A E h A e h

E h A E h A e h+ + + + + +

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� � �

� � �
       (24a) 
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( ) { } ( ) { } ( ){ }
( ) { } ( ) { } ( ){ }

1 2

1 2
1 1 1 1 1

( ) * ( )

( ) * ( )

            

                               

l l l l l l l l

l l l l l l l l

D h A D h A d h

D h A D h A d h+ + + + +

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� � �

� � �

} }

  (24b) 

 
As in Eqn. (23b), {  and {  are to be expressed in terms of 1( )

lA� 2( )
lA� { }1

1
( )A� : 

 

{ }
1

11 1
12

2 2

( )
( )

( )

( )( )
( ) ( )

l ll ll

l ll l l

hhA
A

hA h

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪ ⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

tT
T t

��
�

� �        (25) 

 
from which Eqns. (24a,b) can be expressed as, with the coefficients { }1

1
( )A� of waves in 

the top layer on the R.H.S.: 

 
{ } { }

( ) { } ( ) { } ( ){ }

1
1

1 2
1 1 1 1 1

( )

( ) * ( )

     ( )   ( )

                  

l l l l

l l l l l l l l

h A h

E h A E h A e h+ + + + +

+⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

E e� �

� � �
  (26a) 

{ } { }
( ) { } ( ) { } ( ){ }

1
1

1 2
1 1 1 1 1

( )

( ) ( )

     ( )   ( )

                  

l l l l

l l l l l l l

h A h

1D h A D h A d h+ + + + +

+⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

D d��

� � �
  (26b) 

 
or again in matrix form, as in Eqn. (23a): 
 

( ) ( )
( ) ( ) { } ( )

( )
1

11 1 11
12

1 1 1 1

* ( )
( )

* ( )

( )( )
( ) ( )

l l l ll ll l l l l

l ll l L l l l l l l

h e hhE h E h A
A

hD h D h A h d h
++ + +

+ + + +

⎧ ⎫−⎡ ⎤ ⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪= +⎢ ⎥ ⎨ ⎬ ⎨⎢ ⎥
−⎪ ⎪ ⎣ ⎦⎩ ⎭⎣ ⎦ ⎪⎩ ⎭

eE
D d

� ��
�

�� �
⎪
⎬
⎪

}
}

     (27a) 

 
resulting in a transformation, as in Equation (23b), expressing the coefficients {  and 

 for layer (l+1)  to be expressed in terms of 

1
1

( )
lA +
�

{ 2
1

( )
lA +
� { }1

1
( )A� from waves of the top layer. 

 

{ }
1

1 11 1 11
12

1 21 1 2

( )
,, ( )

( )
, ,

( )( )
( ) ( )

l ll ll

l ll l l

hhA
A

hA h
+++

++ +

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎪ ⎪⎩ ⎭⎝ ⎠

tT
T t

��
�

� �           (27b) 

 
The reason why we select to have the coefficients of all waves in each layer expressed in 

terms of (one of the two) a set of coefficients of waves n the top layer is because, we 

know, for surface waves, that the top layer waves are dominant.  
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 The above described procedure will continue until the interface with the bottom 

semi-infinite layer l  is reached, namely at N= 1Nz h −= . There the continuity equations 

will be different from those in the previous interfaces, since the bottom semi-infinite 

layer will now have only one set of waves, namely, the downward, outgoing waves. The 

stress and displacement continuity equations now take the form, as in Eqn. (24a,b), with 

:  1 1,  l N l N= − + =

 

( ) { } ( ) { } ( ){ }
( ) { } ( ){ }

1 2
1 1 1 1 1 1 1 1

1
1 1

( ) * ( )

( )

    

                  

N N N N N N N N

N N N N N

E h A E h A e h

E h A e h

− − − − − − − −

− −

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤= +⎣ ⎦

� � �

� �
       (26a) 

 
( ) { } ( ) { } ( ){ }

( ) { } ( ){ }

1 2
1 1 1 1 1 1 1 1

1
1 1

( ) * ( )

( )

            

                             

N N N N N N N N

N N N N N

D h A D h A d h

D h A d h

− − − − − − − −

− −

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤= +⎣ ⎦

� �

� �

�

}

  (26b) 

 
As before, the coefficients { and 1

1
( )
NA −
� { }2

1
( )
NA −
� of the waves in the  layer can be 

expressed in terms of { , that of the waves in the top layer 

1( thN − )

}1
1
( )
 A�

 

{ } { }
( ) { } ( ){ }

1
1 1 1 1 1

1
1 1

( )
 

( )

     ( )   ( )

                 

N N N N

N N N N N

h A h

E h A e h

− − − −

− −

+⎡ ⎤⎣ ⎦

⎡ ⎤= +⎣ ⎦

E e� �

� �
   (27a) 

{ } { }
( ) { } ( ){ }

1
1 1 1 1 1

1
1 1

( )
 

( )

     ( )   ( )

                 

N N N N

N N N N N

h A h

D h A d h

− − − −

− −

+⎡ ⎤⎣ ⎦

⎡ ⎤= +⎣ ⎦

D d��

� �
   (27b) 

 
with new matrices , 1 1( )N Nh− −⎡ ⎤⎣ ⎦E 1 1( )N Nh− −⎡ ⎤⎣ ⎦D   and vectors { }1 1( )N Nh− −e� , 

in terms of { , the wave coefficients of the top layer, on the L.H.S. of 

the equations. 

{ 1 1( )N Nh− −d� } }

}

1
1
( )
 A�

 
Equations (27a) and (27b) are the final form of the matrix equations, from which 

the wave coefficients{ of the top layer and 1
1
( )
 A� { }1( )

 NA� in the bottom semi-infinite layer 
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are to be related. Normally, one will rewrite Eqns. (27a), expressing {  in terms of 

, as: 

}
}

1( )
 NA�

{ 1
1
( )
 A�

{ } ( ) { } { } ( ){ }( )11 1
1 1 1 1 1 1

( ) ( )
      ( )   ( )   N N N N N N N N NA E h h A h e h

−

− − − − − −⎡ ⎤= +⎡ ⎤⎣ ⎦⎣ ⎦ E e� � � � 1−

}

    (28a) 

 
And substituting it into Eqn. (27b), which becomes a matrix equation with { of the 

top layer as the only set of unknowns: 

1
1
( )
 A�

 

( ) ( )( ){ }
( ) ( ) { } ( ){ } { }

1 1
1 1 1 1 1 1 1

1

1 1 1 1 1 1

( )
 ( ) ( )

       ( )    ( )

N N N N N N N N

N N N N N N N N N N

h D h E h h A

D h E h h d h h

−

− − − − − −

−

− − − − − −

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

D E

e d

�

���
1−−

}

    (28b) 

 

from which the coefficients {  can now be evaluated, after which the coefficients of 

the waves in all layers can be found. 

1
1
( )
 A�
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VI.        The Diffracted Mode Shapes of Love and SH Body Waves  
 
VI.1 The input free-field Waves 
 

Recall Report I, where we considered an N-Layered half-space with Love waves 

or Body SH waves incident from the left into a regular parallel layered media (Report I, 

Figure II.1). In a sub-section of Chapter V in Report I we plotted the displacement mode 

shapes of Mode#1 to Mode#5 Love surface waves for a selected range of periods starting 

from 15 sec down to 0.04 sec (0.07Hz to 25Hz) This was followed by another sub-section 

of the mode shapes resulting from body SH waves for a given incident angle. For 

convenience in programming we take the body SH waves as the “6th mode” of waves in 

the parallel layered media. 
 

Each of these 6 mode shapes at each period (frequency) will be used as the free-

field input waves into the irregular parallel layered media to be studies here. In what 

follows, we will take a rather simple 2-layered media to illustrate the process. The 

following parameters are used for the 2-layered media: 
 

Table 1 
 

2  Layer Velocity Model 
 

Layer 
 

Thickness, km 
P-wave Speed, 

α, km/s 

S-wave Speed, 

β, km/s 

Density, ρ 

gm/cc 

1 1.38000    1.70000     .98000    1.28000 

2 ∞ 6.40000    3.70000    2.71000 
 

They are the same 1st and last layers of the 6-layered model considered in Report I, 

except that the top layer is now 1.38 km thick. The computer Program, “Haskel.exe”, is 

again used to calculate the phase velocities of each mode of Love waves, as in Report I, 

in the period range of periods from 14.0 sec down to 0.04 sec for a total of 91 discrete 

period values. 
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Figure VI.1 shows the input free-field Mode Shape for Mode#1 Love Waves at 

four selected periods, T = 5.0, 1.5, 0.5 and 0.01 sec, or at frequency, f = 0.20, 0.67, 2.0 

and 10.0 Hz. As before, for Mode#1 waves, the Mode shapes are constructed at all 91 

pre-selected period values. It is noted from the figures that, at all the periods shown, the 

wave amplitudes of the mode shapes are scaled to have a maximum amplitude of 1 at the 

half-space surface, and that the amplitudes are practically zero at and below the interface 

of the two layers, which is at 1.38km depth. 
 

Figure VI.2 shows the input free-field Mode Shapes for the corresponding 

Mode#2 Love Waves at four selected period, T = 2.0, 1.0, 0.3 and 0.08 sec. For Mode#2 

Love Waves, the modes do not exist at all 91 periods, but instead from T = 2.2 sec 

( Period#30). So the four periods plotted here are selected from a narrower range. As 

before, the mode shapes are scaled to have a maximum amplitude of 1 starting from the 

surface at . A characteristic of the Mode#2 Love waves is that the Mode shape at 

each period now decreases to negative values, reaching a negative minimum before 

asymptotically approaching zero. Again, as for Mode#1, the amplitudes are practically 

zero at and below the interface of the two layers 

0z =

1 38( . )z km= .  

 

Figure VI.3 illustrates the input free-field Mode Shapes for the corresponding 

Mode#3 Love Waves at four selected period, T = 1.0, 0.8, 0.4 and 0.08 sec. For Mode#3 

Love Waves, the modes do not exist at all 91 periods, starting at T = 1.1 sec ( Period#40). 

As before, the mode shapes are scaled to have a maximum amplitude of 1 starting from 

the surface . A characteristic of the Mode#3 Love waves is that the Mode shape at 

each period decreases to negative values, reaches a negative minimum, and then crosses 

the zero axis back to positive amplitudes, before asymptotically approaching zero. Again, 

as for Mode#1 and Mode#2, the amplitudes are practically zero at and below the interface 

of the two layers 

0z =

1 38( . )z km= .  
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Figure VI.1 Mode#1 Mode Shapes at f = 0.20, 0.67, 2.0 and 10.0 Hz 

  

 R4-1-22



Figure VI.2 Mode#2 Mode Shapes at f = 0.50, 1.0, 3.33 and 12.5 Hz 
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Figure VI.3 Mode#3 Mode Shapes at f = 1.0,  1.25, 2.50 and 12.50 Hz 
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The same observations can be made for Modes #4 and #5 free-field Love waves. 

Their plots have been omitted here. 

 

Finally, the free-field mode shapes for incident SH body waves are considered 

next. Figure VI.4 shows the input free-field Mode Shapes for the corresponding SH Body 

Waves with angle of incidence of  with respect to the horizontal direction at four 

selected periods, T = 4.0, 1.0, 0.4 and 0.10 sec., or at frequency, f = 0.25, 1.0, 2.5 and 

10.0 Hz. As in the case of Mode#1 Love waves, the Mode shapes exist at all 91 pre-

selected period values. It is seen from the figures that, at all the periods shown, the wave 

amplitudes of the mode shapes are again scaled to have maximum amplitude of 1 at the 

half-space surface. Unlike the Love waves, depending on the period of the body waves, 

the waves do not decrease to zero deeper down from the surface. The waves in the first 

layer are harmonic, oscillating at the given period of the waves between the scaled 

maximum amplitude of , and the oscillation increases with decreasing period, or  

increasing frequency, as the figure shows. 

60oγ =

1±

 

Below the first layer, on the semi-infinite layer, it continues to oscillate, though at 

a higher period and lower amplitude, but they are not depreciating to zero, since the body 

waves are harmonic waves, harmonic in both the horizontal x- and vertical z- directions.  

 

We thus will expect in the next sub-section that the diffracted waves from SH 

Body waves will behave differently from those from the Love surface waves.  
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Figure VI.4 SH Body Waves Mode Shapes at f=0.25, 1.0, 2.5 and 10.0 Hz 
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VI.2 The Diffracted Mode Shapes 
 
 
 We next consider the case of irregularly shaped layered media superimposed onto 

the parallel two-layered media. We select a shallow, “almost-flat” ellipse with a ratio of  

“Vertical minor axis / Horizontal major axis = 0.1” at both the half-space surface and at 

the interface of the two layers. The half-width or radius of the horizontal major axis is 

taken to be 1.0 km long for both, or a major diameter is 2.0 km long. Thus the half-width 

or radius of the minor axis is 0.1 km deep, the case of a very shallow ellipse. Figure VI.5 

is a sketch of such a 2-Layered elastic media. We then consider: 

i) Incident Love Surface waves, and 

ii) Incident Body SH waves 
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(i) Love Waves (ii) Body SH waves 

 

Figure VI.5 The Irregular 2-Lyered Media with Incident SH Body Waves 

 
 The next five figures, Figure VI.6 to VI.10 show the diffracted mode shapes for 

Mode #1 to Mode#5 of Love Waves. Each Mode is plotted at four selected frequencies, f 

= 13.33, 18.18, 20.0 & 25.0 Hz. These are frequencies below the period of 0.1 sec (or 

frequency beyond 10Hz) as it was found that since the irregular part of the layer is small, 

the long period waves “do not see” the irregularities and the diffracted waves are small to 

insignificant. 

 Figure IV.6 shows the Diffracted Mode Shapes for Mode#1 Love Waves at the 

above stated four selected frequencies. With the irregular almost-flat elliptic surfaces 

from  to  on both the half-space surface 1 0 km.x = − 1 0 km.x = + ( )0 kmz =  and the 

surface of interface of the 2 media ( )1 38 km.z = , the diffracted mode shapes are plotted 

at equally spaced intervals along x from 2 0 km.x = −  to 2 0 km.x = + at 0 1 apart. The 

dashed line on the left side of each graph represents the input free-field Mode shapes 

propagating along the parallel-layered media from the left, arriving at the irregular 

surfaces. For all frequencies up to almost 15.0 Hz, the waves are unaffected by the 

almost-flat irregular surfaces. At the irregular interfaces between the 2 media, as pointed 

out in the previous section, and as can also be seen from the dashed line on the left, the 

mode shape amplitudes are almost zero. That is, not much scattering and diffraction can 

be expected in this case. 

 km.
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 As the frequencies of incident waves increase from 15.0 to 25.0 Hz, as in the next 

3 graphs shown, where the frequencies are respectively, f = 18.18, 20.0 and 25.0 Hz, it is 

seen that the incident Love Waves experience some scattering and diffraction in the top 

layer. This is most noticeable for the 25 Hz mode shape in the lower right corner of this 

figure. 

 

Figures IV.7 through IV.10 show the scattered and diffracted shapes for Mode#2 

to Mode#5 Love Waves at the same four frequencies. The scattered and diffracted 

motions are more complex as the Mode Number increases.  

 

In the future we will analyze the multi-layered media with the layers having more 

complex and larger irregularities. It is expected that for those the scattered and 

diffracted patterns will become more complicated, especially as the number of layers 

increase, and as the layers get closer and closer together. We will also use the complete 

synthetic motions in SYNACC, which will include all mode shapes simultaneously. The 

above elementary examples nevertheless illustrate the essence of the phenomena, which 

is easier to decipher in the presence of only one mode excitation. 
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Figure VI.6 Mode#1 Diffracted Mode Shapes at f = 13.33, 18.18, 20.0 & 25.0 Hz 
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Figure VI.7 Mode#2 Diffracted Mode Shapes at f = 13.33, 18.18, 20.0 & 25.0 Hz 
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Figure VI.8 Mode#3 Diffracted Mode Shapes at f = 13.33, 18.18, 20.0 & 25.0 Hz 
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Figure VI.9 Mode#4 Diffracted Mode Shapes at f = 13.33, 18.18, 20.0 & 25.0 Hz 
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Figure VI.10 Mode#5 Diffracted Mode Shapes at f = 13.33, 18.18, 20.0 & 25.0 Hz 
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Figure VI.11 shows the scattered and diffracted Mode Shapes corresponding to 

incident plane SH Body Waves. As seen from Figure VI.4 above, the input free-field 

Body SH waves, unlike the Love waves, are oscillatory in both layers, and do not 

decrease to zero bellow the interface. 

 

As with the examples for Love waves, the irregular almost-flat elliptic surfaces 

are from  to  on both the half-space surface (  and the 

surface of interface of the 2 media 

1 0 km.x = − 1 0 km.x = + )0 kmz =

( )1 38 km.z = . The scattered and diffracted mode 

shapes are again plotted at equally spaced intervals along x from  to 

at apart. Again, the dashed line on the left side of each graph 

represents the input free-field mode shapes of body SH waves propagating through the 

parallel-layered media from below and arriving at the irregular surfaces. The angle of 

incidence of the body waves is assumed to be  with respect to the horizontal. At 

all frequencies, the mode shapes of the scattered and diffracted waves are oscillatory and 

have different amplitudes.  

2 0 km.x = −

2 0 km.x = + 0 1 km.

60oγ =

 

 As the frequencies of the waves increase from 15.0 to 25.0 Hz, as the next 3 

graphs show, where the frequencies are respectively, f = 18.18, 20.0 and 25.0 Hz, it is 

seen that the body SH waves experience large scattering and diffraction in both the top 

layer and in the semi-infinite media. The amplification of the mode amplitudes for the 

examples shown gets greater than two.  Table 2 illustrates the amplification factors at 

selected frequencies 
 

 

Table 2 

Frequency, Hz 16.67 18.18 20.00 20.83 21.74 22.73 23.81 25.00 

Amplification 2.61 2.56 2.58 2.61 2.63 2.57 2.70 2.57 

 

In the future work we will analyze the multi-layered media with more layers and 

with the layers being closer together. It is expected that the scattered and diffracted 

patterns will be much more complicated as the number of layers increase, as the 

irregularity of the layer geometries increases and as the layers get closer together. 
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Figure VI.11 SH Body Waves Diffracted Mode Shapes at f = 13.33, 18.18, 20.0 & 25.0 Hz 
 

  

 R4-1-36



 
 

References 
 

1. V. W. Lee & X.Y. Wu Application of the Weighted Residual Method to Diffraction by 
2-D Canyons of Arbitrary Shape, I: Incident SH Waves, Int. J. Soil Dynamics & Earthquake 
Eng., 13(5), 1994, 355-364, 10 Pages, 17 Refs., Oct, 1994a. 
 

2. V. W. Lee & X.Y. Wu   Application of the Weighted Residual Method to Diffraction by 2-D 
Canyons of Arbitrary Shape, II: Incident P, SV & Rayleigh Waves, Int. J. Soil Dynamics & 
Earthquake Eng., 13(5),  1994, 365-373, 9 Pages, 24 Refs., Oct, 1994b. 

 
3. Mow, Chao-Chow and Pao, Yih-Hsing (1973). “The Diffraction of Elastic Waves 

and Dynamic Stress Concentrations”, Institute of Physics Publishing, 617 
 

4. SEEC. Synthetic Translational Motions of Surface Waves On or Below a Layered Media,  
Report I, 2013. 

 R4-1-37

http://www.paperbackswap.com/book/browser.php?p=Institute+of+Physics+Publishing


APPENDIX R4-2 
(Reporting Date 20 October 2013) 

 
REPORT No. IV – Part II 

Contract No.: 87055-11-0562 
RSP Project ID (R525.1) 

 
REPORTING DATE – 20 October 2013 

 
PROJECT TITLE: Interfacing Seismological Description of Strong 

Ground Motion with Engineering Analysis of Soil Structure Interaction 
for Nuclear Power Plants 

 
 

REPORT SUBMITTED BY: Structural and Earthquake Engineering Consultants 
(SEEC) Inc. 

855 Arcadia Ave. #E, Arcadia, CA 91007 USA 
Contact name: M. D. Trifunac 

Phone: (626) 447-9382 
Email: trifunac@usc.edu, misha.trifunac@gmail.com 

 
 

to 
 
 

Canadian Nuclear Safety Commission 
 
 

ATTENTION: Nanci Laroche, Nebojsa Orbovic 
280 Slater St., Ottawa, Ontario, Canada, K1P 5S9 

E-mail: research-recherche@cnsc-ccsn.gc.ca 
Nebojsa.Orbovic@cnsc-ccsn.gc.ca 

 
 
 
 
 
 
 
 
 
 
 
 

 R4-2-1

mailto:trifunac@usc.edu


 
 
 
 
Scattering and Diffraction by Irregular Layered Elastic Media 

- Part II:  Rayleigh and Body P, SV Waves 
 
 
I. Introduction 

 
 

This report is a continuation of our sequence of reports to CNSC on waves in 

elastic layered media: 

 
1.              Interfacing Seismological Description of Strong Ground Motion with Engineering 

Analysis of Soil Structure Interaction for Nuclear Power Plants, Report I, 2013 
  
2. Synthetic Translational Motions of Surface Waves On or Below a Layered Media,  

Report II, 2013. 
  
3. Synthetic Rotational Motions of Surface Waves On or Below a Layered Media,  

Report III, 2013. 
  
4. Part 1 - Diffraction Around An Irregular Layered Elastic Media, I: Love and Body 

SH Waves, Report IV-1, 2013. 
 

 

This is a continuation of Report IV, Part I for the case of Love and Body SH 

waves in irregular layered elastic media. In this report, we will consider the case of 

Rayleigh and Body P, SV waves for the same irregular layered elastic media. The method 

of weighted residues, or the Moment method, is again used in the analysis. 
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II. Rayleigh and Body P, SV Waves incident on an Irregular Layered 
Media 

 
 

We consider again the case of an N-layered half space with Rayleigh and/or body 

P, SV waves incident from the left.  For each regular flat layer l, with , the 

P- and SV-Wave Potentials in the layer respectively take the form: 

  …l 1, , N=

 

   l l l l, , ,ϕ ϕ ψ ψ− + − + :    

( )

( )

( )

( )

          

  

          

  

l

l

l

l

ik x a z
l l

ik x a z
l l

ik x b z
l l

ik x b z
l l

A

A

B

B

e

e

e

e

ϕ

ϕ

ψ

ψ

−− −

++ +

−− −

++ +

=

=

=

=

  Report II (3.1) 

 
                              x             O 
   0z =
   h  1 1 1, ,  1μ α β    z 1 1 1 ,,  1 ϕ−                    ψ ψ ϕ− + +

2

 
  
   1z H=
   h  2 2 2, ,  μ α β   2 2 2 ,,                      2ϕ− ψ ψ ϕ− + +

h −= n

 
 

   2z H=

    
#

 #
 

    
#
 
#

   2Nz H −=
 
  h  1n N , ,  n nμ α β   ,,                      n nn nϕ− ψ ψ ϕ− + +  
   1Nz H −=
          ,  ϕ ψ∞ ∞   
    to ∞ , ,  μ α β       
 

 
Figure 1:  From Report II Figure III.1 N-layered half-space with Rayleigh waves 
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As before, theose are respectively the upward and downward propagating waves present 

in  layer, and thi k k( ) c( )ω ω ω= =  is the horizontal wave number of the P- and SV-

waves at frequency ω  and phase velocity c c( )ω= . The term , which is also the 

same in each layer, is the horizontal component of the waves, which together with the 

time harmonic term 

ikxe

i te ω , corresponds to waves propagating in the –ve x direction. The 

terms  for the P-waves and  for the SV-waves are respectively the vertical 

components of the waves. The ones with the –ve exponent are propagating upwards (–ve 

y) and those with the +ve exponent are propagating downwards (+ve y). Here 

lika ze∓ likb ze∓

l l la a ( ,c )α= and l l lb b ( ,c )β= are respectively given by

  

( )

( )

l l

l l

1 1 122 2 2 2 2 2

l
l

1 1 122 2 2 2 2 2

l
l

k k k ca 1kk

k k k cb 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

1

1

−

−

  Report II (3.2) 

 

so that and  are the vertical wave numbers of the P- and SV-waves in the  layer 

of the medium with longitudinal wave speed 

lka lkb thl

lα  and shear wave velocity lβ . In general, 

the wave speeds increase as one goes down into the layers, so that 

1 2 Nβ β β< < < <… β , with the semi-infinite half-space layer at the bottom having the 

highest shear wave speed β .  The same can be said about the longitudinal wave speeds, 

so that 1 2 Nα α α< < < <… α , withα the longitudinal wave speed of the semi-infinite 

medium furthest below being the highest. With c c( )ω=  the wave speed of the surface 

Rayleigh waves, c β α< < , and the surface waves take the form: 
 

( )

( )
    

    

ik x az ikx kaz

ik x bz ikx kbz

A A

B B

e e

e e

ϕ

ψ

∞ ∞ ∞

∞ ∞ ∞

− −

− −

= =

= =
   Report II(3.3)  
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where  

( ) ( )
( ) ( )

1 1 12 2 2 2 2 2 2

1 1 122 2 2 2 2 2

k k k ca 1 1kk

k k k cb 1 1kk

α α

β β

α

β

− ⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

   Report II (3.4) 

and  a , b  are respectively the complements of a,  and both are  real, so that the 

terms

b

kaze−  in ϕ∞ and kbze−  in ψ∞  both correspond to surface wave terms with 

amplitudes that are exponentially decaying with depth below the surface.  

 

With lβ the shear wave speed in the  layer of the medium, and c cthl ( )= ,ω  the 

Rayleigh wave speed and also the (horizontal) phase velocity of the waves in each layer 

of the elastic media above the half space (Report II Figure III.1), we can have lc β≥  or 

lc β< .  

 

 We will next consider the case when the layers are not perfectly flat.
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III. Rayleigh and Body P, SV Waves incident on an Irregular Layered 

Media 
                  x̂  ( )ˆ ˆˆ,O r θ  
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1Nz H −=  
   ,  ϕ ψ∞ ∞    s s,ϕ ψ∞ ∞      
to ∞          , ,  μ α β  
 

 
Figure 2   Irregular-Shaped N-layered half-space with Rayleigh waves 

 
 

Figure 2 here is a model where the parallel layers are not perfectly flat in some 

finite region, but are flat elsewhere. Without loss of generality, we will assume that each 

of these irregular surfaces at each interface between the l andth ( )1 thl + layer, which 
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extends from  to  can be represented by a curve = −∞x = +∞x = ( )lz h x  at the interface. 

We assume that this curve will be the flat surface = lz H  almost everywhere, but will 

deviate from the flat surface within some finite region where it can be defined 

numerically by a set of points ( . The same curve can also be represented in polar 

coordinates (
)

)
,i ix z

ˆˆ,r θ , with ( )ˆˆ ˆr r θ=  in a common coordinate system ( )ˆ ˆ,x z  with origin at 

some point  above the half space as shown. Ô

 

As in the case of surface Love waves, with the surface Rayleigh waves potentials 

or body P, SV wave potentials l l,ϕ ϕ− +  for P waves, and l l,ψ ψ− +  for SV waves at each 

layer  incident on these irregular surfaces, additional scattered wave potentials are 

generated, which can be represented by 

l

 

( )
( )

1 1 2 2
0

1 1 2 2
0

( ) ( ) ( ) ( )
, ,

( ) ( ) ( ) ( )
, ,

ˆ ˆ( ) ( ) cos

ˆ ˆ( ) ( ) cos

l l
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l l n n l n nn
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l l n n l n nn

A H k r A H k r n

B H k r B H k r nβ

α α

β

ϕ θ

ψ θ

∞

=

∞

=

= +

= +

∑
∑

  (1) 

with both outgoing and  incoming waves, for each layer 1, 2, , 1l N= −… , all except the 

last semi-infinite layer. For the last semi-infinite layer, ,l N=  the scattered wave, 
s s

Nϕ ϕ∞ = and s s
Nψ ψ∞ =  respectively the P- and SV- potentials, take the form  

1
0

1
0

( )
,

( )
,

ˆ( ) cos

ˆ( ) cos

l

l

s s
N n nn

s s
N n nn

A H k r n

B H k r n

α

β

ϕ ϕ θ

ψ ψ θ

∞

∞ ∞=

∞

∞ ∞=

= =

= =

∑
∑

   (2) 

with only outgoing waves satisfying Somerfield’s radiation condition at infinity. 

 

The scattered waves, together with the free-filed surface Rayleigh or body P, SV 

Waves, form the resultant waves in the layered media. Writing ff
l l lϕ ϕ ϕ+= + −

l

and 

ff
l lψ ψ ψ+= + −  respectively as the free-field surface Rayleigh or Body P, SV waves in the 

 media, the resultant waves in the same media are thl ff
l l

s
lϕ ϕ ϕ= + , and ff s

l l lψ ψ ψ= + , 

respectively for the P and SV wave potentials, which, together, must satisfy the following 

set of boundary conditions (Lee and Wu, 1994b).  
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1) On the half-space surface, 0= ( )y h x , the resultant waves in the top layer ( 1)l =  

must together satisfy the half-space surface traction (stress) free boundary 

condition: 

      at   0θ θ= + =ˆ ˆ�
r rT T e T e 0= ( )y h x    (3) 

 or separating the contribution of Traction due to the free-field and scattered waves: 

= +� � �ff sT T T      (4a) 

           gives, at 0= ( )y h x :  

θ θ

= −

= −

s f
r

s

T T

T T

f
r

ff

…

     (4b) 

2) For − , at the interface between the thl  layer and the ( 1)thl +  layer 

below, ( )l

1, 2, , 1l N=

y h x= , the resultant waves in these two layers must satisfy the 

continuity of displacement and stress at the interface, at = ( )ly h x :  

   1

1 
l l

l l

U U

T T
+

+

=

=

� �

� �       (5) 

with ,  respectively the displacement and Traction vectors in layer l, and , 

the corresponding ones in layer l+1. Separating the contribution of the displacement 

and Traction due to the free-field and scattered waves: 

lU �
lT 1lU +

1lT +
�

= +

= +

� � �

� � �

ff s
l l

ff s
l l

U U U

T T T
l

l

     (6a) 

gives,  at = ( )ly h x : 

  
( )
( )

1 1

1 1

+ +

+ +

− = − −

− = − −

� � � �

� � � �

s s ff ff
l l l l

s s ff ff
l l l l

U U U U

T T T T
          (6b) 

with the unknown wave functions on the left-hand side, the known functions on the right- 

hand side. As in equation (3) above, both the displacement and Traction vectors can at 

each layer be expressed in the radial and angular components: 
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( ) ( )
( ) ( )

ˆ ˆ

ˆ ˆ
l l r lr

l l r lr

U U e U

T T e T e

eθθ

θθ

= +

= +

�

�     (7) 

so that the displacement and Traction vectors in Equation (20b) can be separated into 

component forms, at ( )ly h x= : 

   
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1

s s ff ff
l l l lr r r

s s ff ff
l l l l

U U U U

U U U U

r

θ θ θ

+ +
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− = − −
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θ

      (8a) 

and 

    
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1

s s ff ff
l l l lr r r

s s ff ff
l l l l

T T T T

T T T T

r

θ θ θ

+ +

+ +

− = − −

− = − −
θ

     (8b) 

 

Here the radial and angular components of Traction, T and Tr θ , can be expressed in terms 

of the various components of stresses in cylindrical coordinates (Lee and Wu, 1994b): 

cos sin

sin cos
r r r

r

T

T
θ

θ θ θ

σ α τ α

σ α τ

= +

= + α
    (9) 

where α  is the angle that the normal n nˆ ˆ ˆ ˆcos sinr r r ˆe n e e eθ θ θα α= + = +  makes with the 

radial vector, as shown in Figure 3 (Lee and Wu, 1994a,b)  

 

                  x̂       ( )ˆ ˆˆ,O r θ  
       θ̂

           ẑ
 
 
 
 
 
    
                                                  α  

       r          n  ˆ ˆ
 

Figure 3     Angle α  between radial vector and normal at a point 
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Expressions for the radial and angular components of the displacement vectors 

and stresses can be expressed in terms of the corresponding wave potentials (Mow and 

Pao, 1973). They will take the form, for the scattered wave potentials, at a point 

( ) ( ˆ, ( ),r r )θ θ θ=  on the irregular surface (or at any point anywhere): 

( )

( )

1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
, , ,

( ) ( ) ( ) ( )
, , ,

ˆ ˆ( , , ) ( , , )
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l l
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s j j j j
l j l n r l n rr
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s j j j j
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U A D n k r B D n kθ θθ

α β

α β
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θ θ

θ θ
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= +

∑

∑
     (10) 

where  1
( ) ˆ( , , )

l

j
rD n k rα θ , 2

( ) ˆ( , , )
l

j
rD n k rβ θ  are the corresponding radial displacements from 

the P- and SV- scattered wave potentials, and 1
( ) ˆ( , , )

l

jD n k rθ α θ , 2
( ) ˆ( , , )

l

jD n k rθ β θ  are their 

corresponding angular displacements.  

 

Similarly, the Traction components at a point on the irregular surface ( ) ( )ˆ, ( ),r rθ θ θ=  

with normal ˆ ˆ ˆ ˆcos sinr r rn n e n e e êθ θ θα α= + = +   take the form: 

( )

( )

1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
, , ,

( ) ( ) ( ) ( )
, , ,

ˆ ˆ ˆ ˆ( , , , ) ( , , , )

ˆ ˆ ˆ ˆ( , , , ) ( , , , )

l l

l l

s j j j j
l j l n r l n rr

n

s j j j j
l j l n l n

n

T A n k r n B n k r

T A n k r n B n k rθ θθ

α β

α β

θ θ

θ θ

=

=

= +

= +

∑

∑

T T

T T

n

n
 (11) 

where,  ,   are the corresponding radial 

components of Traction from the P- and SV- scattered wave potentials. 

Similarly are their corresponding 

angular stresses.  

1 1
( ) ( ) ˆ ˆ( , , , )

l

j j
r r n k r nα θ=T T 2 2

( ) ( ) ˆ ˆ( , , , )
l

j j
r r n k r nβ θ=T T

1 1
( ) ( ) ˆ ˆ( , , , ),

l

j j n k r nθ θ α θ=T T 2 2
( ) ( ) ˆ ˆ( , , , )

l

j j n k r nθ θ α θ=T T

 

              Using the weighted residue method, as in the case of Love waves, the boundary 

conditions at each layer take the form: 
 

1) Starting in the top layer, the half space surface, from Eqns. (18b) and (25): 
 

( )1 11 1 2 1
1 20

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ ˆ ˆ ( , , , ) , ( , , , ) , ,j j j j

r m n r m n rjn

n k r n w A n k r n w B T wα βθ θ
∞

==

+ =∑ T T 1
ff

m−
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( )1 11 1 2 1
1 20

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ ˆ ˆ ( , , , ) , ( , , , ) , ,j j j j

m n m n m
jn

n k r n w A n k r n w B T wθ θ θα βθ θ
∞

==

+ =∑ T T 1
ff−

(12)

 

2) For the interface between the  and  layer, for thl 1( )thl + 1 2 3, ,l = … from Eqns. 

(22a), and (24) for displacements: 
 

1 2
1 20

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ     ( , , ), ( , , ),

l l

j j j j
r m l n r m l n

jn

D n k r w A D n k r w Bα βθ θ
∞

==

⎡ +⎣∑  
 

(13a)

( ) ( )1 11 1 2 1 1
( ) ( ) ( ) ( )

, ,ˆ ˆ( , , ), ( , , ),   ,
l l

j j j j ff ff
r m l n r m l n l l mr r

D n k r w A D n k r w B U U wα βθ θ
+ ++ +

⎤− − = − −⎦ +  

1 2
1 20

( ) ( ) ( ) ( )
,

,
ˆ ˆ     ( , , ), ( , , ),

l l ,
j j j j

m l n m l n
jn

D n k r w A D n k r w Bθ θα βθ θ
∞

==

⎡ +⎣∑  
 

(13b)

( ) ( )1 11 1 2 1 1
( ) ( ) ( ) ( )

, ,ˆ ˆ( , , ), ( , , ),  ,
l l

j j j j ff ff
m l n m l n l l mD n k r w A D n k r w B U U wθ θ θ θα βθ θ

+ ++ +
⎤− − = − −⎦ +

 

 

and from Eqns. (22b) and (25) for stresses: 
 

1 2
1 20

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ ˆ ˆ( , , , ) , ( , , , ) ,

l l

j j j j
r m l n r m l n

jn

n k r n w A n k r n w Bα βθ θ
∞

==

⎡ +⎣∑ T T  
 

(14a)

( ) ( )1 11 1 2 1
( ) ( ) ( ) ( )

, ,ˆ ˆ ˆ ˆ( , , , ) , ( , , , ) , ,
l l

j j j j ff
r m l n r m l n l l mr r

n k r n w A n k r n w B T T wα βθ θ
+ ++ +

⎤− − = −⎦T T 1
ff
+−

1 2
1 20

( ) ( ) ( ) ( )
, ,

,
ˆ ˆ ˆ ˆ( , , , ) , ( , , , ) ,

l l

j j j j
m l n m l n

jn
n k r n w A n k r n w Bθ θα βθ θ

∞

==

⎡ +⎣∑ T T  
 

(14b)

( ) ( )1 11 1 2 1
( ) ( ) ( ) ( )

 ,  ,ˆ ˆ ˆ ˆ( , , , ) , ( , , , ) , ,
l l

j j j j ff ff
m ml n l n l ln k r n w A n k r n w B T T wθ θ θ θα βθ θ

+ ++ +
⎤
⎥⎦

− − = −T T 1 m+−

 

          In matrix form, Eqns. (13a,b) and (14a,b) take the form: 
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1 2 1 2

1 2 2 2

1 2 1 2 1 2

1 2

1 1
1 1
1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

( ) ( )

( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
( , , ) (

j j j j
r r r r

j j j j

j j j j
j r r r r

j j

D l m n D l m n D l m n D l m n
D l m n D l m n D l m n D l m n
T l m n T l m n T l m n T l m n
T l m n T l

θ θ θ θ

θ θ

=

− + − +
− + − +
− + − +

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 1

11 2

1

1

1

1

1 1

( )
,

( )
,

( )
,

( )( ) ( )
,, , ) ( , , ) ( , , )

,

,
                              

,

,

j
l n

j
l n
j

n l n
jj j

l n

ff ff
l l mr r

ff ff
l l m

ff ff
l l mr r

ff ff
l l m

A
B
A
Bm n T l m n T l m n

U U w

U U w

T T w

T T w

θ θ

θ θ

θ θ

∞

= +

+

+

+

+

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪− + − +⎢ ⎥⎣ ⎦ ⎩ ⎭

⎧ −

−
= − ⎨

−

−

∑

                                               

⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

 

 

 

 

(14c)

with  properly defined matrix elements 1
( ) ( , , )j
rD l m n ,… and ,… etc. 1

( ) ( , , )j
rT l m n

 

The traction components of motions at each interface are computed from the 

corresponding strain components of motions, which are available form Report III: 

“Synthetic Rotational Motions of Surface Waves On or Below a Layered Media”. 

 

            Note that for the interface between layer 1N −  and the (last) semi-infinite layer 

, Eqns. (27a,b) and (28a,b) will have only the outgoing wave terms 

 and without the incoming wave terms  

N
1 1 0 1 2( ) ( )

, ,,  ,  , ,N n N nA B n = … 2 2 0 1 2( ) ( )
, ,,  ,  , ,N n N nA B n = …
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IV.    Numerical  Implementation 
 
 This section will illustrate the numerical procedure that can be used to solve the 

system of complex equations, which were derived in the last section, by using the method 

of weighted residues. In studying the set of equations, it is observed that for an elastic 

half-space with  layers, there are 1 (N ≥ ) )1(N −  interfaces in-between the layers, plus 

the topmost half-space with no elastic medium above.  

 

At this topmost half-space surface, there is one set of zero-stress equations (at 

)  (Eqn. (3)) involving the wave coefficients in the topmost 1st layer. At each of the 

 interfaces in-between the layers, there are 2 sets of the stress and displacement 

continuity equations (Eqns. (4) and (5)). There is thus a total of 2 1

0z =

1(N − )

11 2( )N N− + = −  set 

of equations. Each of the top 1(N )−  layers has two sets of waves, the upward and 

downward going, or the outgoing and incoming waves (Eqn. (1)). Those are represented 

by Hankel functions of the 1st and 2nd kind, the outgoing and incoming waves, 

respectively. On the other hand, the bottom-most semi-infinite layer has only one set of 

waves, the downward going or outgoing waves (Eqn. (2)). Those are represented by 

Hankel functions of the 1st kind. This gives a total of 2 1 1 2( )N 1N− + = −  set of waves 

from all the layers.  

 

In summary, we have  a set of 2 1( N )−  equations for 2 1( N )−  waves. If each of 

such sets of waves has M terms, with M unknown coefficients, we will have a 

total of unknowns we need to solve. Ideally each set of waves should have, 

, or infinite number of terms and there are 

2 1( N − )

)

)

2 1(M N× −

M = ∞ 2 1( N∞× − corresponding equations. 

In reality, we have to truncate to finite number with  M terms for each set of waves, with 

the number M often dependent on the frequency of the waves and the complexity of the 

equations. With M finite, we have a task of solving the 2 1(M N )× −  complex equations 

for the  unknowns. 2 1(M N× − )
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 Numerically, we know that the Hankel functions of both the 1st and 2nd kind are 

both complex, and increase in magnitudes with increasing order. Thus if all the 

 unknowns are put together in the 2 1(M N× − ) )2 1(M N× − complex equations, one 

would have a very large set of complex equations to solve, whose terms often have 

increasing magnitudes with increasing M. It would be a numerical nightmare to solve 

them all at once. 

 

 Since each set of equations at each interface involves only waves at each side of 

the interface, a simple, elegant numerical algorithm can be derived to allow each set of 

wave coefficients in each medium to be solved separately, making the problem simpler 

numerically. In other words, we are solving M complex equation in M unknowns at each 

step. The following is a detailed description of the numerical procedure. 

 

 The idea is very simple. Starting from the top surface, where , we have the 

matrix equation for the zero-stress boundary condition along the whole (regular and 

irregular) surface of the half-space, in the form: 

0z =

{ } { } { }1 2
1 1 1 1 1 0

( ) * ( )      0
z

E C E C e
=

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦
� � � =

⎤⎦

   (15a) 

where from Eqn. (13b): 
1

1 1
( )E E⎡=⎡ ⎤⎣ ⎦ ⎣   is the matrix with elements defining the stress terms from the P- and SV 

scattered waves in the top layer with the Hankel functions ( )(1)
1nH k rα  and  ( )(1)

1nH k rβ , 
2

1 1 1
* ( ) (E E conjug E⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1)

 
is the matrix corresponding to the stress terms in the top 

layer with the Hankel functions ( )(2)
1nH k rα  and  ( )(2)

1nH k rβ , 
 

{ }1
1
( )C� , {   are respectively the two vectors }2

1
( )C� { }1 1 1 1 1 1

10 10 11 11 12 12
( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

T
A B A B A B … and  

in the top layer, and { }2 2 2 2 2 2
10 10 11 11 12 12
( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

T
A B A B A B …

              (15b) 
{ }1e�  is the vector of the free-field stresses in the top layer. 
 
As in the case of Love and SH body waves, eliminating { }2

1
( )C� , one has, at  0 :z =
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{ } { } { }( )
{ } { }( )

12 1
1 1 1 1 1

0

1 1
1 1 1 10 0

( ) * ( )

* ( )

      

           ( ) ( )   ( )

z
C E E C e

E E C e

−

=

−

⎡ ⎤= − +⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= − +⎡ ⎤⎣ ⎦⎣ ⎦

� � �

� � 0
   (16) 

 
In the interface between the 1st and 2nd layer, the continuity equations take the 
form:

{ } { } { } { } { } { }

( ) { } ( ) { } ( ){ }
1 1

1 2 1 2
1 1 1 1 1 2 2 2 2 2

1 2
1 1 1 1 1 1 1 1

or

(17)

( ) * ( ) ( ) * ( )

( ) * ( )

          ,  

                                                             

                

z h z h
E C E C e E C E C e

E h C E h C e h

= =
⎡ ⎤ ⎡ ⎤+ + = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

� � � �� �

� � �

( ) { } ( ) { } ( ){ }1 2
2 1 2 2 1 2 2 1

( ) * ( )             E h C E h C e h⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
� � �

for stress continuity. Here { } , 1
2
( )C� { }2

2
( )C�  are respectively the two corresponding vectors 

 and { }1 1 1 1 1 1
20 20 21 21 22 22
( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

T
A B A B A B … { }2 2 2 2 2 2

20 20 21 21 22 22
( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

T
A B A B A B … in the second 

layer, and ( ) ( )1
2 2 2 2 ( ) * ( ),E E E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2

}

 are respectively the matrices with elements 

defining the stress terms from the P- and SV scattered waves in the 2nd layer with the 
Hankel functions of the 1st and 2nd kinds, corresponding to the coefficients { } , 

 just as how they are defined in the top 1st layer 

1
2
( )C�

{ 2
2
( )C�

 

Similarly, for the displacement continuity equations between the 1st and 2nd layer: 

( ) { } ( ) { } ( ){ }
( ) { } ( ) { } ( ){ }

1 2
1 1 1 1 1 1 1 1

1 2
2 1 2 2 1 2 2 1

( ) * ( )

( ) * ( )

            

                          

D h C D h C d h

D h C D h C d h

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� � �

� � �

}

   (18) 

 

Using Eqn. (16),{ can be eliminated from the L.H.S. of the stress Eqn. (17): 2
1
( )C�

 
{ } { } { }

{ } { } { }( ) {

{ } { }

1 2
1 1 1 1 1 1 1 1

11 1
1 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1

0 0 0

( ) * ( )

( ) * * ( )

( )

( )   ( )   ( )

( )   ( ) ( ) ( )   ( )   ( )  

                   ( )   ( )  

E h C E h C e h

E h C E h E E C e e h

h C h

−

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= +⎡ ⎤⎣ ⎦

� � �

� � � �

� �E e

}+

}

⎤⎦

(19a) 

where 

{ } { } {

1

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

0 0

0 0

* *

* *

( )     ( ) ( ) ( ) ( )

( )     ( ) ( ) ( ) ( )

h E h E h E E

h e h E h E e

−

−

⎡ ⎤ ⎡ ⎤= −⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦

E

e� � �
  (19b) 
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In exactly the same way, { can be eliminated from the L.H.S. of the displacement 

Eqn. (18), resulting in: 

}2
1
( )C�

 

{ } { } { }
{ } { } { }( ) {

{ } { }

1 2
1 1 1 1 1 1 1 1

11 1
1 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1

0 0 0

( ) * ( )

( ) * * ( )

( )

( )   ( )   ( )

( )   ( ) ( ) ( )   ( )   ( )  

                   ( )   ( )  

D h C D h C d h

D h C D h E E C e d h

h A h

−

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= +⎡ ⎤⎣ ⎦

� � �

� � �

��D d

}+ �

⎤⎦

}

 (20a) 

where 

{ } { } { }

1

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

0 0

0 0

* *

* *

( )     ( ) ( ) ( ) ( )

( )     ( ) ( ) ( ) ( )

h D h D h E E

h d h D h E e

−

−

⎡ ⎤ ⎡ ⎤= −⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦

D

d� � �
  (20b) 

 
The continuity matrix equations at the interface of the 1st and 2nd layer now take the 

simplified form, without the {  terms: 2
1
( )C�

{ } { }
( ) { } ( ) { } ( ){ }

1
1 1 1 1 1

1 2
2 1 2 2 1 2 2 1

( )

( ) * ( )

     ( )   ( )

                  

h C h

E h C E h C e h

+⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� �

� � �

E e
  (21a) 

{ } { }
( ) { } ( ) { } ( ){ }

1
1 1 1 1 1

1 2
2 1 2 2 1 2 2 1

( )

( ) * ( )

     ( )   ( )

                  

h C h

D h C D h C d h

+⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

��

� �

D d

�
  (21b) 

 
In matrix form, Eqns. (21a) and (21b) become: 
 

( ) ( )
( ) ( ) { } ( )

( )

1
1 1 2 11 12 1 2 1 12

12
1 12 1 2 1 2 1 1 2 1

* ( )
( )

* ( )

( )( )
( ) ( )

h e hhE h E h C
C

hD h D h C h d h

⎧ ⎫−⎡ ⎤ ⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪= +⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥
−⎪ ⎪ ⎣ ⎦⎩ ⎭⎣ ⎦

⎪
⎬

⎪ ⎪⎩ ⎭

� ��
�

�� �
eE

D d
  (22) 

 
which shows that both { and }1

2
( )C� { }2

2
( )C� of the coefficients of the waves in the 2nd layer 

can be expressed in terms of the single set of { }1
1
( )C� coefficients of waves in the top layer. 

One can thus write: 

 

( ) ( )
( ) ( ) { } ( )

( )

1
1 1 2 11 12 1 2 1 12

12
1 12 1 2 12 1 1 2 1

1*( )
( )

*( )

( )( )
( ) ( )

h e hhE h E hC
C

hD h D hC h d h

− ⎛ ⎞⎧ ⎫−⎡ ⎤⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟−⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎩ ⎭⎝ ⎠

� ��
�

�� �
eE

D d
   (23a) 

 
so that such a transformation is obtained: 
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{ }
1

21 121 1 12
12

22 12 22 1

( )
( )

( )

( )( )
( ) ( )

hhC
C

hC h

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜⎪ ⎪ ⎣ ⎦
⎟
⎟⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

��
�

� �
tT

T t
        (23b) 

 
Repeating this iteration at each interface of layers proceeding downwards one can start 

with the continuity equations at interface between layer l and l+1, as in Eqns. (18a,b), at 

the interface lz h=  : 

 

( ) { } ( ) { } ( ){ }
( ) { } ( ) { } ( ){ }

1 2

1 2
1 1 1 1 1 1

( ) * ( )

( ) * ( )

    

                    

l l l l l l l l

l l l l l l l l

E h C E h C e h

E h C E h C e h+ + + + + +

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� � �

� � �
      (24a) 

 
( ) { } ( ) { } ( ){ }

( ) { } ( ) { } ( ){ }

1 2

1 2
1 1 1 1 1

( ) * ( )

( ) * ( )

            

                               

l l l l l l l l

l l l l l l l l

D h C D h C d h

D h C D h C d h+ + + + +

⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� � �

� � �
  (24b) 

 
As in Eqn. (23b), suppose by induction, { }1( )

lC�  and { }2( )
lC�  are to be expressed in terms 

of { } : 1
1
( )C�

{ }
1

11 1
12

2 2

l ll ll

l ll l l

hhC
C

hC h

( )
( )

( )

( )( )
( ) ( )

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪ ⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

��
�

� �
tT

T t
      (25) 

from which Eqns. (24a,b) can be expressed as: 

{ } { }
( ) { } ( ) { } ( ){ }

1
1

1 2
1 1 1 1 1

l l l l

l l l l l l l l

h C h

E h C E h C e h

( )

( ) * ( )

     ( )   ( )

                  + + + + +

+⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

� �

� � �

E e
  (26a) 

{ } { }
( ) { } ( ) { } ( ){ }

1
1

1 2
1 1 1 1 1

l l l l

l l l l l l l

h C h

1D h C D h C d h

( )

( ) ( )

     ( )   ( )

                  + + + + +

+⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

��

� �

D d

�
  (26b) 

 
or again in matrix form, as in Eqn.(23a): 
 

( ) ( )
( ) ( ) { } ( )

( )
1

11 1 11
12

1 1 1 1

l l l ll ll l l l l

l ll l L l l l l l l

h e hhE h E h C
C

hD h D h C h d h

* ( )
( )

* ( )

( )( )
( ) ( )

++ + +

+ + + +

⎧ ⎫−⎡ ⎤ ⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪= +⎢ ⎥ ⎨ ⎬ ⎨⎢ ⎥
−⎪ ⎪ ⎣ ⎦⎩ ⎭⎣ ⎦ ⎪⎩ ⎭

� ��
�

�� �
eE

D d
⎪
⎬
⎪

}
}

   (27a) 

 
resulting in a transformation, as in Equation (23b), expressing the coefficients {  and 

 for layer (l+1)  in terms of 

1
1lC ( )
+
�

{ 2
1lC ( )
+
� { }1

1C ( )� from waves of the top layer. 
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{ }
1

1 11 1 11
12

1 21 1 2

l ll ll

l ll l l

hhC
C

hC h

( )
,, ( )

( )
, ,

( )( )
( ) ( )

+++

++ +

⎛ ⎞⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎪ ⎪⎩ ⎭⎝ ⎠

��
�

� �
tT

T t
   (27b) 

 
The reason why we select to have the coefficients of all waves in each layer expressed in 

terms of (one of the two) a set of coefficients of waves in the top layer is because, we 

know, for surface waves, and possibly body waves, the top layer waves are more 

dominant.  

 
 The above described procedure will continue until the interface with the bottom 

semi-infinite layer l  is reached, namely at N= 1Nz h −= . There the continuity equations 

will be different from those in the previous interfaces, since the bottom semi-infinite 

layer will now have only one set of waves, namely, the downward, outgoing waves. The 

stress and displacement continuity equations now take the form, as in Eqn. (24a,b), with 

:  1 1,  l N l N= − + =
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As before, the coefficients { and 1
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expressed in terms of { , that of the waves in the top layer 
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with new matrices , 1 1( )N Nh− −⎡ ⎤⎣ ⎦E 1 1( )N Nh− −⎡ ⎤⎣ ⎦D   and vectors { }1 1( )N Nh− −e� , 

in terms of { , the wave coefficients of the top layer, on the L.H.S. of 

the equations. 

{ 1 1( )N Nh− −d� } }

}

1
1C ( )

 
�

 
Equations (27a) and (27b) are the final form of the matrix equations, from which 

the wave coefficients{ of the top layer and 1
1C ( )

 
� { }1C ( )

 N
� in the bottom semi-infinite layer 

are to be related. Normally, one will rewrite Eqns. (27a), expressing {  in terms of 

, as: 
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And substituting it into Eqn. (27b), which becomes a matrix equation with { of the 

top layer as the only set of unknowns: 
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from which the coefficients {  can now be evaluated, after which the coefficients of 

the waves in all layers can be found. 
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V.        The Diffracted Mode Shapes of Rayleigh and P, SV Body Waves  
 
V.1 The input free-field Waves 
 

Recall from Report II where we considered an N-Layered half-space with 

Rayleigh waves or Body P, SV waves incident from the left over a regular parallel 

layered media (Report II, Figure II.1). In a sub-section of Chapter V in Report II we 

plotted the displacement mode shapes of Mode#1 to Mode#5 Rayleigh surface waves for 

a selected range of periods starting from 15 sec down to 0.04 sec (0.07Hz to 25Hz) This 

is followed by another sub-section of the mode shapes resulting from body P, SV waves 

for a given incident angle. We actually take the body P and SV waves as the 11th and 12th 

“modes” of waves in the parallel-layered media. 
 

Each of these mode shapes at each period (frequency) will be used as the free-

field input wave into the irregular layered media to be studies here. In what follows, we 

will take a rather simple 2-layered medium to illustrate the process, as in the case of Love 

and body SH waves. The following parameters are used for the 2-layered media: 

Table 1 
 

2  Layer Velocity Model 
 

Layer 
 

Thickness, km 
P-wave Speed, 

α, km/s 

S-wave Speed, 

β, km/s 

Density, ρ 

gm/cc 

1 1.38   1.70    .98   1.28 

2 ∞ 6.40    3.70  2.71 
 

They are the same 1st and last layers of the 6-layered model given in Report II, except the 

top layer is now 1.38 km thick. The computer Program, “Haskel.exe”, is again used to 

calculate the phase velocities of each mode of Rayligh waves, as in Report II, in the 

period range from 14.0 sec down to 0.04 sec for a total of 91 discrete period values. 

 
Figure V.1 shows the input free-field Mode Shapes for Mode#1 of Rayleigh 

waves for both the horizontal (x-) and vertical (z-) components of motions at four 

selected periods, T = 5.0, 1.5, 0.5 and 0.15 sec, or at frequencies, f = 0.20, 0.67, 2.0 and 
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6.67 Hz. As before, for Mode#1 waves, the Mode shapes are again available at all 91 pre-

selected period values. It is noted from the figures that, at all the periods shown, the wave 

amplitudes of the mode shapes are scaled to have a maximum amplitude of 1 at the half-

space surface, and that the amplitudes are practically zero at and below the interface of 

the two layers, which is at 1.38km depth. 
 

Figure V.2 is the input free-field Mode Shapes for the corresponding Mode#2 of 

Rayleigh waves for both the horizontal (x-) and vertical (z-) components of motions at 

four selected periods, T = 3.0, 1.5, 0.3 and 0.15 sec or at frequencies, f = 0.33, 0.67, 3.33 

and 6.67 Hz. For Mode#2 of Rayleigh waves, the modes are available not at all 91 

periods, but from T = 4.6 sec (Period#18, down from T=14.0 sec for Mode#1). So the 

four periods plotted here are selected from a narrower range. As before, the mode shapes 

are scaled to have the maximum amplitude of 1 starting from the surface . A 

characteristic of the Mode#2 is that the Mode shape at each period now decreases to 

negative values, reaches a negative minimum and then asymptotically approach zero. 

Again, as for Mode#1, the amplitudes are practically zero at and below the interface of 

the two layers 

0z =

1 38( . )z km= .  

 

Figure V.3 shows the input free-field mode shape for the corresponding Mode#3 

of Rayleigh waves for both the horizontal (x-) and vertical (z-) components of motion at 

four selected period, T = 2.4, 1.2, 0.24 and 0.15 sec or at frequencies, f = 0.42, 0.83, 4.17 

and 6.67 Hz. For Mode#3 of Rayleigh wave, the modes do not exist at all 91 periods, but 

start from T = 2.6 sec (Period#28, down from T=14.0 sec for Mode#1). So the four 

periods plotted here are again selected from a narrower range. As before, the mode 

shapes are scaled to have the maximum amplitude of 1 starting from the surface .  0z =
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Figure V.1 Mode#1 Rayleigh Mode Shapes at f = 0.20, 0.67, 2.0 and 6.67 Hz 
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Figure V.2 Mode#2 Rayleigh Mode Shapes at f = 0.33, 0.67, 3.33 and 6.67 Hz 
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Figure V.3 Mode#3 Rayleigh Mode Shapes at f = 0.42, 0.83, 4.17 and 6.67 Hz 
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A characteristic of the Modes #2 and #3 of Rayleigh waves is that the Mode 

shapes for both the horizontal and vertical components of motion at each period now 

decrease to have negative values, reach a negative minimum, then cross the zero axis 

back to have positive amplitudes, and reach a positive maximum, before asymptotically 

approaching zero. Again, as in Modes #1 and #2, the amplitudes are practically zero at 

and below the interface of the two layers 1 38( . )z km= .  

 

We expect the scattered and diffracted waves to be small at the interface. The 

same observations and conclusions can be made for Mode #4 and #5 free-field Rayleigh 

waves. Their plots have been omitted here. 

 

Finally, the free-field mode shapes for incident P and SV body waves are plotted 

next. Figure V.4 shows the input free-field Mode Shapes for the corresponding P- and 

SV- Body waves with angle of incidence of  with respect to the horizontal, at two 

selected periods, T = 1.0, 0.3 sec., or at frequencies, f = 1.0, 3.33 Hz.  The top two graphs 

are for incident P-waves, while the bottom two graphs are for incident SV- waves. As in 

the case of Mode#1 of Rayleigh waves, the Mode shapes are available at all 91 pre-

selected period values for both incident P- and SV- body waves. It is noted from the 

figures that, at the periods shown, the wave amplitudes of the mode shapes are again 

scaled to have maximum amplitude of 1 at the half-space surface. Unlike the Rayleigh 

surface waves, depending on the period of the body waves, the waves do not decrease 

with depth. The waves in the first layer are harmonic, oscillating at the given wave length 

between the scaled maximum amplitude of 

60oγ =

1± , and the oscillation increases with 

decreasing period. 

 

Below the first layer, in the semi-infinite medium, the mode shapes continue to 

oscillate, and do not decrease towards zero, since the body waves are harmonic waves, 

harmonic in both the horizontal x- and vertical z- directions.  

 

We thus expect (in the next sub-section) that the diffracted waves from P and SV 

body waves will behave differently from Rayleigh surface waves. 

 R4-2-25



  Figure V.4           Mode#11,12   Incident P, SV Body Waves Mode Shapes at f = 1.0, 3.33 Hz 
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V.2 The Diffracted Mode Shapes 
 

We next consider the case of irregularly shaped layered media inserted into the 

parallel two-layers. We select here the same irregular layered medium model as that for 

Love surface waves and Body SH waves. It is a shallow, “almost-flat” ellipse with a ratio 

of vertical minor axis / horizontal major axis = 0.1 at both the half-space surface and at 

the interface of the two layers. The half-width radius of the horizontal major axis is taken 

to be 0.1 km long for both, and the major diameter is 2.0 km long. Thus the half-width or 

radius of the minor axis is 0.1 km deep, and this corresponds to a very shallow ellipse. 

Figure V.5 shows a sketch of such 2-Layered elastic medium for cases of 

i) Incident Rayleigh Surface waves, and 

ii) Incident Body P or SV waves 

 

 
(i) Rayleigh Waves 

 
(ii) Body P, SV waves 

Figure V.5 The Irregular 2-Lyered Medium with Incident Waves 

 
 The next five figures, Figure V.6 to V.10 show the scattered and diffracted mode 

shapes for Modes #1 to #5 of Rayleigh Waves. Each Mode has the shapes plotted at four 

selected frequencies, f = 13.33, 18.18, 20.0 & 25.0 Hz. These are frequencies below 

period of 0.1 sec (or frequencies beyond 10Hz) as it was found that the long period waves 

do “not see” the irregularities and the diffracted waves are insignificant. 

 

 Figure V.6a and V.6b show the scattered and diffracted mode shapes respectively 

for the horizontal x-component and vertical z-component motions of Mode#1 of Rayleigh 

waves at four selected periods T=4.0, 1.0, 0.5 and 0.30 sec, or at frequencies of f = 0.25, 

1.0, 2.0 & 3.33 Hz. With the irregular almost-flat elliptic surfaces from  to 

 on both the half-space surface 

1 0 km.x = −

1 0 km.x = + ( )0 kmz =  and at the interface of the 2 
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media ( , the diffracted mode shapes are plotted at equally spaced intervals 

along x from  to 

)1 38 km.z =

2 0 km.x = − 2 0 km.x = + at apart. The dashed line on the left 

side of each graph represents the input free-field Mode shapes propagating along the 

parallel-layered media from the left and arriving towards the irregular surfaces. The 

shapes of the elliptic canyon on top and at the interface are also plotted with dashed lines, 

showing how they have deformed due to the elliptic inhomogeneity. 

0 1 km.

 

For all periods above 1 sec the waves are unaffected by almost-flat irregular 

surfaces, as illustrated by the case for T=4.0s in the two figures (V.6a & b). At the 

irregular interfaces between the 2 media, as pointed out in the previous section, as can 

also be seen by the dashed line on the left, the free-filed incoming mode shape amplitudes 

are already very small. Clearly not much diffraction is to be expected in this case.  

 

For periods below T=0.3s, the amplitudes of x-component of Mode 1 Rayleigh 

waves decrease so fast that the waves are practically zero not far below the half-space 

surface, and hence there are hardly any scattered and diffracted waves. 
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Figure V.6a Mode#1 x-comp. Diffracted Mode Shapes at f = 0.25, 1.0, 2.0 & 3.33Hz 
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Figure V.6b Mode#1 z-comp. Diffracted Mode Shapes at f = 0.25, 1.0, 2.0 & 3.33Hz 
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The cases for the higher modes of Rayleigh waves are much different, however.  

Figures IV.7a, b through IV.10a, b show the corresponding diffracted Mode Shapes for 

Modes #2 to #5 of Rayleigh waves. 

 

As stated above, the higher mode Rayleigh waves, unlike the Mode#1 waves, are 

more oscillatory in the top layer before decaying to almost zero at the interface with the 

2nd layer. As the Mode number increases, both the mode shapes of the input free-field and 

those of the diffracted Rayleigh waves here go through the (M-1) sign changes going 

down vertically from the top surface, where “M” is the mode number. Thus the diffracted 

mode shapes are also more oscillatory at the top layer. This behavior increases with 

increasing frequency. Further, the scattered and diffracted motions become more complex, 

for both the horizontal x- and vertical z-component motions, as the mode number 

increases (Figure IV.6a,b through IV.10a,b). 

 

At present, we are able to do the calculations of the diffracted waves for the 

Rayleigh waves mode#2 to 5 up to f = 6.67Hz (period# 61, T = 0.15s). Calculations for 

frequencies beyond this and up to the highest frequency of   f = 25.0Hz (period# 91, T = 

0.04s) will require more work on the numerical procedures to ensure convergence and 

accurate computational results. This is what we are currently working on. 

 
We will then also examine multi-layered media with the layers being closer 

together. It is expected that those diffracted patterns will become more complicated as 

the number of layers increase, and as the layers get closer together. 
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Figure V.7a Mode#2 x-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.7b Mode#2 z-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.8a Mode#3 x-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.8b Mode#3 z-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.9a Mode#4 x-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.9b Mode#4 z-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.10a    Mode#5 x-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 
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Figure V.10b    Mode#5 z-comp. Diffracted Mode Shapes at f = 1.0, 2.0, 3.33 & 6.67Hz 

  

  

 R4-2-39



Finally, Figures V.11a, b show the horizontal x- and vertical z-component 

motions of diffracted mode shapes corresponding to incident plane P- and SV- body 

waves. In each figure, the top two graphs are respectively for incident P- and incident 

SV-waves at period of T=1sec. The bottom two graphs are respectively for incident P- 

and incident SV-waves at period of T=0.3sec. As seen from Figure V.4 above, the input 

free-field mode shapes of the Body P- and SV- waves, unlike the Rayleigh waves, are 

more oscillatory in both layers, without decreasing to zero bellow the interface. Their 

oscillatory nature also increases significantly with frequencies. 

 

In Figures V.11a, b the irregular almost-flat elliptic surfaces are between 

 and , on both the half-space surface 1 0 km.x = − 1 0 km.x = + ( )0 kmz =  and at the 

interface of the 2 layers , and the diffracted mode shapes are plotted at 

equally spaced intervals along x from 

( 1 38 km.z = )
2 0 km.x = −  to 2 0 km.x = + , at 0 1  apart. As 

before, the dashed line on the left side of each graph represents the input free-field mode 

shapes of body P- or SV- Waves propagating through the parallel-layered medium from 

below and arriving at the irregular surfaces. The angle of incidence of the body waves is 

 with respect to the horizontal. At all frequencies, the mode shapes of the 

diffracted waves are very oscillatory and are of very different amplitudes than those of 

the incident free-field waves.  

 km.

60oγ =

 

At the frequency of f=3.33Hz, the diffracted waves are already very oscillatory 

and of large amplification relative to the free-field mode shapes. The amplification is 

indeed much greater than two, as previously observed for body SH-waves. 

 

At present, as for the case of Rayleigh waves, we are able to do the calculations of 

the diffracted waves for the incident P- and SV-body waves up to f = 6.67Hz (period # 61, 

T = 0.15s). Calculations for frequencies beyond this, and up to the highest frequency of   

f = 25.0Hz (period # 91, T = 0.04s), will require more work on the numerical procedures 

to ensure convergence and meaningful, computational results. This is what we are 

currently working on. 
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We will next work on multi-layered media with the layers closer together. It is 

expected that these diffracted patterns will be far more complicated as the number of 

layers increase, and as the layers get closer and closer together. 
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Figure V.11a    P-,SV-Body Waves x-comp. Diffracted Mode Shapes at f = 1.0 & 3.33 Hz 
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Figure V.11b    P-,SV-Body Waves z-comp. Diffracted Mode Shapes at f = 1.0 & 3.33 Hz 
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I.

  

The Original Synthetic Accelerogram Program for Points 

on Half-space: SYNACC 
 

The synthetic translational and rotational components of acceleration are constructed to 

have a required Fourier amplitude spectrum, ( )FS ω , and a given duration, ( )D ω , at the half-

space surface of a given site. A complete review of the method first proposed by Trifunac 

(1971b), and later refined by Wong and Trifunac (1978, 1979), for the generation of synthetic 

accelerograms, can also be found in the review paper by Lee (2002). In short, the following files 

and information are needed to construct synthetic motions: 

 

1. Period.dat: the Data file of the Periods of waves 
 

2. HskWav.dat: Wave Dispersion Data at a Site 
 

3. InSyn.dat: Input data file for SYNACC.EXE 
 

4. Option to be used for constructing the Fourier Amplitudes in the given Frequency 
Band 

 

I.1 Period.dat 
 

 The data file is listed as follows, to be read in by the program: 

 0.040 0.042 0.044 0.046 0.048 0.050
 0.055 0.060 0.065 0.070 0.075 0.080
 0.085 0.090 0.095 0.10 0.11 0.12
 0.13 0.14 0.15 0.16 0.17 0.18
 0.19 0.20 0.22 0.24 0.26 0.28
 0.30 0.32 0.34 0.36 0.38 0.40
 0.42 0.44 0.46 0.48 0.50 0.55
 0.60 0.65 0.70 0.75 0.80 0.85
 0.90 0.95 1.00 1.10 1.20 1.30
 1.40 1.50 1.60 1.70 1.80 1.90
 2.00 2.20 2.40 2.60 2.80 3.00
 3.20 3.40 3.60 3.80 4.00 4.20
 4.40 4.60 4.80 5.00 5.50 6.00
 6.50 7.00 7.50 8.00 8.50 9.00
 9.50 10.00 11.00 12.00 13.00 14.00
 15.00      
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There is a total of 91 periods from 0.040 sec to 15.00 sec. In terms of frequency this 

corresponds to the frequency range of 0.07 Hz to 25 Hz. The reason for using 91 periods is only 

traditional, and we continue to use it to maintain consistency with many of our older papers, 

which deal with empirical scaling of spectral amplitudes and also use the 91 periods. 

  

I.2 Hskwav.dat: The Original Haskell Program - HASKEL.EXE 
 
This section will describe the input needed to generate the wave dispersion data at a site: 

Hskwav.dat 

 
I.2.1 Input: The Layered Media Elastic Properties 
 

Following Trifunac (1971), Wong and Trifunac (1978), at a given site, we first select an 

approximate geological profile to be represented by the equivalent parallel-layered media. A 

model can have N layers. For each layer l with l=1 to N  the parameters   l l lh , ,α β and lρ must 

be specified, where  

lh =  layer thickness, 

lα  = P −wave velocity,  

lβ = S −wave velocity, and  

lρ  = density of the thl  layer, 

of the medium, with the bottom l N=  medium of infinite thickness.   

 
 The file HskLin.dat here is an example of one such file used in Report I: 
 
Hsklin.dat: 
 
6 LAYER Imperial Valley VELOCITY MODEL 
0.18 1.70 0.98 1.28 
0.55 1.96 1.13 1.36 
0.98 2.71 1.57 1.59 
1.19 3.76 2.17 1.91 
2.68 4.69 2.71 2.19 
 .00 6.40 3.70 2.71 
15, 0.1,1.0,10,0 



R5-4 
 

 

The 1st line is the number of elastic layers, N, in the medium, followed by a name identifying the 

medium. N lines and four columns then follow it with elastic properties in each layer. The first 

column is the thickness of each layer in km. The second column is the P-wave speed in the layer 

in km/s. The third column is the shear wave speed in the layer in km/s. The fourth and last 

column is the mass density of the layer in gm/cc. This it is followed by a line with 5 numbers: 

15., 0.1, 1.0, 10, 0, which respectively are: 

i) TST = 15 sec = Starting maximum Period, 

ii) TMIN = 0.1 sec = Down to minimum Period, 

iii) DTS  = 1.0 sec = Spacing of Periods to start, 

iv) Nsmx = 10 = Recommended number of iterations for search of the roots. 

v) NMCL = 0, Number of Modes of Rayleigh and Love waves (set to default of 5) 

 

 

I.2.2 Output: Wave Dispersion Data at the Half-Space Surface of the Site 
 

 
 With the input file Hsklin.dat, the original program Haskel.exe is first executed. It will 

compute, for both the Rayleigh and Love surface waves their group and phase velocities, each at 

a starting period from 15secT = down to 0.1secT ∼ or in a frequency range from 0.07f Hz= to 

10f Hz∼ .  This will give, for each to 1 5m =  modes of Rayleigh waves and Love waves, 

( )m nC ω and ( )m nU ω , respectively, their phase and group velocities, at a set of discrete 

frequencies nω . For Rayleigh waves, HASKEL.EXE also gives the ratios of the vertical to 

horizontal displacement amplitudes at the half-space surface. The output data will be in the file 

Hskout.dat. The set of discrete frequencies nω  is usually a set of non-uniform frequencies 

within the selected frequency range. The program then interpolate to the frequencies 

corresponding to the 91 discrete periods of the data file Period.dat above, and outputs the data in 

Hskwav.dat, which will be the input file for SYNACC.EXE. 
 
  
 Along with the calculations of group and phase velocities of each mode of surface waves 

completed in the late 1970’s, no data were generated for the corresponding body P, SV and SH 

waves. An “empirical mode” of body wave was created for both the longitudinal P- and shear S- 
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waves. The P-wave mode was created using an empirical curve that ranged from minα  to  maxα  

from short period to long period, where minα and maxα are respectively the minimum and the 

maximum P-wave velocities is the layered media. Similarly, the S-wave mode was created using 

an empirical curve that ranged from minβ  to maxβ  from short period to long period, where 

minβ and maxβ are respectively the minimum and maximum S-wave velocity is the layered media. 

Such approximate representation of body wave modes will be replaced here by the real P, SV 

and SH body wave modes calculated analytically from body waves incident from below. This 

will be described in subsequent sections of this report. 

 
 Figure 1 is a plot of the phase velocities for five modes of Rayleigh waves and five 

modes of Love waves for the 6-layered El Centro Imperial Valley site whose layered media 

properties are those given in the file Hsklin.dat above. The Rayleigh waves are plotted as solid 

lines and the Love waves as dashed lines. The horizontal axis for period is plotted in logarithmic 

scale from around 0.04secT = to 15secT = .  

 

On the left side of the figure, between 0.10secT =  and 0.40secT = are two lines, one 

solid and one dashed. The solid line shows a smooth step function going from minα to maxα  , 

representing the empirical body P-wave, while the dashed graph is the corresponding step 

function from minβ to maxβ  representing the body S-wave. These curves were used in the 

previous generations of this program. As will be shown in later sections, calculations are now 

included for P, SV and SH Body waves incident onto the layered half-space. 
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Figure 1 Phase Velocities for Love & Surface Waves 

 
 

 
 
I.3 Insyn.dat: Input data for SYNACC.EXE 
 

 SYNACC will next open the file InSyn.dat in unit NU1 and read in a sequence of input 

info: 
  OPEN(NU1,FILE='InsynS.dat',STATUS='OLD') 
 
 

1) Input 1: IWRT: Output Mode 
 

IWRT =0: Output ALL input read in 
=1: Simplified Output 
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  Write(*,1111) 
1111    FORMAT(' INPUT IWRT = ') 

  READ(NU1,*)IWRT 
 
 

2) Input 2: Date and Time of the Synthetic Earthquake 
 

Write(*,*)' INPUT MONTH,DAY,YEAR,HOUR,MIN& SEC.:' 
  READ(NU1,*)IMON,IDAY,IYEAR,IHOUR,IMIN,ISEC 
 
 

3) Input 3: ICHOIC - Options to be used for constructing the Fourier Amplitudes in the 

given Frequency Band 

Write(*,*)' OPTIONS: (0)QUIT,' 
Write(*,*)' (1)MAG-SITE,(2)MMI-SITE,(3)MAG-DEPTH,(4)MMI-DEPTH,' 

 Write(*,*)' (5)INPUT FS,(6)MAG-DEPTH-SOIL,(7)MAG-SITE-SOIL,' 
 Write(*,*)' (8)MMI-DEPTH-SOIL, OR (9)MMI-SITE-SOIL MODEL?' 
 Write(*,1) 
 READ(NU1,*)ICHOIC 
 
This part of the input will be described in full detail in (the next) Section I.4 

 
4) Input 4: INMAX, PDURN 

 
INMAX=  number of times allowed to double the duration to allow for late 

arrival waves 
 

Write(*,*) ' INMAX (2,4,8,16...),PDURN = ' 
 READ(NU1,*)INMAX,PDURN 
 

5) Input 5: IGYZBE 

IGYZBE= Initial random number to be used to generate the synthetic accelorgram 
 
Write(*,3) 
READ(NU1,*)IGYZBE 

 
 

6) Input 6: Synthetic Record Reference name  
 

It is of the form XXNNN, where ‘XX’ are alphabetic characters and ‘NNN’ are 
numeric digits. 

 
Write(*,21)' INPUT SYNTHETIC RECORD REFERENCE # (XXNNN): ') 
READ(NU1,22)(IREF(I),I=1,3) 

22 FORMAT(40A2) 
 

7) Input 7: Synthetic Record log number 
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  Write(*,*)' INPUT SYNTHETIC RECORD LOG # (80.01.12): ' 
  READ(NU1,22)(IREF(I),I=4,7) 
   

 
 

8) Input 8: IFDUR, duration parameter 
 

IFDUR =0 do not impose the empirical scaling to get duration. 
Instead, duration is computed from the epicentral distance 
and dispersion curves, 

  =1 Impose the empirical scaling to calculate duration 
 

Write(*,2)' INPUT DURATION PARAMETER(0/1): ' 
 READ(NU1,*)IFDUR 
 

9) Input 9: IPR, probability level 
 

IPR is a number between 1 and 9 corresponding to the probability level of 0.1 to 
0.9 

 
Write(*,*)' INPUT PROBABILITY LEVEL #, (1 TO 9, FOR .1 TO .9): ' 
READ(NU1,*)IPR 

 
10) Input 10: Earthquake parameters depending on ICHOIC of Input 3 

 

Depending of the option ICHOIC, earthquake parameters like magnitude or 
intensity, epicentral distance, …. are input here. This part of the input will be 
described in more detail in (the next) Section I.4 

 

11) Input 11: NWAVE,  total number of dispersion waves 
  
 Write(*,*)' INPUT THE TOTAL # OF DISPERSION MODES, NWAVE(10) 
= ' 
 READ(NU1,*) NWAVE 
 

12) Input 12: Output Haskel velocity data Filename 
 

  Write(*,*)' THIS PROGRAM READS IN RAYLEIGH & LOVE WAVE 
DATA,' 
  Write(*,*)' FROM OUTPUT OF HASKEL & HSKFIX PROGRAMS,' 
  Write(*,*)' HASKEL VEL. DATA Filename(A20)    
  Read(nu1,9001)INFILE   !12/2/12 char*30 infile 
 

13) Input 13: Yes/No for 1st arrival time at T=0 
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Write(*,6201)' MIN. ARRIVAL TIME AS T=0? (0)Y(1)N (0/1): ' 
  READ(NU1,*)ITMIN 

 
14)  Input 14: Mode participation factor 

MPFCTR=1 
Write(*,*)'  MODE PARTICIPATING METHOD? (1/2): ') 
READ(NU1,*)MPFCTR 

 
 

 

I.4
  

Options to be used for constructing the Fourier Amplitudes in the 

given Frequency Band 
 

 Currently SYNACC has a total of nine options to construct the Fourier amplitudes in the 

given frequency band. All except one are constructed from empirical regression equations. 

 
I.4.1 The Original and Current Regression Equations 
 

 Programmed into the original synthetic accelerogram program SYNACC.EXE currently 

has the nine options by which the Fourier amplitudes for the synthetic acceleorgrams at the half-

space surface can be generated. All except the 5th option are regression equations developed 

from the 1970s, through the 1980s and 1990s for the generation of Fourier and Response spectral 

amplitudes  and the duration  of strong-motion records.  

 

The first 4 options are the original set of regression equations developed in the 1970’s 

and 1980’s for the Magnitude or MMI models with local site geology specified by site conditions 

(s = 0,1,2 respectively for geological rock, intermediate and sites on sediments) or depth of 

alluvium, h in km. The 5th option allows the users to input their own Fourier amplitudes. The 6th 

to 9th options were added in the early 90’s for respectively the Mag-Site-Soil, MMI-Site-Soil, 

Mag-Depth-Soil and MMI-Depth-Soil models where the soil condition, Ls is added as an 

additional scaling parameter in the regression, an upgrade of the corresponding first four options. 
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These are the format statements in SYNACC.EXE used to inform the user what to input, 

depending on the options described in what follows: 
CC----------------------------------------------------------------------- 
1 FORMAT(' INPUT CHOICE PARAMETER(0 TO 9): ') 
2 FORMAT(' INPUT DURATION PARAMETER(0/1): ') 
3  FORMAT(' INITIAL RANDOM INTEGER <OR 0 FOR SAME AS LAST RUN>: ') 
4 FORMAT(' INPUT EPICENTRAL DISTANCE (KM): ') 
5 FORMAT(' INPUT MAGNITUDE SCALE: ') 
6 FORMAT(' INPUT PROBABILITY LEVEL #, (1 TO 9, FOR .1 TO .9): ') 
7 FORMAT(' INPUT SITE CONDITION (0/1/2): ') 
8 FORMAT(' INPUT COMPONENT SPECIFICATION (0:HORZ,1:VERT): ') 
9 FORMAT(' INPUT M.M.I. SCALE: ') 
10 FORMAT(' INPUT DEPTH OF ALLUVIUM (KM): ') 
11 FORMAT(' CHOICE OPTION NUMBER = ',I2) 
12 FORMAT(' DURATION PARAMETER = ',I2) 
13 FORMAT(' INITIAL RANDOM # [=0 IF READ FROM SYNRAN.DAT]: ',I9) 
14 FORMAT(' EPICENTRAL DISTANCE (KM) = ',F10.3) 
15 FORMAT(' MAGNITUDE SCALE = ',F5.2) 
16 FORMAT(' PROBABILITY LEVEL, P(.1<P<.9): ',F3.1) 
17 FORMAT(' SITE CONDITION = ',I1) 
18 FORMAT 
     1(' COMPONENT(0:RAD,1:TRAN,2:VERT,3:TORSION,4:ROCKING) = ',I1) 
19 FORMAT(' M.M.I. SCALE = ',I2) 
20 FORMAT(' DEPTH OF ALLUVIUM (KM) = ',F10.1) 
 
 
SYNACC will first request from the user the option (ICHOIC) to be used: 
 

WRITE(*,*)' OPTIONS: (0)QUIT,' 
WRITE(*,*)' (1)MAG-SITE,(2)MMI-SITE,(3)MAG-DEPTH,(4)MMI-DEPTH,' 
WRITE(*,*)' (5)INPUT FS,(6)MAG-DEPTH-SOIL,(7)MAG-SITE-SOIL,' 
WRITE(*,*)' (8)MAG-DEPTH-SOIL, OR (9)MMI-SITE-SOIL MODEL?' 

 WRITE(*,1) 
 READ(NU1,*)ICHOIC 
 

1) Option 1:  Magnitude-Site Model (Trifunac, 1976, Trifunac and Lee, 1985) 
CC---------------------------------------------------------------------- 
CC    ICHOIC=1: INPUT DISTANCE, MAGNITUDE,  
CC              SITE CONDITIONS:        MAG-SITE MODEL 
CC---------------------------------------------------------------------- 

WRITE(*,4) 
READ(NU1,*)DIST 

  WRITE(*,5) 
  READ(NU1,*)AM 
  WRITE(*,7) 
  READ(NU1,*)IS 
 
 
2) Option 2:  Intensity-Site Model (Trifunac, 1979, Trifunac and Lee, 1985-04) 

CC----------------------------------------------------------------------- 
CC    ICHOIC=2: INPUT DISTANCE, MM INTENSITY, CONFIDENCE LEVEL, 
CC    SITE CONDITION:   MMI-SITE MODEL 
CC----------------------------------------------------------------------- 

  WRITE(*,4) 
  READ(NU1,*)DIST 
  WRITE(*,9) 
  READ(NU1,*)MMI 
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  WRITE(*,7) 
  READ(NU1,*)IS 
 
 
3) Option 3: Magnitude-Depth Model (Trifunac and Lee, 1978, 1989, Westermo and 

Trifunac, 1978)) 
 
 

CC----------------------------------------------------------------------- 
CC    ICHOIC=3: INPUT DISTANCE, MAGNITUDE, CONFIDENCE LEVEL, 
CC     DEPTH:          MAG-DEPTH MODEL 
CC------------------------------------------------------------ 

  WRITE(*,4) 
  READ(NU1,*)DIST 
  WRITE(*,5) 
  READ(NU1,*)AM 
  WRITE(*,10) 

READ(NU1,*)DEPTH 
CC              ALLLUV. DEPTH NOW READ IN UNITS OF KM 
 
 

4) Option 4: Intensity-Depth Model (Trifunac and Lee, 1985) 
 

CC----------------------------------------------------------------------- 
CC    ICHOIC=4: INPUT DISTANCE, MM INTENSITY, CONFIDENCE LEVEL, 
CC        DEPTH:        MMI-DEPTH MODEL 
CC--------------------------------------------------------- 

  WRITE(*,4) 
  READ(NU1,*)DIST 
  WRITE(*,9) 
  READ(NU1,*)MMI 
  WRITE(*,10) 

READ(NU1,*)DEPTH 
CC              ALLLUV. DEPTH NOW READ IN UNITS OF KM 

 
 
5) Option 5: Use Input FS data 
 

CC----------------------------------------------------------------------- 
CC    ICHOIC=5: INPUT USER'S FOURIER SPECTRUM, TOTAL OF NTAB 

POINTS. 
CC----------------------------------------------------------------------- 

    NTAB=91 
WRITE(*,4) 

  READ(NU1,*)DIST 
WRITE(*,321)DIST 

321      FORMAT('20D=',F5.1,',USER INPUT FS AMPS AT 91 PERIODS.') 
WRITE(*,*)' FOR THE 91 PERIODS:' 
WRITE(*,'(1X,13F6.2)')(PRD(I),I=1,91) 
WRITE(*,*)' INPUT 91 HORZ RADIAL FS AMP IN UNITS OF IN/SEC:' 
READ(NU1,*) (AU(IJ,1),IJ=1,NTAB) 
WRITE(*,*)' INPUT 91 HORZ TRANSVERSE FS AMP IN UNITS OF 

IN/SEC:' 
READ(NU1,*) (AU(IJ,3),IJ=1,NTAB) 
WRITE(*,*)' INPUT 91 VERT FS AMP IN UNITS OF IN/SEC:' 
READ(NU1,*) (AU(IJ,2),IJ=1,NTAB) 

 
 
6) Option 6: Magnitude-Site-Soil Model 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=6        MAG-SITE-SOIL MODEL 
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CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MAG,SITE(0/1/2),SOIL(0/1/2):' 
READ(NU1,*) Disti, AM,IS,ISOIL 

 
 
7) Option 7: Intensity-Site-Soil Model (Trifunac, 1991) 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=7        MMI-SITE-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MMI,SITE(0/1/2),SOIL(0/1/2):' 
READ(NU1,*)DIST,MMI,IS,ISOIL 

 
 
8) Option 8: Magnitude-Depth-Soil Model (Trifunac and Lee, 1987, 1989) 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=8        MAG-DEPTH-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MAG,DEPTH(km),SOIL(0/1/2):' 
READ(NU1,*) Disti, AM,DEPTH,ISOIL 

 
 
9) Option 9: Intensity-Depth-Soil Model (Lee, 1990) 
 

CC---------------------------------------------------------------------------- 
CC      ICHOIC=9        MMI-DEPTH-SOIL MODEL 
CC---------------------------------------------------------------------------- 
WRITE(*,*)' INPUT HYPO DIST(KM),MMI,DEPTH(km),,SOIL(0/1/2):' 
READ(NU1,*)DIST,MMI,DEPTH,ISOIL 

 
 
 
Example 1:  
 
Here is an example of the SYNACC input file InSyn.DAT for option#6, ICHOIC=6: 
 
InSynDat: 
1 IWRT   
01,01,13,12,00,00 CURRENTDATE (Mo-Da-Yr) &TIME (00:00:00) 
6 ICHOIC,MODEL#  
2, .875 INMAX, PDURN  
12345 INITIALRANDOM # between <-32767,32767> 
LA003 RECORDREFERENCE NAME 
89.03.01 RECORDLOG # 
1 DURNATION PARAMETER (0/1) 
5 PROB LEVEL (1 TO 9) 
1.5, 6.5, 0, 2 HYPOCENTRAL DIST,MAG/MMI,SITE/DEPTH,SOIL 
10 # OF WAVE MODES 
HSKWAV.DAT  
0 T=0 At Dist/Cmax 
2 MODE PARTICIPATION FACTOR 
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Example 2: 

Here is another example of the SYNACC input file InSyn.DAT for option#5, ICHOIC=5, 

where the user inputs for the 3 components, Radial Transvers and Vertical Fourier 

amplitude data: 

 

InSyn.dat: 

1 IWRT   
01,01,13,12,00,00 CURRENTDATE (Mo-Da-Yr) &TIME (00:00:00) 
5 ICHOIC,MODEL#  
2,.875 INMAX, PDURN  
12345 INITIALRANDOM # between <-32767,32767> 
LA003 RECORDREFERENCE NAME 
89.03.01 RECORDLOG # 
1 DURNATION PARAMETER (0/1) 
5 PROB LEVEL (1 TO 9) 
1.00000E-10 1.00000E-10 3.94577E-01 3.94800E-01 
2.05194E-01 3.25239E-01 3.93269E-01 3.76363E-01 
2.49990E-01 2.54802E-01 6.85321E-01 3.63371E-01 
6.42797E-01 7.00448E-01 5.24887E-01 1.02113E+00 
1.34502E+00 1.65811E+00 3.05650E+00 2.81909E+00 
4.49047E+00 3.65102E+00 6.02187E+00 5.33620E+00 
3.33898E+00 6.96100E+00 1.03893E+01 1.24187E+01 
1.43819E+01 1.90009E+01 6.81712E+00 2.48083E+01 
2.16060E+01 1.89132E+01 2.10551E+01 2.55125E+01 
1.66354E+01 9.61588E+00 1.30416E+01 9.97679E+00 
1.78276E+01 2.11354E+01 1.93958E+01 1.22380E+01 
2.02096E+01 1.35959E+01 9.66726E+00 1.38484E+01 
2.19153E+01 1.98801E+01 2.78279E+01 3.55078E+01 
2.10803E+01 2.55126E+01 2.44259E+01 1.99576E+01 
1.21552E+01 1.59339E+01 1.06934E+01 1.20950E+01 
1.27204E+01 1.34753E+01 1.44391E+01 2.07096E+01 
3.57730E+01 4.53028E+01 4.99574E+01 4.13284E+01 
3.36581E+01 2.80684E+01 2.30985E+01 1.86020E+01 
1.67221E+01 1.51307E+01 1.36718E+01 1.23297E+01 
1.07276E+01 9.53787E+00 8.96607E+00 9.17404E+00 
9.35428E+00 9.51199E+00 9.40564E+00 8.05007E+00 
6.83720E+00 5.74562E+00 3.86015E+00 2.28893E+00 
1.52479E+00 1.77728E+00 1.99610E+00  End of FS Radial Comp.
1.00000E-10 1.00000E-10 2.31009E-01 1.94537E-01 
3.19194E-01 3.83051E-01 3.76469E-01 3.32717E-01 
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4.43216E-01 5.09405E-01 4.04593E-01 5.44001E-01 
4.89834E-01 3.01687E-01 7.09059E-01 1.37829E+00 
1.27044E+00 2.21121E+00 2.04364E+00 4.62448E+00 
4.79836E+00 2.79309E+00 5.69368E+00 6.53701E+00 
8.06265E+00 3.63794E+00 1.13821E+01 1.01337E+01 
5.93430E+00 2.41781E+01 1.72239E+01 1.99994E+01 
1.20149E+01 2.22880E+01 1.37573E+01 1.24219E+01 
1.64474E+01 1.27367E+01 1.83200E+01 2.73839E+01 
2.88879E+01 2.37006E+01 2.61794E+01 2.06856E+01 
2.95908E+01 1.02047E+01 1.51625E+01 1.86747E+01 
2.17198E+01 2.72379E+01 3.20074E+01 1.73098E+01 
1.86640E+01 1.29285E+01 2.74345E+01 2.43018E+01 
1.83995E+01 1.11270E+01 1.50910E+01 1.54509E+01 
1.50808E+01 1.37118E+01 1.86422E+01 2.99603E+01 
4.27058E+01 4.49779E+01 4.38568E+01 3.28721E+01 
2.31079E+01 2.08690E+01 1.91644E+01 1.76222E+01 
1.57691E+01 1.40516E+01 1.24772E+01 1.10288E+01 
1.14860E+01 1.22635E+01 1.24978E+01 1.20185E+01 
1.16030E+01 1.12395E+01 1.07896E+01 9.72566E+00 
8.77375E+00 7.91703E+00 6.43724E+00 5.20409E+00 
4.39439E+00 4.07555E+00 3.79923E+00 End of FS Transverse Comp.
1.00000E-10 1.00000E-10 4.59384E-01 3.17400E-01 
4.38541E-01 3.33765E-01 3.86963E-01 1.17292E+00 
6.97446E-01 1.03180E+00 9.03084E-01 1.78482E+00 
5.54601E-01 9.67074E-01 1.27816E+00 1.41444E+00 
3.90060E+00 4.10452E+00 3.13484E+00 1.95386E+00 
4.53177E+00 1.18723E+00 5.14047E+00 5.65238E+00 
6.60988E+00 2.85910E+00 3.17751E+00 3.52807E+00 
8.17153E+00 9.91231E+00 1.27238E+01 4.76816E+00 
7.27592E+00 2.97489E+00 5.21361E+00 5.07673E+00 
4.32826E+00 9.07128E+00 2.04633E+00 1.24525E+01 
1.01732E+01 5.53326E+00 6.02687E+00 1.14904E+01 
9.38652E+00 9.88448E+00 1.13447E+01 6.72983E+00 
1.17014E+01 7.19098E+00 6.32351E+00 9.26453E+00 
8.32524E+00 5.78888E+00 6.38161E+00 8.23842E+00 
8.39110E+00 1.05250E+01 1.17266E+01 1.08374E+01 
8.69151E+00 5.03464E+00 6.84980E+00 1.09076E+01 
1.42376E+01 1.04890E+01 7.56431E+00 7.11810E+00 
6.72146E+00 6.49314E+00 6.29370E+00 6.11326E+00 
5.35652E+00 4.63204E+00 3.96794E+00 3.35696E+00 
4.28392E+00 5.30411E+00 5.57428E+00 4.85386E+00 
4.22950E+00 3.68318E+00 3.26290E+00 3.20659E+00 
3.15620E+00 3.11086E+00 3.03253E+00 2.96726E+00 
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2.82022E+00 2.54681E+00 2.30987E+00 End of FS Vertical Comp.
10 # OF WAVE MODES 
HSKWAV.DAT  
0 T=0 At Dist/Cmax 
2 MODE PARTICIPATION FACTOR 

I.5 The SYNACC Output Files 
 
  
 With the input files of SYNACC all read in, SYNACC will 

 
1) Use each mode of the Wave Dispersion Data at the site and their arrival times at each 

frequency band of waves to assemble the contribution of each mode of surface and Body 

waves at each frequency band. 

 
2) Determine the Relative Amplitudes and Phrases of all body and surface wave modes, 

sum up all the modes of waves in the frequency domain and by inverse Fourier 

Transform, create the (Volume 2, Corrected) time-histories of Total Accelerogram. 

 
3) The above process was performed for the following components of motions: 

 
 

i) The Radial, Transverse and Vertical (Trifunac, 1971; Wong and Trifunac, 1978, 

1979) components of Translational motions, with respective output files: 

V2X01.DAT, V2Y01.DAT and V2Z01.DAT. 
  

ii) The Torsion (Lee and Trifunac, 1985) and Rocking (Lee and Trifunac, 1987) 

components of Rotational Motions, with respective output files: V2T01.DAT and 

V2R01.DAT. 
  

iii) The Radial Normal, Horizontal Shear and Vertical Normal components of Strain 

(Lee, 1990) Time History, all in one output file: V2E01.DAT. 
  

iv) The Radial, Transverse and Vertical components of Curvature (Trifunac, 1990) 

Time Histories (Curvograms), all in one output file: V2E01.DAT. 
  

Figure 2 is an example of one such translational accelerogram time history at the el 

Centro Imperial Valley site generated by an earthquake of magnitude 6.5M =  at an hypocentral 

distance of  10km . This is generated from the original synthetic accelerogram program 
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SYNACC.EXE and represents one component of the translational motions at the half-space 

surface at the site. The input option for Option 1 above:  Magnitude-Site Model  (Trifunac, 

1976, Trifunac and Lee, 1985) for a site condition of 0s = , which is the site condition for an 

alluvial site. A peak ground acceleration of 2
max 450a cm s∼  or almost “half a g”  is attained, 

which is consistent and similar to the data recorded during the 1940 Imperial Valley 

Earthquake in California. 
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Figure 2 Synthetic Translational Accelerogram Time Histories 
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II. The Updated Synthetic Accelerogram Program for Points 

on or Below Half-space Surface: EQSYNACC 

 
 The updated Synthetic Accelerogram Program here is created as a result of the work 
described in the following two reports: 
 
1. Synthetic Translational Motions of Surface Waves On or Below a Layered Media, Report II, 

2013. 
 

2. Synthetic Rotational Motions of Surface Waves On or Below a Layered Media, Report III, 
2013. 

 
 
II.1 The Updated Haskel Program for Points on or Below Half-space 

Surface 
  

In Section II of Report II: Synthetic Translational Motions of Surface and Body 

Waves On or Below a Layered Media, 2013, starting with the Wave Dispersion File 

Hskwav.dat on the Half-space surface at a site, we were able to construct the Synthetic 

Translational Motions of Love and Body SH Waves for points on or Below a Half-space Layered 

Medium. In Section III of the same Report, we were next able to construct the Synthetic 

Translational Motions of Rayleigh and Body P and SV Waves for those same points on or below 

the Half-space Layered Medium. Here the Translational components are the Radial, Transverse 

and Vertical components of motion, namely translational acceleration ( )T
U V W, ,�� �� �� , velocity 

( )U V W, ,� � �  and displacement ( )U V W, ,  time histories. The numerical calculations for each 

mode at each frequency of waves are described in Section IV of Report I, 2013. 

 

Figure 3 here is Figure V.1 of Report II, which gives the plots of the transverse (y-) component 

of Love wave mode shape amplitudes at four selected periods: 5,  1.0,  0.5,  and 0.1 T s= . The 

amplitude of the mode shape is normalized to be one at the surface of the half-space, so that they 

are the scaling factors or transfer function values of the waves along the depth from the half-



R5-19 
 

space surface for mode #1 waves. Each graph shows the mode shape amplitudes versus the 

distance z, which is the depth in kilometers below the half-space surface. 
 

Figure 3: Report II Fig. V.1 Love Waves Mode#1 at 5,  1.0,  0.5,  0.1 T s=  
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Figure 4 is Report II Figure VI.1, Rayleigh wave mode#1 amp. at 4 periods. 

Figure 4: Report II Fig. VI.1Rayleigh Mode#1 x- and z-comp. at 5,  1.0,  0.5,  0.1 T s=  
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Later, in the Section II of Report III: Synthetic Rotational Motions of Surface and 

Body Waves On or Below a Layered Media,  2013, we were able to extend the analysis and 

results of the Report I to construct the Synthetic Rotational Motions of Love and Body SH waves 

for points on or Below a Half-space Layered Medium. In Section III of the same Report, we next 

constructed the Synthetic Rotational Motions of Rayleigh and Body P, SV waves for those same 

points on or Below the Half-space Layered Medium. The computation of the Rotational 

components of motions: Torsion, Rocking and Strain time histories all involve either or both of 

the d
dx and d

dz  derivatives of the corresponding translational acceleration ( )T
U V W, ,�� �� �� , 

velocity ( )U V W, ,� � �  and displacement ( )U V W, ,  time histories. The numerical calculations for 

each mode at each frequency of waves are described in Section IV.5 of Report II, 2013. 

 

Figure 5 is Figure III.1 of Report III, which shows the plots of Love wave mode #1 

d
dx and  d

dz (rotational) mode shape amplitudes at four selected periods: 

5,  1.0,  0.5,  and 0.1 T s= . This corresponds to the translational component (Figure 3 here) of 

Figure V.1 of Report II, where the displacement amplitudes are normalized to be one ( 1cm= ) 

at the half-space surface, so that the rotational mode shape values here are the transfer function 

values of the waves along the depth from the half-space surface for this mode of Love waves. 

Each graph shows the dV
dx and dV

dz mode shapes versus the distance z, which is the depth in 

kilometers below the half-space surface. 

 

Figure 6 is Figure III.6 of Report III, which shows the plots of x- and z-components of 

the Rayleigh wave d U W
dx

( , ) and d U W
dz

( , ) mode#1 mode shapes at the same four periods. 

The amplitudes of the mode shapes of both components are normalized with respect to the 

vertical component W of motion at the surface of the layered half-space, so that the mode shape 

values are again the transfer function values of the waves at different depths from the half-space 

surface. 
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Figure 5: Report III Fig.III.1   Love Waves Rotational Mode#1 at 5,  1.0,  0.5,  0.1 T s=  
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Figure 6: Report III Fig.III.6   Rayleigh Waves Rotational Mode#1 at 5,  1.0,  0.5,  0.1 T s=  
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II.2 The Input and Output Files for New HskzdzModes.EXE 
 

With the available data at each frequency of each mode of surface Rayleigh and Love 

waves, and body P, SV and SH waves, an identical file as Hskwav.dat for the wave dispersion 

data at the half-space surface at the site can now be constructed at any given point on or below 

the half-space surface. The procedure is as follows: 

 

1) A data file Zxcoord.dat is created, which consists of the specified z- and x-

coordinates of the points on or below the site. The lines below show an example of 

a part of such a file consisting of 120 points vertically below the site. The first line 

specifies the number of points and the exponent factor used to make the data in 

units of km. The ‘0’ here means the data are in units of km. If the data are given in 

meters, then it would be ‘-3’ meaning 310−  km. Starting from the 2nd line, the 1st 

column contains the z-coordinates and the 2nd column the x-coordinates, which are 

all 0’s here. This 2nd column is of no use here, but will be needed later to generate 

the synthetic accelerogram data at a specified point with (z, x) coordinates from the 

site.  
 

Example 1: Zxcoord.dat for points vertically below a given site: 

 120 0   # of points, 10^exponent of km 
0.05 0.00  
0.10 0.00  
0.15 0.00  
0.20 0.00  
0.25 0.00  
0.30 0.00  
0.35 0.00  
0.40 0.00  
0.45 0.00  
0.50 0.00  
0.55 0.00  
0.60 0.00  

: :  (Lines from z=0.65down to z=5.60 skipped…) 
5.65 0.00  
5.70 0.00  
5.75 0.00  
5.80 0.00  
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5.80 0.00  
5.85 0.00  
5.90 0.00  
5.95 0.00  
6.00 0.00  

 
The z-coordinates specified here from 0.05z = (below the surface) to 

6.0 z km= (down) are equally spaced at 0.05 km apart. The point 

0.0 z km= on the half-space surface will by default be included. 

 

Example 2: Zxcoord.dat for points at a fixed depth varying in the horizontal 
direction (left to right): 
 

140 -3  
 # of points, 10^exponent of 
km 

192.97 1.5      
192.97 3.0      
192.97 4.5      
192.97 6.0      
192.97 7.5      
192.97 9.0      
192.97 10.5      
192.97 12.0      
192.97 13.5      
192.97 15.0      
192.97 16.5      
192.97 18.0      
192.97 19.5      

                     
: 

                  
:  (Lines from x=21.0 to x=196.5 skipped…) 

192.97 198.0  
192.97 199.5  
192.97 201.0  
192.97 202.5  
192.97 204.0  
192.97 205.5  
192.97 207.0  
192.97 208.5  
192.97 210.0  

 

Here the 140 points of (z,x)coordinates are input in units of 310−  km or in units of 
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meters. They are all at a depth   or  3192.97 10 192.97z km m−= ×  with the x-

coordinates ranging from   to  1.5 210x m x m= =  in steps of 1.5m . The point 

0.0 x km= at the same depth of 192.97z m=  will be included by default. 

 

2) This and the dispersion file Hskwav.dat, output from HASKEL.EXE in the 

previous section, now become the input for NewHSKzDzModes.EXE program. 

The file Hskwav.dat contains the phase and group velocities for each mode of 

surface Rayleigh and Love waves at each period at the point 0.0z = on the half-

space surface.  

 

This program reads the data in the file Hskwav.dat, and using the modified Haskel-

Thompson propagator matrices created in Section IV.3 of Reports II and Section 

IV.3 of Report III, produces the internal propagator matrix files, 

RYLGMTRX.DAT and LOVEMTRX.DAT,for both the translational and 

rotational component of motions respectively for the Rayleigh and Love surface 

wave modes and also the (newly developed) body P, SV and SH wave modes for 

given angles of incidence from the bottom semi-infinite media. As an example, for 

the 6 layered media, we use angles of incidence of 83o  and 84.5o (with respect to 

horizontal) for the purpose of creating synthetic accelerograms at hypocentral 

distances of 10 and  40 km .  
 

3) 

 

 

 

 

 

 

 

 
 

 

This program will at each z-coordinate in the file Zxcoord.dat (starting at 

0.0 z km=  on the half-space surface), produce an updated Wave dispersion file, 

HSKwav.___, where ‘.___’  in the file extension is the index number of the z-

coordinate in the file Zxcoord.dat. For the example file Zxcoord.dat above, this 

would range from ‘000’ ( 0.0 z km= ) at the surface to ‘120’ ( 6.0 z km= ) at the 

very bottom of the layered medium. The program will produce, for each of the files 

Hskwav.___, 5 modes of Rayleigh and 5 modes of Love surface waves. For each 

mode, at each period, NewHSKzDzModes.EXE,  as the name suggests, will write 

the following at each period of each mode of Rayleigh waves: 
 

T, Period of the Rayleigh wave in seconds, 
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i) 

ii) 

iii) 

iv) 
 

v) 

 
 

vi) 

 

vii) 

viii) 
 

ix) 

  

c, Phase velocity of the Rayleigh wave in km/s, 

u, Group velocity of the Rayleigh wave in km/s, 

W U Ratio of vertical to horizontal wave displacement amplitudes, 

U , the relative x-component of Rayleigh wave translational motion, which is 

available as an imaginary number (See Report II), 

W , the z-component of Rayleigh wave translational motion, which is a real 

number (See Report II), and normalized to be =1 at the half-spaced surface, 

( )510dU dz −× , the z-derivative of the x-component of Rayleigh wave motion, 

( )510dW dz −× , the z-derivative of the z-component of Rayleigh wave motion, 

( )510dU dx −× , the x-derivative of the x-component of Rayleigh wave motion, 

( )510dW dx −× , the x-derivative of the z-component of Rayleigh wave motion, 

 

 And similarly at each period of each mode of Love waves (Transverse direction): 
 

i) 

ii) 

iii) 

iv) 

v) 
 
 

 

vi) 
 

vii) 

T, Period of the Love wave in seconds, 

c, Phase velocity of the Love wave in km/s, 

u, Group velocity of the Love wave in km/s, 

Ratio =0.0 since this doesn’t apply to Love waves 

V , the y-component of wave translational motion, which is available as a real 

number (See Report II), and normalized to be =1 at the half-spaced surface 

( )510dV dz −× , the z-derivative of the y-component of Love wave motion, 

( )510dV dz −× , the z-derivative of the y-component Love wave motion, 
 

4) In exactly the same way as for the five modes of Rayleigh waves and five modes of 

Love waves, additional modes corresponding to the waves from incident body P-, 

SV and SH- waves, respectively modes # 11, 12 and 13 for a specified angle of 

incidence are created, and written in files BodyW___.___, where ‘W___’in the file 

name specifies the angle of incidence of the Body waves. For example, 

‘W845’would correspond to body waves with incident angle of  84.5o .  ‘.___’ in 

the file extension is again the index number of the z-coordinate. 
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Appendix A-1 shows the Mode 1 of Rayleigh waves of the output file                

Hskwav.000 of the Program “NewHSKzDzModes.EXE” 

 
Appendix A-2 shows the Mode 1 of Love waves of the same output file Hskwav.000. 
 
Appendix A-3 shows the Mode 11 of body P- Wave in the file BodyW845.000 
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II.3
  

 

The Updated Synthetic Accelerogram Program for Points On or 

Below the Half-Space Surface: EQSYNACC.EXE 
 

 
 With the dispersion data of the Rayleigh and Love surface waves and the body P, SV and 

SH waves computed at points on and below the half-space surface, the synthetic translational and 

rotational components of the acceleration, velocity and displacement time histories at every point 

on or below the half-space surface will next be constructed. Each such point will have a 

designated Fourier amplitude spectra and a designated duration.  

 

Here is the structure of he Working Folder:  

 

Working\ 

 

1) Batch files: SynAnnn.BAT 

 

Example of SynAnnn.BAT, with ‘nnn’ = ‘025’:  

SynA025.BAT    

MD z025 
CD z025 
COPY ..\1ZFolder\*.* *.* 
COPY ..\InsynS\InSynS.025 InSynS.dat 
CALLAccSynS 
CD ..\ 

 

2) Data files: Period.dat, Zxcoord.dat 

 

3) Subfolders: Working\Programs\  

   Working\1ZFolder 

Working\InSynS\ 

   Working\HskWav\ 

   Working\BodyW__\  (Example: Working\BodyW830\) 
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The following set of files and information are needed to construct the synthetic motions at all the 

points:   

 

1 Period.dat: the Data file of the Periods of waves. This is the same data file 

given in Section I.1 above for the original SYNACC program. 

 

2. Zxcoord.dat: the same data file of the z- and x- coordinates of the points as 

given in Section II.2 above. 
 

3. ..\HskWav\HskWav.___: Wave Dispersion Data of the Rayleigh and Love 

surface waves at every point on or below the half-space surface at the given Site. 

Here the file extension “.___” is again the index number of the (z, x)-coordinate 

in the file Zxcoord.dat. Since there are now many such files, one for each point 

in the file Zxcoord.dat, they are all placed in the subfolder..\HskWav\inside the 

working directory (folder). 
 

4. ..\BodyW___\BodyW___.___:the file of additional modes corresponding to 

waves from incident P-, SV- and SH- body waves, respectively modes # 11, 12 

and 13 for the specified angle of incidence, as described in Section II.2 above. 

As in the case of the Haskell wave files, there is one file for each point in the file 

Zxcoord.dat, and they are also all placed in the subfolder..\BodyW___\inside 

the working directory (folder), where  ‘W___’ in the name of the folder 

specifying the angle of incidence of the body waves, as for all the body wave 

files in the subfolder. 

 

5. ..\InSynS\InSyn.___: These are the input files for the updated program 

EQSYNACC.EXE. They are the same input file as InSyn.datfor the original 

SYNACC.EXE program as described in Section I.3 above. The difference now 

is that there are many such files, one for each point in the file Zxcoord.dat. 

Those are all placed in the subfolder ..\InSynS\inside the working directory 

(folder). There are also now additional lines of input, to identify the coordinates 
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of the point on or below the site where the synthetic accelerogram data are to be 

generated. Here is a brief description of the file, with emphasis on where the 

additional inputs are, in addition to those for InSyn.dat described in Section I.3 

above: 
1) Input 1: IWRT: Output Mode 

 
2) Input 2: Date and Time of the Synthetic Earthquake 

3) Input 3: ICHOIC– 

Options to be used for constructing the Fourier Amplitudes in the given 

frequency band 
4) Input 4: INMAX, PDURN 

 
5) Input 5: IGYZBE 

6) Input 6: Synthetic Record Reference name of  
 

7) Input 7: Synthetic Record log number 
 

8) Input 8:  IFDUR, duration parameter 
 

9) Input 9:IPR, probability level 
 

10) Input 10:Earthquake parameters depending on ICHOIC of Input 3 
 

Inputs #1 to #10 here are identical to that used in the original ‘SYNACC.EXE” 

program. As described in Section I.3 above. The following (NEW) inputs are 

modified for the Updated ‘EQSYNACC.EXE’ Program: 
 

11) Input 11: NWAVE, total number of dispersion waves 
 

12) Input 12:Output Haskell Surface wave Velocity data Filename 
 

Here there’s one Haskell velocity data file for each (z, x) coordinates given in 

the file Zxcoord.dat, and those are of the form ..\Hskwav\Hskwav.___, where 

the file extension ‘.___’ is the index number of the (z, x) coordinate in the file 

Zxcoord.dat. The files are all in a separate subfolder HskWav\ inside the 

EQSYNACC working folder Working\. 
 

13) Input 13:(z, x) coordinate Location on or below the site, 10^exp in km 

This is the same input as used in the file Zxcoord.dat. 
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 write(*,*)' at (z,x)E__ (+/-exp) ='                        !!!New  
 read(NU1,*,err=6101)zLoc,xLoc,kexp                !!!New 
 

14) Input 14:Output Body wave Velocity data Filename 
 

!8/4 add Bodywave file          !!!New  
 write(*,*)' Body Wave Mode Shape Filename(a20): ' 
 read(nu1,9001)BodyFile  !12/2/12 now 30 chars long 
 write(*,9001)' ',BodyFile 
 

Here there’s one Body wave velocity data file for each (z, x) coordinates given 

in the file Zxcoord.dat, and those are of the form ..\Bodywave\BodyW___.___, 

where the file extension ‘.___’ is the index number of the (z, x) coordinate in the 

file Zxcoord.dat. The files are all in a separate subfolder BodyW___\ inside the 

EQSYNACC working folder Working\ . 
 

15) Input 15: Yes/No for 1st arrival time at T=0 

16) Input 16: Mode participation factor 
 

Input #15 and 16 are identical to Input #13 and 14 of the input file for the 

Original “SYNACC.EXE’ program. 

 
  

The following file InSyn.025 is an example of such an input file: 
 

InSyn.025: 
 

1 IWRT 
01,01,13,12,00,00 CURRENT DATE (Mo-Da-Yr) & TIME (00:00:00) 
6 ICHOIC, MODEL# 
2,.875 INMAX, PDURN 
12345 INITIAL RANDOM # <-32767,32767> 
LA003 RECORD REF NAME 
1208.025 RECORD LOG # 
1 DURNATION PARAMETER (0/1) 
5 PROB LEVEL (1 TO 9) 
4125, 6.5, 0, 2 HYPO. DIST, MAG/MMI,SITE/DEPTH,SOIL 
10 # OF WAVE MODES 
..\HSKWAV\HSKWAV.025  
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  1.250,   .000  0  z, x Location, 10^exp km 
..\BodyW840\BodyW840.025  
0 T=0 At Dist/Cmax 
2 MODE PARTICIPATION FACTOR 

 
 

 

 
II.4 The EQSYNACC Output Files 

 
 

 With the input files of EQSYNACC all read in, execution of EQSYNACC will 

 
1) Create, for each point of (z, x) coordinate in the file Zxcoord.dat, a subfolder inside the working 

folder \Working of some generic name \Working\zx___, where ‘___’ in the subfolder name is 

index number of the (z, x) coordinate in the file Zxcoord.dat. 

 

2) At each such subfolder, the program EQSYNACC.EXE will use the same algorithm and 

procedure as the original program SYNACC.EXE to generate each mode of synthetic 

acceleration data, as described in  Section I.5 above, namely,  to use each mode of the Wave 

Dispersion Data at the site and their arrival times at each frequency band of waves to assemble 

the contribution of each mode of surface and Body waves at each frequency band. Currently, 

there are five modes of Rayleigh waves (Mode#1 to 5), five modes of Love waves (Mode#6 to 

10), one mode for each of the Incident Body P, SV and SH waves (Mode#11 to 13) 

 
3) At each point (z, x) on or below the half-space surface at the site, the Relative 

Amplitudes and Phrases of each mode of Rayleigh and Love Surface Waves were 

determined relative to that at the surface point where 0z =  using the mode shape data 

files in the folder.. \Hskwav. Similarly, the Relative Amplitudes and Phases of each 

mode of Body P, SV and SH waves were determined relative to that at the surface, using 

the mode shape data files in the folder.. \BodyW___, where ‘W___’ in the name of the 

folder specifies the angle of incidence of the Body waves used. All modes of the waves 

at each point are then summed up in the frequency domain.  

 

4) At the surface point (z, x) = (0, 0), the translational components of the Fourier 
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amplitudes of acceleration are scaled to be the same as those calculated by the regression 

equations specified by the parameter ‘ICHOIC’ in Input#3. The Fourier amplitudes of 

all points of  (z, x) below are then scaled relatively as in previous step 3). By Inverse 

Fourier Transform, using FFT, the  (Volume 2, Corrected) time-histories of Total 

Accelerogram are created. 

 

5) The above process was performed for the following components of translational 
motions: 
 

 The Radial, Transverse and Vertical (Trifunac, 1971; Wong and Trifunac, 1978, 1979) 

components of Translational motions (the U-, V-, W- components), respectively 
 

The Translational files: 

             V2X01.DAT 

             V2Y01.DAT 

             V2Z01.DAT.  

These are the same output files as in the original SYNACC, which are now extended for 

all defined points on or below the half-space surface.  

 

Figures 7a and 7b are examples of plots of the output files for points on and below the 

half-space surface at a site. They are the Figures VIII.3a and b from Report II, plots of 

such synthetic accelerations respectively for both the horizontal ( )U z  and vertical 

( )W z  components, calculated for the El Centro six-layered site model, at 100 depths 

equally spaced from the surface to almost 6km below the surface, and hypocentral 

distance of 10.0D km= , The EQSYNACC.EXE program determines that the 

appropriate duration of the time histories should be around 40 seconds. As described in 

Report II, the acceleration time histories are at depths 0.6m apart. Of the 100 

acceleration time histories, six are plotted green, and labeled 0 to 5. The one labeled 0 is 

the accelerogram at the top surface 0z = , while the ones labeled 1 to 5 are at depths at or 

closest to the interfaces between adjacent layers. 
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Figure 7a:  Report II- Fig.VIII.3a Synthetic Acceleration for M=6.5, R=8.0km, H=6.0km, s=0, soil=2 
 

Horizontal, Radial Motions  
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Figure 7b:  Report II-Fig.VIII.3b Synthetic Acceleration for M=6.5, R=8.0km, H=6.0km, s=0, soil=2 
 

 

Vertical Motions 
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6) Unlike the Original SYNACC.EXE program, which will output the Torsion and 

Rocking components of Rotational Motions, and the Strains, the NEW 

EQSYNACC.EXE program will output the d/dx- and d/dz- derivatives of the U-

(Radial), V-( Transverse) and W-( Vertical)  translational components, or respectively 
 

The d/dx- derivative files: 

          V2DUDX.DAT 

          V2DVDX.DAT 

          V2DWDX.DAT 
 

and the d/dz- derivative files: 

          V2DUDZ.DAT 

          V2DVDZ.DAT 

          V2DWDZ.DAT 
 

from which the Rocking, Torsion and Strain component time histories can be 

computed. For example, The synthetic motion, U
x

∂
∂  is the synthetic normal strain, xε  

Similarly, W
z

∂
∂  is the synthetic normal strain, zε . As for the two derivative 

components U
z

∂
∂ and W

x
∂

∂ , those are used to compute, ( )y
U W

z x
1

2
∂ ∂Ω = −∂ ∂ , 

the in-plane Rocking component of the Rayleigh and body P, SV waves in the x-z plane, 

or the y- direction rotation, while 
 ( )xz

U W
z x

1
2ε ∂ ∂= +∂ ∂  is the Shear Strain in the 

x-z plane.  
  

 
Figures 8a and 8b are from Report III Figures V.3a and V.3b.  Figure 8a shows plots 

of the synthetic U
x

∂
∂
�� , U

z
∂

∂
��  rotational acceleration time histories again calculated for the El 

Centro six-layered site model, at depths equally spaced from the surface to almost 6km below the 

surface, for hypocentral distance of 10.0D km= , as in Figures 7a and 7b.  Similarly Figure 8b 

gives plots of the synthetic W
x

∂
∂

�� , W
z

∂
∂

��  rotational acceleration time histories derived from 

the corresponding vertical translational motions.  
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Figure 8a: Report III Fig. V.3a 

 

U
x

∂
∂
��       Synthetic Rotational Acc.: 6.5,  8.0 ,   6.0 ,  0,  2LM R km H km s s= = = = =     

5
210U rad    z s

−∂
∂
��
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Figure 8b: Report III Fig. V.3b 

 

dW
dx

��
     

Synthetic Rotational Acc.: 6.5,  8.0 ,   6.0 ,  0,  2LM R km H km s s= = = = =    
5

210W rad   z s
−∂

∂
��
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7) The Radial, Tranverse and Vertical components of Curvature (Trifunac, 1990) Time 

Histories (Curvograms), are all in one output file: V2K01.DAT. This is the same as in 

the original SYNACC.EXE program. 

 

8) The New EQSYNACC.EXE program currently has an updated version which, at the 

request of the user, outputs the above files separately for each mode of motions. These 

files are named as follows: 

 The Translational files: 

Mode# Radial Transverse Vertical 

1 V2X01.M01 V2Y01.M01 V2Z01.M01 

2 V2X01.M02 V2Y01.M02 V2Z01.M02 

3 V2X01.M03 V2Y01.M03 V2Z01.M03 

#  #  #  #  

11 V2X01.M11 V2Y01.M11 V2Z01.M11 

12 V2X01.M12 V2Y01.M12 V2Z01.M12 

13 V2X01.M13 V2Y01.M13 V2Z01.M13 

 

where the extension ‘.M__’ indicates the Mode# of the data in the file. Here M01 

through M05 are the 5 modes of Rayleigh waves, M06 through M10 are the 5 modes of 

Love waves. M11 through M13 are respectively the incident Body P-, SV- and SH- 

waves. Similarly for the d/dx and d/dz derivatives files: 

 The d/dx and d/dz derivatives files: 

Mode# Radial d/d/x, d/dz Trans. d/d/x, d/dz Vertical d/d/x, d/dz 

1 V2DUD(X,Z).M01 V2DVD(X,Z).M01 V2DWD(X,Z).M01 

2 V2DUD(X,Z).M02 V2DVD(X,Z).M02 V2DWD(X,Z).M02 

3 V2DUD(X,Z).M03 V2DVD(X,Z).M03 V2DWD(X,Z).M03 

#  #  #  #  

11 V2DUD(X,Z).M11 V2DVD(X,Z).M11 V2DWD(X,Z).M11 

12 V2DUD(X,Z).M12 V2DVD(X,Z).M12 V2DWD(X,Z).M12 

13 V2DUD(X,Z).M13 V2DVD(X,Z).M13 V2DWD(X,Z).M13 
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Appendix A.1 

 
Mode 1 Rayleigh Waves in Hskwav.000: 
 
6 LAYER Velocity Model  
Imperial Valley VELOCITY MODEL  
Thickness, km alpha, km/s beta, km/s density Depth from top, km 
0.18 1.70 0.98 1.28 0.18 
0.55 1.96 1.13 1.36 0.73 
0.98 2.71 1.57 1.59 1.71 
1.19 3.76 2.17 1.91 2.90 
2.68 4.69 2.71 2.19 5.58 
 .00 6.40 3.70 2.71 5.58 
 
RAYLEIGH WAVE DISPERSION 
  LAYER VELOCITY MODEL FOR  

PERIOD       C        U       RATIO   Imag[U(z)] Real[W(z)] dU/dz(^-5)     dW/dz(^-5)      dU/dx(^-5)     dW/dx(^-5) 
 
 Rayleigh Wave Mode# 1     U,W(z) at z=   .000E-3 km       

15.00 3.17131 2.96209 1.32144 1.32144E+00 1.00000E+00
-1.32084E-

01 5.85346E-02
-1.74541E-

01 1.32084E-01

14.00 3.15297 2.89729 1.36955 1.37000E+00 1.00000E+00
-1.42342E-

01 6.53771E-02
-1.94944E-

01 1.42342E-01

13.00 3.13177 2.85438 1.42305 1.42000E+00 1.00000E+00
-1.54329E-

01 7.36517E-02
-2.19618E-

01 1.54329E-01

12.00 3.10639 2.79749 1.483 1.48000E+00 1.00000E+00
-1.68555E-

01 8.38300E-02
-2.49968E-

01 1.68555E-01

11.00 3.07499 2.72319 1.54973 1.55000E+00 1.00000E+00
-1.85756E-

01 9.65417E-02
-2.87872E-

01 1.85756E-01
10.00 3.03486 2.62693 1.62225 1.62000E+00 1.00000E+00 -2.07034E- 1.12635E-01 -3.35861E- 2.07034E-01
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01 01

9.50 3.00841 2.56712 1.65985 1.66000E+00 1.00000E+00
-2.19846E-

01 1.22378E-01
-3.64912E-

01 2.19846E-01

9.00 2.98196 2.50730 1.69744 1.70000E+00 1.00000E+00
-2.34118E-

01 1.33274E-01
-3.97402E-

01 2.34118E-01

8.50 2.94606 2.42245 1.73263 1.73000E+00 1.00000E+00
-2.50911E-

01 1.45794E-01
-4.34736E-

01 2.50911E-01

8.00 2.90741 2.33224 1.76601 1.77000E+00 1.00000E+00
-2.70137E-

01 1.59990E-01
-4.77064E-

01 2.70137E-01

7.50 2.85779 2.22061 1.79214 1.79000E+00 1.00000E+00
-2.93149E-

01 1.76188E-01
-5.25364E-

01 2.93149E-01

7.00 2.79710 2.09476 1.80778 1.81000E+00 1.00000E+00
-3.20903E-

01 1.94552E-01
-5.80122E-

01 3.20903E-01

6.50 2.72535 1.95668 1.81232 1.81000E+00 1.00000E+00
-3.54686E-

01 2.15573E-01
-6.42805E-

01 3.54686E-01

6.00 2.63182 1.80471 1.79182 1.79000E+00 1.00000E+00
-3.97899E-

01 2.39102E-01
-7.12963E-

01 3.97899E-01

5.50 2.51546 1.64997 1.74071 1.74000E+00 1.00000E+00
-4.54151E-

01 2.65120E-01
-7.90544E-

01 4.54151E-01

5.00 2.37800 1.49917 1.65672 1.66000E+00 1.00000E+00
-5.28443E-

01 2.93605E-01
-8.75482E-

01 5.28443E-01

4.80 2.31929 1.43994 1.61705 1.62000E+00 1.00000E+00
-5.64396E-

01 3.06071E-01
-9.12656E-

01 5.64396E-01

4.60 2.25468 1.38552 1.56468 1.56000E+00 1.00000E+00
-6.05811E-

01 3.17891E-01
-9.47900E-

01 6.05811E-01

4.40 2.18951 1.33155 1.51113 1.51000E+00 1.00000E+00
-6.52199E-

01 3.30520E-01
-9.85557E-

01 6.52199E-01

4.20 2.12237 1.28024 1.45259 1.45000E+00 1.00000E+00
-7.04871E-

01 3.43375E-01
-

1.02389E+00 7.04871E-01

4.00 2.05344 1.23135 1.38951 1.39000E+00 1.00000E+00
-7.64958E-

01 3.56464E-01
-

1.06292E+00 7.64958E-01

3.80 1.98326 1.18361 1.3245 1.32000E+00 1.00000E+00
-8.33713E-

01 3.70326E-01
-

1.10425E+00 8.33713E-01
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3.60 1.91099 1.13780 1.25623 1.26000E+00 1.00000E+00
-9.13312E-

01 3.84772E-01
-

1.14733E+00 9.13312E-01

3.40 1.83720 1.09297 1.18768 1.19000E+00 1.00000E+00
-

1.00588E+00 4.00645E-01
-

1.19466E+00 1.00588E+00

3.20 1.76143 1.04942 1.11876 1.12000E+00 1.00000E+00
-

1.11472E+00 4.18232E-01
-

1.24710E+00 1.11472E+00

3.00 1.68433 1.00883 1.05289 1.05000E+00 1.00000E+00
-

1.24346E+00 4.39066E-01
-

1.30923E+00 1.24346E+00

2.80 1.60677 0.97045 0.98941 9.89000E-01 1.00000E+00
-

1.39659E+00 4.63404E-01
-

1.38180E+00 1.39659E+00

2.60 1.53024 0.93858 0.93324 9.33000E-01 1.00000E+00
-

1.57924E+00 4.94261E-01
-

1.47381E+00 1.57924E+00

2.40 1.45624 0.91263 0.88377 8.84000E-01 1.00000E+00
-

1.79778E+00 5.32832E-01
-

1.58882E+00 1.79778E+00

2.20 1.38512 0.89147 0.8408 8.41000E-01 1.00000E+00
-

2.06191E+00 5.81404E-01
-

1.73365E+00 2.06191E+00

2.00 1.31735 0.87300 0.80482 8.05000E-01 1.00000E+00
-

2.38478E+00 6.43670E-01
-

1.91932E+00 2.38478E+00

1.90 1.28465 0.86338 0.7894 7.89000E-01 1.00000E+00
-

2.57420E+00 6.81482E-01
-

2.03207E+00 2.57420E+00

1.80 1.25236 0.85104 0.77549 7.75000E-01 1.00000E+00
-

2.78727E+00 7.24886E-01
-

2.16150E+00 2.78727E+00

1.70 1.22044 0.83627 0.76291 7.63000E-01 1.00000E+00
-

3.02841E+00 7.74825E-01
-

2.31040E+00 3.02841E+00

1.60 1.18814 0.82400 0.75132 7.51000E-01 1.00000E+00
-

3.30516E+00 8.32785E-01
-

2.48323E+00 3.30516E+00

1.50 1.15573 0.86507 0.74028 7.40000E-01 1.00000E+00
-

3.62437E+00 8.99796E-01
-

2.68305E+00 3.62437E+00

1.40 1.12973 0.85971 0.73718 7.37000E-01 1.00000E+00
-

3.97262E+00 9.82124E-01
-

2.92854E+00 3.97262E+00

1.30 1.10444 0.85923 0.73439 7.34000E-01 1.00000E+00
-

4.37617E+00 1.07780E+00
-

3.21382E+00 4.37617E+00

1.20 1.08090 0.86756 0.73182 7.32000E-01 1.00000E+00
-

4.84410E+00 1.18887E+00
-

3.54501E+00 4.84410E+00
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1.10 1.06005 0.87857 0.72876 7.29000E-01 1.00000E+00
-

5.38841E+00 1.31693E+00
-

3.92686E+00 5.38841E+00

1.00 1.04122 0.88427 0.7247 7.25000E-01 1.00000E+00
-

6.03445E+00 1.46660E+00
-

4.37316E+00 6.03445E+00

0.95 1.03223 0.88435 0.72223 7.22000E-01 1.00000E+00
-

6.40737E+00 1.55193E+00
-

4.62759E+00 6.40737E+00

0.90 1.02334 0.91565 0.71956 7.20000E-01 1.00000E+00
-

6.82209E+00 1.64627E+00
-

4.90890E+00 6.82209E+00

0.85 1.01663 0.91437 0.71505 7.15000E-01 1.00000E+00
-

7.27107E+00 1.74361E+00
-

5.19917E+00 7.27107E+00

0.80 1.00994 0.91369 0.71007 7.10000E-01 1.00000E+00
-

7.77668E+00 1.85187E+00
-

5.52199E+00 7.77668E+00

0.75 1.00334 0.91325 0.7045 7.05000E-01 1.00000E+00
-

8.34969E+00 1.97273E+00
-

5.88236E+00 8.34969E+00

0.70 0.99671 0.91058 0.69829 6.98000E-01 1.00000E+00
-

9.00561E+00 2.10894E+00
-

6.28853E+00 9.00561E+00

0.65 0.98985 0.90540 0.69171 6.92000E-01 1.00000E+00
-

9.76556E+00 2.26536E+00
-

6.75494E+00 9.76556E+00

0.60 0.98254 0.89800 0.68498 6.85000E-01 1.00000E+00
-

1.06581E+01 2.44834E+00
-

7.30056E+00 1.06581E+01

0.55 0.97440 0.89036 0.67817 6.78000E-01 1.00000E+00
-

1.17241E+01 2.66645E+00
-

7.95094E+00 1.17241E+01

0.50 0.96526 0.87532 0.67237 6.72000E-01 1.00000E+00
-

1.30186E+01 2.93555E+00
-

8.75334E+00 1.30186E+01

0.48 0.9612 0.87101 0.67066 6.71000E-01 1.00000E+00
-

1.36184E+01 3.06297E+00
-

9.13328E+00 1.36184E+01

0.46 0.95696 0.86681 0.66921 6.69000E-01 1.00000E+00
-

1.42734E+01 3.20337E+00
-

9.55193E+00 1.42734E+01

0.44 0.95254 0.86303 0.66811 6.68000E-01 1.00000E+00
-

1.49915E+01 3.35898E+00
-

1.00160E+01 1.49915E+01

0.42 0.94797 0.85995 0.66738 6.67000E-01 1.00000E+00
-

1.57811E+01 3.53203E+00
-

1.05320E+01 1.57811E+01

0.40 0.94328 0.85777 0.66706 6.67000E-01 1.00000E+00
-

1.66525E+01 3.72529E+00
-

1.11082E+01 1.66525E+01
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0.38 0.93855 0.85663 0.66713 6.67000E-01 1.00000E+00
-

1.76173E+01 3.94153E+00
-

1.17530E+01 1.76173E+01

0.36 0.93382 0.85662 0.66758 6.68000E-01 1.00000E+00
-

1.86902E+01 4.18440E+00
-

1.24772E+01 1.86902E+01

0.34 0.92918 0.85779 0.66837 6.68000E-01 1.00000E+00
-

1.98885E+01 4.45793E+00
-

1.32929E+01 1.98885E+01

0.32 0.92470 0.86004 0.66946 6.69000E-01 1.00000E+00
-

2.12339E+01 4.76727E+00
-

1.42152E+01 2.12339E+01

0.30 0.92047 0.86303 0.67078 6.71000E-01 1.00000E+00
-

2.27536E+01 5.11852E+00
-

1.52626E+01 2.27536E+01

0.28 0.91653 0.86572 0.67225 6.72000E-01 1.00000E+00
-

2.44836E+01 5.51978E+00
-

1.64591E+01 2.44836E+01

0.26 0.9128 0.86674 0.67384 6.74000E-01 1.00000E+00
-

2.64747E+01 5.98278E+00
-

1.78397E+01 2.64747E+01

0.24 0.90933 0.88049 0.67547 6.75000E-01 1.00000E+00
-

2.87904E+01 6.52182E+00
-

1.94470E+01 2.87904E+01

0.22 0.90692 0.88286 0.67687 6.77000E-01 1.00000E+00
-

3.14911E+01 7.14840E+00
-

2.13154E+01 3.14911E+01

0.20 0.9049 0.88761 0.67811 6.78000E-01 9.99999E-01
-

3.47175E+01 7.89524E+00
-

2.35424E+01 3.47175E+01

0.19 0.90409 0.88996 0.67864 6.79000E-01 1.00000E+00
-

3.65775E+01 8.32472E+00
-

2.48230E+01 3.65775E+01

0.18 0.90339 0.89213 0.6791 6.79000E-01 1.00000E+00
-

3.86395E+01 8.79997E+00
-

2.62401E+01 3.86395E+01

0.17 0.90282 0.89409 0.6795 6.79000E-01 1.00000E+00
-

4.09383E+01 9.32899E+00
-

2.78176E+01 4.09383E+01

0.16 0.90235 0.89581 0.67983 6.80000E-01 1.00000E+00
-

4.35196E+01 9.92203E+00
-

2.95859E+01 4.35196E+01

0.15 0.90199 0.89727 0.68009 6.80000E-01 1.00000E+00
-

4.64394E+01 1.05918E+01
-

3.15830E+01 4.64394E+01

0.14 0.90172 0.89853 0.68029 6.80000E-01 1.00000E+00
-

4.97714E+01 1.13551E+01
-

3.38590E+01 4.97714E+01

0.13 0.90154 0.90017 0.68044 6.80000E-01 1.00000E+00
-

5.36107E+01 1.22337E+01
-

3.64789E+01 5.36107E+01
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0.12 0.90153 0.90405 0.68054 6.81000E-01 1.00000E+00
-

5.80789E+01 1.32552E+01
-

3.95250E+01 5.80789E+01

0.11 0.90201 0.91301 0.68061 6.81000E-01 9.99999E-01
-

6.33250E+01 1.44541E+01
-

4.30997E+01 6.33250E+01

0.10 0.90363 0.94321 0.68064 6.81000E-01 1.00000E+00
-

6.95327E+01 1.58717E+01
-

4.73268E+01 6.95327E+01

0.095 0.90496 0.97596 0.68065 6.81000E-01 1.00000E+00
-

7.30848E+01 1.66827E+01
-

4.97452E+01 7.30848E+01

0.090 0.90868 0.98358 0.68065 6.81000E-01 1.00000E+00
-

7.68292E+01 1.75374E+01
-

5.22938E+01 7.68292E+01

0.085 0.91313 0.98336 0.68065 6.81000E-01 1.00000E+00
-

8.09521E+01 1.84785E+01
-

5.51001E+01 8.09521E+01

0.080 0.91759 0.98313 0.68066 6.81000E-01 1.00000E+00
-

8.55935E+01 1.95383E+01
-

5.82602E+01 8.55935E+01

0.075 0.92205 0.98291 0.68066 6.81000E-01 1.00000E+00
-

9.08582E+01 2.07401E+01
-

6.18435E+01 9.08582E+01

0.070 0.92651 0.98269 0.68066 6.81000E-01 1.00000E+00
-

9.68795E+01 2.21145E+01
-

6.59420E+01 9.68795E+01

0.065 0.93097 0.98246 0.68066 6.81000E-01 1.00000E+00
-

1.03832E+02 2.37016E+01
-

7.06743E+01 1.03832E+02

0.060 0.93542 0.98224 0.68066 6.81000E-01 1.00000E+00
-

1.11949E+02 2.55545E+01
-

7.61995E+01 1.11949E+02

0.055 0.93988 0.98202 0.68066 6.81000E-01 1.00000E+00
-

1.21547E+02 2.77454E+01
-

8.27323E+01 1.21547E+02

0.050 0.94434 0.98179 0.68067 6.81000E-01 9.99999E-01
-

1.33070E+02 3.03762E+01
-

9.05771E+01 1.33070E+02

0.048 0.94612 0.9817 0.68067 6.81000E-01 1.00000E+00
-

1.38354E+02 3.15824E+01
-

9.41736E+01 1.38354E+02

0.046 0.94790 0.98161 0.68067 6.81000E-01 1.00000E+00
-

1.44099E+02 3.28936E+01
-

9.80835E+01 1.44099E+02

0.044 0.94969 0.98152 0.68067 6.81000E-01 1.00000E+00
-

1.50365E+02 3.43239E+01
-

1.02349E+02 1.50365E+02

0.042 0.95147 0.98143 0.68067 6.81000E-01 1.00000E+00
-

1.57230E+02 3.58912E+01
-

1.07022E+02 1.57230E+02
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0.040 0.95325 0.97955 0.68067 6.81000E-01 1.00000E+00
-

1.64783E+02 3.76154E+01
-

1.12163E+02 1.64783E+02
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Mode 1 Love waves in Hskwav.000: 

 
LOVE WAVE DISPERSION 
LAYER VELOCITY MODELFOR 
PERIOD      c, km/s u, km/s        n/a Real[V(z)] dV/dz(^-5) dV/dx(^-5) 
       
Love WaveMode# 1V(z) atz=   .000E-3 km 

15.00 3.53897 3.21717 0 1.00000E+00 0.00000E+00 1.18362E-01
14.00 3.50616 3.04785 0 1.00000E+00 0.00000E+00 1.28003E-01
13.00 3.46498 2.93077 0 1.00000E+00 0.00000E+00 1.39488E-01
12.00 3.41070 2.77435 0 1.00000E+00 0.00000E+00 1.53517E-01
11.00 3.33717 2.58106 0 1.00000E+00 0.00000E+00 1.71163E-01
10.00 3.23653 2.35901 0 1.00000E+00 0.00000E+00 1.94133E-01

9.50 3.16800 2.24421 0 1.00000E+00 0.00000E+00 2.08771E-01
9.00 3.09946 2.12942 0 1.00000E+00 0.00000E+00 2.25243E-01
8.50 3.00846 2.00112 0 1.00000E+00 0.00000E+00 2.45707E-01
8.00 2.91278 1.87267 0 1.00000E+00 0.00000E+00 2.69639E-01
7.50 2.79834 1.74359 0 1.00000E+00 0.00000E+00 2.99377E-01
7.00 2.67256 1.61918 0 1.00000E+00 0.00000E+00 3.35857E-01
6.50 2.53706 1.49991 0 1.00000E+00 0.00000E+00 3.81010E-01
6.00 2.39071 1.39319 0 1.00000E+00 0.00000E+00 4.38028E-01
5.50 2.24004 1.30007 0 1.00000E+00 0.00000E+00 5.09990E-01
5.00 2.08823 1.22022 0 1.00000E+00 0.00000E+00 6.01771E-01
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4.80 2.02748 1.19065 0 1.00000E+00 0.00000E+00 6.45628E-01
4.60 1.96792 1.16619 0 1.00000E+00 0.00000E+00 6.94088E-01
4.40 1.90847 1.14221 0 1.00000E+00 0.00000E+00 7.48242E-01
4.20 1.85022 1.12080 0 1.00000E+00 0.00000E+00 8.08551E-01
4.00 1.79305 1.10172 0 1.00000E+00 0.00000E+00 8.76047E-01
3.80 1.73695 1.08425 0 1.00000E+00 0.00000E+00 9.51939E-01
3.60 1.68268 1.06951 0 1.00000E+00 0.00000E+00 1.03723E+00
3.40 1.62975 1.05634 0 1.00000E+00 0.00000E+00 1.13391E+00
3.20 1.57859 1.04521 0 1.00000E+00 0.00000E+00 1.24383E+00
3.00 1.52953 1.03594 0 1.00000E+00 0.00000E+00 1.36931E+00
2.80 1.48174 1.02771 0 1.00000E+00 0.00000E+00 1.51443E+00
2.60 1.43635 1.02101 0 1.00000E+00 0.00000E+00 1.68247E+00
2.40 1.39266 1.01508 0 1.00000E+00 0.00000E+00 1.87985E+00
2.20 1.35054 1.00983 0 1.00000E+00 0.00000E+00 2.11471E+00
2.00 1.31009 1.00528 0 1.00000E+00 0.00000E+00 2.39800E+00
1.90 1.29049 1.00331 0 1.00000E+00 0.00000E+00 2.56255E+00
1.80 1.27131 1.00163 0 1.00000E+00 0.00000E+00 2.74572E+00
1.70 1.25252 1.00021 0 1.00000E+00 0.00000E+00 2.95084E+00
1.60 1.23424 0.99925 0 1.00000E+00 0.00000E+00 3.18171E+00
1.50 1.21622 0.99851 0 1.00000E+00 0.00000E+00 3.44411E+00
1.40 1.19894 0.99845 0 1.00000E+00 0.00000E+00 3.74330E+00
1.30 1.18203 0.99869 0 1.00000E+00 0.00000E+00 4.08891E+00
1.20 1.16559 0.99925 0 1.00000E+00 0.00000E+00 4.49214E+00
1.10 1.14972 1.00008 0 1.00000E+00 0.00000E+00 4.96815E+00
1.00 1.13442 1.00081 0 1.00000E+00 0.00000E+00 5.53868E+00
0.95 1.12696 1.00098 0 1.00000E+00 0.00000E+00 5.86878E+00
0.90 1.11957 1.00106 0 1.00000E+00 0.00000E+00 6.23571E+00
0.85 1.11229 1.00074 0 1.00000E+00 0.00000E+00 6.64573E+00
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0.80 1.10505 1.00027 0 1.00000E+00 0.00000E+00 7.10735E+00
0.75 1.09785 0.99908 0 1.00000E+00 0.00000E+00 7.63090E+00
0.70 1.09063 0.99753 0 1.00000E+00 0.00000E+00 8.23009E+00
0.65 1.08337 0.99539 0 1.00000E+00 0.00000E+00 8.92257E+00
0.60 1.07591 0.99237 0 1.00000E+00 0.00000E+00 9.73313E+00
0.55 1.06824 0.98873 0 1.00000E+00 0.00000E+00 1.06942E+01
0.50 1.06026 0.98450 0 1.00000E+00 0.00000E+00 1.18522E+01
0.48 1.05699 0.98268 0 1.00000E+00 0.00000E+00 1.23842E+01
0.46 1.05361 0.98081 0 1.00000E+00 0.00000E+00 1.29641E+01
0.44 1.05015 0.97890 0 1.00000E+00 0.00000E+00 1.35980E+01
0.42 1.04666 0.97701 0 1.00000E+00 0.00000E+00 1.42931E+01
0.40 1.04302 0.97518 0 1.00000E+00 0.00000E+00 1.50601E+01
0.38 1.03937 0.97337 0 1.00000E+00 0.00000E+00 1.59084E+01
0.36 1.03558 0.97178 0 1.00000E+00 0.00000E+00 1.68536E+01
0.34 1.03177 0.97026 0 1.00000E+00 0.00000E+00 1.79109E+01
0.32 1.02787 0.96905 0 1.00000E+00 0.00000E+00 1.91026E+01
0.30 1.02393 0.96804 0 1.00000E+00 0.00000E+00 2.04545E+01
0.28 1.01996 0.96727 0 1.00000E+00 0.00000E+00 2.20008E+01
0.26 1.01598 0.96692 0 1.00000E+00 0.00000E+00 2.37860E+01
0.24 1.01202 0.96684 0 1.00000E+00 0.00000E+00 2.58690E+01
0.22 1.00809 0.96708 0 1.00000E+00 0.00000E+00 2.83307E+01
0.20 1.00424 0.96766 0 1.00000E+00 0.00000E+00 3.12833E+01
0.19 1.00237 0.96809 0 1.00000E+00 0.00000E+00 3.29912E+01
0.18 1.00051 0.96855 0 1.00000E+00 0.00000E+00 3.48888E+01
0.17 0.99870 0.96912 0 1.00000E+00 0.00000E+00 3.70080E+01
0.16 0.99693 0.96976 0 1.00000E+00 0.00000E+00 3.93908E+01
0.15 0.99520 0.97048 0 1.00000E+00 0.00000E+00 4.20899E+01
0.14 0.99356 0.97147 0 1.00000E+00 0.00000E+00 4.51708E+01
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0.13 0.99198 0.97281 0 1.00000E+00 0.00000E+00 4.87230E+01
0.12 0.99051 0.97473 0 1.00000E+00 0.00000E+00 5.28615E+01
0.11 0.98932 0.97814 0 1.00000E+00 0.00000E+00 5.77365E+01
0.10 0.98851 0.97922 0 1.00000E+00 0.00000E+00 6.35622E+01

0.095 0.98811 0.97935 0 1.00000E+00 0.00000E+00 6.69347E+01
0.090 0.98763 0.97939 0 1.00000E+00 0.00000E+00 7.06876E+01
0.085 0.98716 0.97943 0 1.00000E+00 0.00000E+00 7.48813E+01
0.080 0.98668 0.97947 0 1.00000E+00 0.00000E+00 7.96001E+01
0.075 0.98620 0.97950 0 1.00000E+00 0.00000E+00 8.49481E+01
0.070 0.98572 0.97954 0 1.00000E+00 0.00000E+00 9.10601E+01
0.065 0.98525 0.97958 0 1.00000E+00 0.00000E+00 9.81115E+01
0.060 0.98477 0.97962 0 1.00000E+00 0.00000E+00 1.06339E+02
0.055 0.98429 0.97966 0 1.00000E+00 0.00000E+00 1.16063E+02
0.050 0.98382 0.97969 0 1.00000E+00 0.00000E+00 1.27730E+02
0.048 0.98363 0.97971 0 1.00000E+00 0.00000E+00 1.33078E+02
0.046 0.98343 0.97973 0 1.00000E+00 0.00000E+00 1.38892E+02
0.044 0.98324 0.97974 0 1.00000E+00 0.00000E+00 1.45234E+02
0.042 0.98305 0.97976 0 1.00000E+00 0.00000E+00 1.52179E+02
0.040 0.98286 0.98008 0 1.00000E+00 0.00000E+00 1.59819E+02
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Appendix A.3 
 

Mode 11 Body P- Waves in BodyW845.000: 
 
6 LAYER Velocity Model  
Imperial Valley VELOCITY MODEL  
Thickness, km alpha, km/s beta, km/s density Depth from top, km 
0.18 1.70 0.98 1.28 0.18 
0.55 1.96 1.13 1.36 0.73 
0.98 2.71 1.57 1.59 1.71 
1.19 3.76 2.17 1.91 2.90 
2.68 4.69 2.71 2.19 5.58 
 .00 6.40 3.70 2.71 5.58 
 
BODY WAVE DISPERSION 
  LAYER VELOCITY MODEL FOR  

PERIOD    c, km/s (n/a)      (n/a)     Imag[U(z)] Real[W(z)] dU/dz(^-5)         dW/dz(^-5)       dU/dx(^-5)       dW/dx(^-5) 
 
 Body P- Wave Mode# 11     U,W(z) at z=   .000E-3 km       

15.00 6.45000 0 0 -1.80906E+00 1.00000E+00
-6.49620E-

02 -3.94119E-02 1.17520E-01 6.49620E-02

14.00 6.45000 0 0 -1.85095E+00 1.00000E+00
-6.96021E-

02 -4.32049E-02 1.28830E-01 6.96022E-02

13.00 6.45000 0 0 -1.89027E+00 1.00000E+00
-7.49561E-

02 -4.75168E-02 1.41688E-01 7.49562E-02

12.00 6.45000 0 0 -1.92613E+00 1.00000E+00
-8.12025E-

02 -5.24530E-02 1.56407E-01 8.12026E-02

11.00 6.45000 0 0 -1.95777E+00 1.00000E+00
-8.85845E-

02 -5.81615E-02 1.73429E-01 8.85846E-02
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10.00 6.45000 0 0 -1.98495E+00 1.00000E+00
-9.74430E-

02 -6.48658E-02 1.93420E-01 9.74431E-02

9.50 6.45000 0 0 -1.99703E+00 1.00000E+00
-1.02572E-

01 -6.86954E-02 2.04839E-01 1.02572E-01

9.00 6.45000 0 0 -2.00834E+00 1.00000E+00
-1.08270E-

01 -7.29224E-02 2.17443E-01 1.08270E-01

8.50 6.45000 0 0 -2.01907E+00 1.00000E+00
-1.14639E-

01 -7.76244E-02 2.31464E-01 1.14639E-01

8.00 6.45000 0 0 -2.02915E+00 1.00000E+00
-1.21804E-

01 -8.28879E-02 2.47159E-01 1.21804E-01

7.50 6.45000 0 0 -2.03753E+00 1.00000E+00
-1.29924E-

01 -8.87788E-02 2.64725E-01 1.29924E-01

7.00 6.45000 0 0 -2.04009E+00 1.00000E+00
-1.39204E-

01 -9.52396E-02 2.83989E-01 1.39204E-01

6.50 6.45000 0 0 -2.02453E+00 1.00000E+00
-1.49912E-

01 -1.01783E-01 3.03502E-01 1.49912E-01

6.00 6.45000 0 0 -1.96026E+00 1.00000E+00
-1.62405E-

01 -1.06765E-01 3.18356E-01 1.62405E-01

5.50 6.45000 0 0 -1.79231E+00 1.00000E+00
-1.77169E-

01 -1.06492E-01 3.17542E-01 1.77169E-01

5.00 6.45000 0 0 -1.48654E+00 1.00000E+00
-1.94886E-

01 -9.71564E-02 2.89705E-01 1.94886E-01

4.80 6.45000 0 0 -1.34018E+00 1.00000E+00
-2.03006E-

01 -9.12409E-02 2.72066E-01 2.03006E-01

4.60 6.45000 0 0 -1.19448E+00 1.00000E+00
-2.11833E-

01 -8.48570E-02 2.53030E-01 2.11833E-01

4.40 6.45000 0 0 -1.05752E+00 1.00000E+00
-2.21461E-

01 -7.85423E-02 2.34201E-01 2.21462E-01

4.20 6.45000 0 0 -9.31259E-01 1.00000E+00
-2.32007E-

01 -7.24582E-02 2.16059E-01 2.32007E-01
4.00 6.45000 0 0 -8.03692E-01 1.00000E+00 2.51353E-01 -8.49203E-02 1.95786E-01 2.43608E-01
3.80 6.45000 0 0 -5.73926E-01 1.00000E+00 6.49222E-01 -1.90320E-01 1.47171E-01 2.56429E-01
3.60 6.45000 0 0 -1.21849E+00 1.00000E+00 - 2.74417E-01 3.29814E-01 2.70675E-01
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1.10328E+00 

3.40 6.45000 0 0 -8.37301E-01 1.00000E+00
-2.86597E-

01 -8.04764E-02 2.39968E-01 2.86597E-01

3.20 6.45000 0 0 -7.20895E-01 1.00000E+00
-3.04509E-

01 -7.36187E-02 2.19519E-01 3.04509E-01

3.00 6.45000 0 0 -5.93310E-01 1.00000E+00
-3.24810E-

01 -6.46289E-02 1.92713E-01 3.24810E-01

2.80 6.45000 0 0 -4.04105E-01 1.00000E+00
-3.48011E-

01 -4.71631E-02 1.40633E-01 3.48011E-01

2.60 6.45000 0 0 -1.96669E-01 1.00000E+00
-3.74781E-

01 -2.47189E-02 7.37079E-02 3.74781E-01

2.40 6.45000 0 0 -7.44285E-02 1.00000E+00
-4.06012E-

01 -1.01343E-02 3.02189E-02 4.06013E-01

2.20 6.45000 0 0 -4.72817E-02 1.00000E+00
-4.42923E-

01 8.67461E-03 2.09421E-02 4.42923E-01

2.00 6.45000 0 0 -1.28314E-01 1.00000E+00
-4.87215E-

01 2.83372E-02 6.25166E-02 4.87215E-01

1.90 6.45000 0 0 -2.62172E-01 1.00000E+00
-5.12858E-

01 -4.50919E-02 1.34457E-01 5.12858E-01
1.80 6.45000 0 0 -4.62670E-01 1.00000E+00 8.88796E-01 -8.39972E-02 2.50466E-01 5.41350E-01

1.70 6.45000 0 0 1.08812E-01 1.00000E+00
-

1.29557E+00 5.99271E-02
-6.23703E-

02 5.73194E-01

1.60 6.45000 0 0 8.61284E-02 1.00000E+00
-6.09019E-

01 1.80184E-02
-5.24538E-

02 6.09019E-01

1.50 6.45000 0 0 1.75171E-01 1.00000E+00
-6.49620E-

01 5.11451E-02
-1.13794E-

01 6.49620E-01

1.40 6.45000 0 0 9.34311E-03 1.00000E+00
-6.96021E-

01 1.20801E-01
-6.50301E-

03 6.96022E-01

1.30 6.45000 0 0 -3.76042E-01 1.00000E+00
-7.49561E-

01 -9.45278E-02 2.81867E-01 7.49562E-01

1.20 6.45000 0 0 -2.11961E-01 1.00000E+00
-8.12025E-

01 -5.77219E-02 1.72118E-01 8.12025E-01
1.10 6.45000 0 0 2.11456E+00 1.00000E+00 - -6.30851E-01 - 8.85846E-01
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8.50732E+00 1.87317E+00

1.00 6.45000 0 0 -1.07758E-01 1.00000E+00
-9.74430E-

01 2.31645E-01 1.05003E-01 9.74431E-01

0.95 6.45000 0 0 -4.06482E-01 1.00000E+00
-

1.02572E+00 1.51760E-01 4.16935E-01 1.02572E+00

0.90 6.45000 0 0 -5.00290E-01 1.00000E+00
-

1.08270E+00 -1.81654E-01 5.41664E-01 1.08270E+00

0.85 6.45000 0 0 -2.12769E-01 1.00000E+00
-

1.14639E+00 -8.18005E-02 2.43916E-01 1.14639E+00

0.80 6.45000 0 0 2.03166E-01 1.00000E+00 1.51744E+00 -8.56182E-02
-2.47463E-

01 1.21804E+00

0.75 6.45000 0 0 6.25002E-01 1.00000E+00
-

1.29924E+00 2.72324E-01
-8.12028E-

01 1.29924E+00

0.70 6.45000 0 0 5.26729E-01 1.00000E+00
-

1.39204E+00 5.62471E-01
-7.33230E-

01 1.39204E+00

0.65 6.45000 0 0 -1.54140E+00 1.00000E+00
-

1.49912E+00 -7.74941E-01 2.31075E+00 1.49912E+00

0.60 6.45000 0 0 -2.89206E-01 1.00000E+00
-

1.62405E+00 -4.59319E-01 4.69685E-01 1.62405E+00

0.55 6.45000 0 0 9.70465E-03 1.00000E+00
-

1.77169E+00 -2.83281E-02
-1.71937E-

02 1.77169E+00

0.50 6.45000 0 0 2.55393E+00 1.00000E+00
-

2.59862E+01 
-

2.28896E+00
-

4.97726E+00 1.94886E+00

0.48 6.45000 0 0 3.82539E-01 1.00000E+00
-

2.03006E+00 2.60436E-01
-7.76577E-

01 2.03006E+00

0.46 6.45000 0 0 5.26907E-03 1.00000E+00
-

2.11833E+00 6.37821E-01
-1.11616E-

02 2.11833E+00

0.44 6.45000 0 0 -6.62124E-01 1.00000E+00
-

2.21461E+00 -4.91759E-01 1.46635E+00 2.21462E+00

0.42 6.45000 0 0 3.15404E-01 1.00000E+00
-

1.51427E+02 
-

1.00947E+00
-7.31761E-

01 2.32007E+00

0.40 6.45000 0 0 -5.09269E-01 1.00000E+00
-

2.43608E+00 -4.16057E-01 1.24062E+00 2.43608E+00



 

R5-57 
 

0.38 6.45000 0 0 1.36556E-01 1.00000E+00
-

2.56429E+00 -5.39895E-01
-3.50168E-

01 2.56429E+00

0.36 6.45000 0 0 8.34954E-02 1.00000E+00
-

3.47495E+00 -7.77881E-01
-2.26001E-

01 2.70675E+00

0.34 6.45000 0 0 1.61742E-01 1.00000E+00
-

2.86597E+00 1.59213E+00
-4.63548E-

01 2.86597E+00
0.32 6.45000 0 0 -7.83054E-01 1.00000E+00 9.90475E+00 -7.99664E-01 2.38447E+00 3.04510E+00

0.30 6.45000 0 0 3.57629E-02 1.00000E+00 3.58843E+00 2.52771E-01
-1.16162E-

01 3.24810E+00

0.28 6.45000 0 0 3.46575E-01 1.00000E+00
-

3.48011E+00 1.34672E+00
-

1.20612E+00 3.48011E+00

0.26 6.45000 0 0 -2.46652E+00 1.00000E+00 1.53945E+01 
-

5.48702E+00 9.24403E+00 3.74781E+00

0.24 6.45000 0 0 1.75647E+00 1.00000E+00 1.21399E+01 
-

3.69668E+00
-

7.13148E+00 4.06013E+00

0.22 6.45000 0 0 -1.00638E+00 1.00000E+00 1.35494E+01 
-

1.49488E+00 4.45749E+00 4.42923E+00

0.20 6.45000 0 0 1.71676E-01 1.00000E+00
-

4.87215E+00 1.00635E+00
-8.36430E-

01 4.87215E+00

0.19 6.45000 0 0 -1.42609E+00 1.00000E+00 2.84408E+01 
-

6.57357E+00 7.31384E+00 5.12858E+00

0.18 6.45000 0 0 5.53923E-01 1.00000E+00 1.88426E+01 
-

2.05407E+00
-

2.99866E+00 5.41350E+00
0.17 6.45000 0 0 -4.42545E-01 1.00000E+00 1.01859E+01 2.08252E+00 2.53664E+00 5.73194E+00

0.16 6.45000 0 0 -1.10177E+00 1.00000E+00 2.80501E+01 
-

4.94037E+00 6.71000E+00 6.09019E+00
0.15 6.45000 0 0 -3.65427E+00 1.00000E+00 2.87556E+01 8.17365E+00 2.37389E+01 6.49620E+00

0.14 6.45000 0 0 9.48046E-01 1.00000E+00
-

1.38859E+01 2.21293E+00
-

6.59861E+00 6.96022E+00

0.13 6.45000 0 0 -3.64750E+00 1.00000E+00 3.03608E+01 
-

1.00898E+01 2.73403E+01 7.49562E+00

0.12 6.45000 0 0 1.24707E-01 1.00000E+00
-

8.12025E+00 3.39607E-01
-

1.01266E+00 8.12026E+00
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0.11 6.45000 0 0 -7.95266E+00 1.00000E+00 1.37413E+02 
-

2.36257E+01 7.04483E+01 8.85845E+00

0.10 6.45000 0 0 -5.27639E-01 1.00000E+00
-

1.04044E+01 1.93421E+00 5.14147E+00 9.74430E+00

0.095 6.45000 0 0 -1.63671E+00 1.00000E+00 1.69910E+01 
-

5.63007E+00 1.67880E+01 1.02572E+01

0.090 6.45000 0 0 -4.02834E-03 1.00000E+00
-

1.08270E+01 7.97454E-01 4.36148E-02 1.08270E+01

0.085 6.45000 0 0 3.95053E-01 1.00000E+00
-

1.15267E+01 1.51881E+00
-

4.52884E+00 1.14639E+01

0.080 6.45000 0 0 2.26467E-01 1.00000E+00
-

1.22488E+01 1.19878E+00
-

2.75845E+00 1.21804E+01

0.075 6.45000 0 0 6.69894E-01 1.00000E+00
-

1.29924E+01 2.91885E+00
-

8.70354E+00 1.29924E+01

0.070 6.45000 0 0 3.30943E+00 1.00000E+00
-

4.18887E+01 1.54497E+01
-

4.60687E+01 1.39204E+01

0.065 6.45000 0 0 1.41389E-01 1.00000E+00 2.56898E+01 4.61849E+00
-

2.11959E+00 1.49912E+01

0.060 6.45000 0 0 -1.28346E-01 1.00000E+00
-

1.62405E+01 7.75379E-01 2.08440E+00 1.62405E+01

0.055 6.45000 0 0 -9.08622E-01 1.00000E+00 5.69378E+01 
-

6.55676E+00 1.60980E+01 1.77169E+01

0.050 6.45000 0 0 3.95032E+01 1.00000E+00 5.63086E+02 2.58183E+02
-

7.69862E+02 1.94886E+01

0.048 6.45000 0 0 2.49486E+00 1.00000E+00
-

3.07547E+01 1.69852E+01
-

5.06472E+01 2.03006E+01

0.046 6.45000 0 0 -4.14021E-01 1.00000E+00
-

2.11833E+01 
-

2.94124E+00 8.77032E+00 2.11833E+01

0.044 6.45000 0 0 6.90904E-02 1.00000E+00
-

2.21461E+01 
-

1.08889E+00
-

1.53009E+00 2.21462E+01

0.042 6.45000 0 0 1.21869E+00 1.00000E+00
-

2.32007E+01 9.48222E+00
-

2.82745E+01 2.32007E+01

0.040 6.45000 0 0 -2.84811E-01 1.00000E+00
-

2.43608E+01 
-

2.32682E+00 6.93822E+00 2.43608E+01
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