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Disclaimer  

The Canadian Nuclear Safety Commission is not responsible for the accuracy of the 

statements made or opinions expressed in this publication, and does not assume liability with 

respect to any damage or loss incurred as a result of the use made of the information 

contained in this publication. 
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Abstract
	

This report describes the findings of a project “Statistical Analysis of Common Cause Failure 

Data to Support Safety and Reliability Analysis of Nuclear Plant Systems for the CNSC” 

under the contract No. 87055-12-0221. 

Analysis  of Common Cause Failures  (CCF)  is  an important element of  the Probabilistic 

Safety  Assessment (PSA)  of  systems important to safety  in a  nuclear power plant. Based on  

the conceptualization of  the CCF  event, many  probabilistic models have  been developed in 

the literature.  This Report provides a  comprehensive review of  CCF  modeling  techniques, 

which shows that the  a  modern method, called “General Multiple Failure  Rate Model”, is the  

most  suitable method for  probabilistic modeling  of  CCF  events.  Therefore, the GFMR  is  

described in detail in the  report  and adopted for  the  case  studies.  To estimate the parameters 

of  the GMFR  model, the  Empirical Bayes (EB) method is adopted. The  report describes the  

data mapping  methods and the EB  method for combining  data  from  different component  

groups and plants in the statistical estimation.  

This project presents detailed case studies to illustrate the data mapping and EB method. The 

case studies are based on CCF data for motor operated valves (MOVs). These case studies 

serve as templates to analyze CCF data from other safety systems. The report provides 

analysis methods to the CNSC staff to analyze CCF rates and evaluate the adequacy of input 

data used in the PSA of Canadian plants. 

This project demonstrates the development of the capacity to analyze CCF data in line with 

best international practices. 
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Section 1:
	
Introduction
	

1.1  Background  

In the context of Probabilistic Safety Assessments (PSA), Common Cause Failure (CCF) 

events arc a subset of dependent events in which two or more components fail within a short 

interval of time as a result of a shared (or common) cause. Common cause events are highly 

relevant to PSA due to their potential adverse impact on the safety and availability of critical 

safety systems in the nuclear plant. An accurate estimation of CCF rates is therefore 

important for a realistic PSA of plant safety systems. 

Due to lack of data, CCF rates/probabilities were estimated by expert judgment in early years 

of PSA. Over the years as the data were collected by the utilities and regulators world-wide, 

more formal statistical analysis methods for data analysis emerged to derive improved 

estimates of CCF rates. The estimates of CCF rates in line with the operating experience 

should be used in PSA in place of generic or expert judgment estimates. 

International Common Cause Failure Data Exchange (ICDE) is a concerted effort by 

undertaken by many countries to compile the CCF event data in a consistent manner. CCF 

event data are compiled by a third party (OECD) in a database with a copy maintained by the 

CNSC. The project aims to utilize the data compiled by ICDE for the estimation of CCF 

rates. 

This project first aims to understand the current status of CCF modeling techniques and 

international best practices. The underlying probability theory is carefully evaluated to 

facilitate the training of industry professionals in this area. For example, concepts underlying 

a current estimation method, Empirical Bayes (EB) method, are clearly illustrated through 

examples. 

This project presents detailed case studies to illustrate the data mapping and EB method for 

data analysis. The case studies are based on CCF data for motor operated valves (MOVs). 

These case studies serve as templates to analyze CCF data from other safety systems. The 

11  



 

 

        

   

        

       

    

 

 

 
   

 
  

 
 

 
 

 
   

 
  

 

     

     

     

    

    

    

       

  

 

 

 

 

	 

	 

 

RSP-0296

report provides analysis methods to the CNSC staff to analyze CCF rates and evaluate the 

adequacy of input data used in the PSA of Canadian plants. 

1.2  Objective  and Scope  

The main objective of this project is to analyze probabilistic modeling of CCF events and 

present statistical methods for the parameter estimation. Since CCF rates are used as input to 

the Probabilistic Safety Assessment (PSA), the application of logically sound model 

discussed in the report would improve the confidence in the final results of PSA.  

The scope of the project is as follows: 

 Perform a comparative study between the different methodologies used world-wide to 
assess the CCF parameters. These methods include: (1 ) Alpha factor, (2) Beta factor, (3) 
Multiple Greek letter, and (4) Binomial failure rate. 

 Explore the development of other modern methods of statistical analysis for the 
estimation of CCF rates. 

 Analyze statistically CCF events compiled in the ICDE database maintained by the 
CNSC. 

 Develop the calculation models of the CCF parameters for different population size and 
different testing schemes (staggered and non-staggered testing) 

	 Present case studies to illustrate the analysis of CCF data. The CCF events will include 
the following components: Batteries, Heat Exchangers, Diesel generators, Motor operated 
valves (MOV), Safety relief Valves (SRV), and Check valves. 

	 Investigate the technical aspects of the data mapping and Empirical Bayes (EB) method 
for statistical estimation of CCF rates and Alpha factors. 

1.3  Organization  

This draft report is divided into 6 Sections and 2 Appendices. In Section 2, probabilistic 

concepts underlying the CCF modeling techniques are discussed. Section 3 reviews the data 

mapping methods and Section 4 describes the Empirical Bayes (EB) method used in ICDE 

project for combining data from various plants. Section 5 presents two case studies based on 

the CCF data for motor operated valves (MOVs). In the last Section, conclusions and 

recommendations are presented. The first Appendix presents the literature review regarding 

method of CCF modeling. The second Appendix explains the EB method used by the Nordic 

members of the ICDE project. 
12  
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Section 2: 
Basic Concepts of CCF Modeling 

2.1  Common Cause Failures  (CCF)  

Nuclear power plant is a complex technological system which requires high level of 

operational safety and reliability. Safety systems include motor-operated valves (MOV), 

emergency diesel generators (EDG), water pumps, power batteries and many other devices 

depending on the functional requirement. In order to achieve high reliability, redundancy of 

various orders is added to safety systems. 

Most of the common causes can be classified into four types, namely, hardware equipment 

failure, human error during operation, environmental stress applied to components, and 

external events that causes stress (Mosleh et al., 1989). 

The key objective of this Section is to introduce the basic concepts and terminology 

associated with the modeling of common cause failures. The “General Multiple Failure Rate” 

(GMFR) model is described which is the basis of the CCF analysis in ICDE project. 

2.2  Homogeneous Poisson Process  

The probabilistic basis for CCF modeling is that the occurrences of failures in a single 

component are modeled as the homogeneous Poisson process (HPP). It means: (1) failures 

are purely random without any trend due to ageing, (2) occurrences of failure events are 

independent of each other, and (3) after a failure component is renewed to its original “as 

new” condition. 

In a time interval (0, t), the number of failures are given by the Poisson distribution as 

Note that the parameter ሄ denotes the failure rate, defined as the average number of failures 

per unit time. The reliability, i.e., no failure in a time interval (0, t) is given s 
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ቕቛቱቜ  ቭ  ቓ቟ቑቛቱቜ  ቭ  ናሿ  ቭ  ቢበሳለ   (2.2)   

Thus, the failure rate is a single parameter that determines the component reliability. Based 

on component reliabilities, the system reliability can be evaluated, as illustrated by the 

following example. 

2.3  General Multiple Failure Rate Model (GMFR)  

Historically, several conceptual probabilistic models of CCF events have been presented in 

the literature and they are reviewed in Appendix A. The General Multiple Failure Rate 

(GMFR) model has been a new and widely accepted model of CCF events. This model is 

also used in ICDE project. 

The basic idea is that a failure observed at the system level involving either a single 

component failure or a failure of k-components is caused by an external shock generated by 

independent HPPs. In short, n independent HPPs are generating external shocks that cause 

CFF events of various multiplicities. These HPPs are mutually exclusive, i.e., one HPP is in 

action at any given time. 

In an ቫ-component system, failure event data are described using the following parameters 

The failure events that are observed at the system level are caused by component failures. So 

it is assumed that component failures are caused by shocks modeled as HPPs. Since 

component failures produce system failure events, the failure rates at the system and 

component levels are related. 

Define 
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ዪዿሡሂ ቭ ቀ ቁ ሄዿሡሂ ቭ (2.3)

ቨ ቗ 
ሂ ሂ 
ቫ 

ዪሂ ቭዮቀ
ቨ
ቁ ሄዿሡሂ ቭዮዪዿሡሂ (2.4) 

ዿቡቖ ዿቡቖ 
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ሄ቗   

ሄቘ    
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ሄዿሡሂ  ቭ Failure  rate of  an HPP causing a CCF involving  k specific components   

The failure rates at the system and component levels are then related as 

2.4  Alpha Factors   

Based on the GMFR model, the alpha factors are defined as the following ratios of system 

CCF rates 

ዪ  
  ዿሡሂ 

ዺዿሡሂ ቭ  (2.5)   ዪሂ  

2.5  Illustrative Example   

Consider a redundant system with three components, as shown in Figure 2.1. The failure of 

an  ቦለዼ  component is modeled as an HPP  with the failure rate ሄዽ .  

Figure 2.1: A parallel   system with 3 components   

The  probability  of  failure  ቓዽቛ቗ቜ  and reliability  ቕዽቛ቗ቜ  of  the component ቦ  in the time 

interval ቛናሂ  ቗ቜ are   

ቓ      
ዽቛ቗ቜ ቭ ኔ ቧ ቢበሳድዮ  (2.6)   

15  



 

 

     
 ቕዽቛ቗ቜ ቭ ቢበሳድዮ 

(2.7) 

                               

 

 

 

 

 

 

ሄቖ 

ሄ቗ 

ሄቘ        

      

       

          

  

   

        

 

              ቓሇቛ቗ቜ ቭ ቓቖቓ቗ቓቘ ቭ ኌኔ ቧ ቢበሳ቎ዮነኌኔ ቧ ቢበሳ቏ዮነኌኔ ቧ ቢበሳቐዮነ (2.8) 
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(2.9) 
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(2.10) 
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2.5.1  1oo3  System  

Let's define a one-out-of-three system, which means at least one component should be 

reliable in order to assure that the system is reliable. The cut set of the system failure shown 

below.  

Figure 2.2: Cut set of 1oo3 system 

First consider that the system involves only independent failures of the components. In 

order to fail the system, all the three components must fail. Thus, the probability of failure of 

the system is 

Since  the symmetry  assumption is often adopted in the failure  analysis, all  the components 

would be  considered as similar/identical. Therefore, the component failure  rates are the same, 

denoted as  ሄቖሡቘ  ቭ  ሄቖ  ቭ  ሄ቗  ቭ  ሄቘ. Equation (2.8) can be simplified as  

Therefore, the reliability of the above system is 
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            ቕሇቛ቗ቜ ቭ ኖቕቖ቗ቓቖ ቦ ቕቖቘ ቭ ኖቢበ቗ሳ቎ሡቐዮኌኔ ቧ ቢበሳ቎ሡቐዮነ ቦ ቢበቘሳ቎ሡቐዮ 

(2.12) 

RSP-0296

If a  CCF  of  the system  is postulated, it means that all  the three  components should fail  

simultaneously with the failure rate ሄቖ቗ቘ. The  cut set of the system failure with CCF is shown 

below. 

Figure 2.3: Cut set   of 1oo3 system with CCF   

Since the CCF event is in series with the original cut set, each part should be reliable for 

the sake of system reliability. In this case, system reliability is modified as 

2.5.2  2oo3  System  

2oo3 system means that at least two components must be reliable to ensure the system 

reliability. The cut sets for the system failure are shown below. 

Figure 2.4: Cut sets of 2oo3 system 

Using the symmetry assumption, the system reliability without CCF is given as 
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ቕሇ
ሒቛ቗ቜ ቭ ቕሇቛ቗ቜኌቢበሳ቎቏ዮነኌቢበሳ቎ቐዮነኌቢበሳ቏ቐዮነኌቢበሳ቎቏ቐዮነ 

(2.13) 
ቭ ኌኖቢበ቗ሳ቎ሡቐዮ ቧ ንቢበቘሳ቎ሡቐዮነኄቢበኌቘሳ቏ሡቐ቟ሳቐሡቐነዮኈ 

     
   

 
ቘ ቭ ቢበቘሳ቎ሡቐዮቕሇቛ቗ቜ ቭ ቕቖ (2.14) 
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Figure 2.5: : Cut sets of 2oo3 system with CCF   

Taking into account of  CCF  events, the cut sets are  modified  as shown above.  The  

reliability  is given as  

2.5.3  3oo3 System  

Consider a 3oo3 system (i.e., a series system) in which all 3 components must be reliable to 

ensure the system reliability.  The system reliability without CCF  is given as 

Figure 2.6: Cut sets of 3oo3 system with CCF   

Taking into account four possible CCF events, all cut sets are shown above. The system 

reliability is given as 



 

 

                       
 

   

 
              

ቕሇ
ሒቛ቗ቜ ቭ ቕሇቛ቗ቜኌቢበሳ቎቏ዮነኌቢበሳ቎ቐዮነኌቢበሳ቏ቐዮነኌቢበሳ቎቏ቐዮነ 

(2.15) 
ቐቭ ኌቢበቘሳ቎ሡቐዮነኌቢበኌቘሳ቏ሡቐ቟ሳቐሡቐነዮነ ቭ ቢበኌቘሳ቎ሡቐ቟ቘሳ቏ሡቐ቟ሳቐሡቐነዮ ቭ ከበዮ 

 

            

     

    
    

 

  

  
   
   
   
   

 

 

 

 

  

 

     

 
 

  

 

      

      

     

      

  

 

Substituting the above failure rates into Equation (2.10) to (2.15) and assuming the 

operation time of T = 100 (month), the system reliability of in various k-oo-n configurations 

can be calculated (Table 2.2). It is clear that system reliability decreases when CCF events 

are taken into account in the system reliability analysis. Of course, the decrease in the 

reliability depends on the failure rate of CCF events. 
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2.5.4  Example   

Suppose failure rates of a motor-operated valve (MOV) in the 'fail to open' (FO) mode were 

given as shown in the Table 2.1.   

Table 2.1: Failure rates of a component 

ቨ 1 2 3 
ሄዿሡቘ 0.04321 0.001543 0.00463 

Table 2.2: Reliability of a k-out-of-3 system 

System System Reliability 
k-out-of-3 Without CCF With CCF 
1-out-of-3 3.93×10-2 2.48×10-2 

2-out-of-3 5.25×10-4 2.08×10-4 

3-out-of-3 2.35×10-6 9.29×10-7 

2.6  Summary  

This Section introduces the basic concepts and terminology associated with the modeling of 

common cause failures. The “General Multiple Failure Rate” (GMFR) model is described 

which is the basis of the CCF analysis in the current reliability literature. The GMFR model 

is utilized by the Nordic PSA Group for CCF analysis. 
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ኔ (2.16)ዪቖሡቖ ቭ ዪቖሡ቗ ቦ ዪ቗ሡ቗
ኌ቗ነ
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Section 3: 
Data Mapping Methods 

3.1  Introduction  

CCF data for nuclear power plant safety system are scarce, such that text book methods of 

statistical estimation are not applicable to analyze failure rates. Therefore, conceptual 

methods were developed to assimilate whatever CCF data available from systems of various 

sizes in analyzing a particular system, also called the “target” system. This process is in 

general called data mapping, i.e., mapping source data from systems of all different group 

sizes to the target k-oo-n system (Mosleh et al., 1989, Vaurio, 2007).

 The mapping down means the mapping of the source data from systems with CCG greater 

than n to a target k-oo-n system. The mapping up means the mapping of the source data 

from systems with CCG less than n to a target k-oo-n system. 

The mapping is an important system to augment the data for increasing statistical confidence 

in the estimation of CCF rates. This Section describes the common mapping procedures. 

3.2  Mapping Down of Data  

The  basic concept of  mapping  down the failure  rates from a  CCG  2 to the  rate of  CCG 1 is  

illustrated in Figure  3.1  (Vaurio, 2007).  In case  of  CCG 2,  CCF  rates  are  related to the 

component rates as follows:  ዪ቗ሡ቗  ቭ  ሄ቗ሡ቗ , ዪቖሡ቗  ቭ  ንሄቖሡ቗ . These  rates are  now mapped to 

CCG of  1 by  considering  that a  single  failure  can be  caused by  Poisson processes with rate 

ሄቖሡ቗  as well  as ሄ቗ሡ቗  , such that ዪቖሡቖ  ቭ  ሄቖሡቖ  ቭ   ሄቖሡ቗   ቦ  ሄ቗ሡ቗  . In other  words, the  mapping  

down lead to the rates for CCG of 1 as  

In general, this concept can be applied to mapping down the known CCF rates from CCG of 

ቫ to the rates of CCGቛ ቫ ቧ ኔቜ, which lead to the following relations: 
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ኔ ኔ ኔ 
ኌሂበቖ ዪዿሡሂበቖ ቭ 

ኌሂ ዪዿሡሂ ቦ 
ኌ ሂ ዪዿ቟ቖሡሂ (2.17)ነ ነ ነ

ዿ ዿ ዿ቟ቖ 

ቫ ቧ ቨ ቨ ቦ ኔ (2.18)ች ዪዿሡሂበቖ ቭ ዪዿሡሂ ቦ ዪዿ቟ቖሡሂቫ ቫ 

 

 

 

 

   

 

  

 

 

 

 

  

 

 

1 2 

ሄ቗ሡ቗ 

ሄቖሡ቗ ሄቖሡ቗ 

1 

ሄ቗ሡ቗ 

ሄቖሡ቗ 

    
           

ኔ ኔ ን ኔ (2.19)ዪዿሡሂበ቗ ቭ ዪዿሡሂ ቦ ዪዿ቟ቖሡሂ ቦ ዪዿ቟቗ሡሂ
ኌሂበ቗ ኌሂ ኌ ሂ ኌ ሂነ ነ ነ ነ
ዿ ዿ ዿ቟ቖ ዿ቟቗ 

  

    

    

   

 
    

 

 
    

 

 
    

 

ኔ (2.20)ዪቘሡቘ ቭ ዪቘሡ቙ ቦ ዪ቙ሡ቙ኗ 

ኔ ኖ (2.21)ዪ቗ሡቘ ቭ ዪ቗ሡ቙ ቦ ዪ቙ሡ቙ን ኗ 

ኖ ኔ (2.22)ዪቖሡቘ ቭ ዪቖሡ቙ ቦ ዪ቗ሡ቙ኗ ን 
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Figure 2.7: Mapping down CCF rates from   CCG 2 to 1    

The mapping down formula from CCG n to ( n-2)  can be written as    

For example, using Equation (2.18) failure rates from CCG 4 to 3 can be mapped as 

Equations (3.3)  and (3.4) are  consistent with the mapping  down formulas given by  

NUREG/CR-4780 listed in Table 2.3.  
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Table   2.3: Mapping down formulas   for CCG up to 4 (NUREG-4780).   
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    Size   of   system mapping to 

    3   2   1 

 ኖ  ኔ  ኔ  ኔ ዪቖሡቘ  ቭ ዪቖሡ቙  ቦ ዪ቗ሡ቙       ዪቖሡቖ  ቭ ዪቖሡ቙  ቦ  ኗ  ን      ዪ቗ሡ቙  ኔ  ን  ኔ  ኗ  ን 
ዪቖሡ቗  ቭ ዪቖሡ቙  ቦ ዪ቗ሡ቙  ቦ ዪቘሡ቙          ን  ኖ  ን  ኔ  ኖ  ኖ 

  4 ቦ ዪ቗ሡቘ  ቭ ዪ቗ሡ቙  ቦ ዪቘሡ቙         ዪቘሡ቙  ን  ኗ  ኗ  ኔ  ኔ 
ዪ቗ሡ቗  ቭ ዪ቗ሡ቙  ቦ ዪቘሡ቙  ቦ ዪ቙ሡ቙          ቦ ዪ቙ሡ቙  ኙ  ን    ኔ 

ዪቘሡቘ  ቭ ዪቘሡ቙  ቦ ዪ቙ሡ቙        ኗ 

 ን  ን  ኔ  ን ዪቖሡ቗  ቭ ዪቖሡቘ  ቦ ዪ቗ሡቘ        ኖ  ኖ ዪቖሡቖ  ቭ ዪቖሡቘ  ቦ      ዪ቗ሡቘ  ኖ  ኖ   3  
 ኔ  ቦ ዪቘሡቘ   ዪ቗ሡ቗  ቭ ዪ቗ሡቘ  ቦ ዪቘሡቘ        ኖ 

 ኔ 
  2   ዪቖሡቖ  ቭ ዪቖሡ቗  ቦ ዪ቗ሡ቗        ን 

 

 

     

        

 

 

           
 

 

   
    

  
         

concise manner:  

ሂ 

ዪዿሡሁ ቭ ዮ ቆዿሂሆዪሆሡሂ ባቬቯ ቛቨ ቭ ኔሂ ሆ ሂ ቪቜ 
ሆቡቖ 

(2.23) 

ቴብቢቯቢ ቆዿሂሆ ቭ 
ኌሆ 
ዿ
ነኌ ሂበሆ 
ሁበዿ
ነ 

ኌሂ 
ሁ
ነ 

ቛቨ ቲ ቯ ቲ ቫ ቧ ቪ ቦ ቨቜ 
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Kvam and Miller (2002) derived mapping  down formulas that can be  written in a  fairly 
	
	

In order to verify  this formula, take  ቫ ቭ ኗ and ቪ ቭ ኖ to map failure  rates from CCG 4 to  

3. Consider  ዪ቗ሡቘ   as an example with ቨ ቭ ን and ን ቲ ቯ ቲ ኖ from the above relation.  
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ኌ቗ነኌ቙በ቗ነ ኔ቗ ቘበ቗ቆ቗ሂ቗ ቭ 
ነ 
ቭ
ን (2.24)

ኌ቙ 
ቘ 

ኌቘነኌ቙በቘነ ኖ቗ ቘበቘ (2.25)
ቆ቗ሂቘ ቭ ቭ 

ኌ቙ነ ኗ 
ቘ 

ኔ ኖ (2.26)ዪ቗ሡቘ ቭ ቆ቗ሂ቗ዪ቗ሡ቙ ቦ ቆ቗ሂቘዪቘሡ቙ ቭ ዪ቗ሡ቙ ቦ ዪቘሡ቙ን ኗ 

   3.3.1 NUREG-4780 Procedure 
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Equation (3.11) is the same as Equation (3.6). 

3.3  Mapping Up  of Data  

The mapping down is a rather deterministic procedure. It means that given a set of failure 

rates of a larger system, the estimation of rates for a smaller system is straightforward. 

However, estimation of failure rates by mapping up from a smaller system to a larger one is 

not deterministic, and extra assumptions have to be introduced in the estimation. 

Figure 2.8: Mapping up from CCG 1 to 2. 

An illustration of mapping from size 1 to 2 is shown in Figure 3.2. Here the ideas is that the 

HPP with failure rate ሄቖሡቖ can cause a CCF event in CCG 2 with a probability  ሊ, and it can 

also cause single failures with probability  ቛኔ  ቧ  ሊቜ. Based on this thinking, the following  

mapping up equations are obtained:   
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        ዪቖሡ቗ ቖሡቖ ቭ ንቛኔ ቧ ሊቜዪ  (2.28) 

    ዪ቗ሡ቗ ቭ ሊዪቖሡቖ (2.27) 

It can be  seen that an additional parameter, ሊ  , is needed to perform the mapping  up 

procedure. Table 2.4 provides the mapping up formulas for CCG of  1 to 4.  

     

     

 
 

 

 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

   

 

 

 

 

   

   

 
 

 

 
     

   

     

     

   

     

     

     

   

 

  
 
 

   

     

  

   

     

  
 
 

   

    

       

   

 

  
 
 

   

       

       

   

Size of system mapping to 

2 3 4 

Si
ze

 o
f s
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1 
ዪቖሡ቗ ቭ ንቛኔ ቧ ሊቜዪቖሡቖ 

ዪ቗ሡ቗ ቭ ሊዪቖሡቖ 

ዪቖሡቘ ቭ ኖቛኔ ቧ ሊቜ቗ዪቖሡቖ 

ዪ቗ሡቘ ቭ ኖሊቛኔ ቧ ሊቜዪቖሡቖ 

ዪቘሡቘ ቭ ሊ቗ዪቖሡቖ 

ዪቖሡ቙ ቭ ኗቛኔ ቧ ሊቜቘዪቖሡቖ 

ዪ቗ሡ቙ ቭ ኙሊቛኔ ቧ ሊቜ቗ዪቖሡቖ 

ዪቘሡ቙ ቭ ኗሊ቗ቛኔ ቧ ሊቜዪቖሡቖ 

ዪ቙ሡ቙ ቭ ሊቘዪቖሡቖ 

2 

ዪቖሡቘ ቭ 
ኖ 
ን 
ቛኔ ቧ ሊቜዪቖሡ቗ 

ዪ቗ሡቘ ቭ ሊዪቖሡ቗ ቦ ቛኔ 

ቧ ሊቜዪ቗ሡ቗ 

ዪቘሡቘ ቭ ሊዪ቗ሡ቗ 

ዪቖሡ቙ ቭ ንቛኔ ቧ ሊቜ቗ዪቖሡ቗ 

ዪ቗ሡ቙ ቭ 
ኘ 
ን 
ሊቛኔ ቧ ሊቜዪቖሡ቗ 

ቦ ቛኔ ቧ ሊቜ቗ዪ቗ሡ቗ 

ዪቘሡ቙ ቭ ሊ቗ዪቖሡ቗ ቦ ንሊቛኔ ቧ ሊቜዪ቗ሡ቗ 

ዪ቙ሡ቙ ቭ ሊ቗ዪ቗ሡ቗ 

3 

ዪቖሡ቙ ቭ 
ኗ 
ኖ 
ቛኔ ቧ ሊቜዪቖሡቘ 

ዪ቗ሡ቙ ቭ ሊዪቖሡቘ ቦ ቛኔ ቧ ሊቜዪ቗ሡቘ 

ዪቘሡ቙ ቭ ሊዪ቗ሡቘ ቦ ቛኔ ቧ ሊቜዪቘሡቘ 

ዪ቙ሡ቙ ቭ ሊዪቘሡቘ 
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Table   2.4: Formulas for mapping up failure   rates   for CCG 1 to 4 (NUREG-4780).   
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      ዪሂ቟ቖሡሂ቟ቖ ቭ ሀሂሂሂ቟ቖዪሂሡሂ (2.29) 

   

 

  

  

  

  

  

    

      

      

          

  
 
             

following mapping up formulas: 

ዪ቗ሡ቗ ቭ ሀቖሂ቗ዪቖሡቖ (2.30) 

ዪቖሡ቗ ቭ ንኌኔ ቧ ሀቖሂ቗ነዪቖሡቖ (2.31) 

ዪቘሡቘ ቭ ሀ቗ሂቘዪ቗ሡ቗ ቭ ሀ቗ሂቘሀቖሂ቗ዪቖሡቖ (2.32) 

ዪ቗ሡቘ ቭ ኖኌኔ ቧ ሀ቗ሂቘነዪ቗ሡ቗ ቭ ኖኌኔ ቧ ሀ቗ሂቘነሀቖሂ቗ዪቖሡቖ (2.33) 

ዪቖሡቘ ቭ 
ኖ 
ን 
ዪቖሡ቗ ቧ ኖኌኔ ቧ ሀ቗ሂቘነዪ቗ሡ቗ ቭ ኖኄኔ ቧ ኌን ቧ ሀ቗ሂቘነሀቖሂ቗ኈዪቖሡቖ (2.34) 

        

        

     

 

    

  

     
  

       

ቛቫ ቦ ኔቜዺሂ቟ቖሂሂ቟ቖ (2.35)ሀሂሂሂ቟ቖ ቭ 
ኌቫ ቦ ዺ቗ሂሂ቟ቖ ቦ ዏ ቦ ዺሂ቟ቖሂሂ቟ቖነዺሂሂሂ 
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3.3.2  Method of  Vaurio  (2007)  

Since it is unreasonable to assume a single parameter ሊ for all the CCG sizes and CCF events, 

Vaurio (2007) proposed a set of different parameters for the mapping up from ቫ to ቫ ቦ ኔ: 

Substituting successively ቫ ቭ ንሂ ኖሂ ኗሂ ሆ and ቭ ቫ ቧ ኔሂ ቫ ቧ ንሂሆ , equation (3.14) leads to the 

It can be seen that all the total failure rates ዪዿሡሂ can be represented by ዪቖሡቖ multiplied by a 

product of the extra parameters. If we set all the parameters as the same and express the 

traditional mapping up results listed in Table 2.4 in terms of ዪቖሡቖ, we can see that the two 

mapping up procedures generate the same results. 

The value of this parameter ሀሂሂሂ቟ቖ  is not known a priori. Vaurio (2007) proposed the 

following formula that uses alpha factors. 

Compared to the  traditional mapping  up  process which utilizes a  single extra  parameter ሊ, 

the introduction of  ሀሂሂሂ቟ቖ  is making  more  sense and  does not completely  rely  on  expert 

judgments.  
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3.4  Summary  

Since the CCF data are sparse, probabilistic concepts are developed to borrow the data 

from different CCG sizes for the estimation of CCF in a target system. This Section provides 

an overview of the up and down mapping of the data and discusses underlying concepts. 

The data mapping methods will be utilized in the Bayesian analysis and the case studies 

presented in next Sections. 

. 
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Section 4: 
Statistical Estimation of Failure Rates 

4.1  Introduction  

After collecting the CCF data, next step is to estimate failure rates. The maximum likelihood 

(ML) method is a standard estimation method. Since CCF dataset are sparse, ML estimates 

are not considered robust. Also the confidence interval associated with the rates tends to be 

fairly wide due to lack of data. Therefore, the development of the Bayesian estimation 

method has been actively pursued by PSA experts. 

In the Bayesian method, a prior distribution is assigned to the failure rate, which serves the 

purpose of modeling parameter (or epistemic) uncertainty associated the failure rate. Now the 

problem is shifted to the estimation of the prior distribution. In the context of Poisson process 

model, the gamma distribution is a conjugate prior to the failure rate, which simplifies 

considerably the mathematical steps associated with the Bayesian updating of failure rate. 

The remaining problem is the estimation of parameters of the gamma prior. For this purpose, 

Empirical Bayes (EB) has been popularly used in the reliability literature. The EB method 

also allows to combine the data from different sub-systems and plants. The Bayesian 

modeling of the failure rate using gamma prior and applying the EB method for estimation is 

referred to as Parametric Empirical Bayes (PREB) in the CCF literature. PREB has been 

adopted by Nordic countries for the estimation of CCF rates. 

This Section describes the maximum likelihood (MLE) and the Parametric Empirical Bayes 

(PREB) methods for the estimation of CCF rates. A numerical example is presented to 

compare the results obtained by these two methods. 

4.2  Maximum Likelihood  Estimation (MLE)  

The  maximum  likelihood is the simplest  method  for  the estimation of  the  failure  rate of  a  

HPP  model. If ቑዽ failures are  observed in the duration ቗ዽ, the failure  rate and the associated  

standard error are  estimated as (Crowder et al. 1991):  
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ቑዽ
ሄሹዽ ቭ (4.1) 

቗ዽ 

ቑዽ (4.2)
ላኌሄሹዽነ ቭ ዉ ቗቗ዽ 

  4.3.1 Basic Concepts 

         

 

     

       

       

  

       
      

 

ሩበቖዻሩሄዽ ቢበሪሳድ (4.3)ሉቛሄዽቜ ቭ ሂ ሄዽሂ ዺሂ ዻ ቱ ና 
ዢቛዺቜ 

 

           
 ቐ ቭ ዺሡዻ and  ቙ ቭ ዺሡዻ቗  

(4.4) 

  

   
  

 
ቢበሳድዮድቛሄዽ቗ዽቜ

የድ (4.5)቏቟ቑዽሢሄዽሂ ቗ዽሿ ቭ 
ቑዽሉ 

   

         

   
   

ሩ቟የድበቖቛዻ ቦ ቗ዽቜቛሩ቟የድቜሄዽ ቢበቛሪ቟ዮድቜሳድ (4.6)ቭቛሄዽሢቑዽሂ ቗ዽቜ ቭ 
ዢቛዺ ቦ ቑዽቜ 

   

                     
 ቐሂዽ ቭ ቛዺ ቦ ቑዽቜዅቛዻ ቦ ቗ዽቜ ኤ኱ኧ ቙ሁዽ ቭ ቛዺ ቦ ቑዽቜሡቛዻ ቦ ቗ዽቜ቗ 

(4.7) 


	

 

RSP-0296

Using the CCF data from an individual system or the mapped data, the MLE of failure rate is 

fairly easy to compute. 

4.3  Bayesian  Method  

In the Bayesian Method, a prior distribution, ሉቛሄቜ, is assigned to the failure rate ሄ, which 

is usually determined based on the past experience and expert judgment. The conjugate prior, 

the gamma prior distribution, is a common choice due to mathematical simplicity and its 

flexibility to fit various types of data (Carlin and Louis, 2000) 

The mean and variance of the prior are
	

Poisson likelihood for the failure events is given as 

The posterior of the failure rate is also a gamma distribution: 

The mean and variance of the gamma posterior are given as 
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቗ ቭ ዮ ቗ዽ 

ሂ 

ዽቡቖ 
(4.8) 

቗ዼ ቭ ቗ ቧ ቪ቞ት ቛ቗ዽቜ (4.9) 

ቪ ቭ ዮ ቴዽቑዽሡ቗ዽ 

ሂ 

ዽቡቖ 

(4.10) 

ቖ ቭ ቕ ዮ ቴዽቛቑዽሡ቗ዽ 

ሂ 

ዽቡቖ 

ቧ ቪቜ቗ ኺካከኵከ ቕ ቭ ኔሡቛኔ ቧ ዮ ቴዽ ቗ 
ሂ 

ዽቡቖ 

ቜ (4.11) 

ቐቕ ቭ ቪ (4.12) 

቙ቕ ቭ ቖ ቦ ቐቕሡ቗ዼ (4.13) 

ቲዽ ቭ ቗ዽሡቛ቗ዽ ቦ ቐቕሡ቙ቕቜ (4.14) 
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Typically the mean the of the posterior is reported as the estimate of the failure rate. 

4.3.2  Empirical Bayes Method  

Empirical Bayes (EB) is a method for the estimation of parameters of a prior distribution 

used in the Bayesian analysis. In this Section EB method proposed by Vaurio (2007) is 

described, since it is adopted by the Nordic PSA group. 

The basic idea is that the failure data of ቫ components are generated by a Poisson process 

and the failure rate for each component is a realization from a single Gamma prior with 

hyper-parameters ዺ and ዻ. The EB method is applied to estimate the parameters ዺ and ዻ 

using the past event data. Then the distribution for a particular plant is obtained from the 

updated posterior of the distribution, as described in the previous Section. A novel feature is 

that in the pooling of the data collected from different systems, proper weights are assigned. 

The steps of this method are  given in Table 4.1.  

Table   4.1: EB method   for estimating the gamma prior from data   
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ቴዽ ቭ ቲዽሡ ዮ ቲዾ 

ሂ 

ዾቡቖ 

(4.15) 

ዺ ቭ ቐ቗ሡ቙ and  ዻ ቭ ቐሡ቙ (4.16) 

 

 

   
 

   

     

        

        

        

        

        

        

        

        

 

  
 

 

ቦ ቑዽ 
቗ዽ 

(106h) 
MLE Vaurio's EB 

Mean S.D. ቴዽ Mean S.D. 

1 31 236.9020 0.1309 0.0235 0.1539 0.1343 0.0238 

2 157 115.9440 1.3541 0.1081 0.1534 1.3532 0.1077 

3 30 36.8120 0.8150 0.1488 0.1513 0.8229 0.1480 

4 13 7.5970 1.7112 0.4746 0.1405 1.6664 0.4469 

5 7 5.4660 1.2806 0.4840 0.1358 1.2723 0.4525 

6 7 1.6890 4.1445 1.5665 0.1070 3.2439 1.1536 

7 0 1.1230 0.0000 0.0000 0.0926 0.4846 0.5089 

8 0 0.5520 0.0000 0.0000 0.0655 0.6974 0.7323 
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Note  that the initial value of  the weight ቴዽ is ኔሡቫ. Iterating  through Equation (4.10) to 

(4.15) until ቐቕ, ቙ቕ and ቴዽ  converge, the estimates of  the  posterior  mean and variance  are  

obtained.  

4.4  Numerical Example  

The  data, (ቑዽ,቗ዽ), regarding the  number  of  failures and time of  exposure  for a  group of 8  

components are taken from Vaurio (1992)  and summarized in Table 4.2.  

Table   4.2:   MLE and   EB estimates of failure rates  

MLE  estimates are  shown for  all  the  components. EB method given  in Table 4.1  leads to  

the following  estimates:  ዺ  ቭ  ናህኜናኚና  and  ዻ  ቭ  ናህኚኗኛኘ . Then posterior  mean and standard 

deviation (S.D.) were computed for each component. 
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The mean and standard deviation of failure rates of a selected set of components are 

compared in Figures 4.1. 

Figure 4.1 (a): Component 2  

As seen from Table 4.2 that component 2 has large number of failures in a relatively large 

exposure time. Therefore, the MLE and EB estimates of the mean and SD are almost the 

same. 

Figure 4.1 (b): Component 6
	
	 

Component 6 has a relatively small number of failures and the exposure time. In this case,  

the EB estimate of mean and SD are smaller than the corresponding ML estimates.  
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Figure 4.1 (c): Component 7  

Figure 4.1: Comparison of   mean and SD of failure rates (MLE and EB methods)   

In case of component 7, no failures have been recorded. Therefore, MLE point estimates 

are zero. Nevertheless, EB provides estimates of mean and SD. This is a useful feature of EB 

method. 

Prior and posterior distributions of the failure rate for selected components are shown in 

Figures 4.2 to 4.4. As expected, posterior distributions are narrower (less uncertain) than the 

prior distributions. 
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Figure 4.2: Distribution of the failure rate: component 1  
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Figure 4.3: Distribution of the failure rate: component 4  
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Figure 4.4: Distribution of the failure rate: component 8 

The median and 95th percentile of posterior failure rates are given in Table 4.3. 

Table 4.3: The median and 95th percentile of the failure rates from posterior distribution 

Component ቦ Median 95% 

1 0.1329 0.1756 

2 1.3503 1.5351 

3 0.8140 1.0805 

4 1.6266 2.4630 

5 1.2191 2.0963 

6 3.1082 5.3447 

7 0.3225 1.5031 

8 0.4640 2.1630 
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4.5  Summary  
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In this chapter, MLE and EB methods are described for the estimation of failure rates. In case 

of a small data set, the ML estimate tends to have larger uncertainty. The EB method is 

useful in pooling the data and also estimating failure rates in cases of zero observations of 

failure. 
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  5.2 Example 1: Motor Operated Valves 

 

 

   
 

  

 

 

  

 

 

  

 

System 
 size 

 No. of 
systems   Total Time No. of failures  

ቫ   ቪ   ቪ*18*12 
 (month) ኔሡቫ   ንሡቫ   ኖሡቫ   ኗሡቫ   ኘሡቫ   ኙሡቫ   

 2  49 10584   36  1  0  0  0  0 
 4  17  3672  18  2  10  1  0  0 
 8  8  1728  6  1  0  0  0  0 
 16  5  1080  13  1  0  0  0  1 
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Section 5: 
Case Studies 

5.1  Introduction  

This Section presents two comprehensive case studies of analyzing the CCF data for the 

motor operated valves (MOV). The purpose is to illustrate the application of data mapping 

and statistical estimation methods (MLE and EB) in a practical setting. 

The key objective is to perform statistical analysis suing the MLE and EB and method before 

and after the data mapping. This detailed analysis allows to understand the impact of 

assumptions used in each analysis. The target system is a parallel system of 4 MOVs. 

The  first data set consists  of  CCF  data  from  MOV  CCG of  2, 4,  8 and  16, as shown in Table 

5.1. These  data  were  collected over an 18 year  period.  The  MOV  failure  mode is “failure  to  

open” (FO).  

In the ICDE database component states are defined as complete failure (C), degraded (D), 

incipient (I) and working (W). In a formal analysis, impact vectors are assigned depending on 

the state of the system. For sake of simplicity (and lack of data), no distinction is made 

among the states C, D and I, and they are treated as the failure. 

Table   5.1: CCF Data:   case study 1  
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5.2.1  MLE without Data Mapping  

 

         

       

   

 Multiplicity ቨ    1  2  3  4 

 Number of failures  ቑዿሡ቙    18  2  10  1 

  Mean of failure rate (/month) ዪ  ዿሡ቙  
-3 4.90×10  -4 5.45×10  -3 2.72×10  2.72×10-4  

 Standard deviation (/month) ላኌዪዿሡ቙ነ   1.16×10-3  3.85×10-4  8.61×10-4  2.72×10-4  

 α  factor  ዺዿሡ቙   5.81×10-1  6.45×10-2  3.23×10-1  3.23×10-2  
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In this case only the data for CCG collected from a population of 17 systems over an 18 year 

period is analyzed using the MLE method. There is no data mapping considered here. The 

mean and SD of failure rates ዪዿሡ቙, and corresponding α-factors are given in Table 5.2.  

Table   5.2: MLE results: case study 1   

Using  the relation of  ዪ ቭ ኌ቙ዿሡ቙   ነሄ
ዿ ዿሡ቙, the  mean and variance  of the component specific  

failure  rates can  also be  calculated.  Note  that α   factors are  calculated from Equations (2.4)  

and (2.5).  

5.2.2  MLE with  Data Mapping  

The CCF data of CCG 8 and 16 are mapped down to CCG 4 and data from CCG 2 is 

mapped to CCG 4. In the mapping up the data, parameter ሊ is assumed as 0.2 according to 

NUREG-4780. The results of data mapping are given in Table 5.3. 

In MLE analysis, all the mapped number of failures of a particular multiplicity koon are 

summed, as well as the corresponding exposure times. The total operation time is 17064 

month. The MLE analysis of mapped data leads to the results shown in Table 5.4. The 

comparison of results obtained with and without mapping is given in the last Section of the 

report. 
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Table   5.3: CCF data mapped to CCG of 4     

     

         

 
       
       

 
       
       

 
       
       

 
       
       

        

 

       

System 
size Number of failures ቑዿሡሂ 

ቫ ኔሡቫ ንሡቫ ኖሡቫ ኗሡቫ ኘሡቫ ኙሡቫ 

2 
original 36 1 0 0 0 0 
mapped 36 0.6400 0.3200 0.0400 0 0 

4 
original 18 2 10 1 0 0 
mapped 18 2 10 1 0 0 

8 
original 6 1 0 0 0 0 
mapped 3.5714 0.2143 0 0 0 0 

16 
original 13 1 0 0 0 1 
mapped 4.0456 0.4209 0.1099 0.0082 0 0 

sum mapped 61.6170 3.2752 10.4299 1.0482 For HPP 
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Table 5.4: MLE results with data mapping: case study 1  

Multiplicity ቨ 1 2 3 4 
Number of failures ቑዿሡ቙ 61.6170 3.2752 10.4299 1.0482 
Mean of failure rate (/month) ዪዿሡ቙ 3.61×10-3 1.92×10-4 6.11×10-4 6.14×10-5 

Standard deviation (/month) ላኌዪዿሡ቙ነ 4.60×10-4 1.06×10-4 1.89×10-4 6.00×10-5 

α factor ዺዿሡ቙ 8.07×10-1 4.29×10-2 1.37×10-1 1.37×10-2 

5.2.3  Empirical Bayes (EB)  without Data Mapping  

EB  method was applied  to CCF  dart for CCG of 4.  The  parameters of the  gamma  prior  

were  estimated as  ዺ  ቭ  ናህኜኖኙኚ and ዻ  ቭ  ኗኖኗህኗኚኖኖ. The  posterior  mean and SD of  failure  

rates are  given in Table 5.5. The  prior and posterior  distributions  of  the system level failure  

rates are plotted in  Figure  5.1.  
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Table   5.5: Posterior   Mean and SD of   failure rate without data mapping     

 Multiplicity ቨ    1  2  3  4 
No. of failures  ቑዿሡ቙    18  2  10  1 

 Mean of failure rate (/month) ዪዿሡ቙   4.61×10-3  7.15×10-4  2.66×10-3  4.72×10-4  

 Standard deviation (/month) ላኌዪዿሡ቙ነ   1.06×10-3  4.17×10-4  8.05×10-4  3.39×10-4  

  α factor  ዺዿሡ቙   5.45×10-1  8.45×10-2  3.15×10-1  5.57×10-2  
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Figure 5.1: Failure rate distribution without data mapping: case study 1  
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Failure rate ዪቖሡ቙ ዪ቗ሡ቙ ዪቘሡ቙ ዪ቙ሡ቙ 

ዺ 7.0049 0.8436 0.3118 0.3799 
ዻ 1902.2505 2534.1352 377.2051 2429.8139 

Table   5.8: Parameters of Priors (mapped data)    
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5.2.4  EB  with Data Mapping  (Multiple Priors)  

In this case mapped data given in Table 5.3 is used in EB analysis. A prior distribution is 

assigned to each failure rate ዪዿሡ቙ሂ ቨ ቭ ኔሂ ህ ህ ሂኗህ This way, there are 4 gamma priors and 4 sets 

of distribution parameters are estimated. 

Table 5.6: Number and exposure times of 1oo4 failures after data mapping 

System 
size ቫ ቑቖሡ቙ ቗ሂ (month) 

2 36 10584 
4 18 3672 
8 3.5714 1728 
16 4.0456 1080 

As an example, 1oo4 failure  mapped data given  in Table 5.3  is  analyzed. The  number  of  

failures after data  mapping  and the corresponding  exposure  time are  given in Table 5.6. The  

EB analysis leads to the posterior mean of - ዪቖሡ቙ as 4.49×10 3 failures per month.  

Table   5.7: Posterior Mean and SD of   failure rates with data mapping   

Multiplicity ቨ 1 2 3 4 

Mean of failure rate (/month) ዪዿሡ቙ 4.49×10-3 4.58×10-4 2.55×10-3 2.26×10-4 

Standard deviation (/month) ላኌዪዿሡ቙ነ 8.97×10-4 2.72×10-4 7.93×10-4 1.93×10-4 

α factor ዺዿሡ቙ 5.81×10-1 5.94×10-2 3.30×10-1 2.93×10-2 

Repeating  the above  procedure, results were  obtained remaining  multiplicities as shown in  

Table 5.7. Parameters of the gamma prior are  given in Table 5.8.  
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Figure 5.2: Failure rate distributions with data mapping (multiple priors) 

The prior and posterior distributions of the failure rates are plotted in Figure 5.2. 

5.2.5  EB with Data Mapping (Single  Prior) 

In this case, it is assumed that a single gamma prior is applicable to entire mapped data given 

in Table 5.3, which contains 16 different values of the number of failures and corresponding 

exposure times. EB method lead to the following estimates ዺ ቭ ናህኗኜናኜ and ዻ ቭ ኗኔኛህኘኛኚኙ. 

Results are tabulated in Table 5.9 and distributions are plotted in Figure 5.3. 
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Table   5.9: Posterior mean and of   failure rates with data mapping     

 

Multiplicity  ቨ   1  2  3  4  
No. of failures  ቑዿሡ቙   18  2  10  1  
Mean of failure rate (/month)  ዪ  ዿሡ቙  4.52×10-3  6.09×10-4  2.56×10-3  3.64×10-4  

Standard deviation (/month)  ላኌዪዿሡ቙ነ   1.05×10-3  3.86×10-4  7.92×10-4  2.98×10-4  

α   factor  ዺ  ዿሡ቙  5.61×10-1  7.56×10-2  3.18×10-1  -4.52×10 2  
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Figure   5.3: Failure rate distributions with data mapping (single prior)     
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 No.  Method ቇቖሡ቙   ቇ቗ሡ቙   ቇቘሡ቙   ቇ቙ሡ቙   

 M1  MLE without data mapping 4.90×10-3  5.45×10-4  2.72×10-3  2.72×10-4  

 M2  MLE with data mapping 3.61×10-3  1.92×10-4  6.11×10-4  6.14×10-5  
 M3  EB without data mapping 4.61×10-3  7.15×10-4  2.66×10-3  4.72×10-4  

 M4  EB with data mapping (multiple priors)  4.49×10-3  4.58×10-4  2.55×10-3  2.26×10-4  

 M5     EB with data mapping (single prior)  4.52×10-3  6.09×10-4  2.56×10-3  3.64×10-4  
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5.2.6  Comparison of Results: Case Study 1  

In order to understand the effect assumptions associated with 5 estimation methods, the mean 

of the failure rates are compared in Table 5.10 and graphically shown in Figure 5.4. 

Table   5.10:   Mean failure   rates (per month) by different methods: case study 1   
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Figure 5.4: Comparison of mean failure rates: case study 1 

	 MLE with data mapping (M2) leads to lower values of mean failure rate as compared 
to that without data mapping (M1). 

	 EB with data mapping and single prior (M5) leads to higher mean rate than MMLE 
with data mapping (m2). 

Table 5.11: SD of failure rates by different methods: case study 1 

No. Method SD(ቇቖሡ቙) SD(ቇ቗ሡ቙) SD(ቇቘሡ቙) SD(ቇ቙ሡ቙) 

M1 MLE without data mapping 1.16×10-3 3.85×10-4 8.61×10-4 2.72×10-4 

M2 MLE with data mapping 4.60×10-4 1.06×10-4 1.89×10-4 6.00×10-5 

M3 EB without data mapping 1.06×10-3 4.17×10-4 8.05×10-4 3.39×10-4 

M4 EB with data mapping (multiple priors) 8.97×10-4 2.72×10-4 7.93×10-4 1.93×10-4 

M5 EB with data mapping (single prior) 1.05×10-3 3.86×10-4 7.92×10-4 2.98×10-4 
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    No. Method ዺቖሡ቙ ዺ቗ሡ቙ ዺቘሡ቙ ዺ቙ሡ቙ 

M1 MLE without data mapping 5.81×10-1 6.45×10-2 3.23×10-1 3.23×10-2 

M2 MLE with data mapping 8.07×10-1 4.29×10-2 1.37×10-1 1.37×10-2 

M3 EB without data mapping 5.45×10-1 8.45×10-2 3.15×10-1 5.57×10-2 

M4 EB with data mapping (multiple priors) 5.81×10-1 5.94×10-2 3.30×10-1 2.93×10-2 

M5 EB with data mapping (single prior) 5.61×10-1 7.56×10-2 3.18×10-1 4.52×10-2 

Empirical NUREG/CR-5497 9.69×10-1 6.50×10-3 2.50×10-3 2.22×10-2 
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Figure 5.5: Comparison of standard deviations of failure rates by different methods 

	 SD of failure rate obtained by EB methods (M3 – M5) is fairly close. 
	 SD of EB method is slightly smaller than than that of MLE without data mapping 

(M1). 

Table   5.12: Alpha factors by different method: case study 1   

In Table 5.12, alpha factors are  compared along  with the values given in NUREG/CR-5497  

for 4- HPCI/RCIC injection MOV. Graphical comparison is shown in Figure  5.6. 
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Figure 5.6: Comparison of alpha factors by different methods 

	 ቞ቖሡ቙ obtained by MLE without data mapping (M1) and EB (M3-M5) are in close 
agreement. 

	 ቞቗ሡ቙ obtained by all the methods (M1 – M5) is larger than the NUREG value. EB 
(M5) gives a higher value than MLE (M2). MLE 

	 ቞ቘሡ቙ obtained by EB (M5) is higher than MLE with data mapping (M2). All M1-M5 
estimates are higher than NUREG value.  

	 ቞቙ሡ቙ obtained by EB (M5) is higher than MLE with data mapping (M2). All EB 
estimates (M3-M5) estimates are higher than NUREG value.  

	 A possible reason for CCF rate by M1-M5 being higher than NUREG is that the 
impact vectors are not considered in the present analysis. Because of which, estimates 
M1-M5 are more pessimistic (or conservative). 
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5.3  Example 2:   Larger MOV Data  

The second data set consists of MOV CCG of 2, 4, 8 12, 16 and 24. The operation time for 

all the systems is 18 years and only one failure mode FO is considered (see Table 5.13). 

Table 5.13: CCF data: case study 2 

System 
size 

No. of 
systems Total Time No. of failures 

ቫ ቑ ቑ*18*12 
(month) ኔሡቫ ንሡቫ ኖሡቫ ኗሡቫ ኘሡቫ ኙሡቫ 

2 412 88992 154 8 0 0 0 0 
4 332 71712 209 10 12 11 0 0 
8 414 89424 331 7 2 0 0 0 
12 3 648 28 0 0 3 0 0 
16 8 1728 14 2 1 0 0 1 
24 2 432 16 2 0 0 0 0 

5.3.1  MLE without Data Mapping  

Table 5.14: MLE results without data mapping: case study 2 

Multiplicity ቨ 1 2 3 4 

No. of failures ቑዿሡ቙ 209 10 12 11 

Mean of failure rate (/month) ዪዿሡ቙ 2.91×10-3 1.39×10-4 1.67×10-4 1.53×10-4 

Standard deviation (/month) ላኌዪዿሡ቙ነ 2.02×10-4 4.41×10-5 4.83×10-5 4.62×10-5 

α factor ዺዿሡ቙ 8.64×10-1 4.13×10-2 4.96×10-2 4.55×10-2 

The standard MLE method is applied to estimate mean and SD of failure rates.
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5.3.2  MLE with Data Mapping  

Data from CCG of  8, 12,  16  or  24 was mapped down to CCG of  4 using  Equation (2.23) or  

formulas listed in Table  2.3. Data from CCG 2  was mapped up to 4.  Using  ሊ  ቭ  ናህን. Results  

of data mapping are  given in Table 5.15.   

Table 5.15: CCF data mapped to CCG of 4: case study 2 

System 
size Number of failures 

ቫ ኔሡቫ ንሡቫ ኖሡቫ ኗሡቫ ኘሡቫ ኙሡቫ 

2 
original 154 8 0 0 0 0 
mapped 154 5.1200 2.5600 0.3200 0 0 

4 
original 209 10 12 11 0 0 
mapped 209 10 12 11 0 0 

8 
original 331 7 2 0 0 0 
mapped 170.3571 2.3571 0.1429 0.0000 

12 
original 28 0 0 3 0 0 
mapped 10.6909 1.0182 0.1939 0.0061 

16 
original 14 2 1 0 0 1 
mapped 5.1670 0.5995 0.1170 0.0082 0 0 

24 
original 16 2 0 0 0 0 
mapped 3.2464 0.0435 0.0000 0.0000 0 0 

sum mapped 552.4615 19.1383 15.0138 11.3343 For HPP 

Table 5.16: MLE results after data mapping: case study 2  

Multiplicity ቨ 1 2 3 4 
Number of failures ቑዿሡ቙ 552.4615 19.1383 15.0138 11.3343 

Mean of failure rate (/month) ዪዿሡ቙ 2.18×10-3 7.57×10-5 5.94×10-5 4.48×10-5 

Standard deviation (/month) ላኌዪዿሡ቙ነ 9.29×10-5 1.73×10-5 1.53×10-5 1.33×10-5 

α factor ዺዿሡ቙ 9.24×10-1 3.20×10-2 2.51×10-2 1.90×10-2 
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Given the data for  the target system  (CCG=4)  in  Table  5.13, EB  approach was used to 

obtain results in Table 5.17. The  parameters of  the  prior are  ዺ  ቭ  ናህኖኚኖኚ and ዻ  ቭ  ኗኗኔህኚንኚኚ. 

The prior and posterior distributions of the failure  rate are plotted in  Figure  5.7.  

Table 5.17: Posterior Mean and SD of failure rate without data mapping 

Multiplicity ቨ 1 2 3 4 
No. of failures ቑዿሡ቙ 209 10 12 11 
Mean of failure rate (/month) ዪዿሡ቙ 2.90×10-3 1.44×10-4 1.71×10-4 1.58×10-4 

Standard deviation (/month) ላኌዪዿሡ቙ነ 2.01×10-4 4.46×10-5 4.88×10-5 4.67×10-5 

α factor ዺዿሡ቙ 8.60×10-1 4.26×10-2 5.08×10-2 4.67×10-2 
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Figure 5.7: Failure rate distributions without data mapping: case study 2 
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5.3.4  EB with Data Mapping  (Multiple Priors)  

In order to estimate  alpha factors of  the 4-MOV system accurately, precise  evaluations  of  the  

failure  rates ዪዿሡ቙ for  all  multiplicities ቨ   are  necessary. Consider 1/4 failures of  all  the four  

sizes  listed in Table 5.15  as an example. The  number  of  failures after data  mapping  and the 

corresponding  time are  listed in the second and third columns  of  the table  below, which are  

required by  the empirical  Bayes algorithm. The  detailed calculation procedure  has been listed  

Table 4.1. The  outcome  is  the posterior  mean value of  the  failure  rate ዪቖሡ቙ of  the CCG=4 

after Bayesian update which has been included in the fourth column. 

Table 5.18: Number and exposure times of 1oo4 failures after data mapping 

System 
size ቫ ቑቖሡ቙ ቗ሂ (month) 

2 154 88992 
4 209 71712 
8 170.3571 89424 
12 10.6909 648 
16 5.1670 1728 
24 3.2464 432 

Repeating  the above  procedure  for all  the multiplicities ቨ respectively, the failure  rates  

ዪዿሡሂ   of  the target  system (CCG=4)  are  believed to be  closer  to the inherent unknown rates. 

The calculation results are shown in Table 5.19 below.  

Table 5.19: Posterior mean and SD of failure rate with data mapping 

Multiplicity ቨ 1 2 3 4 

Mean of failure rate (/month) ዪዿሡ቙ 2.92×10-3 1.41×10-4 1.58×10-4 1.44×10-4 

Standard deviation (/month) ላኌዪዿሡ቙ነ 2.02×10-4 4.40×10-5 4.45×10-5 4.28×10-5 

α factor ዺዿሡ቙ 8.68×10-1 4.20×10-2 4.70×10-2 4.29×10-2 
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Table 5.20: Parameters of priors (mapped data): case study 2  

Failure rate ዪቖሡ቙ ዪ቗ሡ቙ ዪቘሡ቙ ዪ቙ሡ቙ 

ዺ 0.8586 0.2748 0.5790 0.3422 
ዻ 167.3990 1098.9120 7914.9329 6893.9587 
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Figure 5.8: Failure rate distributions with data mapping (multiple priors) 

5.3.5  EB with Data Mapping (Single  Prior) 

In this case, a  sin gle prior is assigned to data  given in  Table 5.15. The  parameters of  the 

prior are  estimated as ዺ  ቭ  ናህኔኚኔን and ዻ  ቭ  ኔኔኜህኙኛኗኚ, and calculation results are  presented  

in Table 5.21. The  prior and posterior  distributions of  the failure  rate are  plotted in  Figure  5.9.  
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Table 5.21: Posterior mean and SD of failure rates (mapped data, single prior)  

Multiplicity ቨ 1 2 3 4 
No. of failures ቑዿሡ቙ 209 10 12 11 
Mean of failure rate (/month) ዪዿሡ቙ 2.91×10-3 1.42×10-4 1.69×10-4 1.56×10-4 

Standard deviation (/month) ላኌዪዿሡ቙ነ 2.01×10-3 4.44×10-5 4.86×10-5 4.65×10-5 

α factor ዺዿሡ቙ 8.62×10-1 4.19×10-2 5.02×10-2 4.60×10-2 
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Figure 5.9: Failure rate distributions with data mapping (single prior) 

5.3.6  Comparison of Results  

Table 5.22 presents a comparison of the estimated mean of failure rates, and a graphical 

comparison is shown in Figure 5.10. 
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Table 5.22: Mean failure rates (/month) by different methods (CCG=4)  

No. Method ቇቖሡ቙ ቇ቗ሡ቙ ቇቘሡ቙ ቇ቙ሡ቙ 

M1 MLE without data mapping 2.91×10-3 1.39×10-4 1.67×10-4 1.53×10-4 

M2 MLE with data mapping 2.18×10-3 7.57×10-5 5.94×10-5 4.48×10-5 

M3 EB without data mapping 2.90×10-3 1.44×10-4 1.71×10-4 1.58×10-4 

M4 EB with data mapping (multiple priors) 2.92×10-3 1.41×10-4 1.58×10-4 1.44×10-4 

M5 EB with data mapping (single prior) 2.91×10-3 1.42×10-4 1.69×10-4 1.56×10-4 

Figure 5.10: Comparison of estimates of mean failure rates (case study 2) 

 EB estimates of the mean are quite close to MLE without data mapping (M1). 
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 MLE with mapped data (M2) leads to lowest value of mean rate in each case. 

Table 5.23:SD of failure rates (/month) by different methods: case study 2) 

No. Method SD(ቇቖሡ቙) SD(ቇ቗ሡ቙) SD(ቇቘሡ቙) SD(ቇ቙ሡ቙) 

M1 MLE without data mapping 2.02×10-4 4.41×10-5 4.83×10-5 4.62×10-5 

M2 MLE with data mapping 9.29×10-5 1.73×10-5 1.53×10-5 1.33×10-5 

M3 EB without data mapping 2.01×10-4 4.46×10-5 4.88×10-5 4.67×10-5 

M4 EB with data mapping (multiple priors) 2.02×10-4 4.40×10-5 4.45×10-5 4.28×10-5 

M5 EB with data mapping (single prior) 2.01×10-3 4.44×10-5 4.86×10-5 4.65×10-5 

Figure 5.11: Comparison of estimates of SD of failure rates: case study 2 

 EB estimates of the SD are quite close to MLE without data mapping (M1). 
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 No.  Method ዺቖሡ቙   ዺ቗ሡ቙   ዺቘሡ቙   ዺ቙ሡ቙   

 M1 MLE without data mapping  8.64×10-1  4.13×10-2  4.96×10-2  4.55×10-2  

 M2 MLE with data mapping  9.24×10-1  3.20×10-2  2.51×10-2  1.90×10-2  
 M3 EB without data mapping  8.60×10-1  4.26×10-2  5.08×10-2  4.67×10-2  

 M4  EB with data mapping (multiple priors)  8.68×10-1  4.20×10-2  4.70×10-2  4.29×10-2  

 M5   EB with data mapping (single prior)  8.62×10-1  4.19×10-2  5.02×10-2  4.60×10-2  

 Empirical  NUREG/CR-5497 9.69×10-1  6.50×10-3  2.50×10-3  2.22×10-2  
 

 

Table   5.24: Alpha factors by different methods: case study 2     
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Figure 5.12: Comparison of alpha factors: case study 2 
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   ቞ቖሡ቙ obtained by  all the methods are in relatively  close agreement.  
   ቞቗ሡ቙ and ቞ቘሡ቙ obtained by all the methods (M1 – M5) is fairly large than the  

corresponding  NUREG values.  
   ቞቗ሡ቙, ቞ቘሡ቙ and ቞቙ሡ቙ obtained by EB  methods (M3-M5) and MLE without mapping  

(M1) are in relatively close agreement.  

5.4  Summary  

This section presents detailed examples of evaluating CCF rates for data related to MOVs. 

The CCF data can be utilized in 5 different ways depending on whether or not data mapping 

is done and how Bayesian priors are selected. 

The CCF rates estimated in this report are higher (more conservative) than NUREG 

published values. The reason is that impact vector information has not been included in the 

analysis, since it was not available. The construction of impact vectors is generally based on 

expert assessment, which is not available to us. 

It is interesting to note that when a data set has a relatively high number of failures (as in 

case study 2), EB estimates of CCF rates are quite close to that obtained by simple MLE 

method without data mapping. Thus, EB’s utility is apparent only in cases of fairly sparse 

failure data. 

This Section also demonstrates that a capacity has been developed to analyze CCF rates 

using the Empirical Bayesian (EB), which has been adopted by the Nordic countries of ICDE 

project. 
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Section  6:   
Summary  and  Conclusions 

This project presents a comprehensive review of the literature related to probabilistic 

modeling of CCF events and statistical estimation of the model parameters using the EB 

method adopted by many members of the ICDE project. 

6.1  Summary   

This research project has achieved the following tasks: 

	 A comprehensive review of major approaches for modeling the common cause 

failure data is presented. 

	 An insightful analysis of the data mapping methods is presented. 

	 A clear explanation of “General multiple failure rate model” is presented, which is 

the most current and logically sound method. 

	 Statistical estimation of the CCF rates and alpha-factors is described. 

	 Empirical Bayes (EB) method is described and programmed for data analysis. 

	 Two detailed case studies using MOV data are presented, which serve as tutorial 

examples for the users. 

6.2  Conclusions  

	 This project demonstrates that a capacity has been developed in Canada to analyze 

CCF rates using the Empirical Bayesian (EB), which is a method of choice of the 

Nordic countries participating in the ICDE project. 

	 The EB method is a conceptually coherent method for pooling the data across the 

systems within a plant and across the plants. The EB method is explored in detail 

by considering different combinations of priors. 
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	 Cases studies show that depending on the quantity of data EB results can be close 

to or far apart from the maximum likelihood estimates. 

6.3  Recommendations  

	 The use of impact vectors should be considered in the statistical analysis. 

	 The impact of testing scheme, such as staggered testing, on the estimation of CCF 

rates should be evaluated by proper probabilistic modeling techniques. 

	 Analysis of CCF data from other safety systems should be undertaken as the data 

become available. 

	 The Canadian industry currently uses the Alpha factor published in the US NRC 

handbooks. The US NRC uses an expert assessment method for the construction of 

impact vectors. The Canadian industry should be encouraged to utilize EB method 

and compare the results with those obtained from existing method. 
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Appendix A 
	
	
Review  of  CCF  models
	
	 

This Appendix provides a brief review of CCF models developed in the PSA literature. 

1. Beta factor (BF) Model  

A variety of parametric CCF models have been developed in the past decades (Fleming et al. 

1986) such as the Beta factor model, multiple Greek letter model, and Alpha factor model. 

This Section provides a comprehensive review of these methods. 

It is one  of  the earliest  CCF  models  that originated from a  report written by  Fleming  (1974).  

The  BF  model  assumes that all  the ቫ components  fail  when a  CCF  event  occurs in a  group.  

Thus, there  are  only  two types of  failures: failure  of  either one  component (probability  or 

rate ሄቖ) or  all  ቫ failure  (probability  or rate ሄሂ). The  key  part in the model is to introduce  a  

fraction of failure  ዻሇ  and  then define  the  total failure  probability/rate  of  a  certain  

component ሄለሃለድሀ   as  

The data required in the BF model are: 

ቑቖ  = Number of independent failure events in the group. 

ቑሂ  = Number of failure events that simultaneously involve ቫ components in the group. 

ቑ    = Number of total demands applied to the group. 

In case of estimation of failure rates, instead of probability of failure, the number ቑ should 

be replaced by the total system operation time ቗. 

The  simplifying  assumption of  the BF  model makes it  easy  to represent the failure  

consequences and to compute with the sole factor ዻ defined. However, when the group size ቫ   
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is larger than 2, the assumption is obviously  against the practical situations because the CCF  

is not necessarily involving all the components within the group.   

2. Multiple Greek Letter (MGL) Model  

The MGL model is extension of the BF model (Fleming and Kalinowski, 1983) in which a 

set of different parameters are defined according to the ratio of multi-component CCFs as 

follows. 

ሄለሃለድሀ = Total failure rate for each component. 

ዻ  = Conditional probability that a component’s failure is shared by one or more 

additional components, given that the former component fails. 

ዼ = Conditional probability that a component’s failure is shared by two or more 

additional components, given that the former component fails together with one or more 

additional components. 

Estimation formulas for these parameters are given as follows: 

A drawback is that the data may not be sufficient to ensure the accuracy of many factors 

especially when the group size is large. Moreover, a problem of over-parameterization occurs 

as the group size increases to a high level. 

3. Basic Parameter (BP)  Model  

The BP model is either time-based (to calculate failure rates) or demand-based (to calculate 

probability of failure) according to Kumamoto and Henley (1996). The parameter ሄዿሡቘ is 
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failure rate for a particular group of ቦቛኔ ቲ ቨ ቲ ቫቜ components. Considering a three-

component system for example, the rate of events involving exactly two components is 

thus ኖሄ቗ሡቘ. From symmetry assumption that the probabilities of failures involving the same 

number of components are equal (e.g.  ሄቖሂቖ ቭ ሄቖሂ቗ ቭ ሄቖሂቘ ), the independent and common 

cause failure rates depend only on the numbers of failures of different types. The required 

data are listed below and the formula of failure rate is given in the equation below (Fleming 

et al., 1986; Mosleh et al., 1989). 

቗      = Total operation time of the system. 

ቑዿሡሂ = Number of  failure  events involving exactly  ቨ components in failed states.  

The BP model is a straightforward approach to adopt simple concepts. Since the 

components in various trains are tested differently and the testing scheme affects the CCF 

probabilities, it is necessary to investigate the formulas of CCF factors under different testing 

schemes. Hwang and Kang (2011) developed the calculation equations of CCF factors within 

a CCCG under the staggered testing scheme, non-staggered testing scheme and mixed testing 

scheme. It is a significant generalization of the BP model that makes the method more 

applicable in the CCF modeling. 

4. Binomial Failure Rate (BFR) Model  

BFR model is specialized from of a general model proposed by Marshall and Olkin (1967). 

Failures are divided into two types, namely independent failures and nonlethal shocks. The 

occurrence of the nonlethal shock follows the Poisson process with a rate ህ. Each component 

has a constant failure probability of  ቭ  under the shocks and the failure distribution is 

binomial (Vesely, 1977). Afterwards, Atwood developed the BFR model further and 

introduced lethal shock with rate ሒ. The basic parameters are shown below: 

ሄዣ   = Independent failure rate for each component.  
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ህ = Occurrence rate for nonlethal shocks. 

ቭ = Probability of failure for each component under nonlethal shocks.  (ቮ ቭ ኔ ቧ ቭ) 

ሒ = Occurrence rate of lethal shocks. 

 The relations hold between the BP and BFR models as follows: 

An important  feature  of  this model is that 
 

the total number  of  parameters remains constant  

regardless of  the number  of  components. Each  event is classified as lethal or  nonlethal 

(including  independent cause)  shock  (Kumamoto  and Henley, 1996). However, ህ cannot be  

estimated directly  from the  data recorded because  nonlethal shocks do not  necessarily  cause 

visible failures.  Only  shocks that cause at least one  component failure  are  counted. Hence,  

the rate of  visible nonlethal shocks, ህ቟, is regarded as a  basic parameter  instead of ህ. Then  

the expected total number of  failures caused by  nonlethal shocks  is  

Then the probability ቭ can be calculated by solving Equation (10). The other parameters 

are easy to estimate following the equations below 

where  
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ቑዣ    = Number of single-component failures due to independent cause.  

ቑ቟   = Number of nonlethal shocks causing at least one component failure.  

ቑዦ    = Number of lethal shocks. 

Ina practical situation no one can predict that how components within a CCCG are 

subjected to a nonlethal shock due to different location, internal structure and aging. 

Therefore the probability ቭ may not be a constant for all the components. 

5. Example: Comparison of CCF Models  

Data regarding diesel generator (CCCG = 4) failures is summarized in Table 2.1 (Becker et 

al., 2009). Observation time is 2.91E6 (the unit is unknown in the report). CCF models 

discussed previously will be applied to compare their performance. Since BF model does not 

consider k out n failures, it is not included in the case study. First, α factors are calculated 

following  Equation  (2.3)  to (2.5). With the α   factors and total failure  rate, it  is  not hard to  

obtain the system and component level failure  rates.  

Table 5.25: Failure data of diesel generators in SKI Report 2009:07. 

ቨ 1 2 3 4 

ቑዿሡ቙ 3 19 2 8 

ዺዿሡ቙ 0.09375 0.59375 0.0625 0.25 

Second, the MGL, AF, BP, and BFR models are compared for estimating the failure rate of 

the system given k-out-of-4 criteria (as defined in Section 1). By following the formulas of 

each model, it is not difficult to obtain the component level and system level failure rates. 

Simplified expressions for the k-out-of-4 system failure rates are able to obtain as well. The 

estimation of the system failure rates are listed below. 

Table 5.26: Failure rates of a k-out-of-4 system calculated by different models. 

Model ቨ ቭ ኔ ቨ ቭ ን ቨ ቭ ኖ ቨ ቭ ኗ 
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 MGL 

 Alpha 

BP  

BFR  

 1.10E-05 

 1.10E-05 

 1.10E-05 

 1.09E-05 

 9.96E-06 

 9.96E-06 

 9.96E-06 

 8.94E-06 

 3.44E-06 

 3.44E-06 

 3.44E-06 

 6.61E-06 

 2.75E-06 

 2.75E-06 

 2.75E-06 

 3.91E-06 

 

 

           ቓዽቛቱ ቦ ዣቱቜ ቭ ቄቓዽ ቛቱቜቡቱ (14) 

 6.1 Markov Model 
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An interesting  phenomenon shows up that the MGL, Alpha  and BP  models produce  the 

same estimates.  This result  stems from the  fact that parameters  of  MGL  and Alpha  models 

are  defined by  those of  BP  model. BFR  model generates a  higher estimate  for  the 4-out-of-4 

system. The  reason is that non-lethal shock  also contributes to the lethal failure  with a  

probability of ቭ. 

6. Other Approaches  

All the  models above  are  developed  for  non-repairable systems. As to the repairable systems,  

Markov transition diagrams are  used  with appropriate  parameters: common  cause  occurrence  

rates ሄቖቒሄሂ and repair rate ህ (Platz 1984).  

Let ቓዽ, a  function of  time, denote the probability  of  the state ቦ. The  probability  can  transit  

from state  ቦ  to state ቧ. A  transfer matrix  ቄ consisting  of ሄቖቒሄሂ  and ህ  can be  formed, the 

element of  which is቞ዽዾ.The  probability  of  transiting to state  ቧ during  the  intervalቡቱ   is ቞ዽዾቡቱ. 

Then differential  equations for  ቓዽ  can be written in the form of matrix. Then  the 

probability ቓዽ can be calculated by solving the differential equations.  

This report does not concentrate on solving differential equations as the Markov model has 

not been considered suitable for practical applications. 

6.2 Unified Partial Method (UPM)  

Since  the parametric  models involve  many  simplifying  assumption and the  lack of  CCF  data, 

the UK  nuclear industry  are  currently  adopting  the unified partial method (UPM). In the 
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UPM  common cause method  (Zitrou and Bedford, 2003), the defenses against  CCF  are  

broken down into 8 sub-factors such as Operator  Interaction, Redundancy, Analysis, etc.  

Each sub-factor  has 5 levels of  strength (A, B,  C, D, E)  accompanied  by  corresponding  

scores from low to high.  

From the database, a beta factor for a specific system ቦ  can be calculated using the 

following equation, 

where  ቑዽቕዹ  and ቑዽቕዷ  are  the  numbers of  common cause  events and  failed  components  

respectively. Next, a  linear regression  model is assumed to investigate the relationships  

between the beta factor and the scores (ትዽዾ) corresponding to the  eight sub-factor levels.  

After the weights (ቴዽ) have  been determined, the  dependencies of  failure  rate on the sub-

factors are  also revealed.  And the failure rate of the system ሄዽ is assumed to be the sum of the 

eight scores ትዽ. 

The  advantage  of the UPM is its ease  of  implementation framework. The  steps are  clear to  

follow and the calculation is not  difficult; a  number of  tables are  enough to obtain the scores  

of  the sub-factors  for  each system.  However, the  data required such as ቑዽቕዹ and ቑዽቕዷ, and ትዽ   

are not available at most times because not many countries are utilizing this method currently. 

The failure events and data may not be recorded in such a detail as the UPM expects and the 

scores have to be determined by the experts following some guides and past experience. 

Besides, any change of the design and age of the system are likely to require rescoring the 

system. A lot of qualitative analysis is required when analysts are assigning the scores. 

Moreover, the assumed linear relationship between failure rate and the scores needs further 

investigation. The levels of certain sub-factors may change the other factors’ impacts on CCF 

probability according to Zitrou and Bedford (2003). 
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6.3 Influence Diagram (ID) Extension  

The  Bayesian network  (BN)  model is a  directed acyclic  graph in which the nodes represent 

random variables and the  directed arrows  always point  from parents to  children.  All the 

conditional probability  functions (CPFs) for  the variables are  written in such a  conditional  

way: ባቛትዽሢቭ቞ቛትዽቜቜ where  ቭ቞ቛትዽቜmeans the parents  of  a  variable ትዽ have  already  happened. It 

is necessary to choose  an appropriate family of distribution for each CPF and assign values to  

the parameters.  In this process, empirical data and/or expert judgments  may  be  utilized  

(Langseth and Portinale, 2007). 

An obvious advantage of the BN model lies in the flexibility of the formulation. The 

parent-child conditional structure enables analysts to add possible causes of failures into the 

model. What’s more, since the number of probabilities is reduced significantly, the data or 

expert judgments required are reduced which are usually expensive and difficult to obtain. 

The difficulty of the method is that the analyst should get inputs from the real experts 

because of the complexity of the networks. All the possible dependencies of the variables 

should be considered in order to reflect the practical situations. This makes it rather difficult 

to construct a BN structure. 

As an extension of the Bayesian network, influence diagram (ID) can be used to modify 

the UPM (Zitrou, Bedford and Walls, 2004). The ID contains different types of nodes 

(variables) such as decision node, uncertainty node and value node, which is more detailed 

compared to the BN. It has two major advantages in the CCF defense analysis. First, the ID 

graphically portrays the dependencies among the defenses and the influences on the CCF 

probability. Second, the expert judgments can be taken into account together with the 

statistical data. 

The  assumption made  in the model is  that the  CCF  event occurs in  an independent  

homogeneous  Poisson process (HPP) with rate ዼዽ and hence  the overall  failure  rate  ሄ is the  

superposition of  them. It  is also assumed that the parameters of  rates are  uncertain variables  

rather than unknown constants.  
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There are two factors causing CCFs, (i.e., root cause and coupling mechanisms, three 

defense actions are proposed aimed at reducing the frequency of root causes, or against the 

coupling mechanisms, or both. And the domain variables are classified to three types related 

to different objectives, namely defenses, root causes and coupling factors. Three scenarios 

are illustrated: a), decision variable describes the defense against the occurrence of root cause; 

b), decision variable describes the defense against the coupling factor; and c), decision 

variable describes the defense against both of them. 

Zitrou et al. (2007) further introduce the ID extension of the UPM afterwards. Two 

advantages are shown in the application of the ID, namely modeling non-linear dependencies 

amongst the defenses and taking account for expert judgments as an important source. First, 

functional interactions between any two defenses can be modeled by assuming parameters to 

represent impacts on a certain variable between different levels of the defenses. The 

relationships may be functionally independent, functionally dependent and threshold 

functionally dependent. Second, when constructing the ID network, every expert is expected 

to draw the relationships between defense, root cause and coupling mechanism variables 

individually. Then all the opinions are incorporated and disagreements can be discussed 

within the panel. 

One of the most important advantages of the ID is the capability of representing various 

kinds of information (e.g., root cause, coupling factor, defense, rate, etc.) by different types 

of variables. Besides, the dependencies between various defenses can be taken into account. 

Moreover, expert judgments are valued as an important resource. However, different 

interpretations, personal experience and ambiguities in definitions of the defenses may lead 

to different understandings of the interacti0ons. This will lead to several rounds of reflections 

so that the experts in the panel can reach an agreement in the end. 
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Appendix B
	
	 
Derivation  of Vaurio's EB  estimator
	
	 

Vaurio  (1987) proposes  a  procedure  to estimate the hyper-parameters  using  a  moment 

matching  method. More  specifically, since  the mean and variance  of  the prior are  able to be  

expressed as ዺሡዻ and ዺሡዻ቗, if one  can calculate them accurately, then ዺ and ዻ are  obtained  

as well.  

A set of normalized weight ቴዽ are  introduced into  the procedure  which sum  up to one. A 

weighted average of the sample mean ቐቕ is calculated by the following equation:  

which is an unbiased estimate of the true mean of prior distribution, denoted as ቐ. 

The variance of the sample mean is calculated as 

in order to avoid the problem caused by identical data that the component with largest 

observation time has the highest precision while the others do not. 

Based on the method of  moments, the author concludes that ቙ቕ   is a biased estimate of the  

true variance  ቙ and derives the variance of the  estimated sample mean as follows.  
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The normalized weights are generated by minimizing the variance of sample mean as 

shown above. The formula is 

However, since  the true  values of  ቐ and ቙ are  never  known in practice, one  can use the  

estimates of  them, ቐቕ and ቙ቕ, and iterate from Equation (1)  to (7)  with a  set of  initial weights  

as ቴዽ  ቭ ኔሡቫ. When ቐቕ, ቙ቕ and ቴዽ converge, the iteration can be  terminated and the values of 

ቐቕ  and ቙ቕcan be  seen as the  real ones of  ቐ  and ቙ . With the converged prior  mean and 

variance, calculation procedures  of  ዺ and ዻ have  been given as follows according  to  Vaurio  

(1987).  

ዻ  ቭ  ቐሡ቙   (8)   

ዺ  ቭ  ቐ቗ሡ቙  ቦ  ናህኘዻሡ቗ዼ   (9)   

There is a similarity between the EB and JS estimators. First, transform the posterior mean 

of the EB estimator into the form of stein estimator. 

According  to the prior  distribution, the mean and variance  are  expressed as ቐ  ቭ  ዺሡዻ   

and  ቙  ቭ  ዺሡዻ቗  . Then the hyper-parameter can be  obtained in the form of  the statistical  

characters as ዻ  ቭ  ቐሡ቙. Substitute  ዻ into the equation above,  one  can come  up with a  new 

expression without hyper-parameters.  
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቙቞ቯቛ቏ቦቨቢቩቦብቬቬቡቜ ቑዽ ቙቞ቯቛቓቯቦቬቯቜ 
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Second, recall the formulas of the JS estimator. 

ሄዽ ቭ ቅዽህ ቦ ቛኔ ቧ ቅዽቜቑዽሡ቗ዽ 
ሴ (13) 
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Based on the derivations given by  Vaurio (1987), ቐዅ቗ዽ  can be  seen as the variance  of  

likelihood distribution while  ቙  is the variance  of  prior distribution. Therefore, the EB  

estimator  mean value can be  expressed in the form of  a  balance  between the  overall  average  

and MLE with weights determined by the magnitudes of prior and likelihood's variances.  

The  estimator  is also able to be  written as a  balance  between overall  average  and MLE as 

shown in Equation (13)  below. The  fractions in this formula  are  also proportions taken by  

likelihood and prior in the total variance based on the derivations in the literature (Vaurio and  

Jänkälä, 1992) and they are exactly the same with those in the EB mean value expression.  

As a conclusion, there is a close connection between the EB and JS estimators, although 

the JS estimator does not need to specify the exact form of prior distribution of the failure 

rates. 
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