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Chapter 1

Introduction

This report presents work performed for a project R444.2 Development of Analytical Tools

for Soil-Structure Analysis. Project period was from February 2013 until March 2016. A

number of developments resulting from this project are described in this report. In addition,

links1 are made to documents that are referenced and used in this report. Moreover, this report

relies in part on section of Lecture Notes (Jeremić et al., 1989-2016), that are constantly updated

using current developments within the computational geomechanics group at UC Davis.

I am respectfully submitting this report for review by the CNSC.

1Live links, to web sites that are regularly updated and maintained.
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Chapter 2

Motivation

The principal motivation for presented work is development of analysis methodology that will

be used to improve seismic design of soil structure systems. It is postulated that Earthquake

Soil Structure Interaction (ESSI) in time and space, plays a major role in successes and failures

of seismic behavior of structure soil systems, including nuclear power plants and other nuclear

facilities. It is also postulated that accurate following (and, if possible directing) the flow of

seismic energy in ESSI system can be used to optimize safety and economy. Development of

high fidelity numerical modeling and simulation tools to analyze realistic ESSI behavior1 is used

toward that goal.

High fidelity predictive capabilities, comprise prediction under uncertainty. That is, compu-

tational models are used to predict the state of soil structure system under conditions for which

the computational model has not been validated (Oberkampf et al., 2002). Successful, reliable,

dependable numerical prediction rely on detailed, in depth verification and validation procedures

(V&V). Verification provides evidence that the model is solved correctly, and it is really a math-

ematics issue. Validation, on the other hand, provides evidence that the correct model is solved,

and it is essentially a physics issue.

The main goal of numerical predictions (modeling and simulations) is predict and inform

rather than (force) fit.

1Epitomized in the Real ESSI simulator, a high fidelity numerical models and simulation system for analysis

of ESSI behavior.
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2.1 Work Premise

Presented work is premised on following observations and facts:

• 3D (6D) Earthquake Motions: All the observed earthquake motions are three dimensional,

with three translations and three rotations (body and surface waves). It follows that mod-

eling of ESSI has to be utilize those full 3D (6D) motions. This is particularly important as

most of the earthquake energy propagates as surface waves, and therefor both translations

and rotations are important.

• Inelastic/Nonlinear Material and Geometric Behavior: Realistic materials (soil, rock, con-

crete, metals, etc.) are inelastic for any significant stress level, while soils are inelastic at

any stress level. In addition, soil volume change has a first order effect on soil behavior

for any constrained (really for all) deformation. Moreover, contact between concrete and

soil/rock is highly nonlinear, with gap opening and closing and shear slip. Further, water in

contact zone gives rise to coupled (nonlinear), soil/water behavior and dynamic (nonlinear)

buoyant forces.

• Modeling Uncertainty: Simplified modeling is always performed, which implies that some

features (possibly important features) are neglected. For example, simplified modeling

of seismic motions as 1D vertically propagating waves as opposed to what is really ob-

served, a full 3D (6D: 3 translations and 3 rotations) wave fields. In addition, usually

inelastic/nonlinear material can be simply modeled as linear elastic (or so called equivalent

elastic) material, thus neglecting potentially important inelastic effects, that are always

present. Modeling uncertainty is introduced in results when unrealistic and unnecessary

modeling simplifications are made. Such modeling simplifications can only be justified if

one or two level higher sophistication model shows that features being simplified out are

not important.

• Uncertain Material and Loads: Material behavior (modeling, material parameters) is always

uncertain, due to spatial variability, measuring errors and transformation errors. In addition

to that, loads (earthquake, etc.) are also always uncertain. It is therefor important to be

able to propagate uncertainties in material and load results for proper decision making.
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• Verification and Validation (V&V) for Prediction: V&V procedures and activities represent

primary means of assessing accuracy in modeling and computational simulations. They are

used to build confidence and credibility in numerical predictions. Verification is a process of

determining that a model implementation accurately represents the developer’s conceptual

description and specification. It is a mathematics issue and it provides evidence that the

model is solved correctly. Validation is a process of determining the degree to which a

model is accurate representation of the real world from the perspective of the intended

uses of the model. It is a physics issue, and it provides evidence that the correct model is

solved.

Work performed for this project is premised on the above observations and facts. In what

follows, Tasks worked on during this project are described in detail.
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Chapter 3

Task 4.1: Seismic Input into NPP FEM

Models

3.1 Summary of Findings for Task 4.1

This section presents a summary of findings related to the Task 4.1: ”Develop methodologies and

analytical tools for inputting 3D, inclined, body and surface waves into Soil-Structure Interaction

models with resolution of issues related to the influence of surface waves that feature significant

torsional, rolling and rocking motions. Develop a simplified but representative 3D model of the

nuclear island to capture 3D effects of Soil-Structure Interaction.” Summarized are findings,

while more details are given in sections below.

The main findings are:

• Seismic input for finite element models has to be done using a method that can model all

significant seismic waves fields, including body waves (Primary waves (P, aka compressional

waves), Secondary (SV, aka secondary or shear waves polarized in vertical plane); SH, aka

secondary or shear waves polarized in horizontal plane), and surface waves (Rayleigh,

Love, and any other type of surface waves). Method used has also to be able to accurately

model input of seismic energy as well as dissipation of seismic waves to the outside domain

(radiation damping). In addition to that, method has to allow for seismic energy dissipation

within the domain of interest (soil/rock – structure model). One such method is the

9



Domain Reduction Method (DRM), described in some detail here. The PI is not aware

of any other currently available method that can achieve these goals for a time domain,

nonlinear finite element analysis of soil/rock-structure-interaction (SSI) problems. The

DRM has a number of specific requirements that need to be satisfied in order to achieve

high accuracy of SSI modeling (material properties and size of the DRM layer, damping

outside DRM layer, etc). Those requirements are given in some detail in the main text

below. Proper verification needs to be provided to prove that used seismic input method

can indeed model all required components of seismic motions (body and surface waves).

• Propagation of all required frequencies of seismic motions through model needs to be

modeled using appropriate and finite element sizes (mesh). For solid finite elements,

representative finite element size ∆ h needs to be be limited so that seismic waves that

are propagated retain all (most) required frequencies. For example for linear interpolation

finite elements and for a given wave length λ that is modeled, it is required to have at least

10 linear interpolation finite elements (8 node bricks in 3D, where representative element

size is ∆hLE ≤ λ/10 = v/(10 fmax)) or at least 2 quadratic interpolation finite elements

(27 node bricks in 3D, where representative element size is ∆hQE ≤ λ/2 = v/(2 fmax))

for each wave length of importance for modeling. It is important to note that even with

an increase in element size, the simulation will produce results, however, accuracy of those

results (frequency content, for example) will be diminished as the model element size

increase beyond suggested values. Proper verification needs to be provided in order to

prove capacity of the model (mesh) to propagate required frequencies of motions.

• Proper propagating rotational motions through structural model can be accomplished pro-

vided that two conditions are met:

– Surface waves (Rayleigh, Love, etc.) need to be present in ground motions. That

is, structure, with its center of mass high above base level will rock even if excited

by vertically propagating shear waves. However the real seismic waves will consist of

both body and surface waves (with potentially significant rolling, rocking and torsional

waves) and there will be an additional rotational component to seismic waves that

enter (are input to) the foundations of NPP structure.
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– Modeling of rotational motions with an NPP structural system relies significantly on

in plane (wall) behavior of shells. Finite element models used to model walls (shells)

need to be able to model accurately in plane modes of behavior, with an appropriate

number of elements (usually fairly small). In addition if is very beneficial if finite

elements with drilling degrees of freedom are used, as such elements are much more

accurate. Proper verification needs to be provided to prove the accuracy of finite

elements used.

• Symmetry and antisymmetry models for modeling Structure-Soil-Structure Interaction

(SSSI) should not be used as they assume a vertically propagating shear waves and as

such do not take into account surface waves (Rayleigh, Love, etc) that carry significant

amount of seismic energy. It is recommended that direct models be used, that is, models

that explicitly model both structures, their foundations and the soil/rock beneath with all

the geometric and material behavior sophistication that can significantly influence SSSI

response

During this project period, work team has spent their time working on issues related to the

Task 4.1, and in particular working on sub-tasks as described in the original proposal. A number

of developments were made, with a number of examples prepared for the CNSC. In addition to

that, the first node of a parallel computer was prepared and will be shipped to the CNSC office

in Ottawa. Moreover, an initial version of the program is prepared and placed on the web for

download by the CNSC staff. Location will be communicated to CNSC staff via email.

3.2 Methodology

3.2.1 3D, Inclined, Body and Surface Wave Input into SSI

The full seismic wave field is composed of full 3D, inclined waves, consisting of both body (P,

SV and SH) and surface (Rayleigh, Love, etc.) waves. The relative influence of any (or all)

components of the seismic wave field on dynamics response on NPPs is not known prior to

performing the analysis, and thus all above noted wave types need to be properly modeled.
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Proper input of all possible wave types into finite element model is performed using the

Domain Reduction Method (DRM). The DRM was developed recently Bielak et al. (2003);

Yoshimura et al. (2003)). It is a modular, two-step dynamic procedure aimed at reducing

the large computational domain to a more manageable size. The method was developed with

earthquake ground motions in mind, with the main idea to replace the force couples at the

fault with their counterpart acting on a continuous surface surrounding local feature of interest.

The local feature can be any geologic or man made object that constitutes a difference from

the simplified large domain for which displacements and accelerations are easier to obtain. The

DRM is applicable to a much wider range of problems. It is essentially a variant of global–local

set of methods and as formulated can be used for any problems where the local feature can be

bounded by a continuous surface (that can be closed or not). The local feature in general can

represent a soil–foundation–structure system (bridge, building, dam, tunnel...), or it can be a

crack in large domain, or some other type of inhomogeneity that is fairly small compared to the

size of domain where it is found.

In what follow, the DRM is developed in a somewhat different way than it was done in original

papers by Bielak et al. (2003); Yoshimura et al. (2003)). The main features of the DRM are

then analyzed and appropriate practical modeling issues addressed.

A large physical domain is to be analyzed for dynamic behavior. The source of disturbance

is a known time history of a force field Pe(t). That source of loading is far away from a local

feature which is dynamically excited by Pe(t) (see Figure 3.1).

Pe(t)

ui

ub

ue

Γ

Large scale domain

Local feature

+
Ω

Ω

Seismic source

Figure 3.1: Large physical domain with the source of load Pe(t) and the local feature (in this

case a soil-structure system.
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The system can be quite large, for example earthquake hypocenter can be many kilometers

away from the local feature of interest. Similarly, the small local feature in a machine part can be

many centimeters away from the source of dynamic loading which influences this local feature.

In this sense the term large domain is relative to the size of the local feature and the distance

to the dynamic forcing source.

It would be beneficial not to analyze the complete system, as we are only interested in the

behavior of the local feature and its immediate surrounding, and can almost neglect the domain

outside of some relatively close boundaries. In order to do this, we need to somehow transfer the

loading from the source to the immediate vicinity of the local feature. For example we can try to

reduce the size of the domain to a much smaller model bounded by surface Γ as shown in Figure

3.1. In doing so we must ensure that the dynamic forces Pe(t) are appropriately propagated to

the much smaller model boundaries Γ.

In order to appropriately propagate dynamic forces Pe(t) one actually has to solve the large

scale problem which will include the effects of the local feature. Most of the time this is impossible

as it involves all the complexities of large scale computations and relatively small local feature.

Besides, the main goal of presented developments is to somehow reduce the large scale domain

as to be able to analyze in details behavior of the local feature.

In order to propagate consistently the dynamic forces Pe(t) we will make a simplification in

that we will replace a local feature with a simpler domain that is much easer to be analyzed. That

is, we replace the local feature (bridge, building. tunnel, crack) with a much simpler geometry

and material. For example, Figure 3.2 shows a simplified model, without a foundation–building

system. The idea is to simplify the model so that it is much easier to consistently propagate the

dynamic forces to the boundary Γ. The notion that it is much easier to propagate those dynamic

forces is of course relative. This is still a very complex problem, but at least the influence of

local feature is temporarily taken out.

It is convenient to name different parts of domain. For example, the domain inside the

boundary Γ is named Ω0. The rest of the large scale domain, outside boundary Γ, is then

named Ω+. The outside domain Ω+ is still the same as in the original model, while the change,

simplification, is done on the domain inside boundary Γ. The displacement fields for exterior,

boundary and interior of the boundary Γ are ue, ub and ui, on the original domain.
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0ub

ui
0

Pe(t)
0ue

0
Ω

Γ

Simplified large scale domain

Ω
+

Seismic source

Figure 3.2: Simplified large physical domain with the source of load Pe(t) and without the

local feature (in this case a soil–foundation–building system. Instead of the local feature, the

model is simplified so that it is possible to analyze it and simulate the dynamic response as to

consistently propagate the dynamic forces Pe(t).

The equations of motions for the complete system can be written as[
M
]{

ü
}

+
[
K
]{

u
}

=
{
Pe

}
(3.1)

or if written for each domain (interior, boundary and exterior of Γ) separately, the equations

obtain the following form:
MΩ

ii MΩ
ib 0

MΩ
bi MΩ

bb +MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

üe

+


KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

ue

 =


0

0

Pe

(3.2)

In these equations, the matrices M and K denote mass and stiffness matrices respectively; the

subscripts i, e, and b refer to nodes in either the interior or exterior domain or on their common

boundary; and the superscripts Ω and Ω+ refer to the domains over which the various matrices

are defined.

The previous equation can be separated provided that we maintain the compatibility of

displacements and equilibrium. The resulting two equations of motion are MΩ
ii MΩ

ib

MΩ
bi MΩ

bb

 üi

üb

+

 KΩ
ii KΩ

ib

KΩ
bi KΩ

bb

 ui

ub

 =

 0

Pb

 , inΩ (3.3)
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and  MΩ+
bb MΩ+

be

MΩ+
eb MΩ+

ee

 üb

üe

+

 KΩ+
bb KΩ+

be

KΩ+
eb KΩ+

ee

 ub

ue

 =

 −PbPe

 , inΩ+ (3.4)

Compatibility of displacements is maintained automatically since both equations contain bound-

ary displacements ub (on boundary Γ), while the equilibrium is maintained through action–

reaction forces Pb.

In order to simplify the problem, the local feature is removed from the interior domain. Thus,

the interior domain is significantly simplified. In other words, the exterior region and the material

therein are identical to those of the original problem as the dynamic force source. On the other

hand, the interior domain (denoted as Ω0), is simplified, the localized features is removed (as

seen in figure 3.2).

For this simplified model, the displacement field (interior, boundary and exterior, respectively)

and action–reaction forces are denoted by u0
i , u

0
b , u

0
e and P 0

b . The entire simplified domain Ω0

and Ω+ is now easier to analyze.

The equations of motion in Ω+ for the auxiliary problem can now be written as: MΩ+
bb MΩ+

be

MΩ+
eb MΩ+

ee

 ü0
b

ü0
e

+

 KΩ+
bb KΩ+

be

KΩ+
eb KΩ+

ee

 u0
b

u0
e

 =

 −P 0
b

Pe

 (3.5)

Since there was no change to the exterior domain Ω+ (material, geometry and the dynamic

source are still the same) the mass and stiffness matrices and the nodal force Pe are the same

as in Equations (3.3) and (3.4).

Second part of previous equation (3.5) can be used to obtain the dynamic force Pe as

Pe = MΩ+
eb ü

0
b +MΩ+

ee ü
0
e +KΩ+

eb u
0
b +KΩ+

ee u
0
e (3.6)

The total displacement, ue, can be expressed as the sum of the free field u0
e (from the

background, simplified model) and the residual field we (coming from the local feature) as

following:

ue = u0
e + we (3.7)

It is important to note that this is just a change of variables and not an application of the principle

of superposition. The residual displacement field, we is measured relative to the reference free

field ue0.
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By substituting Equation (3.7) in Equation (3.2) one obtains:
MΩ

ii MΩ
ib 0

MΩ
bi MΩ

bb +MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

ü0
e + ẅe

+


KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

u0
e + we

 =


0

0

Pe

(3.8)

which, after moving the free field motions u0
e to the right hand side, becomes

MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb +MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

ẅe

+


KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

we

 =


0

−MΩ+
be ü

0
e −KΩ+

be u
0
e

−MΩ+
ee ü

0
e −KΩ+

ee u
0
e + Pe

 (3.9)

By substituting Equation (3.6) in previous Equation (3.9), the right hand side can now be

written as


MΩ

ii MΩ
ib 0

MΩ
bi MΩ

bb +MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

ẅe

+


KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

we

 =


0

−MΩ+
be ü

0
e −KΩ+

be u
0
e

MΩ+
eb ü

0
b +KΩ+

eb u
0
b

 (3.10)

The right hand side of equation (3.10) is the dynamically consistent replacement force (so

called effective force, P eff for the dynamic source forces Pe. In other words, the dynamic force

Pe was consistently replaced by the effective force P eff :

P eff =


P eff
i

P eff
b

P eff
e

 =


0

−MΩ+
be ü

0
e −KΩ+

be u
0
e

MΩ+
eb ü

0
b +KΩ+

eb u
0
b

 (3.11)
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DRM features a number of beneficial features:

• Single Layer of Elements used for P eff . The Equation (3.11) shows that the effective

nodal forces P eff involve only the sub-matrices Mbe, Kbe, Meb, Keb. These matrices vanish

everywhere except the single layer of finite elements in domain Ω+ adjacent to Γ. The

significance of this is that the only wave-field (displacements and accelerations) needed to

determine effective forces P eff is that obtained from the simplified (auxiliary) problem at

the nodes that lie on and between boundaries Γ and Γe, as shown in Figure 3.3.

0
ub

ui

0

Pe(t) 0
ue

0
ue Γe

Γ+

Ω
+

Γ

b

b

e

e

ΓΓ e

Local feature

Ω

Figure 3.3: DRM: Single layer of elements between Γ and Γe is used to create P eff .

• Only residual waves outgoing. Another interesting observation is that the solution to

problem described in Equation (3.10) comprises full unknowns (displacements and accel-

erations) inside and on the boundary Γ (ui and ub respectively). On the other hand,

the solution for the domain outside single layer of finite elements (outside Γe) is obtained

for the residual unknown (displacement and accelerations) field, we only. This residual

unknown field is measured relative to the reference free field of unknowns (see comments

on page 15). That effectively means that the solution to the equation Equation (3.10)

outside the boundary Γe will only contain additional waves field resulting from the presence

of a local feature. This in turn means that if the interest is in behavior of local feature

and the surrounding media (all within boundary Γ) one can neglect the behavior of the full

model (outside Γe in Ω+) and provide appropriate supports (including fixity and damping)

at some distance from the boundary Γe into region Ω+. This is significant for a number

of reasons:
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– large models can be reduced in size to encompass just a few layers of elements outside

boundary Γe (significant reduction for, say earthquake problems where the size of a

local feature is orders of magnitudes smaller then the distance to the dynamic source

force Pe (earthquake hypocenter).

– the residual unknown field can be monitored and analyzed for information about

the dynamic characteristics of the local feature. Since the residual wave field is we

is measured relative to the reference free field ue0, the solution for we has all the

characteristics of the additional wave field stemming from the local feature.

• Inside domain Ω can be inelastic. In all the derivations of the DRM no restriction was

made on the type of material inside the plastic bowl (inside Γe). That is, the assumption

that the material inside is linear elastic is not necessary as the DRM is not relying on

principle of superposition. The Equation 3.7 was only describing the change of variables,

and clearly there was no use of the principle of superposition, which is only valid for linear

elastic solids and structures. It is therefor possible to assume that the derivations will still

be valid with any type of material (linear or nonlinear, elastic or inelastic) inside Γe. With

this in mind, the DRM becomes a very powerful method for analysis of soil–foundation–

structure systems.

• All types of realistic seismic waves are modeled. Since the effective forcing P eff

consistently replaces the effects of the seismic source, all appropriate (real) seismic waves

are properly (analytically) modeled, including body (SV, SH, P) and surface (Rayleigh,

Love, etc...) waves.

3.3 Work Performed, Subtasks

3.3.1 Analytic Modeling Body and Surface Incoming Seismic Waves

Input of seismic motions that are comprised of all mechanical wave fields (body waves (P, SV,

SH) and surface waves (Rayleigh, Love, etc) is done using the Domain Reduction Method.

Presence of all mechanical wave fields (as noted above) is proven by doing a verification. A set
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of verification examples is shown in chapter 11 on page 208.

3.3.2 Properties of the DRM Layer

The DRM layers (a single layer of finite element where effective DRM forces Peff are applied)

needs to be carefully modeled. A number of conditions regarding the DRM layer need to be

placed:

• The finite elements within the DRM layer need be linear elastic.

• Material model for the finite elements within the DRM layer needs to be linear elastic, of

same (or similar) material properties as the material outside the DRM layer, and of the

same of similar properties (the linear elastic part of properties) as the material inside the

DRM layer. Although material inside the DRM layer can be elastic-plastic, it is beneficial

if the linear elastic portion of material properties (at zero strain, for nonlinear elastic

material) for the DRM layer, is similar to the ones used inside the DRM layer. All of the

used elastic material properties need to be same as elastic material properties used for free

field analysis.

• Material outside the DRM layer needs to be linear elastic, with possible inclusion of damping

(Rayleigh or Caughey) for damping outgoing waves (radiation damping).

• Dimensions of the DRM layer finite elements (thickness of the DRM layer) need to follow

the same rule for element size (depending on chosen stiffness) so that there is no artificial

(mesh dependent) filtering above certain frequencies. That means that 10 linear interpola-

tion finite elements (8 node bricks) or 2 quadratic interpolation elements (27 node bricks)

are needed per wave length (Bathe and Wilson, 1976; Hughes, 1987; Argyris and Mlejnek,

1991). For example if maximum modeling frequency is fmax = 20 Hz, and wave length is

given as λmin = v/fmax, where v is the wave velocity, maximum grid spacing (element

size) for linear interpolation elements ∆hLE should not exceed

∆hLE ≤ λ

10
=

v

10 fmax
=

v

10× 20 Hz
=

v

200 Hz
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while for quadratic interpolation elements such grid spacing (element size) ∆hQE is limited

to

∆hQE ≤ λ

2
=

v

2 fmax
=

v

2× 20 Hz
=

v

40 Hz

The wave velocity v is the lowest wave velocity that is of interest in the simulation, usually

the shear wave velocity.

3.3.3 Damping of Outgoing Waves

The formulation of DRM postulates that the only waves that are radiating from the finite element

model of soil/rock – structure interaction are the waves that are originating from the vibrations of

the additional feature, that is the structure. Those radiating waves do have much less mechanical

energy than incoming seismic waves and are thus easier to damp out. In addition, those waves

that radiate from the structure will consist of a smaller number of frequencies, due to their origin

in structural vibrations (which have a certain number of predominant modes).

The outgoing waves are damped out using layers of finite elements with high viscous damping

that are positioned outside of the DRM layer. In general any type of viscous damping can be

used outside, but the most common method (and the most efficient) is to use Caughey damping

of 2nd, 3rd and 4th order. Caughey damping of 2nd order is also known as Rayleigh damping.

A number of examples were created to illustrated seismic wave damping using Rayleigh and

Caughey damping finite elements.

The main conclusions about damping seismic waves that radiate from the model are:

• Based on the DRM formulation, there should be at least one layer of finite elements outside

of the DRM layer. It is recommended that a number of layers outside the DRM layer be

increased to at least two, and possibly more, in order to use those additional layers for

damping outgoing (radiation) waves.

• Damping layers, outside of DRM layers, should be developed in such a way as to damp out

multiple frequencies of outgoing waves. Caughey damping can damp efficiently a number

of frequencies. For example Caughey damping of 2nd order (also called Rayleigh damping)

can damp efficiently two distinct frequencies. If Rayleigh damping is used, then one or more
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layers of damping elements are to be used. If more than one layer is used, layers should

have variable damping coefficients, so that they damp out different pairs of frequencies.

• Damping ratios of damping layers outside should be evaluated based on dynamic char-

acteristics of the soil/rock profile as well as based on the dynamic characteristic of the

oscillating structure.

In addition to relying on features of the DRM, what remains of a wave field that results from

oscillations of the NPP, is damped out in out of DRM layers, as noted above.

Presented here are commonly used (viscous) damping methods for time domain analysis of

solids and structures. These methods (Rayleigh and Caughey damping) are modeling viscous

damping of the solids and structures by generating the damping matrix C from mass and stiffness

matrices.

These synthetic viscous damping approaches should be distinguished from a natural viscous

damping that is created during interaction of fluid and soil. For example, a natural viscous

damping occurs when pore fluid and porous solid have differential displacements (see for example

Zienkiewicz and Shiomi (1984); Jeremić et al. (1989-2016)).

Viscous damping described here is used to damp out wave fields that radiate from the

structure (wave field we in DRM parlance), and is applied to the outside of DRM layer finite

elements.

Caughey damping formulation can in general be expressed as

C = [M ]
m−1∑
j=0

aj([M ]−1[K])j (3.12)

3.3.4 Caughey Damping 2nd Order (aka Rayleigh Damping)

The second order Caughey damping is actually Rayleigh damping, where j = 1 in Equation

(3.12). From dynamic parameters and formulation of the system following equations can be

written:

ξn =
Cn

2Mnωn
(3.13)
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Kn = ω2
nMn (3.14)

Considering the first two terms in Caughey damping formulation, if the damping matrix

formulation is written separately for each term:

C = a0M (3.15)

and based on Equation (3.13), parameter a0 can be written as:

a0 = 2ξω (3.16)

Writing the damping matrix based on the second coefficient:

C = a1K = a1ω
2M (3.17)

Then a1 can be obtained as:

a1 =
2ξ

ω
(3.18)

So the damping ratio of the nth mode of the system is:

ξn =
a0

2

1

ωn
+
a1

2
ωn (3.19)

Presenting Equation (3.19) for first two modes in matrix form leads to:

1

2

 1
ωi

ωi

1
ωj

ωj

a0

a1

 =

ξi
ξj

 (3.20)

3.3.5 Caughey Damping 3rd Order

Following the same logic as the 2nd order, the last coefficient of the 3rd order Caughey damping

formulation can be written as following:
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C = a2KM
−1K = a2ω

4M (3.21)

So a2 can be obtained as:

a2 =
2ξ

ω3
(3.22)

Considering the last coefficient in the formulation, the damping ratio of the system can now

be shown as:

ξn =
a0

2

1

ωn
+
a1

2
ωn +

a2

2
ω3
n (3.23)

By solving the following set of equations, 3rd order Caughey damping coefficients can be

found:

1

2


1
ωi

ωi ω3
i

1
ωj

ωj ω3
j

1
ωk

ωk ω3
k



a0

a1

a2

 =


ξi

ξj

ξk

 (3.24)

3.3.6 Caughey Damping 4th Order

The 4th coefficient of the Caughey damping formulation cab obtained as:

C = a3KM
−1KM−1K = a3ω

6M (3.25)

a3 =
2ξ

ω5
(3.26)

ξn =
a0

2

1

ωn
+
a1

2
ωn +

a2

2
ω3
n +

a3

2
ω5
n (3.27)

So the damping coefficients can be obtained by solving the following set of equations:
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1

2


1
ωi

ωi ω3
i ω5

i

1
ωj

ωj ω3
j ω5

j

1
ωk

ωk ω3
k ω5

k

1
ωl

ωl ω3
l ω5

l




a0

a1

a2

a3

 =


ξi

ξj

ξk

ξl

 (3.28)

3.3.7 Proper Propagation of Torsional, Rolling and Rocking Motions

Torsional, rolling and rocking motions are propagated trough the finite element models using

DRM for input, The ability of DRM the successfully propagate all seismic waves from surrounding

soil/rock into the finite element model, including body (P, SV, SH) and surface (Rayleigh, Love,

etc.) waves allows for all the above noted waves to be very accurately represented within a finite

element model.

Current effort to merge work done by Profs. Trifunac and Lee will allow for even wider range

of seismic motions (realistic earthquakes) to be used and input into the finite element models.

3.3.8 Propagation of Rotational Waves through a Structure

Rotational motions (torsional, rolling and rocking) that propagate through soil/rock, will be

transferred to the the structural system through the foundation. Such motions will be amplified

by rocking, rolling and torsional modes of the structure itself (rocking and rolling since the center

of mass for the structure is at some elevation, while additional torsional modes will be caused

by the non-symmetry of the structural system.

Rotational motions through the structure will be modeled appropriately using the ANDES

shell finite element (Bergan and Felippa, 1985; Alvin et al., 1992; Felippa and Militello, 1992;

Felippa and Alexander, 1992; Militello and Felippa, 1991; Stošić, 1984-2013)). This shell finite

element is very accurate and features six degrees of freedom per node (three translations, two

bending modes and one drilling mode). Verification of modeling and simulation for this element

is given in Chapter 11 on page 208. Verification results show that this element, that is used for

modeling of structural shell, plate and wall components, has excellent capabilities and that it
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can model bending and in plane behavior with high accuracy using only very few elements. This

accurate modeling capabilities will allow proper, accurate modeling of propagation of rotational

waves through the structure as well as development of translational and rotational floor spectra

for any location within NPP structure.

3.3.9 Simplified Representative 3D Model

Representative model of an NPP containment structures was developed in collaboration with the

CNSC staff. Figure 3.3.9 shows a general disposition of the representative 3D NPP model.

Plan view
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Figure 3.4: General disposition of a representative 3D NPP model.

The model was developed as a cylindrical containment with dome top, while the auxiliary

building surrounds the containment. There is no contact between containment and the auxiliary

building and current model has a gap of 0.2m while a new model (currently under development)

will reduce this gap space, while still maintaining independence of two structural systems.

Finite element mesh for both structures (containment and auxiliary) is show in Figure 3.3.9.

Both structures (containment and auxiliary building) were placed on a slab foundation and

then placed on a soil/rock base. Model is flexible enough that soil/rock properties and geology

can be varied. The sub-base model also includes a layer of elements for the DRM motion input,
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Figure 3.5: Different views of the representative 3D NPP mode. The model consists of a con-

tainment and auxiliary building structures. Both structures are connected through the foundation

slab (not shown in these plots). Both structures are modeled using shell finite elements with 6

DOFs per node (three translations, two bending and one drilling model).

as well as two layers of elements outside the DRM layer for damping any outgoing waves. Models

with a single NPP (Figure 3.3.9) and two NPPs (Figure 3.3.9) are developed and used in analysis.

Both models are based on the same containment and auxiliary buildings on a same foundation

mat. Basic statistics for both models are presented in a table 3.1 below.

Table 3.1: Basic statistics of a single and a double NPP finite element models.

single NPP model double NPP model

number of (27 nodes) bricks 9576 19152

number of (ANDES) Shell Elements 4386 8772

number of DOFs 269217 534729

3.3.10 Structure-Soil-Structure Interaction

Structure-Soil-Structure Interaction (SSSI) need to be taken into account sometimes, as it might

contribute to higher levels of seismic shaking for NPPs. It seems that in the case of making

an assumption of elastic soil and rock beneath the NPP foundation, the SSSI will have a larger
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Figure 3.6: Finite element model for a single NPP with the containment and auxiliary buildings

on a common base mat, as well as the soil/rock sub-base, DRM layer for seismic motions input

and the layers outside of DRM for damping out outgoing waves.

effect most of the time, while with the inclusion of elastic-plastic models for soil and rock under

the NPP foundation, those SSSI influences will be reduced most of the time. This is illustrated

in one of the models that was developed for analyzing SSSI (to be delivered to CNSC online with

the rest of the new code). While SSSI for two NPPs (of similar stiffness and mass) conforms to

the above observations, it is noted that SSSI influences of smaller structures on larger (NPPs)

can be mostly neglected, the SSSI influence of larger structures (NPPs) on smaller structures

Probably cannot be neglected.

There are a number of ways to model SSSI.

• Direct Models. The simplest and most accurate is to develop a direct model of both (two

or more) structures on subsurface soil and rock, to develop input seismic motions and

analyze results. This was done in a model that will be delivered to CNSC online with

the rest of the new code and a first node of a parallel computer. While this approach

is the most involved, it is also the most accurate, as it allows for proper modeling of

all the structure, foundation and soil/rock geometries and material without making any

unnecessary simplifying assumptions.
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Figure 3.7: Finite element model for two NPPs adjacent to each other, each one with the

containment and auxiliary buildings on a common base mat, as well as the soil/rock sub-base,

DRM layer for seismic motions input and the layers outside of DRM for damping out outgoing

waves.

• Symmetry and Anti-Symmetry Models. These models are sometimes used in order to

reduce complexity and sophistication of the direct model (see recent paper by Roy et al.

(2013) for example). However, there are a number of concerns regarding simplifying

assumptions that need to be made in order for these models to work. These models have

to make an assumption of a vertically propagating shear waves and as such do not take

into account surface waves (Rayleigh, Love, etc) that carry significant amount of seismic

energy. These surface waves will additionally excite NPP for rocking and twisting motions,

which will then be transferred to adjacent NPP by means of additional surface waves. If

only vertically propagating waves are used for input (as is the case for symmetry and anti-

symmetry models) energy of input surface waves is neglected. It is noted that depending
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on the surface wave length and the distance between adjacent structures, a simple analysis

can be performed to determine if particular surface waves, emitted/radiated from one

structure toward the other one (and in the opposite direction) can influence adjacent

structures. It is noted that the wave length can be determined using a classical equation

λ = v/f where λ is the length of the (surface) wave, v is the wave speed1 and f is the

wave frequency of interest. Table3.2 below gives Rayleigh wave lengths for four different

wave frequencies (1, 5, 10, 20 Hz and for three different Rayleigh (very close to shear) wave

velocities (300, 1000, 2500 m/s):

Table 3.2: Rayleigh wave length as a function of wave speed [m/s] and wave frequency [Hz].

1.0Hz 5.0Hz 10.0Hz 20Hz

300m/s 300m 60m 30m 15m

1000m/s 1000m 200m 100m 50m

2500m/s 2500m 500m 250m 125m

It is apparent that for given separation between NPP buildings, different surface wave

(frequencies) will be differently transmitted with different effects. For example, for an

NPP building that has a basic linear dimension (length along the main rocking direction)

of 100m, the surface wave the low frequency waves (1Hz) in soft soil (vs ≈ 300m/s)

will be able to encompass a complete building within a single wave length, while for the

same soil stiffness, the high frequency (20Hz) will produce waves that are too short to

efficiently propagate through such NPP structure. On the other hand, for higher rock

stiffness (vs ≈ 2500m/s), waves with frequencies all the way up to approximately 5Hz

and maybe even 10Hz, have an extent that can easily be affecting a building with a 100m

dimension.

Further comments on symmetric and antisymmetric models:

– Symmetry: motions of two NPPs are out phase and this represents an unrealistic

1For Rayleigh surface waves, their speed is just slightly below the shear wave speed (within 10%, depending

on elastic properties of material), so a shear wave speed can be used for making these Rayleigh wave length

estimates.
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case, unless the wave length of surface wave created by one NPP (toward the other

NPP) is so large that half wave length will encompass both NPPs. This type of

motions (symmetry) is illustrated in figure 3.3.10 below

Figure 3.8: Symmetric mode of deformation for two NPPs near each other.

– Antisymmetry: motions of two NPPs are in phase and while that is more realistic

than the symmetry case, still requires perfect matching of 1D input motions and

the soil/rock conditions beneath, and as such is not realistic. This type of SSSI is

illustrated in figure 3.3.10 below

Figure 3.9: Anti-symmetric mode of deformation for two NPPs near each other.

A model of a dual NPP is developed (see Figure 3.3.9 (page 28) is developed with some

initial input motions for testing purposes. It is anticipated that with incorporation of

seismic motions from a project by Drs. Trifunac and Lee, a more in depth study will be

possible of these SSSI effects.

3.3.11 Propagation of High Frequencies of Input Motions

Seismic waves of different frequencies need to be accurately propagated through the mesh. Mesh

size can have significant effect on propagating seismic waves due to the influence of the order of

displacement interpolation within the mesh. Finite element model (mesh, including nodes and
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element interpolation functions) needs to be able to approximate displacement/wave field with

accuracy without discarding (filtering out) certain wave components while propagating other

wave components. For a given wave length λ that is modeled, it is suggested/required to have

at least 10 linear interpolation finite elements (8 node bricks in 3D, where representative element

size is ∆hLE ≤ λ/10) or at least 2 quadratic interpolation finite elements (27 node bricks in

3D, where representative element size is ∆hQE ≤ λ/2) for each wave length of importance for

modeling.

Since wave length λ is directly proportional to the wave velocity v and inversely proportional

to the frequency f , λ = v/f . we can devise a simple rule for appropriate size of finite elements

for wave propagation problems:

• Linear interpolation finite elements (1D 2-node truss, 2D 4-node quad, 3D 8-node brick)

the representative finite element size needs to satisfy the following condition

hLE ≤ v

10 fmax

• Quadratic interpolation finite elements (1D 3-node truss, 2D 9-node quad, 3D 27-node

brick) the representative finite element size needs to satisfy the following condition

hQE ≤ v

2 fmax

• Structural elements (beams, shells) have at least quadratic interpolation functions (Euler-

Bernoulli beam uses cubic Hermite polynomials as interpolation functions) and since ma-

terial is very stiff, and thus wave propagation speed (shear or compressional) is very high,

these elements usually satisfy wave propagation criteria a priori.

It is noted that while the rule for number of elements (or element size ∆h) can be used to

delineate models with proper and improper meshing, in reality having bigger finite element sizes

than required by the above rule will slowly degrade the solution frequency content.
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3.3.12 Mesh Size Effects for Linear (8 Node Brick) and Quadratic (27

Node Brick) Finite Elements on Wave Propagation

Presented here are cases of wave propagation modeling through finite element meshes of different

sizes. The purpose is to emphasize that wave propagation through a discrete systems (finite

element mesh) will always lead to loss of energy (wave magnitude) and that proper choice of

mesh size has to be done with respect to accepted loss of energy. In other words, there is

no good or bad mesh sizes, some mesh sizes (smaller) will allows for better wave propagation

modeling, while some other mesh sizes (large elements) will not allow all required frequencies to

be propagated in a required way.

Generally, the results of numerical analysis using finite element method technique for the

dynamic problem are affected by size of mesh (grid spacing). According to Argyris and Mlejnek

(1991), about 10 nodes per wavelength (for linear interpolating finite elements) are required to

simulate accurately for the given frequency and fewer than 10 nodes may induce an artificial

damping due to the numerical reason.

In this section, mesh size effect is inspected to address appropriate size of mesh for seismic

wave propagation. One dimensional column model is developed, as shown in figure 3.10.

Figure 3.10: One dimensional column test model to address the mesh size effect.
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Table 3.3: Analysis cases to determine a mesh size

Case Vs Cutoff Element Max. propagation

number (m/s) freq. (Hz) height (m) freq. (Hz)

1 1000 3 10 10

2 1000 8 10 10

3 1000 15 10 10

4 100 3 10 1

5 100 8 10 1

6 100 15 10 1

7 1000 3 20 5

8 1000 8 20 5

9 1000 15 20 5

10 100 3 20 0.5

11 100 8 20 0.5

12 100 15 20 0.5

Total height of the model is 1000m. Two models are built with element height of 20 m and

50 m, and each model has two different shear wave velocities (100 m/s and 1000 m/s). Density

is set to 2000 kg/m3, and Poisson’s ratio is set to 0.3, for all test models. Various cases are

set and tested as shown in table 3.3. Both 8 node and 27 node brick elements are used for all

models. Thus, total 24 parametric study cases are inspected. Linear elastic elements are used

for all analyses. All analyses are performed in time domain with Newmark dynamic integrator

without any numerical damping (γ = 0.5, and β = 0.25, no numerical damping, unconditionally

stable).

Ormsby wavelet (Ryan, 1994) is used as an input motion and imposed at the bottom of the

model. Ormsby wavelet features a controllable flat frequency content with formulation shown in

equation 3.29.

f(t) = A((
πf4

2

f4 − f3

sinc(πf4(t− ts))2 − πf3
2

f4 − f3

sinc(πf3(t− ts))2)

− (
πf2

2

f2 − f1

sinc(πf2(t− ts))2 − πf1
2

f2 − f1

sinc(πf1(t− ts))2) (3.29)
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Figure 3.11: Ormsby wavelet in time and frequency domain with flat frequency content from 5

Hz to 20 Hz.

where f1 and f2 define the lower range frequency band, f3 and f4 define the higher range

frequency band, A is the amplitude of the function, and ts is the time that maximum amplitude

is happening, and sinc(x) = sin(x)/x. Figure 3.11 shows an example of Ormsby wavelet with

flat frequency content from 5 Hz to 20 Hz.

For this example, cutoff frequencies of Ormsby wavelets are set as 3, 8, and 15 Hz (table 3.3).

Figure 3.12 shows number of nodes per wavelength along frequencies and figure 3.13 – 3.15 show

comparison of analysis results. As shown in figure 3.13, case 1 and 7 (analysis using Ormsby

wavelet with 3 Hz cutoff frequency) predict exactly identical results to the analytic solution in

both time and frequency domain. Since, number of nodes per wavelength for both cases are

over 10 (see figure 3.12(a) and table 3.3, all cases under 3 Hz shows more than 10 nodes per

wavelength), those exact results are expected.

Increasing cutoff frequency from 3 Hz to 8 Hz induces numerical errors as shown in figure

3.14. In frequency domain, both 10 m and 20 m element height model with 27 node brick element

predict exactly same results with the analytic one. However, in time domain, asymmetric shape

of time history displacements are observed. Observations from top of 8 node brick element

models show more numerical error in both time and frequency domain due to the decreasing

number of nodes per wavelength (figure 3.12). Figure 3.15 shows analysis results with 15 Hz

cutoff frequency. Results from 27 node brick elements are almost same in frequency domain

but asymmetric shapes are also observed in time domain. Decreasing amplitudes in frequency

domain along increasing frequencies are observed from 8 node brick element cases.
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Figure 3.12: Number of nodes per wavelength along frequencies, and element sizes (a) Vs = 1000

m/s (b) Vs = 100 m/s.
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Figure 3.13: Comparison between (a) case 1 (top, Vs = 1000 m/s, 3 Hz, element size = 10m)

and (b) case 7 (bottom, Vs = 1000 m/s, 3 Hz, element size = 20m)

36



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

D
is

p
la

ce
m

e
n
t 

(m
) Input

Analytic solution at top

Observed at top (8 node)

Observed at top (27 node)

0 2 4 6 8 10 12 14 16
Frequency (Hz)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FF
T
 a

m
p
lit

u
d
e

Input

Analytic solution at top

Observed at top (8 node)

Observed at top (27 node)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

D
is

p
la

ce
m

e
n
t 

(m
) Input

Analytic solution at top

Observed at top (8 node)

Observed at top (27 node)

0 2 4 6 8 10 12 14 16
Frequency (Hz)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FF
T
 a

m
p
lit

u
d
e

Input

Analytic solution at top

Observed at top (8 node)

Observed at top (27 node)

Figure 3.14: Comparison between (a) case 2 (top, Vs = 1000 m/s, 8 Hz, element size = 10m)

and (b) case 8 (bottom, Vs = 1000 m/s, 8 Hz, element size = 20m)
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Figure 3.15: Comparison between (a) case 3 (top, Vs = 1000 m/s, 15 Hz, element size = 10m)

and (b) case 9 (bottom, Vs = 1000 m/s, 15 Hz, element size = 20m)
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Figure 3.16: Schematic cartoon to show that nodes can behave like frequency contents filter
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Chapter 4

Task 4.2: Spatially Variable Ground

Motions

4.1 Summary of Findings for Task 4.2

The main findings are:

• Models used for Spatially Variable Ground Motions (SVGM) heavily rely on the ergodic

assumption. This assumption states that for a process that is observed and modeled (in

our case seismic motions in general and lack of correlation between seismic motions at

points at some distance) will feature the same system states if averaged over time and

averaged over space. This really means that SVGM models are developed using data

from (very few) location (Pinyon Flats, Lotung and perhaps few others) and that those

models represent behavior at those specific locations, averaged over time. Those models,

developed by considering behavior over time at certain locations, are then used for other

spatial locations and at other times. The main problem, of course is that SVGM are to a

large extent a function of seismic source(s) mechanisms, path(s) and near field geology of

the location where they are measured. Those SVGM are then used at different locations,

with probably (very likely) different seismic source mechanisms, different paths and different

near field geology.

• In addition to the above argument, it is important to note that SVGM are a results of a
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statistical modeling, which means that there are a large number of potential SVGM that

can be produced from each model. It is only right to use a statistically significant number

of SVGMs in any analysis. Results obtained from such (statistically significant number

of) analysis would have to be (statistically) processed and understanding of SVGM effects

on SSI (and/or SSSI) behavior understood. Choosing just few SVGM and analyzing an

SSI (or SSSI) system with those does not guaranty that some SVGMs, that might have

detrimental or beneficial effects on SSI, will be accounted for. In fact, since the main goal

of any advanced analysis for NPPs is to assess risk of unwanted performance, it might be

advisable to choose SVGMs from (a statistically significant number of) developed SVGMs

those that have detrimental effects on seismic behavior of NPPs,

• For a case of multiple NPPs on same soil/rock in foundations, the SVGMs need to be

applied either to a separate models of those NPPs (if structure-soil-structure interaction

(SSSI) is not taken into account) or to a larger, double NPP model. This same rule will

apply if two (or more) NPPs are founded on different soils.

• Developed SVGM methodology and implementation (programs) is flexible and can be used

with any input motions (accelerations and displacements defined for nodes of the DRM

box) that is obtained using large scale finite element models, analytic solutions, Green’s

function solutions, etc.

• It is important to note that SVGM developed motions are applied to nodes of the DRM box

and not at the base of the NPP foundation (as is usually done when no SSI is performed

or if methods other than DRM are used for inputing seismic motions). The SVGM applies

to the DRM box, and then, any additional sources of SVGM from within a DRM box will

contribute to the SVGM. There is an important difference in how SVGM will affect the

foundation of an NPP. In a traditional method, the SVGM are applied at the base of the

foundation, and this will lead to averaging of SVGMs if the foundation concrete is stiffer

than sub-base soil/rock. This averaging will reduce effects of SVGM. If the base is as stiff

as foundation concrete (where concrete has a shear wave velocity of vs ≈ 2200−2500m/s)

than the effects of averaging are not pronounced. In method that we developed, soil/rock

structure system is treated as one system and the SVGMs are applied on the boundary of
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that system. As such, there is no averaging of SVGMs, they are fully taken into account

for any combination of stiffness of foundation concrete and the sub-base soil/rock.

4.2 Methodology

4.2.1 Incoherence, Sources

This section overviews sources of incoherence.

Seismic motion incoherence (as it is called for frequency domain analysis, for time domain

analysis it is called lack of correlation) is a phenomena that results in spatial variability of

ground motions over small distances. Significant work has been done in researching seismic

motion incoherence over the last few decades (Abrahamson et al., 1991; Roblee et al., 1996;

Abrahamson, 1992a, 2005, 1992b; Zerva and Zervas, 2002; Liao and Zerva, 2006; Zerva, 2009)

The main sources of lack of spatial correlation (Zerva, 2009) are

• Attenuation effects, are responsible for change in amplitude and phase of seismic motions

due to the distance between observation points and losses (damping, energy dissipation)

that seismic wave experiences along that distance. This is a significant source of lack of

correlation for long structures (bridges), however for NPPSSS it is not of much significance.

• Wave passage effects, contribute to lack of correlation due to difference in recorded wave

field at two location points as the (surface) wave travels, propagates from first to second

point.

• Scattering effects, are responsible to lack of correlation by creating a scattered wave field.

Scattering is due to (unknown or not known enough) subsurface geologic features that

contribute to modification of wave field.

• Extended source effects contribute to lack of correlation by creating a complex wave source

field, as the fault ruptures, rupture propagates and generate seismic sources along the fault.

Seismic energy is thus emitted from different points (along the rupturing fault) and will

have different travel path and timing as it makes it observation points.
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Figure 4.1: Four main sources contributing to the lack of correlation of seismic waves as

measured at two observation points.

Figure 4.1 shows an illustration of main sources of lack of correlation.

It is important to note that SVGM developed in this report due take into account wave passage

effects (effectively removing them from SVGM). This is very important if ground motions (seed

ground motions used as a basis for development of SVGM) are developed as full 3D, inclined

seismic motions, as they will be for this effort.

4.2.2 Introduction to Modeling

Early studies concluded that the correlation of motions increases as the separation distance

between observation points decreases. In addition to that, correlation increased for decrease in

frequency of observed motions. Most theoretical and empirical studies of spatially variable ground

motions (SVGM) have focused on the stochastic and deterministic Fourier phase variability

expressed in the form of ”lagged coherency” and apparent shear wave propagation velocity,

respectively. The mathematical definition of coherency (denoted γ) is given below in equation:

γjk(f) =
Sjk(f)

(Sjj(f)Skk(f))1/2
(4.1)

Coherency is a dimensionless complex-valued number that represents variations in Fourier

phase between two signals. Perfectly coherent signals have identical phase angles and a coherency

of unity. Lagged coherency, is the amplitude of coherency, and represents the contributions of

stochastic processes only (no wave passage). Wave passage effects are typically expressed in the

form of an apparent wave propagation velocity.
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Lagged coherency does not remove a common wave velocity over all frequencies. Alterna-

tively, plane wave coherency is defined as the real part of complex coherency after removing

single plane-wave velocity for all frequencies. Recent simulation methods of SVGM prefer the

use of plane-wave coherency as it can be paired with a consistent wave velocity. An additional

benefit is that plane-wave coherency captures random variations in the plane-wave while lagged

coherency does not. Zerva (2009) has called the variations ’arrival time perturbations’.

Most often, γ is related to the dimensionless ratio of station separation distance ξ to wave-

length λ. The functional form most often utilized is exponential (Loh and Yeh, 1988; Oliveira

et al., 1991; Harichandran and Vanmarcke, 1986). The second type of functional form relates

γ to frequency and ξ independently, without assuming they are related through wavelength.

This formulation was motivated by the study of ground motion array data from Lotung, Tai-

wan (SMART-1 and Large Scale Seismic Test, LSST, arrays), from which Abrahamson (1985,

1992a) found γ at short distances (ξ < 200m) to not be dependent on wavelength. Wavelength-

dependence was found at larger distances (ξ = 400 to 1000m). Since our study focuses on

the SVGM effects over the lateral dimensions of typical structures (e.g., < 200m) we propose

the use of non-wavelength dependent models developed by Abrahamson (1992a, 2007); Ancheta

(2010).

Moreover, there is a strong probabilistic nature of this phenomena, as significant uncertainty

is present in relation to all four sources of lack of correlation, mentioned above. A number of

excellent references are available on the subject of incoherent (or lacking correlation) seismic

motions (Abrahamson et al., 1991; Roblee et al., 1996; Abrahamson, 1992a, 2005, 1992b; Zerva

and Zervas, 2002; Liao and Zerva, 2006; Zerva, 2009)

It is very important to note that all current models for modeling incoherent seismic motions

make an ergodic assumption. That is all the models assume that a variability of seismic motions

at a single site – source combination will be the same as variability in the ground motions from a

data set that was collected over different site and source locations (Walling, 2009). Unfortunately,

there does not exist a large enough data set for for example east North American seismic seismic

events that can be used to develop incoherence models. Rather, there are models that are used

to model possible incoherent behavior for east North American seismic wave propagation.
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4.2.3 Incorporate of Incoherence (Lack of Correlation) into Simulated

Motions

In addition to (partially) incoherent motions developed using layered half space simulations,

an additional (different) set of incoherent motions can be developed in order to test the effects

incoherence has on NPP response. In order to introduce appropriate amount of variability over the

bandwidth due to incoherence effects, each point may be used as a seed motion to generate a new

motion across the grid at a separation distance of 200 meters. In other words point 1 is modified

to generate a ground motion at point 2 and vice versa. Alternatively, a grid of ground motions

may be generated. The method of introducing incoherence effects is called Frequency Dependent

Windowing (FDW) (Ancheta et al., 2012). The method is a non-stationary simulation routine

that utilizes a modified short-time Fourier transform (MSTF) for which spectral modifications

are made consistent with a selected SVGM models. The MSTF routine allows the preservation of

the non-stationary properties of the motion and incorporation of time-varying non-linear spectral

modifications. A simplified outline of the algorithm is summarized below:

1. The seed time series is split into short time segments.

2. A discrete Fourier transform (DFT) is applied to the segments.

3. Fourier amplitudes and phase angles at each frequency within a desired frequency range

(dependent on segment length) are modified consistent to a coherency (phase) or standard

deviation function (amplitude) for each segment (Ancheta, 2010).

4. The new set of Fourier amplitude and phase angles are combined and transformed into the

time domain with an inverse Fourier transform (IFT).

5. The modified short time segments are recombined to form a modified time series.

6. Steps 1-5 are performed multiple times for multiple segment lengths, with each segment

length having a specified frequency range over which modifications are made. Hence,

multiple modified time series are created. Segment lengths and corresponding frequency

limits used are shown in Table 4.1.
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7. The multiple modified time series are match-filtered (i.e., band-pass filtered with the limits

of the pass-band matching the band of the modification) to combine the modified frequency

bands in the frequency domain.

8. The non-overlapping frequency bands are inverted with an IFT to create the final broadband

modified time series.

An additional benefit of using the FDW routine is the ability to incorporate Fourier amplitude

modifications, as there is a greater control of the leakage effect when performing steps 4 and 5.

Table 4.1: Segment duration (L) and frequency bands (b) used in the FDW routine. T is the

duration of the seed series.

Segment duration, Li [sec] Frequency limits , bi [Hz]

1.28 2-Nyquist

2.56 1-2

5.12 0.5-1

10.24 0.25-0.5

20.48 0.12-0.25

T 0-0.12

4.2.4 Description of Selected Incoherence Models

Synthetic models created by analytic solution for layered half space, with different profiles but

similar source can be used as seed motions for incoherence motion development.

Separate coherency and random Fourier amplitude models are selected for soil sites. In

this case, a plane wave coherency (γpw) and σ∆A developed by Abrahamson (2007) from the

Pinyon Flat array recordings located in California can be selected. These models are shown in

equations 4.2 and 4.3 and Table 4.2.

γpw(f, ξ) =

[
1 +

(
f tanh(a3ξ)

a1fc(ξ)

)n1(ξ)
]−1/2 [

1 +

(
f tanh(a3ξ)

a2

)n2
]−1/2

(4.2)
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Table 4.2: Plane-wave coherency model coefficients for the horizontal component.

Coefficient name Horizontal coefficient value

a1 1.0

a2 40

a3 0.4

n1(ξ) 3.80− 0.040 ln (ξ + 1) + 0.0105 [ln (ξ + 1)− 3.6]2

n2 16.4

fc(ξ) 27.9− 4.82 ln (ξ + 1) + 1.24 [ln (ξ + 1)− 3.6]2

σ∆A(f, ξ) = 0.79(1− e−0.45−0.0017ξ)f ) (4.3)

For soil cases, a plane wave coherency developed by Abrahamson (2005) and σ∆A developed

by Ancheta (2010) from the Lotung LSST (Large Scale Seismic Test) and BVDA (Borrego Valley

Differential Array) recordings located in Taiwan and California, respectively, can be selected. The

models are shown in equations 4.4 and 4.5.

tanh−1 |γ(f, ξ)| = (3.79− 0.499(ln ξ)) exp ((−0.115− 0.0084ξ)f) +
1

3
(ξ)f−0.878(ξ) + 0.35

(4.4)

σ∆A(f, ξ) = (1− e−0.1005−0.0025ξ)f )

(4.5)

Currently, no random Fourier amplitude models exist for the vertical component. Therefore,

only the Fourier phase will be modified for the vertical component.

4.2.5 Range of Incoherence Model Applicability

Based on a report by Abrahamson (2007) the incoherence models developed from the Pinyon

Flat array appears to be applicable to separation distances of 5 to 150 meters and a frequency

range of from 5 to 40 Hz. Since the model is developed from Pinyon Flat recordings alone, it is

somewhat uncertain how well this model fits similar rock site array recordings or possible future

array recordings located in the eastern North America region.
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The incoherence models developed by Ancheta (2010) are a slight modification of incoherence

models developed by Abrahamson (1992a) and are applicable to separation distances of 6 to

160 meters and frequencies greater than 1 Hz.

Both models have been extrapolated to 200 meters for the process of including incoherence

using the FDW routine. It is also important to note that different point separations can be

modeled too.

4.3 Work Performed, Subtasks

4.3.1 Empirical SVGM models only for surface motions.

Empirical SVGM models are developed for surface motions only. This is based on a fact that

a vast majority of measured motions are surface motions, and that those motions were used

for SVGM model developments. This surface origin and availability of SVGM models, creates a

difficulty for seismic motion input using Domain Reduction Method (DRM). For DRM, motions

are needed at a number of location beneath the surface (at all nodes of the DRM box). Solution

developed here creates SVGM for each level of DRM nodes under the surface. With this solution,

each level of DRM nodes is treated as a separate SVGM plane. Two approaches were considered

in developing these SVGM for each level:

• Un-correlated SVGM between each level where each level of DRM nodes is treated as an

independent SVGM plane, and the SVGM are therefor developed using SVGM model but

without any correlation to other nearby SVGM levels. This assumption of lack of correlation

between DRM nodes in vertical direction is based on lack of vertical SVGM data. In

addition, treating each DRM node plane as a separate SVGM plane will introduce higher

frequencies into the DRM box, based on a fact that these SVGM might be quite different for

a nearby vertically separated nodes. However, those higher frequency motions will naturally

be damped out by the nonlinear material within a DRM box, and by the numerical damping

of higher frequencies within the model. Such numerical damping of higher frequencies is

always necessary as discretization of continuum into a finite element mesh introduces

additional (un-physical) higher frequencies into the FEM model. These new frequencies
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from difference in motions at SVGM layers will correspond to a discretization introduced

higher frequencies and will thus be filtered out.

• Correlated SVGM between each level is a simpler approach whereas each level of DRM

nodes receives the same SVGM motions. This approach is based on a fact that, in addition

to the lack of data about SVGM in vertical direction, separation distances in vertical

direction are smaller compared to the horizontal separation distances. As such, and such

smaller distances, the SVGM become more and more correlated and as such are treated

as fully correlated (only in vertical direction!).

4.3.2 Spatially Variable Ground Motions Development

This description relies in part on material developed by Jeremić et al. (2011).

Introduction.

Given Time Series. A variable (depending on size of the DRM grid) set of 3-component

(H1,H2, and V) synthetic time series are used as seed motions to generate a set of spatially

variable ground motions. This set of test locations is used as an example application of the

broadband simulation methodology. Since the input format for DRM is used as input to the

’FDW2D.m’ routine the format of the initial time series file is described.

Approach. Ground motion simulations (point source or finite fault) can create a 3 dimensional

representation of the 3-component wave-field. In our case this is created for the the DRM box

with a set of 3-component motions. Additionally, current limitations within the fault source

assumptions and the medium that the simulated waves propagate through, only a narrow band

of energy (long period/low frequency) can be reliably simulated. A recent attempt by Walling

(2009) to reproduce the high frequency energy (dominated by stochastic processes) proposed a

randomized medium to induce a scattering effect to match an incoherence function. Abraham-

son (1985) proposed and Ancheta et al. (2013) developed a method for generating synthetic

broadband strong motion seismograms. The method uses the ground motion simulations as a
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starting set of Fourier amplitudes and phases at each location and an energy randomization pro-

cess called Frequency Dependent Windowing is used to conserve the low frequency (coherent)

energy and resample the high frequency (random) energy consistent to a set of SVGM functions.

The SVGM functions are a sigma amplitude and plane-wave coherency model representing the

statistics of the random Fourier amplitudes and phases respectively. A definition of plane-wave

coherency and sigma amplitude may be found in Abrahamson (1992a).

A 2 dimensional wave-field can be developed as proposed by Abrahamson (1993) by realizing

that all three spatial axes (main, radial horizontal direction, along the principal direction of

wave propagation motions, in our case X, transverse horizontal direction, in our case Y, and the

vertical direction) do exhibit lack of correlation (incoherence). This existence of three spatial

directions of lack of correlation requires existence of data and models for all three directions.

Abrahamson (1992a) investigated incoherence of a large set of 3-component motions recorded

by the Large Scale Seismic Tests (LSST) array in Taiwan. Abrahamson (1992a) concluded

that there was little difference in the radial and transverse lagged coherency computed from

the LSST array selected events. Therefore, the horizontal coherency models by Abrahamson

(1992a) and subsequent models (Abrahamson, 2005, 2007) assumed the horizontal coherency

model may apply to any azimuth. Coherency models using the vertical component of array data

are independently developed from the horizontal.

Currently, there are no studies of coherency effects with depth (i.e. shallow site response

domain). Therefore, it is proposed here to utilize the simulation method developed by Ancheta

et al. (2013) and the incoherence functions for the horizontal and vertical directions developed

for a hard rock site by Abrahamson (2005) to create a full 3-D set of incoherent strong motions.

We propose to create a 2-D set of incoherent motions at each elevation of the DRM simulated

set of motions independently assuming that the coherency functions may apply at any depth

within the near surface domain (¡ 100 m). Therefore, by randomizing the energy at each depth

full 3-D synthetic broadband strong motion seismograms are created.

FDW methodology. Spatially variable ground motions (SVGM) were simulated using a code

developed by Dr. Ancheta that implemented a simulation method presented by Ancheta et al.

(2013). It is an updated version of the methodology proposed by Abrahamson (1992b). In short,
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a seed ground motion is modified by adding a random phase and amplitude at each frequency as

determined by the input a coherency and sigma amplitude model. Additionally, the set of com-

ponents are selected for all locations simultaneously where, for example, the coherency between

the seed-to-simulation and simulation-to-simulation matches the target coherency function. Ad-

ditional details of the methodology can be found in Ancheta et al. (2013).

SVGM Functions. Selected SVGM functions are required for the horizontal and vertical com-

ponents of the Fourier phases and amplitudes. We intend to rely on empirically generated

SVGM functions, as the underlying physical processes are not well understood. Additionally, the

following limitations are imposed while selecting the desired SVGM functions:

1. The SVGM functions must be derived from either soil or rock arrays but not a mixture.

2. The SVGM functions must be based on a large set of input motions from events with

various apparent wave propagation azimuths.

3. The SVGM functions must be applicable to the desired simulation extent.

4. The stochastic Fourier phase model or coherency function must be a plane-wave coherency,

γpw, function to incorporate stochastic phase and arrival time perturbations.

5. The stochastic Fourier amplitude model must be able predict the median sigma of the

random amplitude component.

6. The phase and amplitude model must have a complementary horizontal and vertical model.

This internal consistency requirement is desirable due to the large possibilities within the

data processing procedures used in the model development. Additionally, the phase and

amplitude model should come from the similar, if not same, set of ground motion record-

ings. This internal consistency requirement is more important for rock sites as the variability

of incoherence observed at rock arrays is greater than soil arrays.

Given the above limitations we have selected the following SVGM functions for the soil and

rock profiles in Tables 4.3 and 4.4. A summary of the entire set of currently available SVGM

functions has not been compiled nor reviewed within this project. However, the selected SVGM
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functions satisfy the above limitations or are the only available model for the component and

soil case. The vertical sigma amplitude model is empty as there are no available functions in the

literature.

Table 4.3: Selected SVGM functions for rock sites.

Plane-wave coherency Sigma amplitude

Horizontal Abrahamson (2007) Abrahamson (2005)

Vertical Abrahamson (2007)

Table 4.4: Selected SVGM functions for soil sites.

Plane-wave coherency Sigma amplitude

Horizontal Abrahamson (1993) Ancheta et al. (2012)

Vertical Abrahamson (1993)

The plane-wave coherency model presented by Abrahamson (2007) using the Pinyon Flat

array data was selected for rock conditions. A set of 78 events noted from small magnitude

events was used to develop the model and the model is applicable for a frequency range of

5 − 40Hz and a separation distance up to 150m. The function was selected, as it is currently

the only ’rock’ plane-wave coherency model in the literature and there are a significant number

of station pairs over the applicable separation distance bins. Two plane-wave coherency models

were used for the horizontal and vertical components have the same form (Eq. []) but different

coefficients shown below:

γpw(f, ξ) =

[
1 +

(
f tanh(a3ξ)

a1fc(ξ)

)n1(ξ)
]−1/2 [

1 +

(
f tanh(a3ξ)

a2

)n2
]−1/2

(4.6)

The model coefficients for the horizontal case is given in Table 4.5. The model for vertical

case is similarly given in Table 4.6.

The sigma amplitude model for the Pinyon Flat array data from Abrahamson (2005) was

selected for rock conditions. A set of 6 events with a magnitude range of 2.0-3.6 was used
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Table 4.5: Plane-wave coherency model coefficients for the horizontal component.

Coefficient name Horizontal coefficient value

a1 1.0

a2 40

a3 0.4

n1(ξ) 3.80− 0.040 ln (ξ + 1) + 0.0105 [ln (ξ + 1)− 3.6]2

n2 16.4

fc(ξ) 27.9− 4.82 ln (ξ + 1) + 1.24 [ln (ξ + 1)− 3.6]2

Table 4.6: Plane-wave coherency model coefficients for the vertical component.

Coefficient name Horizontal coefficient value

a1 1.0

a2 200

a3 0.4

n1(ξ) 2.03− 0.40 ln (ξ + 1) + 0.078 [ln (ξ + 1)− 3.6]2

n2 16.4

fc(ξ) 29.2− 5.2 ln (ξ + 1) + 1.45 [ln (ξ + 1)− 3.6]2

to develop the model. The applicable for a frequency and separation distance range is not

explicitly stated but the maximum separation distance used was 348m and the function tends

to asymptotically approach a noise floor at large frequencies (≈ 50Hz). To be consistent with

the plane-wave coherency model we suggest that this model be applicable to similar frequency

and separation distances as the Abrahamson (2007) model. The function was selected, because

it is sigma amplitude model that used similar array data as the selected plane-wave coherency

model. Unfortunately, only a horizontal sigma amplitude model is provided as

σ = A
(
1− eBf+Cf

)
(4.7)

where the model coefficients are A = 0.79, B = −0.45, and C = −0.0017.
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The plane-wave coherency model from Abrahamson (1993) developed from LSST (Large

Scale Seismic Test) array data was selected soil conditions. A set of events with a large magnitude

range was used to develop the model and the model is applicable for appropriate frequency range

and a separation distance up to 85 m. The function was selected, because the LSST array

has recorded a large number of events with the largest magnitude range and it is the most

recently derived plane wave coherency model from the LSST data set from Abrahamson (1992a)

and Abrahamson (1993). Two plane-wave coherency models were used for the horizontal and

vertical components:

γpw(f, ξ) = tanh

[
C3(ξ)

1 + C4(ξ)f + C7(ξ)f 2
+ (4.8− C3(ξ)) exp (C6(ξ)f + 0.35)

] 1

1 +
(

f
C8(ξ)

)6

(4.8)

where

C3(ξ) =
3.95

1 + 0.0077ξ + 0.000023ξ2
+ 0.85 ln−0.00013ξ

C4(ξ) =
0.4
(

1− 1
1+(ξ/5)3

)
(1 + (ξ/190)8) (1 + (ξ/180)3)

C6(ξ) = 3(exp (ξ/20)− 1)− 0.0018ξ

C7(ξ) = −0.598 + 0.106 ln (ξ + 325)− 0.0151 exp (−0.6ξ)

C8(ξ) = exp (8.54− 1.07 ln (ξ + 200)) + 100 exp (−ξ)

Vertical plane-wave coherency model is given as

γpw(f, ξ) = tanh

[
C3(ξ)

1 + C4(ξ)f + C7(ξ)f 2
+ (4.65− C3(ξ)) exp (C6(ξ)f + 0.35)

] 1

1 +
(

f
C8(ξ)

)6

(4.9)

where

C3(ξ) = 3.5− 0.37 ln (ξ + 0.04)

C4(ξ) = 0.65

(
1− 1

(1 + ξ/4)

)
C6(ξ) = 3(exp (−/005ξ)− 1)− 0.0018ξ

C7(ξ) = 0

C8(ξ) = exp ((5.20− 0.0634 ln (ξ + 0.1)))
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The sigma amplitude model from Ancheta et al. (2012) was selected for soil conditions. A

set of 27 events with a magnitude range of 2.5-7.8 was used to develop the model and the model

is applicable for a frequency range of 1 − 50Hz and a separation distance up to 160m. The

function was selected, because it is sigma amplitude model that used similar array data as the

selected plane-wave coherency model. Unfortunately, only a horizontal sigma amplitude model

is provided as

σ = A
(
1− eBf+Cf

)
(4.10)

where the model coefficients are A = 1, B = −0.1005, and C = −0.0025.

Process Assumptions. The assumptions on incoherence with depth, incoherence for the 3-

components, and location of the input locations are described and their expected effect on the

output are discussed.

Input Parameters. The required and optional input parameters to the program are described

in this section along with a description of a script that may be used along with the pre-formatted

DRM output.

The required input parameters need for FDW2D.m are the set of input time series, the time

step, and their relative Cartesian coordinates (x and y). Since the pre-formatted DRM output

time series and location files are used as input the formats of the DRM files are used.

The optional input parameters are two flags (svgm flag, HV flag) that will allow the user

to select either the soil or rock and horizontal or vertical SVGM functions. Table 4.7 lists the

applicable flag combinations.

Table 4.7: Definition of flag combinations.

Soil Rock

Horizontal svgm flag = 1, HV flag = 1 svgm flag = 2, HV flag = 1

Vertical svgm flag = 1, HV flag = 2 svgm flag = 2, HV flag = 2
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Output Formats. The output time series are described along with possible baseline error that

may be present. The output time series file is formatted to match the input format and therefore

no description is needed. However, the output time series are acceleration at each time step and

are not filtered after the Fourier amplitude and phase randomization is complete. Therefore, it

may be possible to have output acceleration time series that do not start or end with a near zero

displacement. Additionally, the FDW2D.m routine does not de-trend the output and therefore

the output time series may not have a mean zero.

4.3.3 Multi axial SVGM models.

Ground motion simulations (point source or finite fault) that will be used in this project (from a

project with Drs. Trifunac and Lee) can create a 3D representation of the 3-component wave-field

at each location in the soil/rock domain of interest. In our particular case those locations will be

withing the DRM box. Additionally, current limitations within the fault source assumptions and

the medium that the simulated waves propagate through, only a narrow band of energy (long pe-

riod/low frequency) can be reliably simulated. A recent attempt by Walling (2009) to reproduce

the high frequency energy (dominated by stochastic processes) proposed a randomized medium

to induce a scattering effect to match an incoherence function. Abrahamson (1985) proposed

and Ancheta et al. (2013) developed a method for generating synthetic broadband strong motion

seismograms. The method uses the ground motion simulations (that will eventually come from

a CNSC project with Drs. Trifunac and Lee) as a starting set of Fourier amplitudes and phases

at each location and an energy randomization process called Frequency Dependent Windowing

that conserves the low frequency (coherent) energy and re-samples the high frequency (random)

energy consistent to a set of SVGM functions. The SVGM functions are a sigma amplitude and

plane wave coherency model representing the statistics of the random Fourier amplitudes and

phases respectively.

A 2D wave-field can be developed as proposed by Abrahamson (1993) by realizing that

all three spatial axes (main, radial horizontal direction, along the principal direction of wave

propagation motions, in our case X, transverse horizontal direction, in our case Y, and the vertical

direction) do exhibit lack of correlation (incoherence). This existence of three spatial directions
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of lack of correlation requires existence of data and models for all three directions. Abrahamson

(1992a) investigated incoherence of a large set of 3-component motions recorded by the Large

Scale Seismic Tests (LSST) array in Taiwan. Abrahamson (1992a) concluded that there was little

difference in the radial and transverse lagged coherency computed from the LSST array selected

events. Therefore, the horizontal coherency models by Abrahamson (1992a) and subsequent

models Abrahamson (2005) and Abrahamson (2007) assumed the horizontal coherency model

may apply to any azimuth. Coherency models using the vertical component of array data are

independently developed from the horizontal.

Currently, there are no studies of coherency effects with depth (i.e. shallow site response

domain). Therefore, a simulation method developed by Ancheta et al. (2013) is used and the

incoherence functions for the horizontal and vertical directions developed for a hard rock site by

Abrahamson (2005) to create a full 3D set of incoherent strong motions. A 2D set of incoherent

motions is developed at each elevation of the DRM simulated set of motions independently

assuming that the coherency functions apply at any depth within the near surface domain (¡ 100

m). Therefore, by randomizing the energy at each depth a full 3D synthetic broadband strong

motion seismograms are created. It is worth noting that a recent paper by Konakli et al. (2013)

shows that models developed by Abrahamson and the derived models show very good matching

(for separations of up to 100m, which is of main interest for out problems) with data from a

site from which they were not developed (Parkfield array in California), acting as an independent

validation of those models.

Developed methodology is implemented in a separate code that is connected to a analysis

system that is being delivered to CNSC in components. This system will be further demonstrated

during October 2013 meeting in Ottawa.

4.3.4 SVGM models and ergodic assumption.

As noted in the proposal, the use of SVGM models is based on the ergodic assumption. This

assumption allows that statistical data obtained at one (or few) location(s) over a period of time

be used for at other locations at certain times. For example, data on SVGM obtained from a

Lotung site in Taiwan, over long period of time (dozens of years) is developed into a statistical
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model of SVGM and then used for other locations around the world. This ergodic assumption

cannot be proven to be accurate (or to hold) at all, unless more data becomes available. However,

ergodic assumption is regularly used for SVGM models. It is used in our development too.

Very recently, there were a number of smaller and larger earthquakes in the areas with good

instrumentation in the form of dense arrays. For example, Parkfield, California measurement

experiment has recorder some significant earthquakes in last 10 or so years. It is important that

SVGM models used in our development were developed using data from Lotung and Pinyon

Flat measuring stations. Models so developed were recently validated against Parkfield data by

Konakli et al. (2013) and showed good matching with our models for nodal separation distances

up to 100m. This is one of the first independent validations of family of models developed by

Abrahamson and co-workers, that are used in our development as well. This validation gives us

new confidence that assumed ergodicity of SVGM models does hold for all practical purposes of

developed SVGM models.

4.3.5 SVGM models and multiple NPPs on a same soil.

For multiple NPP models on same soil (for example a model in Figure 3.3.9 on page 28) SVGM

needs to be developed with a new, larger separation distance that covers the new DRM box.

This is the only proper method of dealing with SVGM motions for multiple NPPs (in this case

two). Other methodologies, sometimes advocated and used, that are based on considerations of

symmetry or anti-symmetry make too many assumptions that reduce the generality and accuracy

of obtained results. It is important to note that use of dual NPP models for application of SVGM,

as shown in Figure 3.3.9, is possible if the same type of soil or rock is found in the sub-base of

both (or multiple) NPPs. If this is not the case, different approach needs to be used, as discussed

below.

4.3.6 SVGM models and multiple NPPs on a different soil.

For a case of dual (or multiple) NPPs adjacent to each other, but on different soil/rock conditions

(say one NPP is founded on soil while the adjacent one is founded on a rock sub-base), a different

approach is needed. In this case a model for dual NPP (as shown in Figure 3.3.9) cannot be
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used directly as described in the previous paragraph, since this model uses a single set of SVGM

for either soil or rock (soil and rock SVGM models are different). This issue can be resolved in

two ways

• One approach is to still use a dual NPP model, but use different SVGM functions for two

halves of the DRM box. The half of the DRM box that has soil in the foundation get

SVGMs using soil model, while the other half of the DRM box, with rock foundations, will

use rock SVGM motions. This way, both soil and rock SVGM models will be featured in

their appropriate domain of application. The problem with this approach is that near field

motions, developed using external programs (for example, one developed by Drs. Trifunac

and Lee) are developed for horizontally layered soils/rock profiles, and change of from rock

to soil and vice versa can only be in the vertical direction, while in case discussed here this

change from rock to soil (or otherwise) is in horizontal direction. Thus the application of

this method might be acceptable if differences between stiffness/type of soils and or rock

are not too large for adjacent NPPs.

• In the case when differences between soil - rock sub-base material are too large, a different

model is advocated. The issue is resolved by by modeling dual (or multiple) NPPs using a

set of single NPP models (as shown in Figure 3.3.9 on page 27), that are placed adjacent

to each other. Each model receives its own set of free field input motions obtained from

a auxiliary modeling (for example from a CNSC project with Drs. Trifunac and Lee) and

then SVGM are applied to each of these models separately, given the type of their sub-base

conditions (soil or rock). The only issue that needs to be taken into account is the actual

influence of one NPP on the other NPP (SSSI). Those influences from one NPP to another

NPP (SSSI) can be followed by means of analyzing out of DRM layer motions from both

models (portions of those out of DRM motions in the zone facing the other NPP DRM

model). It is hypothesized that those inter NPP influences will not be significant (yet they

have to be properly analyzed using features of DRM) since NPP models founded on rock

will be most likely sending higher frequency motions toward soil founded NPP. This will

similar in the opposite direction, NPP models founded on soil sub-base will be sending low

frequency motions toward rock founded NPPs. These inter NPP influences will be small
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as motions of non-compatible frequencies will be applied to each domain (high frequency

motions from rock sub-base toward soil sub-base, and vice versa, low frequency motions

from soil sub-base toward rock sub-base. In both cases, SSSI will be minor if any.
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Chapter 5

Task 4.3: Material Nonlinear Response

of Soil/Rock, Calibrated from Available

Data

5.1 Summary of Findings for Task 4.3

The main findings for task 4.3 are:

• Significant energy dissipation capacity is available in soil and rock adjacent to the foun-

dation, and should be accounted for and used as a mean of reducing seismic energy that

goes into the NPP structures, systems and components

• Energy dissipation within soil domain relies on both frictional (displacement proportional)

and viscous (velocity proportional) damping mechanisms, with frictional damping (elasto-

plasticity) providing the majority o such damping (energy dissipation).

• Soil volume change data, that is often (usually) not available when modulus reduction

(G/Gmax) and damping curves are used, and that affects soil volume changes due to

shearing deformation, plays a significant role in seismic wave propagation. Soil volume

change due to shearing (for shear wave propagation) will either cause an increase (due

to dilatancy) in soil stiffness or an decrease (due to compressibility) in soil stiffness (see
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example below).

• Uncertain and spatially variable soil/rock of soil material properties need to be accounted

for and and least bounds of behavior established (see data below).

• Elastic-plastic material model that is calibrated from modulus reduction (G/Gmax) and

damping curves, named Pisanò model is developed and can be used within ESSI simulator

or modeling soil inelastic response (see detailed description below).

5.2 Methodology

Briefly described here is a methodology developed and used in working on Task 4.3.

5.2.1 Assessment of Soil/Rock Nonlinearities in a Zone Adjacent to

NPP Foundation.

It is well known that soils and rock undergo inelastic (nonlinear, elastic-plastic) deformation dur-

ing loading and unloading cycles. This is particularly true for zones adjacent to NPP foundations.

These nonlinearities can be a result of a stiff foundation, with a significant (large, stiff, heavy)

structure above it, undergoing a dynamic motions (shear, vertical, rocking, rolling, twisting).

It is well know that any material with underlying particulate structure (like soils and rock) will

develop nonlinear deformation even under smallest amount of shear (Mindlin and Deresiewicz,

1953). This observation together with a fact that a large, heavy structure (NPP: shield, con-

tainment and auxiliary buildings) are undergoing dynamic motions, result in a significant amount

of nonlinear deformation developing adjacent to the foundation of an NPP.

While the spatial extent and amounts of such nonlinear behavior will be different on a case

by case basis, it is certain that such nonlinear deformation will occur, in soil and in rock. In

addition to the fact that soils (always) undergo nonlinear deformations, it is also usually assumed

that rock is linear elastic. This is contrary to available evidence (Stavrogin et al., 2001), which

shows that rock behaves as nonlinear as any other pressure sensitive material, and that it can

produce significant hysteretic loops (energy dissipation).
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5.2.2 Assessment of Material Models that can be Calibrated from

Available Data.

It is of particular interest to be able to utilize 3D incremental elastic-plastic material models

for modeling the nonlinear dynamics of NPPs. This need for utilizing 3D elastic-plastic models

comes from a requirement to perform a full 3D elastic-plastic analysis of seismic behavior of

NPPs. Developed and used 3D incremental elastic-plastic material models have to be calibrated

using data that is usually available at the site during design and construction of an NPP.

For rock modeling, with shear wave velocity available, a linear elastic modeling is usually

initially used (Amadei, 1983; Aki and Richards, 2002; Benz and Schwabb, 2008; Jaeger et al.,

2007; Zhang, 2005). This is usually a consequence of lack of data on nonlinear behavior of

rock at a particular NPP site (although such nonlinearities are known to exists (Stavrogin et al.,

2001)). Therefor, as first approximation, a linear elastic model is usually used. Linear elastic

model can/should be easily replaced by a nonlinear model, if and when the data about rock

nonlinearity becomes available.

The most common soil characterization used in the nuclear power industry is to develop so

called G/Gmax (stiffness degradation) and damping curves for soil and the shear wave velocity

profiles for the rock. It is proposed here to use recently developed theory of plasticity with

vanishing elastic region and develop full 3D nonlinear dynamic modeling of soil (Pisanò and

Jeremić, 2014) from available fields data, given by G/Gmax and damping curves. It should

be noted that development of G/Gmax and damping curves from fields tests, does introduce

an amount of uncertainty in material parameters due to spatial variability, and measuring and

transformation error. This uncertainty can be significant, can affect modeling and simulations of

soil behavior, and will therefor be addressed in our work using our recently developed methodology

(Sett et al., 2011).

Development of elastic-plastic material models from field available data has seen some re-

cent progress, during a short DOE project that Drs. Jeremić and Pisanò were involved with.

An initial development, named Pisanò material model (Pisanò and Jeremić, 2014), has been

updated, enhanced and improved and is used here. The Pisanò material model is based on

incremental elastic-plastic theory. It differs from any other model currently available in that
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it features a vanishing (differentially small) elastic region, and a pressure sensitive yield criteria

based on Drucker-Prager cone. In addition to that, in conjunction with viscous energy dissipation

mechanism, this model can be calibrated, with high fidelity, from available G/Gmax and damping

curves.

It is also very important to note that this material model is a full 3D elastic-plastic material

model that uses 1D G/Gmax and damping curves for calibration, but does produce a full 3D

stress-strain relations. This is in contrast to available material models that try to mimic G/Gmax

and damping behavior (in 1D) and that are indeed only defined in 1D, and are then extended to

3D only by using non-rational mechanics tricks that cannot be verified and validated.

5.2.3 Assessment of Contributions to Safety of this type of Nonlinear-

ity.

Nonlinear behavior of soil and rock adjacent to foundations of an NPP can dissipate significant

amounts of seismic energy during earthquakes. Energy dissipation capacity of various types of

soil and rock will depend on their cyclic (hysteretic) behavior. However, any soil and rock, with

its inelastic behavior will contribute to energy dissipation, which will in turn, benefit seismic

response. This benefit is simply explained by the fact of an NPP receives a lesser amount of

seismic energy as some (most) of that energy is dissipated beneath foundations (Jeremić, 2010).

Finite element models that are currently available and running, and that will be available to

CNSC, will provide an in depth insight in effects nonlinear behavior of soils has on safety of

NPPs.

5.3 Work Performed, Subtasks

5.3.1 Spatial Variability of Soil/Rock Domain.

Variability of material parameters that are used in modeling of soil-structures systems can be

significant. This variability needs to be taken into account. A brief overview of documented

uncertainties and variability for soil properties is presented below.

Table 5.1 presents tabulated Coefficients of Variation (COV) data for drained friction angle,
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φ , tangent drained friction angle, tanφ, undrained shear strength Su, cohesion, c as well as

undrained strength ratio obtained by Jones et al. (2002).

Figure 5.1: COV of inherent soil variability for strength parameters as per (Jones et al., 2002) .

Measurement errors are always present during both in-situ and laboratory tests (Baecher

and Christian, 2003; Phoon and Kulhawy, 1999a,b). As pointed out by Phoon and Kulhawy

(1999a), measurement errors arise from three sources: equipment errors (e.g., inaccuracies of

the measuring devices and variations in equipment geometries and systems used for routine

testing), procedural-operator errors (e.g., limitations in existing test standards and how these

standards are followed by operators), and random testing error (i.e., the remaining scatter in

measurements that is not assignable to specific testing parameters and is not caused by inherent

variability of soils).

Statistical data on measurements errors is limited in the literature. Table 5.2 provides a

summary of total measurement error for different laboratory-measured properties (Phoon and

Kulhawy, 1999a).

Table 5.3 presents tabulated data for SPT measured resistance, N , and Table 5.4 presents

CPT (tip- and corrected-tip resistance) data (Jones et al., 2002). The reported COVs are larger
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Figure 5.2: Summary of total measurement error for laboratory-measured properties (Phoon and

Kulhawy, 1999a)

in SPT than in CPT tests. In both cases they larger than what is observed for laboratory tests.

Figure 5.3: COV of inherent soil variability for SPT resistance

The measurement of various parameters from a geotechnical test is usually not directly appli-

cable to design. Instead, a transformation model is needed to relate the parameter measurement

(for example, SPT N values) to an appropriate design property (for example, a friction angle).

Empirical correlations are often obtained from empirical data fitting, and hence they are associ-

ated with some uncertainties because of data scatter and inaccuracy of the best fit (e.g., Phoon

and Kulhawy (1999b)) Transformation uncertainty arises from a lack of knowledge about the re-
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Figure 5.4: COV of inherent soil variability for CPT measurements

Figure 5.5: Summary of measurement error of common in situ tests

lationship between the measured property and the design property, and it is therefore categorized

as epistemic uncertainty and can be reduced as the knowledge about the relationship improves

(e.g., Baecher and Christian (2003)).

Phoon and Kulhawy (1999a) provides several correlation equations for soil properties with-

out however quantifying the actual transformation uncertainty to large extent. As an example,

according to the above researchers, the transformation uncertainty for undrained shear strength

based on triaxial tests lies between 29-35%. A summary of the variability of some design prop-

erties as a function of the test measurement, correlation equation, and soil type is presented in

Table 5.6.

The COV of Su varies between 10-60% for different tests, while the COV of φ lies in a range

of 5-20%.
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Figure 5.6: Approximate guidelines for design soil property variability (Phoon and Kulhawy,

1999a).

Lacasse and Nadim (1996) suggest a pdf of φ to be follow the normal distribution for sands

and lognormal distribution for Su in clays. It is suggested here that lognormal distribution

(more realistic since it prohibits negative values) is adopted and, utilizing the published COVs

of undrained shear strength and angle of friction, provided are visualization of the uncertainty of

the above properties for the cases of minimum and maximum reported COVs.

Figures 5.7, 5.8, 5.9, 5.10 correspond to laboratory tests, while Figures 5.11, 5.12, 5.13,

5.14 correspond to field (SPT, CPT) tests. The solid vertical lines form a 68.3% interval of

confidence, while the dashed lines form a 95.5% interval of confidence. The circular points

represent the geometric mean values of the lognormal distributions.

If the actual test data are available, we can represent the residual values of a material

property as shown in the figures below where Sett et al. (2011) provide the residual undrained

shear strength based on SPT data. The authors came up with a Pearson VI distribution to best

fit the data, as shown in Figures5.15 and 5.16.

Little data has been published so far on soil stiffness uncertainty. The pressuremeter test
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Figure 5.7: Probability density function of Undrained shear strength for minimum and maximum

reported COVs based on laboratory tests
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Figure 5.8: Cumulative probability density function of Undrained shear strength for minimum

and maximum reported COVs based on laboratory tests

modulus EPMT is often presumed to be roughly equivalent to Young’s modulus (Phoon and

Kulhawy, 1999b) and published total coefficients of variation for the former range between 20-

70%. We may assume that stiffness uncertainty is generally greater than strength uncertainty.

Figures 5.17 and 5.18 shows PDF and CDF of Young’s modulus uncertainties for PMT tests.
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Figure 5.9: Probability density function of friction angle for minimum and maximum reported

COVs based on laboratory tests
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Figure 5.10: Cumulative probability density function of friction angle for minimum and maximum

reported COVs based on laboratory tests

Figures 5.19 and 5.20 show values of the residual of Young’s modulus based on SPT data

Sett et al. (2011).
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Figure 5.11: Probability density function of Undrained shear strength for minimum and maximum

reported COVs based on SPT tests
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Figure 5.12: Cumulative probability density function of Undrained shear strength for minimum

and maximum reported COVs based on SPT tests
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Figure 5.13: Probability density function of friction angle for minimum and maximum reported

COVs based on CPT tests
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Figure 5.14: Cumulative probability density function of friction angle for minimum and maximum

reported COVs based on CPT tests
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Figure 5.15: Transformation relationship between SPT N-value and undrained shear strength,

Su (Sett et al., 2011)

Figure 5.16: Histogram of the residual undrained strength along with fitted pdf (Sett et al.,

2011)
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Figure 5.17: Probability density function of Young’s Modulus for minimum and maximum re-

ported COVs based on PMT tests
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Figure 5.18: Cumulative probability density function of Young’s Modulus for minimum and

maximum reported COVs based on PMT tests
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Figure 5.19: Transformation relationship between SPT N-value and pressuremeter Young’s Mod-

ulus, E (Sett et al., 2011)

Figure 5.20: Histogram of the residual Young’s Modulus along with fitted pdf (Sett et al., 2011)
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5.3.2 Lack of Volume Change Data for Soil.

Use of G/Gmax and damping curves for describing and calibrating material behavior of soil is

missing a very important (crucial) information about soil/rock volume change during shearing

deformation. Volume change data is very important for soil behavior. It is important to emphasize

that soil behavior is very much a function of volumetric response during shear. During shearing

of soil there are two essential types of soil behavior:

• Dilative (dense) soils will increase volume due to shearing

• Compressive (loose) soils will decrease volume due to shearing

The soil volume response, that is not provided by G/Gmax and damping curves data can

significantly affect affect response due to volume constraints of soil. For example, for one

dimensional site response (1D wave propagation, vertically propagating (SV) shear waves) the

soil will try to change its volume (dilate if it is dense or compress if it is loose). However,

such volume change can only happen vertically (since there is no constraint (foundation for

example) on top, while horizontally the soil will be constraint by other soil. That means that any

intended volume change in horizontal direction will be resisted by change in (increase for dense

and decrease for loose soil) horizontal stress. For example for dilative (dense) soil, additional

horizontal stress will contribute to the increase in mean pressure (confinement) of the soil, thus

increasing the stiffness of that soil. It is the opposite for compressive soil where shearing will

result in a reduction of confinement stress. Figure 5.21 shows three responses for no-volume

change (left), compressive (middle) and dilative (right) soil with full volume constraint, resulting

in changes in stiffness for compressive (reduction in stiffness), and dilative (increase in stiffness).

Changes in stiffness of soil during shearing deformation will influence wave propagation and

amplification of different frequencies. Figure 5.22 shows response of no-volume change soil (as it

is/should be assumed if only G/Gmax and damping curves are available, with no volume change

data) and a response of a dilative soil which stiffens up during shaking due to restricted intent

to dilate. It is clear that dilative soil will show significant amplification of higher frequencies.
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Figure 5.21: Constitutive Cyclic response of soils with constraint volumetric deformation: (left)

no volume change (soil is at the critical state); (middle) compressive response with decrease in

stiffness; (right) dilative response with increase in stiffness.
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Figure 5.22: One dimensional seismic wave propagation through no-volume change and dilative

soil. Please note the (significant) increase in frequency of motions for dilative soil. Left plot is

a time history of motions, while the right plot shows amplitudes at different frequencies.

5.3.3 Extrapolation from 1D Data to full 3D Data, Pisano Material

Model

This extrapolation from 1D data (G/Gmax and damping curves) to full 3D model is done through

the development of Pisanò model, as described bellow. It is noted that description of material

model developed and used is from a recent publication by Pisanò and Jeremić (2014). Detailed

description is included here for completeness.
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Abstract. Stiffness degradation and damping represent some of the most well-known aspects

of cyclic soil behavior. While standard equivalent linear approaches reproduce these features by

(separately) prescribing stiffness reduction and damping curves, in this paper a multiaxial, 3D,

viscoelastic – plastic model is developed for the simultaneous simulation of both cyclic curves

over a wide cyclic shear strain range.

The proposed constitutive relationship is based on two parallel resisting/dissipative mecha-

nisms, purely frictional (elastic-plastic) and viscous. The frictional mechanism is formulated as

a bounding surface plasticity model with vanishing elastic domain, including pressure-sensitive

failure locus and non-associative plastic flow – which are essential for effective stress analysis.

At the same time, the use of the parallel viscous mechanism is shown to be especially beneficial

to improve the simulation of the overall dissipative performance.

In order to enable model calibration from stiffness degradation (G/Gmax) and damping curves,

the constitutive equations are purposely kept as simple as possible with a low number of material

parameters. Although the model performance is here explored with reference to pure shear cyclic

tests, the 3D, multiaxial formulation is appropriate for general loading conditions.

Introduction

Modeling soil behavior under cyclic/dynamic loading is crucial in most Geotechnical Earthquake

Engineering (GEE) applications, including e.g. site response analysis and soil structure interaction

(SSI) problems. In the last decades, a number of experimental studies (Ishihara, 1996; di Prisco

and Wood, 2012) pointed out the complexity of such behavior – especially in the presence of

pore fluid(s) – characterized by non-linearity, irreversibility, anisotropy, barotropy, picnotropy,

rate-sensitivity, etc. In principle, a comprehensive soil model should be capable of reproducing

all the aspects of the mechanical response for any loading condition, as well as predicting the

occurrence of liquefaction and cyclic mobility, distinguishing the conditions for shakedown or

ratcheting under repeated loads and so forth. However, such a perfect model is expected to

require too many data for calibration, which are hardly available in most practical situations.

Conversely, many GEE problems are traditionally solved in the frequency domain by using

1D (equivalent) linear visco-elastic models, to be calibrated on standard stiffness degradation

(G/Gmax) and damping (ζ) curves. Owing to the availability of computer programs for 1D
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site response analysis (SHAKE (Schnabel et al., 1972), EERA (Bardet et al., 2000), DEEPSOIL

(Hashash and Park, 2001)) and SSI problems (SASSI (Lymser, 1988)), the visco-elastic approach

has become more and more popular among practitioners, regardless of the following drawbacks:

– most energy dissipation in soils comes from frictional inter-granular mechanisms, rather

than viscous flow;

– G/Gmax and ζ curves do not allow to evaluate irreversible deformations, nor the influence

of pore fluid(s);

– adopting 1D shear constitutive relationships has poor mechanical soundness, since soil

behavior exhibits a pronounced deviatoric-volumetric coupling under general multiaxial

loading conditions;

– the meaning of cyclic shear strain amplitude for the choice of G/Gmax and ζ values is not

evident in the presence of irregular seismic loads.

From the above observations the need stems for more physically consistent soil models. In

the last decades, several approaches to cyclic modeling have been explored and gradually refined

in the framework of elasto-plasticity, including e.g. “multi-surface plasticity”, “bounding surface

plasticity”, “generalized plasticity” and “hypoplasticity”. A number of valuable contributions

are worth citing, such as – to mention only a few – Mróz et al. (1978); Prevost (1985); Wang

et al. (1990); Borja and Amies (1994); Manzari and Dafalias (1997); Gajo and Wood (1999);

Papadimitriou and Bouckovalas (2002); Elgamal et al. (2003); Dafalias and Manzari (2004b);

Taiebat and Dafalias (2008); Andrianopoulos et al. (2010). Recently, it has been also shown

how a good simulation of dynamic properties can be achieved by means of even elastic-perfectly

plastic models, as long as formulated in a probabilistic elastic-plastic framework (Sett et al.,

2011). Comprehensive overviews on cyclic soil modeling are given by Prevost and Popescu

(1996), Zienkiewicz et al. (1999b) and di Prisco and Wood (2012).

As is well-known, the major issues about the practical use of incremental elastic-plastic models

concerns the potentially high number of material parameters. For a model to appeal to practicing

engineers, a tradeoff is needed between the overall accuracy and the number of parameters to
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be calibrated, particularly provided the frequent lack of detailed in situ or laboratory data. This

observation led the authors to set up a constitutive model with main following characteristics:

– multiaxial formulation to cope with a a 3D finite element modeling

– capability of reproducing the practical features of dynamic soil behavior, in particular,

stiffness reduction and damping over a wide strain range, as well as frictional failure,

irreversible deformation and dilatancy;

– low number of material parameters, to be calibrated using usually (practice) available

dynamic soil experimental data, the stiffness reduction (G/Gmax) and damping (ζ) curves.

A constitutive relationship fulfilling the above requirements is hereafter presented as the

combination of two resisting/dissipative mechanism:

• Frictional (elastic-plastic, displacement proportional) and

• Viscous (velocity proportional)

The frictional mechanism has been formulated starting from the work by Borja and Amies

(1994), who proposed a kinematic-hardening bounding surface von Mises model for the seismic

total-stress analysis of the clayey deposits at Lotung site in Taiwan (Borja et al., 1999, 2000).

In particular, based on the idea by Dafalias and Popov (1977) and Dafalias (1979), the Borja

and Amies’s multiaxial model is characterized by the assumption of vanishing elastic domain,

implying soil plastification at any load level and a redefinition of the standard loading/unloading

criterion. The vanishing elastic region also has a strong bases in micromechanics of particulate

media where it can be shown that two particles with any amount of shear on their contact

will develop inelastic deformation (Mindlin and Deresiewicz, 1953). Recently, the vanishing

elastic region approach has been also employed by Andrianopoulos et al. (2010), in order to

improve the previous model by Papadimitriou and Bouckovalas (2002) with respect to numerical

implementation and integration.

In this paper, a bounding surface approach with vanishing elastic region is exploited to derive

the frictional component of the overall model in the form of a Drucker-Prager effective-stress

relationship, incorporating pressure-sensitive failure and non-associative plastic flow. In addition,
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the model is endowed with a further viscous mechanism, which can be wisely exploited to improve

the simulation of the experimental damping. Although numerical convenience often motivates the

use of viscous dissipation into elastic-plastic computations, it has a real physical origin, coming

from the time-dependent processes taking place at both inter-granular contacts and grain/pore

fluid (water, air, etc.) interfaces.

The proposed formulation should be considered as an attempt at reconciling traditional

(equivalent linear) and advanced (elastic-plastic) cyclic modeling within an effective-stress elasto-

plasticity framework. In particular, the model is shown to possess reasonable accuracy in repro-

ducing standard modulus reduction and damping curves over a wide strain range, and it is

particularly user-friendly because of the low number of material parameters. The literature sur-

vey put evidence that these advantages are not easily found in most previous effective-stress

models.

In order to clearly illustrate the main modeling ingredients, the basic version of the model is

hereafter presented and tested under symmetric cyclic shear loading. Its convenient mathematical

structure enables future refinement to model other (other than G/Gmax and damping) important

features of dynamic behavior of soil.

Frictional and viscous dissipative mechanisms

The time-domain finite element (FE) solution of dynamic problems is usually carried out by

solving an incremental discrete system of the following form (Bathe and Wilson, 1976; Zienkiewicz

and Taylor, 1991):

M∆Ü + C∆U̇ + Kt∆U = ∆Fext (5.1)

where ∆ and dots stand respectively for step increment and time derivative, U is the generalized

DOF vector (nodal displacement for example), Fext the nodal external force vector and M, C,

Kt are the mass, damping and (tangent) stiffness matrices, respectively.

In system (5.1) two dissipative sources are readily recognizable, namely the viscous (velocity-

proportional) and the frictional (displacement-proportional) terms (Argyris and Mlejnek, 1991).

While the latter is given by the elastic-plastic tangent stiffness Kt, the viscous term related to

the damping matrix C can represent interaction of solid skeleton and pore fluid, and constitutive
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rate-sensitiveness of the soil skeleton. The above combination of frictional and viscous dissipation

can be interpreted in terms of two distinct effective stress components acting on the soil skeleton:

σij = σfij + σvij (5.2)

where the effective stress tensor σij has been split into frictional (elastic-plastic) and viscous

stresses1. From a rheological point of view, the resulting scheme can be defined as visco-elastic-

plastic. In what follows, the frictional component is first specified via the formulation of the

bounding surface model with vanishing elastic domain; then, the role played by the linear viscous

term is discussed.

Index tensor notation is used, along with the standard Einstein convention for repeated in-

dices; the norm of any second-order tensor xij is defined as ‖xij‖ =
√
xijxij, whereas the

deviatoric component can be extracted as xdevij = xij − xkkδij/3 (δij is the Kronecker delta). In

accordance with usual Solid Mechanics conventions, positive tensile stresses/strains are consid-

ered, whereas – as is done in Fluid Mechanics – only the isotropic mean pressure is positive if

compressive.

Bounding surface frictional model with vanishing elastic domain

The frictional component of the model being proposed is formulated by generalizing the previous

constitutive relationship by Borja and Amies (1994). In what follows, the superscript f referring

to the frictional component of the global effective stress (Equation (5.2)) is avoided for the sake

of brevity.

Elastic relationship

Provided the usual additive combination of (incremental) elastic and plastic strain components

dεij = dεeij + dεpij, the incremental linear elastic Hooke’s law is expressed as follows:

dσij = De
ijhk (dεhk − dεphk) =⇒


dsij = 2Gmax (dehk − dephk)

dp = −K (dεvol − dεpvol)

(5.3)

1Henceforth, effective stresses are exclusively accounted for
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where d stands for a differentially small increments and De
ijhk is the fourth-order elastic stiffness

tensor. Equation (5.3) also points out the elastic deviatoric/volumetric decoupling, in which

p = −σkk/3, εvol = εkk, sij = σdevij and eij = εdevij stand for mean stress, volumetric strain, stress

deviator and strain deviator, respectively. The shear modulus Gmax = E/2 (1 + ν) and the bulk

modulus K = E/3 (1− 2ν) are derived from the Young modulus E and the Poisson’s ratio ν.

Henceforth, Gmax will be always used for the elastic small-strain shear modulus, whereas the

secant cyclic shear stiffness will be referred to as G.

Although soil elasticity is known to be non-linearly pressure-dependent, a classical linear

formulation has been here maintained to simulate constant-pressure cyclic shear tests, exclusively.

Drucker-Prager yield and bounding loci

A conical Drucker-Prager yield locus is first introduced, similar to that used by Prevost (1985)

and Manzari and Dafalias (1997):

fy =
3

2
(sij − pαij) (sij − pαij)− k2p2 = 0 (5.4)

where αij is the so called deviatoric back-stress ratio (αkk = 0) governing the kinematic hardening

of the yield surface; k is a parameter determining the opening angle of the cone. The variation

of the back-stress ratio αij in (5.4) leads to a rigid rotation of the yield locus and, therefore, a

rotational kinematic hardening.

In the spirit of standard bounding surface plasticity, the yield locus must always reside within

an outer surface (the so-called bounding surface), here assumed in the form of a further Drucker-

Prager cone (non kinematically hardening, fixed in size):

fB =
3

2
sijsij −M2p2 = 0 (5.5)

where M provides the bounding cone opening and, as a consequence, the material shear strength.

Plastic flow and translation rules

The plastic flow of soils is in general non-associative (Nova and Wood, 1979) and gives rise to

plastic contractancy or dilatancy depending on whether loose or dense materials are considered.
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Here, the plastic flow rule is borrowed from Manzari and Dafalias (1997):

dεpij = dλ

(
ndevij −

1

3
Dδij

)
(5.6)

where dλ is the plastic multiplier, ndevij is a deviatoric unit tensor (‖ndevij ‖ = 1) and D is a

dilatancy coefficient defined as (Manzari and Dafalias, 1997):

D = ξ
(
αdij − αij

)
ndevij = ξ

(√
2

3
kdn

dev
ij − αij

)
ndevij (5.7)

in which ξ and kd are two positive constitutive parameters. While the former controls the amount

of volumetric plastic strain, the latter determines the position of the so called “dilatancy surface”

and rules the transition from contractive (D > 0) to dilative (D < 0) behavior under undrained

triaxial conditions2.

For the sake of simplicity (and regardless of some experimental evidences), the kinematic

hardening evolution of the yield locus and the direction of the deviatoric plastic strain increment

are related through the standard Prager’s rule (Borja and Amies, 1994):

dαij = ‖dαij‖ndevij (5.8)

Vanishing elastic region

As previously mentioned, the main feature of the frictional model concerns the vanishing elastic

domain, corresponding with the limit k → 0 in Equation (5.4). Accordingly, the Drucker-Prager

cone reduces to its axis, so that:

lim
k→0

fy = 0⇒ sij
p

= rij = αij ⇒ dαij = drij =
dsij
p
− sij
p2
dp (5.9)

where rij is the deviatoric stress ratio tensor (Manzari and Dafalias, 1997). After substituting

the Prager’s rule (5.8) into (5.9) we obtain:

ndevij =
drij
‖drij‖

=
dsij − αijdp
‖dsij − αijdp‖

(5.10)

From Equation (5.10) it can be inferred that:

2Under different loading conditions this transition is not “exactly” governed only by the location of the current

stress state with respect to the dilatancy surface
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1. since the direction of the overall plastic strain increment depends on the stress increment

dσij, the resulting constitutive formulation is by definition “hypoplastic” (Dafalias, 1986);

2. hydrostatic stress increments (dsij = 0) from initial hydrostatic states (αij = 0) produce

ndevij = 0→ εdevij = 0;

3. the deviatoric plastic strain increment is along the direction of the deviatoric stress ratio

increment. This directly comes from the use of the above Prager’s rule in combination with

the vanishing elastic region. Although this finding is not in full agreement with general

experimental evidences, it will not prevent satisfactory cyclic G/Gmax and ζ curves to be

obtained.

Starting from Equation (5.9), the norm ‖dαij‖ = ‖drij‖ can be specified for the case of

radial loading paths in the deviatoric plane, which are characterized by dp = 0 and the coaxiality

of sij and dsij. Under these loading conditions, simple manipulations lead to find:

‖dαij‖ =

√
2

3

dq

p
(5.11)

where q =
√

3/2‖sij‖ stands for the usual deviatoric stress invariant.

Hardening relationship and plastic multiplier

An incremental hardening relationship is directly established (Borja and Amies, 1994):

dq =

√
2

3
H‖depij‖ (5.12)

where H is the hardening modulus. Then, the substitution of both the flow rule (5.6) and the

hardening relationship (5.12) into (5.11) leads to:

‖dαij‖ =
2

3

Hdλ

p
(5.13)

By equaling the two definitions of dsij arising from Equations (5.3)-deviatoric and (5.9), and

then using Equations (5.3)-volumetric and (5.13) the following relationship is obtained:
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2Gmax

(
deij − dλndevij

)
= ‖dαij‖ndevij p+ αijdp =

2

3

Hdλ

p
ndevij p− αijK (dεvol + dλD) (5.14)

whence:

dλ =
2Gmaxdeijn

dev
ij +Kdεvolαijn

dev
ij

2G+
2

3
H −KDαijndevij

(5.15)

Equation (5.15) represents the consistent frictional generalization of Equation (18) in Borja

and Amies (1994), as well as the limit of Equation (12) in Manzari and Dafalias (1997)3 for a

vanishing size of the yield locus.

Projection rule, hardening modulus and unloading criterion

The theory of bounding surface plasticity relies on the basic concept that the plastic modulus

explicitly depends on the distance between the current stress state and an ad hoc stress projection

onto the bounding surface. On this issue, benefits and pitfalls of different projection rules have

been thoroughly discussed by Andrianopoulos et al. (2005).

Here, the stress projection in the π-plane (deviatoric stress ratio plane) is assumed to be

along the direction of αij − α0
ij:

αbij = αij + β
(
αij − α0

ij

)
(5.16)

where β is a scalar distance coefficient, while α0
ij is the back-stress ratio at the last loading

reversal (Figure 5.23). As observed by Andrianopoulos et al. (2010), projection rules of the type

(5.16) are “stable”, in the sense that small perturbations of the loading direction do not affect

severely the location of the stress projection on the bounding surface.

The coefficient β is obtained by enforcing the projected stress σbij to lie on the bounding

surface (Equation (5.5)):

3

2
sbijs

b
ij = M2

(
pb
)2 ⇐⇒ 3

2
αbijα

b
ij = M2 (5.17)

3Different signs result because of the opposite sign conventions adopted by these authors
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Figure 5.23: Representation of the projection rule (5.16)

that is by substituting (5.16) into (5.17) and then deriving the positive root of the following

algebraic equation4:

∥∥αij − α0
ij

∥∥2
β2 + 2αij

(
αij − α0

ij

)
β + ‖αij‖2 − 2

3
M2 = 0 (5.18)

The analytical relationship between H and β is chosen to fulfill the following requirements:

1. H (β = 0) = 0, that is full mobilization of the material strength when the stress image

point lies on the bounding surface;

2. H (β →∞) → ∞, that is (instantaneous) recover of the elastic stiffness at the onset of

load reversal (i.e. αij = α0
ij).

In this case, the following H − β relationship has been introduced because of its simplicity:

H = phβm (5.19)

in which h and m are two additional constitutive parameters.

4The adoption of a simple Drucker-Prager-type bounding surface allows β to be analytically obtained. This

would not be the case in the presence of more complex π-sections
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In the absence of a finite-sized elastic region, the occurrence of unloading cannot be checked

by comparing the loading direction and the local normal to the yield locus. This requires the

definition of an alternative unloading criterion, coinciding here with providing a rule for updating

α0
ij. Borja and Amies (1994) proposed a criterion based on the observation that the hardening

modulus H increases at the onset of unloading, so that – as long as H (β) is a monotonically

increasing function – instantaneous unloading is assumed whenever dH > 0, i.e. dβ > 0.

However, the authors experienced that such an unloading criterion lacks robustness in numerical

computations under complex/irregular loading paths, because the small values assumed by β

(especially close to the bounding surface) can be easily corrupted even by numerical inaccuracies;

as a result, unrealistic unloading is often likely to arise. While different proposals are available in

literature to overcome this problem (Andrianopoulos et al., 2005, 2010), the following unloading

criterion has been here preferred:

(
αij − α0

ij

)
drij < 0⇐⇒

(
αij − α0

ij

)
ndevij < 0 (5.20)

in which the coaxiality of dαij = drij and ndevij (Prager’s rule (5.8)) has been exploited.

It should be also borne in mind that this kind of updating criterion is likely to give rise to

“overshooting” phenomena under general loading paths (Dafalias, 1986). Overshooting takes

place when, after loading along a given direction, a very small unloading implies an updated α0
ij

before reloading along the original direction. The updated small distance between the current

and the reversal stresses determines an unrealistically high reloading stiffness, so that “the cor-

responding stress-strain curve will overshoot the continuation of the previous curve which would

have occurred if no unloading/reverse loading/reloading had taken place” (Dafalias, 1986). While

this shortcoming can be usually observed under irregular seismic loading, it will not be detected in

the results being presented, exclusively concerning symmetric sinusoidal cyclic loading. A recent

discussion on the remediation of overshooting is provided by E-Kan and Taiebat (2014).

Possible refinements

The frictional model has been developed trying to keep the number of material parameters as

low as possible, even with a non-associated flow rule. This was done since our primary goal is

to create a material model that appeals to practice, and that can be calibrated from stiffness
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degradation (G/Gmax) and damping curves. There are a number of improvements that might be

introduced if required by the problem under examination, and, of course, if more (appropriate)

experimental data is available.

It should be first noted that, as a Drucker-Prager type bounding surface has been adopted,

the material shear strength is unaffected by the Lode angle, so that for instance the same

failure obliquity is predicted for triaxial compression and extension. This drawback could be

easily remedied by modifying the deviatoric cross-section of the bounding surface itself, e.g. by

adopting the well known Mohr-Coulomb deviatoric locus or other smooth loci (Matsuoka and

Nakai, 1974; Willam and Warnke, 1974; Lade, 1977). A change in the deviatoric cross-section

would negligibly influence the overall formulation, as just the evaluation of the projection distance

β (Equation (5.17)).

Secondly, the present version of the model cannot predict a possible softening behavior of

the soil, usually taking place in the case of dense materials. Softening could be accounted for

by incorporating a further isotropic hardening mechanism at the bounding surface level, allowing

for a gradual shrinkage of the outer surface during plastification.

Another relevant point concerns the fact that different parameters must be calibrated for dif-

ferent void ratios of the same granular material, as if distinct materials were indeed considered.

As a matter of fact, continuous transitions from loose to dense states (and vice versa) sponta-

neously take place during straining: this aspect has been successfully addressed and reproduced

via the concept of “state parameter” (Been and Jefferies, 1985; Wood et al., 1994; Manzari

and Dafalias, 1997), which could be also introduced into a critical-state version of the proposed

model. Also, the state parameter concept represents a natural way to reproduce softening as an

effect of the material evolution from peak strength to critical state conditions.

While the above aspects concern both monotonic and cyclic loading conditions, further issues

could be addressed with more specific reference to cyclic/dynamic loading, as for instance fabric

effects (Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 2004b) and anisotropy, the

evolution toward shakedown or ratcheting under a large number of loading cycles (di Prisco and

Wood, 2012), the occurrence of cyclic mobility (Elgamal et al., 2003), rate-sensitiveness and

related frequency effects.

Apparently, refining the model formulation in the light of the above observations would
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result in more accurate predictions/simulations, implying though higher difficulties in terms of

calibration, implementation and, as a consequence, practical employment. It is noted again that

the main goal of presented development is to conceive a 3D incremental elastic-plastic model that

is reasonably accurate, yet calibrated from (only) stiffness degradation (G/Gmax) and damping

curves, and that provide engineers/modelers with a standard cyclic modeling concepts (modulus

reduction and damping curves) in a 3D elastic-plastic fashion.

The role of linear viscous damping

An additional viscous mechanism (Equation (5.2)) is usually available and exploited in most

finite element (FE) codes, even though it is not directly included in the constitutive model.

Indeed, many numerical programs solve discrete systems with a viscous damping term (Equation

(5.1)), usually assembled as a linear combination of the mass and the (elastic) stiffness matrices

(Rayleigh formulation (Argyris and Mlejnek, 1991; Chopra, 2000)):

C = a0M + a1K
e (5.21)

where a0 and a1 are two constant parameters, related to the nth modal damping ratio ζn of the

discrete structural system.

It could be easily shown that a constitutive viscosity in the form:

σvij = Dv
ijhkε̇hk (5.22)

gives rise to a stiffness-proportional damping matrix, which can be equivalently reproduced

through the following calibration of the Rayleigh damping parameters (Borja et al., 2000; Hashash

and Park, 2002):

a0 = 0 a1 =
2ζ0

ω
(5.23)

The calibration (5.23) establishes the same ratio between tangential/bulk elastic and the viscous

moduli, that is Ge
max/G

v
max = Ke/Kv. More importantly, a damping ratio ζ0 is ensured for a

given circular frequency ω, as long as the parallel resisting mechanism (σfij) is purely elastic; as

a consequence, provided the a1 value at the beginning of the analysis, modal frequencies and

the corresponding damping ratios are linearly related.
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It is also worth remarking some further points about the implications of linear viscous damping

in conjunction with non-linear soil models. If a soil element undergoes an imposed shear strain

history, the overall shear stress/strain cycles τ − γ differ from the purely frictional component

τ f −γ, this difference being due to the viscous shear stress τ v. As will be shown in next section,

the viscous component implies smoother cycles and avoid the sharp transitions at stress reversal

usually exhibited by purely elastic-plastic responses (Borja et al., 2000). However, the overall

G/Gmax ratio between the average cyclic stiffness and the elastic shear modulus is unaffected

by viscosity.

As far as the damping ratio is concerned, its standard definition (Kramer, 1996) can be easily

adapted to point out the frictional/viscous splitting of the energy ∆W dissipated in a loading

cycle:

ζ =
∆W

2πGγ2
max

=
∆W f + ∆W v

2πGγ2
max

= ζf + ζv (5.24)

where γmax is the imposed cyclic shear strain amplitude and G the corresponding (secant) cyclic

shear stiffness. As γmax approaches zero, the plastic dissipation tends to zero as well, so that

ζ = ζv; therefore, the Rayleigh parameter a1 can be calibrated to obtain ζ (γmax → 0) = ζ0 for

a given circular frequency ω (see Equation (5.23)). This is a desirable feature of the model, as

natural soils are well known to dissipate energy at even very small strain amplitudes.

At progressively larger strains, both the frictional and viscous components contribute to the

global damping, although the relative quantitative significance is hard to assess a priori. In

addition, the viscous component of the ζ − γmax curve is not constant, since ζv depends on the

strain-dependent secant modulus G (γmax) and, implicitly, on the strain rate. This is different

to what has been argued by Borja et al. (2000).

As an example, consider the response of an elastic-perfectly plastic model with additional

viscosity under a sinusoidal shear excitation γ (t) = γmax sin (ωt). The simplicity of the elastic-

perfectly plastic response allows derivation of instructive analytical formulas for the G/Gmax and

the damping ratios, even in the presence of viscous dissipation. While γmax < γy (yielding shear

strain), the material behavior is linear elastic, so that G/Gmax = 1 and ζ equals the purely

viscous contribution at γmax = 0, i.e. ζ = ζ0; γy depends on the elastic stiffness and the shear

strength of the material, γy = τlim/Gmax, where τlim is the limit (frictional) shear stress for

91



a given confining pressure. For γmax > γy plastification take place with a flat elastic-perfectly

plastic τ f − γ branch, and the following expressions can be easily derived:

G

Gmax

=
τlim

Gmaxγmax
(5.25)

ζ =
∆W f + ∆W v

2πGγ2
max

=
2

π

(
1− τlim

Gmaxγmax

)
︸ ︷︷ ︸

ζf

+ ζ0
Gmaxγmax

τlim︸ ︷︷ ︸
ζv

(5.26)

In Figure 5.24 the G/Gmax and ζ ratios are plotted for increasing ζ0 values. As γmax increases,

the frictional damping tends to 2/π ≈ 0.63, while the viscous one keeps increasing because of

the reduction in the secant stiffness and the increase in the shear strain rate (depending on the

strain amplitude). Hence, the value of ζ0 is to be carefully chosen, in order to avoid excessive

dissipation when medium/large strains are induced by the loading process.
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Figure 5.24: G/Gmax and damping curves for a elastic-perfectly plastic model with linear viscous

damping at varying ζ0 (τlim=100 kPa, Gmax=100 MPa)

The fact that the viscous mechanism can modify the purely frictional ζ−γmax curve without

altering the cyclic stiffness degradation can be fruitfully exploited to improve experimental-

numerical agreement in terms of energy dissipation.
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Model performance and calibration

The frictional mechanism of the above model is characterized by a very low number of material

parameters, namely the following seven:

• two elastic parameters, the Young modulus E (or the shear modulus Gmax) and the

Poisson’s ratio ν;

• the shear strength parameter M for the definition of the bounding surface (Equation (5.5));

• the flow rule parameters, ξ and kd, governing the increment of the volumetric plastic strain

under shearing and the size of the dilatancy surface, respectively (Equation (5.6));

• the hardening parameters h and m for the dependence of the hardening modulus on the

distance coefficient β (Equation (5.19)), affecting the pre-failure deformational behavior

and, in overall, the resulting dynamic properties (G/Gmax and damping curves).

Provided a reasonable value for the Poisson’s ratio (usually in the range 0.25−0.4), the small-

strain elastic stiffness can be evaluated from dynamic laboratory (RC tests) or in situ (seismic

geophysical surveys) tests. As far as the shear strength is concerned, the parameter M can be

related to the friction angle φ as follows:

M =
6 sinφ

3± sinφ
(5.27)

to reproduce triaxial compression (sign − in (5.27)) or extension (sign + in (5.27)) failure

conditions. While different bounding deviatoric sections would easily capture both compressive

and extensive limits (Manzari and Dafalias, 1997), the calibration of a circular deviatoric locus

can be tackled – as usual – by setting a trade-off M in between the bounding values in Equation

(5.27) (this is appropriate, for instance, for plane strain problems). Also, since no strain-softening

is reproduced, the peak strength or the residual φ is to be considered on the basis of the specific

purpose of the analysis, i.e. depending on whether optimistic or safe assessments are needed.

In any case, the present version of the model is not well suited for problems where simulating

failure is particularly relevant (e.g. slope stability analysis).
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The calibration of the flow rule parameters, ξ and kd, requires at least a triaxial test to be

performed, in order to obtain some information about the volumetric behavior. In particular, un-

der undrained triaxial conditions, kd coincides with the stress ratio (η = q/p′) characterizing the

so-called “phase transformation line” (Ishihara et al., 1975) and determining the compactive/dila-

tive transition. In the case of loose (compactive) materials, since fixed bounding and dilatancy

surfaces are considered in this version of the model, kd = M is set to ensure a compactive be-

havior vanishing as the limit external locus is achieved. Figure 5.25 shows the predicted triaxial

response for three different values of kd (and fixed ξ), that is by varying the opening angle of the

dilatancy surface (the employed parameters are reported in the figure caption, where p0 stands

for the initial mean pressure).

While the limit stress deviator q is exclusively given by M , the pre-failure behavior is influenced

by the plastic deformability and therefore by kd. The model possesses sufficient flexibility to

reproduce contractive, dilative or contractive/dilative behavior; also, such a feature is necessary

to reproduce undrained conditions (liquefying and non-liquefying responses), this being a further

motivation for non-associativeness when dealing with sandy materials.

Figure 5.26 exemplifies the response predicted under pure shear (PS) cyclic loading, applied

as a sinusoidal shear strain history (γmax = 0.2%, 20% , period T=2π s) at constant normal

stresses (and thus constant mean pressure p0 as well). This corresponds with a radial loading

path on the deviatoric plane); for the sake of clarity, the volumetric plastic response has been

inhibited (ξ=0), in order to evaluate the deviatoric mechanism exclusively. Both purely frictional

(solid line) and frictional/viscous (dashed line) responses are plotted.

Owing to the kinematic hardening of the vanished yield locus, the model can reproduce

both the Bauschinger and the Masing effects, the latter implying the stabilization of the cyclic

response to take place after more than one loading cycle. As expected, the additional viscous

damping increases the area of the cyclic loop and therefore the overall dissipated energy; however,

the effect of the viscous dissipation becomes significant only at medium-high shear strains,

corresponding – for a given loading frequency – with higher strain rates. Further, viscosity

causes the aforementioned “smoothing” of stress reversals, as it can be noticed in Figure 5.27

by comparing the purely frictional and the frictional/viscous responses.

94



0 5 10 15 20
0

50

100

150

200

250

ε
ax

 [%]

q
 [

kP
a]

 

 

k
d
=0

k
d
=0.4

k
d
=1.2

0 5 10 15 20

−30

−20

−10

0

ε
ax

 [%]

ε vo
l [

%
]

k
d
=0

k
d
=0.4

k
d
=1.2

Figure 5.25: Predicted triaxial responses for different dilatancy surfaces ( p0=100 kPa, Gmax =

4 MPa, ν=0.25, M=1.2, ξ=1, h=G/(1.5p0), m=1)

Given the elastic stiffness and the strength of the soil, the shape of the resulting loading cycles

is totally governed by the hardening properties, by h and m in Equation (5.19): this directly

affects the simulation of experimental G/Gmax and damping curves, which can be therefore

exploited for the calibration of both h and m. The following equality holds under PS loading

conditions:

1 =
G

Gmax

[
1 +

6Gmax

hp0γmax

∫ γmax

0

(
γ

τlim/G− 2γ + γmax

)m
dγ

]
(5.28)

where τlim = Mp0/
√

3. Relationship (5.28) has been obtained by integrating the constitutive

equations over the first loading cycle, and represents the frictional counterpart of Equation (6)
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Figure 5.26: Predicted pure shear response at two different shear strain amplitudes (p0=100

kPa, T=2π s, ζ0 = 0.006, Gmax= 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(1.5p0), m=1)

in Borja et al. (2000) – as is testified by the explicit influence of the confining pressure p0. The

proper use of Equation (5.28) requires first the choice of two meaningful points on the G/Gmax

experimental curve, i.e. two (γmax, G/Gmax) couples; then, the unknowns h and m are obtained

by solving the integral system arising from the specification of Equation (5.28) for both selected

(γmax, G/Gmax) couples.

Figure 5.28 illustrates the result of the above calibration procedure, applied on the G/Gmax

and ζ curves for sands implemented into the code EERA (Bardet et al., 2000) and formerly

obtained by Seed and Idriss (1970).
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Figure 5.27: Detail of stress reversals for the pure shear response in Figure 5.26 (γmax = 20%)
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Figure 5.28: Comparison between experimental and simulated G/Gmax and damping curves

(p0=100 kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(112p0),

m=1.38)

Since Equation (5.28) exclusively accounts for the G/Gmax curve, the very satisfactory agree-

ment in terms of stiffness degradation (viscosity has no effect on it) should not surprise. On

the other hand, once h and m are set, the predicted damping curve may or may not match

the experimental outcome irrespective of the calibration procedure. In this respect, Figure 5.28

also presents the comparison between the damping curve by Seed and Idriss and the model pre-
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diction. The frictional ζ curve lies in the same experimental range, even though the accuracy

at γmax = 0.03 − 1% is not as good as for the G/Gmax ratio. In this case, the contribution

of the viscous mechanism is practically non-existent, as it only increases the total ζ ratio for

γmax > 0.1%.

Depending on the specific application, a “trial and error” calibration might be preferable,

sacrificing some of the accuracy in terms of G/Gmax ratio to improve the damping performance.

A possible outcome of a manual calibration is plotted in Figure 5.29: apparently, while the

simulation of the stiffness curve is still acceptable, the damping curve appears to be much better

than the previous one. The use of the viscous mechanism seems to be highly beneficial, since it

remedies the lack of accuracy in the frictional curve at medium/large cyclic strains.
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Figure 5.29: Comparison between experimental and simulated G/Gmax and damping curves

(p0=100 kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax/(15p0),

m=1)

It is also worth noting that the experimental/numerical agreement is satisfactory up to even

γmax = 10%, where substantial plasticity occurs and, in any case, the extrapolation of cyclic

curves from experimental data is – to say the least – questionable.

Besides, if the experimental data under examination are unsatisfactorily reproduced for any h

and m combination, the user still has the chance of substituting the interpolation function (5.19)

with no further changes in the model formulation. In particular, the present model is as flexible
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as the one by Borja and Amies (1994) in reproducing, for a given initial mean pressure, usual

1D non-linear laws for soils, such as the exponential, the hyperbolic, the Davidenkov and the

Ramberg-Osgood models (for this latter a hardening bounding surface would be needed as well).

Matching the aforementioned 1D laws ensures sufficient capability of reproducing experimental

curves of usual shape.

Parametric analysis

In this section the influence of some relevant input parameters on the model predictions is

parametrically investigated.

Influence of the confining pressure

Figure 5.30 illustrates the sensitivity, under PS loading, of both G/Gmax and damping frictional

curves to the initial confining pressure. As can be noticed, increasing p0 does enlarge the “pseudo-

elastic” range, that is the strain interval within which the deviation by the elastic behavior is

negligible even with a vanishing yield locus. It is also noted that the variations in the confining

pressure do not imply appreciable changes in the shape of the curves.
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Figure 5.30: Simulated G/Gmax and damping curves at varying confining pressure (T=2π s,

Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(15p0), m=1)
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Although the present version of the model is apparently pressure-dependent, it cannot quan-

titatively reproduce the pressure-sensitiveness of G/Gmax and ξ curves arising from real exper-

iments and incorporated into some analytical formulas (Ishibashi and Zhang, 1993; Darendeli,

2001). This stems from the fact that the influence of the mean pressure only concerns the plastic

component of the model, while constant elastic (and viscous) moduli have been adopted for the

initial simulation of only PS loading tests. From this point of view, two easy improvements are

possible and mutually compatible:

1. use of hyper- or hypo-elastic laws with variable moduli (Papadimitriou and Bouckovalas,

2002; Andrianopoulos et al., 2010);

2. adoption of p-dependent hardening parameters (i.e. h and m).

In particular, the latter point does not introduce any further difficulty in terms of analytical/nu-

merical treatment, since it only affects the interpolation rule (5.19). Appropriate h (p) and m (p)

relationships could be easily obtained by first calibrating h and m on experimental or analytical

cyclic curves for different p values, and then analytically interpolating the parameters values over

a meaningful pressure range.

Influence of the hardening parameters

Figures 5.31 and 5.32 show the influence of the hardening parameters h and m on the predicted

cyclic curves. In particular, a decrease in either h or m implies a faster development of plastic

strains, so that the closely-elastic range tends to disappear and G/Gmax < 1 and ζ > 0 at

even γmax = 10−4%; conversely, an extended pseudo-elastic behavior can be obtained over a

large strain range by increasing the hardening parameters. Apparently, the model ensures high

flexibility in terms of cyclic curve shapes, so that the response of standard elastic-plastic models

(i.e. with non-vanishing elastic region) can be smoothly approximated (compare for instance the

m = 3 curves in Figure 5.32 and the analytical elastic-perfectly plastic frictional curves in Figure

5.24).
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Figure 5.31: Simulated G/Gmax and damping curves at varying h (p0=100 kPa, T=2π s, Gmax

= 4 MPa, ν=0.25, M=1.2, kd=ξ=0, m=1)
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Figure 5.32: Simulated G/Gmax and damping curves at varying m (p0=100 kPa, T=2π s, Gmax

= 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax/(15p0))

Influence of the viscous mechanism

The influence of the viscous parameter ζ0 on the resulting frictional/viscous damping curve is

illustrated in Figure 5.33 (the G/Gmax is not affected by the parallel viscous mechanism). As

was expected, an increase in ζ0 induce larger values of ζ (γmax → 0), as well as a faster increase
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of the ζ curve at medium/high cyclic strains. Figure 5.33 confirms the usefulness of the viscous

mechanism, which can be exploited as an additional degree of freedom for reproducing the cyclic

dissipative soil behavior.
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Figure 5.33: Damping curves simulated at varying ζ0 (p0=100 kPa, T=2π s, Gmax = 4 MPa,

ν=0.25, M=1.2, kd=ξ=0, h=Gmax/(15p0), m=1)

Interaction between volumetric behavior and kinematic constraints

All the above simulations have been performed by inhibiting the elastic-plastic soil dilatancy

(ξ = 0), which in most cases cannot be done to represent real soil behavior. As previously shown

for triaxial loading conditions (Figure 5.25), in the absence of kinematic boundary constraints,

a variation in the volumetric behavior slightly affects only the hardening evolution of the stress-

strain response toward the limit shear strength; a similar consideration applies to PS loading

conditions, since even in this case the normal confinement is statically determined.

However, computational (FE) models often contain kinematic constraints arising from certain

symmetries (consider e.g. plane strain or one-dimensional schemes) (Prevost, 1989; Borja et al.,

1999; di Prisco et al., 2012). In addition, for SSI problems, where soil interacts with a (stiff)
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structural foundations and wall, the soil volume change plays an important role. The presence

of kinematic constraints implies that the value of some stress components directly derives from

compatibility requirements (e.g. prevented lateral expansion). That means that the local mean

confinement is affected by the tendency of the material to dilate or contract. In particular, dilative

frictional materials will increase the limit shear stress (with respect to unconfined conditions),

while compactive frictional materials will decrease the limit shear stress. Further, not only

the limit shear stress, but also the whole pre-failure response depends on the plastic flow rule

whenever kinematic constraints are imposed (di Prisco and Pisanò, 2011; di Prisco et al., 2012).

The above considerations suggest that both experimental and numerical results are certainly

affected by the kinematics of the system, even though this effect is not easy to be a priori

quantified in terms of G/Gmax and ζ curves. The kinematic conditions of an infinite soil layer

during 1D shear wave propagation are experimentally approximated through the well known

“simple shear (SS) apparatus” (Wood, 2004), in which the soil specimen is cyclically sheared

with no lateral expansion allowed. In order to assess how the kinematic confinement influences

the cyclic response, stiffness degradation and damping curves are hereafter simulated under SS

conditions by varying the volumetric response of the soil; in particular, three different calibrations

of the plastic flow rule (5.6) are considered, namely (i) isochoric (kd = ξ = 0), (ii) compactive

(kd = M , ξ = 1) and (iii) dilative (kd = 0.4, ξ = 1)

The results reported in Figure 5.34 provide an insight into the possible effect of the volumetric

response in combination with constrained loading conditions. In the isochoric case, the PS and

the SS curves perfectly match (compare e.g. with the p0 =100 kPa curves in Figure 5.30),

as, with no plastic expansion (or contraction), the lateral constraints do not affect the mean

pressure during the shear loading; conversely, non-negligible SS-PS differences arise when dilative

or contractive materials are considered. As is evident in Figure 5.34, the discrepancy between

isochoric and non-isochoric curves becomes evident at medium/high cyclic strains, i.e. when

significant plastification take place. Indeed, while the mechanical response is barely inelastic,

the deviatoric and the volumetric responses are practically decoupled, so that no variation of the

normal confinement takes place.

Apparently, the quantitative relevance of this effect strictly relates to the actual dilational

properties of the material: soils undergoing significant volume changes under unconfined shear
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will exhibit a high sensitiveness to boundary constraints. The cyclic interaction between volu-

metric behavior and kinematic constraints seems to be poorly investigated in literature and is

worth remarking for both theoretical and practical motivations. Indeed, the cyclic behavior mea-

sured through certain experimental devices (triaxial, biaxial, simple shear, torsional shear, etc)

can differ from the mechanical response characterizing other kinematic conditions in boundary

value problems, so that the employment of volume-insensitive models (such as the linear equiva-

lent) may lead to inaccurate predictions. In particular, Equation (5.19) clearly shows that if any

relevant p variation arises from the interaction between dilatancy and boundary constraints, a

variation in the hardening modulus H and, therefore, the resulting stiffness will also take place.

As a consequence, an influence on the global (non-linear) dynamic response is expected in terms

of both amplitude amplification and frequency content (Roten et al., 2013). While this aspect

is totally disregarded by most modeling approaches in GEE, further work is currently ongoing

to quantitatively investigate the role of soil dilatancy in affecting the outcomes of seismic site

response (elastic-plastic) analysis.
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Figure 5.34: G/Gmax and damping curves simulated under SS conditions and different volumetric
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Derivation of Equation (5.28)

Under PS loading conditions (pure shear at constant mean pressure), Equation (5.16) produces

the following simple expression for β:

β =
τlim − τ
τ − τ0

(5.29)

where τlim = Mp0/
√

3 and p0 is the initial (and constant) mean pressure. Equation (5.12) can

be easily specified for PS loading:

dq =
√

3dτ =

√
2

3
H‖depij‖ =

√
2

3
H
dγp√

2
=⇒ dτ =

H

3
dγp (5.30)

so that the following form of the PS elastic-plastic response results:

dγ = dγe + dγp =
dτ

Gmax

+
3dτ

H
(5.31)

and, after substituting (5.29) into (5.19):

dγ =
dτ

Gmax

+
3dτ

p0hβm
=

dτ

Gmax

+

(
τ − τ0

τlim − τ

)m
3dτ

p0h
(5.32)

Integration over a strain interval between two stress reversals (γ ∈ [−γmax; γmax]) yields:

2γmax =
2τ

Gmax

+
3

hp0

∫ τ

−τ

(
τ ′ + τ

τlim − τ ′

)m
dτ ′ (5.33)

where τ0 = −τ has been set. Straightforward variable changes lead to:

1 =
G

Gmax

+
3

2hp0γmax

∫ 2Gγmax

0

(
τ ′′

τlim − τ ′′ +Gγmax

)m
dτ ′′ (5.34)

1 =
G

Gmax

[
1 +

6Gmax

hp0γmax

∫ γmax

0

(
γ

τlim/G− 2γ + γmax

)m
dγ

]
(5.35)

It is worth highlighting that two approximations are implicitly contained in Equation (5.35):

(i) the integration over the first loading cycle does not exactly reproduce the stabilized cyclic

response (because of the aforementioned Masing effect); (ii) a symmetric loading cycle in terms

of shear strain does not in general ensure the symmetry of the corresponding shear stress range

(as it is assumed in Equation (5.33)). However, such approximations do not prevent reasonable

values for the hardening parameters h and m to be obtained.
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Concluding remarks

An incremental 3D visco-elastic-plastic constitutive model was developed to simulate stiffness

degradation (G/Gmax) and damping in soils under cyclic/dynamic loading. The model is based on

an effective-stress formulation with two parallel dissipative mechanisms, purely frictional (elastic-

plastic) and viscous.

As far as the frictional mechanism is concerned, a bounding surface formulation with vanishing

elastic region was adopted, extending to pressure-sensitive non-associative soils the previous

cohesive model by Borja and Amies (1994) for total-stress analysis, but maintaining higher

simplicity than later works, such as that e.g. by Andrianopoulos et al. (2010). The main features

of the frictional model are: (i) the vanishing yield locus implies an elastic-plastic response at any

load levels, as is observed in real experiments; (ii) a minimum number of physically meaningful

parameters, which can be easily calibrated on few experimental data; (iii) excellent performance

and flexibility in reproducing in the elastic-plastic framework the standard stiffness degradation

and damping curves. With reference to these latter, the parallel viscous mechanism – easy to

be introduced in FE computations – was shown to provide an additional degree of freedom

to improve the simulation of the cyclic energy dissipation, as long as the viscous parameter is

properly calibrated. As a matter of fact, the viscous mechanism, used here, does physically exist

in the form of viscous interaction between the soil solid skeleton and the pore fluid(s), and needs

to be taken into account (as for example done here).

5.3.4 Energy Dissipation of Soil/Rock (Viscous and Frictional).

Dissipation of seismic energy as it propagates through soil/rock layers is mostly due to the

displacement proportional frictional damping. There is also a component of energy dissipation

that is velocity proportional (viscous) but that component is usually dissipating much less energy

than the frictional damping. Both frictional and viscous damping. Use of Pisanò material model

allows for direct computation of frictional energy dissipation, while viscous energy dissipation can

be calculated from velocity data.
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5.3.5 Calibration of Material Model from Available G/Gmax and Damp-

ing Curves.

Usually available data for soil behavior in practical applications and design consists of stiffness

reduction (G/Gmax) and damping curves. The challenge of developing a full 3D, elastic-plastic

material model using only such limited data (please note lack of volume change data) is met

through the development of Pisanò material model.

5.4 NPP Model with Inelastic Soil

Generic model presented in the last progress report is used or assessing effects nonlinear soil has

on seismic response of NPPs. The finite element mesh of this model is shown in Figure 5.35.

Figure 5.35: Finite element model for a single NPP with the containment and auxiliary buildings

on a common base mat, as well as the soil/rock sub-base, DRM layer for seismic motions input

and the layers outside of DRM for damping out outgoing waves. The soil sub-base is modeled

using elastic-plastic Pisanò model.

Preliminary calculations of energy dissipation per unit volume (W =
∫
σijdε

pl
ij), as shown in

Figure 5.36 (Jeremić, 2010) are used to assess effects soil under the foundation has on a response

of an NPP.

In addition to energy dissipation, changes in dynamics of an NPP due to reduction of stiffness

of underlying soil are observed and will be reported at the June 2014 meeting at CNSC head-

quarters. In addition to that, finite element models, that are used in this study will be delivered

as well.
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Chapter 6

Task 4.4: Modeling Slipping and Gaping

6.1 Summary of Findings for Task 4.4

The main findings are:

• Contact of foundation concrete and sub-base soil/rock is of great importance for dynamic

response of an NPP, as this contact can significantly change NPP response.

• Placement of impermeable plastic sheets under foundation concrete (to prevent ground

water contact with concrete) can significantly decrease friction coefficients of concrete on

sub-base soil/rock, thus acting as an unintended base isolation system.

• Gap opening/closing modeling is important as it might introduce artificial high frequencies

into vertical motions.

• Choice of proper stiffness (penalty) is important in order to reduce potential numerical

modeling problems.

• Calibration of slipping resistance is very important, yet such resistance is rarely measured.

Both cases, (a) direct contact of foundation to the soil/rock and (b) placement of layers

of plastic sheets to prevent water penetration are important and data needs to be collected

for each case.
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• Importance of modeling fully saturated contact zone, where effective stresses (and pore

fluid pressure) will change the mechanics of contact behavior.

• Inelastic behavior of contact zone during earthquakes can have both beneficial and detri-

mental effects on global dynamic response of an NPP. Such effects have to be analyzed

on a case by case basis.

• Significant amount of seismic energy can be dissipated within a contact zone, thus reducing

seismic demand on NPP structure, systems and components.

6.2 Methodology

In soil-structure systems, there always exist an interfaces between concrete and soil. These

contact zones can detach and open gaps, and can also slip. Modeling of contact is done using

contact finite elements. Simplest contact elements are based on a two node elements, the so

called joint elements which were initially developed for modeling of rock joints. Typically normal

and tangential stiffness were used to model the pressure and friction at the interface (Sheng

et al. (2007); Haraldsson and Wriggers (2000); Desai and Siriwardane (1984)).

The study of two dimensional and axisymmetric benchmark examples have been done by

Olukoko et al. (1993) for linear elastic and isotropic contact problems. Study was done con-

sidering Coulomb’s law for frictional behavior at the interface. In many cases the interaction

of soil and structure is involved with frictional sliding of the contact surfaces, separation, and

re-closure of the surfaces. These cases depend on the loading procedure and frictional parame-

ters. Sheng et al. (2007) discussed how frictional contact is important for structural foundations

under loading, pile foundations, soil anchors, and retaining walls. Khoei and Nikbakhti (2006)

used the extended finite element method (X-FEM) for modeling of frictional contact problems.

In order to be able to simulate discontinuities in model during the analysis without consider-

ing the boundary conditions of domain, special functions should be included within standard

finite element framework. A finite element method for analysis of frictional contact problems

was developed by Chandrasekaran et al. (1987). The nonlinear problem is solved by imposing

geometric constraints on equilibrium configuration which compatibility conditions are violated.
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Different conditions happening at contact area, such as sticking and slipping, are determined

from the relative magnitudes of the normal and tangential nodal forces. Developing contact

finite element for analysis of connections between laminated composite plates was done by Bar-

bero et al. (1995). Such element is compatible with a three-dimensional plate element based on

constant shear theory. The contact element formulation is based on a simple regularization of

the unilateral contact with a Coulomb friction problem.

Two-dimensional frictional polynomial to segment contact elements are developed by Har-

aldsson and Wriggers (2000) based on non-associated frictional law and elastic-plastic tangential

slip decomposition. Several benchmarks are presented by Konter (2005) in order to verify the

the results of the finite element analyses performed on 2D and 3D modelings. In all proposed

benchmarks the results were approximated pretty well with a 2D or an axisymmetric solutions.

In addition, 3D analyses were performed and the results were compared with the 2D solutions.

Hjiaj et al. (2004) presented an algorithm for solving frictional contact problems where sliding

rule is non-associated. The algorithm is a combination of the classical unilateral contact law and

an anisotropic friction model with a non-associated slip rule. It has been observed that slip rule

has a strong influence on the frictional behavior.

6.2.1 Formulation

The formulation for contact is represented by a discretization which establishes constraint equa-

tions and contact interface constitutive equations on a purely nodal basis. Such a formulation is

called node-to-node contact. For this discretization the frictional contact formulation is devel-

oped below (Wriggers, 2002).

The variables adopted to formulate the model are shown in Figure 6.1: the force (F) and

displacement vectors (u).

Each vector is composed of three terms: the first one acts along the longitudinal direction

whereas the other two components lie on the orthogonal plane. The total relative displacement

is the summation of the elastic and plastic displacements (6.2).

F = [p ; t]T ; u = [v ; gs]
T (6.1)

uel =
[
v el ; gel

s

]T
; upl =

[
vpl ; gpl

s

]T
; u = uel + upl (6.2)
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Figure 6.1: Forces and relative displacements of the element.

Elastic behavior

The elastic behavior is defined by the relation:

dF = E · duel; E =


KN(p) 0 0

0 KT 0

0 0 KT

 (6.3)

The normal displacement-normal force relationship, valid for loading and unloading conditions,

is the same that has been introduced by Gens et al. (1988, 1990) and given by:

p = CN
v el

(vmax − v el)
(6.4)

vel is the normal relative elastic displacement, vmax represents the maximum closure value and

CN is a constant. This relation is valid only whenever the difference (vmax − vel) is greater

than zero, otherwise p is set equal to zero. The derivative of (6.4) gives the normal stiffness

KN (6.5), that depends on both the maximum closure vmax and the current value of the elastic

normal displacement vel. The tangential stiffness KT is assumed to be constant.

KN =
CNvmax

(vmax − v el)2 ; KT = const (6.5)
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An alternative normal force deformation relationship is given as

fn(ux, uy, uz) =

 1
2
knux

2 + 0.0001knux ,if ux < 0

0 ,if ux < 0
(6.6)

Force–displacement equation fn(ux) = 1
2
knux

2 + 0.0001knux is a parabola that has a non-

zero tangent at ux = 0, as this helps in solving the problem. The value of stiffness 0.0001kn is

chosen as stiffness at 1/10 of millimeter (0.0001m)...

This alternative formulation for normal force-displacement behavior has some benefits for

concrete - soil modeling and is currently used in the program.

Plastic model

The plastic model is defined in terms of yield surface and plastic potential represented in Figure

6.2. Since the proposed model reproduces an elasto-perfectly plastic behavior of the interface, no

hardening rule has been introduced. The expression for the implemented yield surface corresponds

to a particular case of the Mohr-Coulomb criteria (6.7), in which the only parameter is the

frictional one (µ = tanφ) and the cohesion is neglected. On the contrary, the expression

adopted for the plastic potential is a von Mises criteria (6.8), in which k is a positive constant.

The direction of the normal to the plastic potential Gs is not orthogonal to the yield function

(unless the friction angle φ = 0), so the flow rule is non-associated and the plastic normal relative

displacement is always zero. This means that the normal elastic displacements (vel) are equal

to the total normal displacements (v).

fs ≡ ‖t‖ − µp = 0 (6.7)

Gs ≡ t2 − k2 = 0 (6.8)

Implementation

The formulation used for the implementation is the Implicit General Backward Euler algorithm

in stress space (GBE ). GBE algorithm solves the problem in two steps:
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Figure 6.2: Yield surface fs, plastic potential Gs and incremental plastic displacement δup.

• the elastic problem is solved - with the prescribed initial conditions - to obtain a trial elastic

state;

• if the trial state is outside the yield locus, the plastic problem is solved - at a fixed current

configuration - assuming the trial state as initial conditions.

In this simple model the evolution equations, the constraints and the initial conditions are,

respectively: ·∆Fn+1 = E∆uel
n+1 = E[∆un+1 −∆upl

n+1]

∆upl
n+1 = ∆λn+1

∂Gsn+1

∂Fn+1

(6.9)

∆λn+1 ≥ 0 ; fs(Fn+1) ≤ 0 ; ∆λn+1 fs(Fn+1) = 0 (6.10)

F = Fn ; u = un (6.11)

During the fist step (elastic predictor) the plastic flow is frozen (∆λ = 0), the incremental

plastic displacements are set to zero and the solution is called elastic trial state (6.12):

Ftr
n+1 = Fn + ∆Ftr

n+1 = Fn + E∆un+1 (6.12)

114



If the yield function f tr
s (Ftr

n+1) ≤ 0, the solution is correct and the force vector is updated; on

the contrary, the trial solution has to be corrected during the second step. In fact, the violation

of the consistency condition is restored by solving the system of equations during the second

step, and it is called return mapping (6.13):

Fn+1 = Ftr
n+1 −∆λn+1E

∂Gsn+1

∂F
; f tr

sn+1
=
∥∥ttrn+1

∥∥− µptr
n+1 ≤ 0 (6.13)

In this case, the yield function and the plastic potential have a particular expression that

the process of return mapping has an interesting geometrical interpretation. The state Fn+1

represents the closest point projection of the trial state Ftr
n+1 to the yield surface fsn+1 in the

plane to which the tangential force belongs. Since the shape of the yield function and the plastic

potential is circular in this plane, the return mapping procedure is called radial return mapping.

The algorithm is listed below.

gsn+1 = gsn + ∆gsn+1 ; gsn+1 = gel
sn+1

+ gpl
sn+1

(6.14)

vn+1 = vn + ∆vn+1 ; δn+1 = vmax + vn+1 (6.15)· if δn+1 > 0 KN = CKNvmax

(vmax−vn+1)2
KT = const

else KN = KT = 0.0
(6.16)

ttrn+1 = tn +KT∆gsn+1 ; ptr
n+1 = KN∆vn+1 + pn (6.17)

check if f tr
sn+1

=
∥∥ttrn+1

∥∥− µptr
n+1 ≤ 0 (6.18)

if f tr
sn+1

> 0 tn+1 = ttrn+1 −∆λKTnn+1

pn+1 = ptr
n+1

nn+1 = ntr
n+1 =

ttrn+1∥∥ttrn+1

∥∥
∆λ =

1

KT

(∥∥ttrn+1

∥∥− µpn+1

)
update ∆gpl

sn+1
= ∆λnn+1 ; ∆gel

sn+1
= ∆gsn+1 −∆gpl

sn+1

gel
sn+1

= gel
sn + ∆gel

sn+1
; gpl

sn+1
= gpl

sn + ∆gpl
sn+1

(6.19)

115



Global
coordinate
system

x

y

z

I

J
xl

yl

zl

contact plane

I

J

I

J

I

J

Definition
of local axes

Nodes in 
contact

Movement
in normal
direction

Movement
in tangent
direction

Figure 6.3: Description of contact geometry and displacement responses

Geometry description

Figure 6.3 shows geometry of the two node contact element and its main deformations modes.

It is important to note the importance of properly numbering element nodes, consistently with

the definition of normal x1. Node I is the first node, node J is the second node and normal

goes from node I toward node J . If reversed, elements behaves like a hook.

6.3 Work Performed, Subtasks

Gap Opening/Closing Criteria. The criteria for gap opening/closing has been developed

with reference to the exponential contact model as suggested by Gens et al. (1990). However,

since their model was developed for rock to rock interface, it was changed to fit our case, which

is soil to concrete contact. Updated contact stiffness was given in the above equation 6.6.

The nonlinear change of stiffness resolve a number of issues, and there is no need to sub-

incrementation approach that we initially considered. With continuous, nonlinear function that

models stiffness a number of other potential problems are resolved as noted in sections below.

Choice of Contact Element Stiffness. Contact element stiffness is chosen based on experi-

mental data. If such data is not available, than published data can be used, for example material

parameters developed by Gens et al. (1990). It is highly recommended to obtain material param-

eters from experiments as contact behavior can have significant influence on dynamic response

of NPPs. Current definition of contact stiffness (by Equation 6.6, on page 113) can use material
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data described by Gens et al. (1990), however it is advisable to obtain data directly for contact

properties in question.

Calibration of Nonlinear Slipping Resistance with and without Impermeable Barrier.

Data for Friction angles between foundation concrete and sub-base soil or rock is not readily

available, but can be obtained in some cases. One reported (Kennedy, 2009-2014) value of

friction angle between foundation concrete and the plastic sheeting that is placed on top of

foundation soil is φ = 22o and that value is used in our illustrative analysis. If realistic frictional

coefficient values are not available, it is suggested that a parametric study is conducted and

sensitivity of response estimated.

Zero Stiffness when Gap Opened. This problem was resolved by using a continuous, expo-

nential stiffness approach (Gens et al., 1990) (with updated stiffness as per equation 6.6), that

removes a zero stiffness and provides for a (very) small stiffness even when a gap is opened.

Fully Saturated Contact. Fully saturated contact is being worked on and will be ready for

reporting with Task 4.6 on buoyant forces.

6.4 NPP Model with Nonlinear Contact, Illustrative Re-

sults

Representative NPP models with full shell structural models are prepared and posted for use.

However, in order to gain better understanding of slip – gap behavior a simpler model is used,

with stick models for containment and internal structures. Model is very similar to the model

what was used in our previous CNSC project, however, now nonlinear contact is added. Model

is shown in figure 6.4 below.

A Ricker wave with dominant frequency of 1Hz is used for analysis of the model. The

maximum amplitude of Ricker function happens at 1 second. Figures (6.5) and (6.6) show the

acceleration and displacement time histories as well as the FFT of the Ricker wave respectively.
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Figure 6.4: Finite element model for slip/gap modeling.
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Figure 6.5: Acceleration and displacement time histories of Ricker wave with dominant frequency

of 1Hz

As shown in Figure (6.7), displacement time history of top of the structure along X direction

is higher when slipping behavior is not considered, while along Z direction it is higher when

considering slipping behavior. Since structural components have rotational degrees of freedom,

the slipping behavior and gaps in the model will lead to more rotational movement and rocking

of the foundation. There is also a phase lag in response of the structure in slipping behavior

model. The displacement time histories at the bottom of the structure are slightly different in X

direction. It can also be observed that along Z direction, the response of the structure in slipping

model is higher comparing to the no-slipping one.

In this analysis slipping behavior reduces displacements along the X direction. This might be
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Figure 6.6: FFT of Ricker wave with dominant frequency of 1Hz

due to the fact that while the foundation and structure are displacing, gaps are created at some

parts of the interface, and that affect the rocking of the foundation.

Figure (6.8) shows the FFT of the acceleration at the bottom and top of the structure. As it

is observed, there is a slight shift in predominant frequency of the response between the slipping

and no-slipping behavior. By considering the slipping behavior, the dominant frequency of the

motion is decreased along the X direction while is increased along the Z direction. This means

that the system gets softer along X direction and stiffer along Z direction. This is due to the

gap openings and sliding at the foundation and soil layer interface. Since sliding happens along

the X direction, and also considering the gap openings occur along the Z direction leading to

the rocking of the foundation, it makes the system softer along the X direction. In general, this

shows that the natural frequency of the system can be changed due to the slipping behavior.
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Figure 6.7: Comparison of displacement time histories of the structure between slipping and

no-slipping models for Ricker wave
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Figure 6.8: Comparison of FFT of the acceleration of the structure between slipping and no-

slipping models for Ricker wave
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6.4.1 Slipping behavior of SSI models by considering 3D wave propa-

gation

In this section, the same finite element SSI model as previous section is used with 3D wave

propagated motions as input motions for simulations. The input motion used here is Ricker

wave (as shown in Figure (6.5)).

In order to study the slipping behavior of SSI considering 3D wave propagation for first

stage of DRM simulation, a finite element model with dimensions of 10000m × 50m × 5000m

is considered. Two cases are studied here with the source of motion (fault) to be located at

(x = 3000m, y = 0, z = 3000m) and (x = 3000m, y = 0, z = 3000m). Figures (6.9) and

(6.10) show these two cases respectively.

The size of the elements is chosen to be 50m in all directions for both cases in order to

reduce the computational time. The soil parameters are: shear wave velocity of 700m/s and

density of 2200kg/m3. Analyses for the fault slip model are done by applying the motion at

the nodes of one element. This is done in order to represent the the wave propagation starting

from the fault using multiple support excitation pattern. This is representing the first stage of

analysis of DRM in which a big model including the fault is considered for free field case in order

to obtain the required motions for DRM layer.

0m 5000m 10000m

5000m

0m

2000m

20
00

m

Fault

Figure 6.9: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of

45◦ with respect to the top middle point of the model

For the first case to be studied here, Ricker wavelet is considered as an input motion with

dominant frequency of 1Hz. The fault is located with angle of 45◦ toward the top middle point
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Figure 6.10: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of

34◦ with respect to the top middle point of the model

of the model (Figure (6.9)).

Displacement time histories of the structure along X and Z directions are shown in Figure

(6.11). It is observed that along the X direction, the amplitude of displacement is little less at the

beginning of the shaking of the slipping behavior model and a slight phase lag can be observed

as well. However, when the actual pick of the motion is gone, it is shown that the motion

for no-slipping model will damp out sooner. So the magnitude of displacements are higher at

this time range for slipping model which could be because of the gap/sliding at the interface

zone. The displacement time histories do not have a significant difference at the bottom of

the structure. Displacement time histories observed along the Z direction shows the fact that

magnitude of displacements for slipping model is higher and will damp out later comparing to

the no-slipping model.

Acceleration time histories along X and Z directions at the bottom and top of the structure

are shown in Figure (6.12). It is observed that along the X direction the amplitude of acceleration

is less considering the slipping behavior and also there is a phase lag in the observed motion.

However, the amplitude of the acceleration along Z direction is much higher in case of considering

the slipping case. This is the same behavior observed in 1D wave propagation as well but with

higher difference in time histories amplitudes.

As shown in Figure (6.13), the dominant frequency of the response in case of slipping is less

than the one observed in no-slipping case along X direction while it is higher along Z direction.
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Figure 6.11: Comparison of displacement time histories of the structure between slipping and

no-slipping models for Ricker wave

6.4.2 Example Nonlinear Model for Gaping and Slipping, Following

Design Provisions and Standards

Presented here is work and findings that were described by Orbović et al. (2015). Presentation

follows detail of the above presentation in order to provide completeness.

Abstract

Described here is the use of time domain nonlinear analysis for design and assessment of nuclear

power plants. The seismic input is defined as time-history defined by the site specific UHS. Non-

linear contact (stick-slip and gaping) at the bottom of the structural model (between foundation

slab and soil/rock beneath) represent the only nonlinear behavior of the soil-structure system.
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Figure 6.12: Comparison of acceleration time histories of the structure between slipping and

no-slipping models for Ricker wave

This model is followed through a nonlinear analysis that is compatible with current design

standard. It is important to note that the structure, in this case modeled as a simple stick model,

remains elastic. The main purpose of described development is to provide methodology for use

of nonlinear, time domain analysis for design based on standard approaches.

Present approach represents the first attempt to use nonlinear soil structure interaction within

standard design framework. Of course, a more sophisticate and accurate model for structure

(containment and internal) can be developed using shells and beams, however for this initial

attempt, simple model suffice.
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Figure 6.13: Comparison of FFT of the acceleration of the structure between slipping and no-

slipping models for Ricker wave

Introduction

The design of nuclear power plants is based on linear structural behavior and the superposition

of different loading cases acting simultaneously or quasi-simultaneously. On the other hand,

non-linear analysis captures realistic non-linear behavior of soil and the soil-structure interaction.

The structural behavior has to remain elastic. This is a requirement for the design of nuclear

power plants. In this paper we describe use of nonlinear, time domain, seismic analysis for design

and assessment.

The seismic input is defined through time-histories compatible with the design spectrum, a

site specific UHS. This is the seismic input for the whole non-linear soil-structure system. The

seismic input features a combination of horizontal and vertical motions, acting simultaneously
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in non-linear analysis, using different combination methods. In this study, contact between the

soil and the structure is modeled as a nonlinear contact with gap opening/closing and shear slip

behavior. The model of the structure is represented by a simple stick model representative of

a global dynamic behavior. This modeling simplification does not affect the main goal of this

paper, as simplification is applied to the structural model, which is assumed to remain elastic.

Similar structural model developed using linear elastic shells and beams can be used instead

of a stick model, but we opt for a simple stick model as the main focus is on presenting the

methodology. In addition, a number of different input motions (different intensities, different

return periods, &c.) can be used, with different UHS, different soil/rock site conditions, different

depth to bedrock. however the main thrust of the methodology will not change. In other words,

main focus of presented work is the use of time domain nonlinear finite element modeling and

simulation (in this case using Real ESSI Simulator (Jeremić et al., 2015)) for design, while

following current design standards.

The use of nonlinear analysis for design proceeds as follows. The site specific UHS is given

on the bedrock. Spectrum compatible accelerograms are generated and propagated through

the model. From the bedrock, motions are propagated as 1D waves vertically using 1D wave

propagation solutions, as implemented, for example, in the SHAKE program(Idriss and Sun,

1992). Developed motions are then propagated through soil, that can be inelastic, and non-

linear contact elements between the soil and the foundation. Following the nonlinear analysis

obtained are the accelerograms at the foundation level. This accelerograms include information

about the nonlinear behavior of soil (if modeled) and nonlinear contact, for a complete model

(soil-structure system). Thus obtained accelerograms, including all the nonlinear effects from

the contacts (and possibly soil) will be quite different from the accelerograms obtained for the

linear elastic model. Based on this accelerograms, and assuming that the structural behavior is

elastic, a response spectrum at the foundation level is calculated. This spectrum will includes all

information about the soil and contact non-linearities in the model. This spectrum can now be

used as a design spectrum applied at the foundation level and design the structure according to

ACI349/359. The result of this analysis will also be compared with the classical linear analysis

currently used in the design of nuclear power plants.
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Modeling

Presented below are details of models used for this study.

Earthquake Motions

Seismic Motions from the Center for Engineering Strong Motion Data (CESMD) data base

were used. Earthquake record used for this analysis was from Taiwan SMART1(45), Time:

11/14/1986, Station:SMART1 E02. Figure 6.14 shows time histories, FFT and the response

spectra of the free field motions used.
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Figure 6.14: Free field seismic motions at the surface: time history, FFT and response spectra.

Motions were applied simultaneously to the soil structure system at 100% in the X (horizontal

direction, 40% in the Y (horizontal) direction and 40% in the Z (vertical) direction. It should

be noted that the application of vertical motions as P waves, is probably not quite correct, as

most vertical motions are a results of a surface Rayleigh wave and not a P wave. Frequency

characteristics of a P wave are quite different that those of a surface Rayleigh wave. In fact,

frequency characteristics of the vertical waves are similar to those of the horizontal waves, which

is only possible if both horizontal and vertical motions are components of a surface, Rayleigh

wave, which is happening in reality.

Seismic Input is provided using the Domain Reduction Method (Bielak et al., 2003). Free field

motions accelerations ü0 and displacements u0, that were developed from a 1D wave propagation
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analysis, are used to created effective forces:

P eff =
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These effective forces are applied to a single layer of finite elements surrounding the nonlinear

soil-structure domain of interest. Effective force P eff is an exact dynamic replacement for a free

field motions from the earthquake source forces. The DRM allows for application of any realistic

seismic wave field, including body and surface waves. In this case, focus is on current design

procedures which use 1D seismic wave field.

Finite Element Model

Structural Model. The finite element model consists of of a soil/rock model, the foundation

slab model and the structural model (containment and internal structure model). Between the

foundation slab and the soil/rock, a set of contact elements are used. The structural model is

simplified to a stick model, as the purpose of this paper is to show the use of nonlinear analysis

for design. Figure 6.15 shows the model used.

Soil/rock in the foundation is modeled using linear elastic (Vs = 750m/s) brick finite ele-

ments. Brick finite elements are 4m in size, which provides for reliable propagation of seismic

motion frequencies of up to 15Hz ((750m/s) / (12 × 4m) ≈ 15Hz). It was assumed that 12

linear displacement interpolation finite elements are enough to propagate full wave with minimal

distortion and loss of accuracy.

Figure 6.15 also shows the placement of the (single) DRM layer that is used for input of

seismic motions. Two more layers of elements are used out of the DRM layer in order to damp

out any additional motions that results from radiation damping of the soil-structure system.

Foundation slab is made of concrete (Vs = 2400m/s) and has dimensions of 40m×40m×4m.

The stick model representing the containment and internal structures is that of one of the

standard NPPs.
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Figure 6.15: Finite element model of an NPP. Soil/Rock and the foundation slab is represented

by brick elements, while structure (containment and internal) is represented by a stick model.

Contact elements are applied at the bottom of the foundation slab. Note the DRM layer sur-

rounding the soil/rock domain, and the out of DRM layers, used to damp out additional, NPP

radiation damping motions.

Contact between foundation slab and the underlying soil/rock is modeled using contact ele-

ment that allows for normal/axial nonlinear response and a gap openingGens et al. (1990). In

the transversal directions this element allows for Coulomb frictional slipCrisfield (1997). A fairly

low friction angle (Φ = 25o), that mimics friction of concrete foundation on layers of plastic

sheets (to prevent underground water to wet foundation concrete) over soil/rock.

Modeling and Simulation Software: All modeling and simulations described here were done

using Real ESSI Simulator(Jeremić et al., 2015). Real ESSI Simulator is a modeling and simula-

tion system developed by Jeremi’̧ at al. at University of California, Davis and Lawrence Berkeley

National Laboratory, with support from the US-DOE, US-NRC, CNSC-CCSN and US-NSF, for

high fidelity, realistic modeling and simulation of seismic behavior (Earthquake Soil Structure

Interaction, ESSI) of infrastructure objects (Nuclear Facilities, Nuclear Power Plants, Bridges,

Buildings, Dams, &c.). Of particular importance for the Real ESSI Simulator modeling and

simulation system is the availability of complete verification (Oberkampf et al., 2002; Roy and

Oberkampf, 2011) and partial validation for all the software components.
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Results

Two models were analyzed.

• Model #1 was a linear elastic model with no contact elements, therefor no slip or gap

between foundation slab and underlying soil/rock was possible.

• Model #2 had contact elements between foundation slab and the adjacent soil/rock.

The main idea is to compare response of an NPP with linear elastic model (no contact

modeling, foundation slab is glued to soil beneath) and with a nonlinear contact that allows

for separation and shear slip. Presented nonlinear approach can be used in design as the main

structure (containment, internal and the foundation) are still linear elastic, nonlinearities are

contained beneath, in the contact zone.

Foundation – Soil-Rock Slip: Slip was observed at all locations in the contact zone during

shaking. Figure 6.4.2 shows a snapshot of a structure during a slip (left) and the amount of slip

between foundation slab and rock beneath containment and internal sticks.
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Figure 6.16: Snapshot of a relative displacements between foundation slab and soil/rock (left)

and the amount of slip at a center of a foundation slab (beneath containment and internal

sticks).

It is noted that it was expected that the contact zone between foundation slab and soil

beneath will show gaping. This did not happen. After careful analysis it was determined that
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shear slip behavior prevents gaping and liftoff of the foundation slab. That is, when a demand

of a horizontal force becomes large enough due to motions of the soil beneath, the structure can

shear slip or rock or both. For given material parameters, the response prefers to slip, before

rocking, and gaping occurs. This is similar to a response of a car making a sharp turn, rather then

tipping over (equivalent of rocking), tire-pavement friction is overcome and car slips sideways.

Spectral Accelerations, Nonlinear vs Linear Response Figures 6.17 and 6.18 show com-

parison of spectral accelerations in soil beneath foundation slab and at the foundation slab lever,

respectively, for horizontal and vertical directions.
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Figure 6.17: Comparison of spectral accelerations at the top of soil, beneath foundation slab

for X directions (left), and vertical directions (right).

Figures 6.19 and 6.20 show comparison of spectral accelerations for top of a containment

building and internal structure, respectively, for horizontal and vertical directions.

There are a number of observations to be made.

• Response of a linear system (that is, a system with no contact modeling, foundation slab

is glued/tightly connected to soil beneath) is in general larger than that of a system where

shear slipping and gaping is allowed.

This is apparent in all the plots.

• Vertical response of a contact model for soil beneath foundation has a slightly higher

spectral accelerations for higher frequencies (8Hz - 11Hz) than linear system. This is
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Figure 6.18: Comparison of spectral accelerations at the foundation slab for X directions (left),

and vertical directions (right).
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Figure 6.19: Comparison of spectral accelerations at the top of a containment structure for X

directions (left), and vertical directions (right).

explained by the fact that small gaping still does occur (even if large gaping is prevented

by release of horizontal demand by slipping). Such small gaping will, upon closure, create

vertical motions, in the vicinity of the natural frequencies of the structure (8Hz and above).

• Both horizontal and vertical response at the foundation slab are reduced, except for a very

low frequency (just below 2Hz) where slip occurs. That this is indeed a frequency of slip,

can be observed from response shown in Figure 6.4.2, where there are approximately 2

cycles per second.
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Figure 6.20: Comparison of spectral accelerations at the top of a containment structure for X

directions (left), and vertical directions (right).

Reduction of vertical response is significant for frequencies higher than 4Hz, while for

horizontal response, reduction starts at about 5Hz.

• Both horizontal and vertical response are significantly reduced for containment building

and internal structure. In fact, spectral accelerations were plotted in the same scale as for

soil and foundation slab, the linear response (no contact modeling) far exceeds this scale,

while nonlinear model (contact) shows significant reduction for all frequencies

Conclusions

In this paper we presented a novel approach to design of NPPs where, structural components (in-

ternal, containment, foundation) are assumed and remain linear elastic, while nonlinear behavior

is allowed beneath the foundation slab, in the contact zone. It is noted that more nonlineari-

ties will probably be present in the soil and rock beneath, however in this experimental design

approach, only nonlinear response of contact zone was allowed.

A significant reduction in demand was observed by allowing nonlinear (inelastic) response

in foundation slab – soil/rock contact zone. This reduction in demand, and the underlying

seismic energy dissipation can be used to benefit seismic design of NPPs, as, although structural

components remain (are modeled as) linear elastic, seismic motions that structure will experience

(through foundation slab) are (significantly) reduced. It is very important to note that due to
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nonlinear nature of modeling, it is not possible to scale up or down developed results. In other

words, if any changes in earthquake scaling are made, a model has to be rerun, as in general

response will not scale.
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Chapter 7

Task 4.5: Energy Dissipation

7.1 Summary of Findings for Task 4.5

The main findings are:

• Energy dissipation is an important measure of efficiency of the soil structure NPP system.

• Energy dissipation is increasingly viewed as one of the best methods to improve design and

consequentially there is an effort to use energy as a design tool by the SEAC (Structural

Engineering Association of California) (Trifunac et al., 2001).

• The most important energy dissipation mechanisms for NPPs are:

– nonlinear (hysteretic, elastic-plastic) response of soil and rock under the foundation

of an NPP, and

– nonlinear response of contact zone between foundation concrete and underlying soil

and rock

• Soil under foundations and at some distance from the NPP has a large energy dissipation

capacity, due to its large volume.

• Energy dissipation capacity of soil and the contact zone increases with the increase in

shaking magnitude, as more plastification (nonlinearities) occur for stronger motions.
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• Numerical energy dissipation and production, can occur in nonlinear systems even for

non-dissipative integration algorithms, and it should be aware of and carefully controlled.

7.2 Methodology

7.2.1 Seismic energy input into SFS system

Earthquakes release large amounts energy at the source1 Part of released energy is radiated as

mechanical waves (≈ 1.6 × 10−5) and part of that energy makes it to the surface where SFS

system is located.

Mechanical seismic wave energy enters the SFS system through a closed surface Γ that

encompasses (significant) soil volume as well as foundation system and the structure (see Fig-

ure 7.2). Kinetic energy flux through closed surface Γ includes both incoming and outgoing

waves and can be calculated using Domain Reduction Method (Bielak et al., 2003) as:

Eflux =[
0;−MΩ+

be ü
0
e −KΩ+

be u
0
e;M

Ω+
eb ü

0
b +KΩ+

eb u
0
b

]
i
× ui

where MΩ+
be , MΩ+

eb , KΩ+
be , KΩ+

eb are mass and stiffness matrices, respectively for a single layer of

elements just outside of the boundary Γ, while ü0
e and u0

e are accelerations and displacements

from a free field model for nodes belonging to that layer of elements. Alternatively, energy flux

can be calculated using (Aki and Richards, 2002):

Eflux = ρAc

∫ t

0

u̇2
i dt

Outgoing kinetic energy can be obtained from outgoing wave field wi, (from DRM, Bielak

et al. (2003)), while the difference then represents the incoming kinetic energy that needs to be

dissipated with SFS region.

1for example, some of the recent large earthquake energy releases are listed: Northridge, 1994, MRichter =

6.7, Er = 6.8 × 1016J ; Loma Prieta, 1989, MRichter = 6.9, Er = 1.1 × 1017J ; Sumatra-Andaman, 2004,

MRichter = 9.3, Er = 4.8× 1020J ; Valdivia, Chile, 1960, MRichter = 9.5, Er = 7.5× 1020J ;
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7.2.2 Seismic energy dissipation in SFS system

Seismic energy that enters the SFS system is dissipated in a number of ways. part of the energy

that enters SFS system can be reflected back into domain outside Γ by

• wave reflection from impedance boundaries (free surface, soil/rock layers...).

• SFS system oscillation radiation.

While the rest of seismic energy is dissipated through one of the following mechanisms within

SFS domain:

• Elasto-plasticity of soil

• Viscous coupling of porous solid with pore fluid (air, water)

• Elasto-plasticity/damage of the foundation system

• Elasto-plasticity/damage of the structure

• viscous coupling of structure with surrounding fluids (air, water)

It is also important to note that in numerical simulations (advocated and used in this work),

part of the energy can be dissipated or produced by purely numerical means. That is, numerical

energy dissipation (damping) or production (negative damping) has to be carefully controlled

(Argyris and Mlejnek, 1991), (Hughes, 1987).

Energy Dissipation by Plasticity. Elastic-plastic deformation of soil, foundation and structure

is probably responsible for major part of the energy dissipation for large earthquakes. This,

displacement proportional dissipation is a result of dissipation of plastic work (W =
∫
σijdε

pl
ij)

and is present in all three components of the system (soil, foundation and the structure). Ideally,

majority of the incoming energy would be dissipated in soil, before reaching foundation and

structures. The possibility to direct energy dissipation to soil can be used in design by recognizing

energy dissipation capacity for different soils. For example, simple elastic-plastic models of stiff

and soft clay as well as dense and loose send predict different energy dissipation capacities,

as shown in Figure 7.1, for single loading-unloading-reloading cycle. While Figure 7.1 shows
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Figure 7.1: Energy dissipation capacity for one cycle at various strains for four generic soils.

that stiff clay and dense sand have much higher dissipation capacity, it is important to note

that soft/loose soils can undergo much larger deformation/strain, thus offering increased energy

dissipation capacity through flexibility.

Energy Dissipation by Viscous Coupling. Viscous coupling of pore fluid (air, water...) and

soil particles and/or foundation or structural components is responsible for velocity proportional

energy dissipation. In particular, viscous coupling of porous solid and fluid results in Evc =

n2k−1(U̇i−u̇i)2 energy loss per unit volume. It is noted that this type of dissipation is realistically

modeled using u− p− U formulation (Jeremić et al., 2008).

Numerical Energy Dissipation and Production. As noted above, numerical integration of

nonlinear equations of motions affects calculated energy in various ways. Most common effect

for nonlinear (elastic-plastic) systems is the positive (energy dissipation) and negative (energy

production) damping. For example Newmark (N) (Newmark, 1959) and Hilber–Hughes–Taylor

(HHT) (Hilber et al., 1977) are energy preserving for linear elastic system with proper choice

of constants (α = 0.0; β = 0.25, γ = 0.5). Both methods can also be used to dissipate higher

frequency modes for linear elastic models by changing constants so that for N: γ ≥ 0.5, β =

0.25(γ + 0.5)2, while for HHT: −0.33̇ ≤ α ≤ 0, γ = 0.5(1 − 2α), β = 0.25(1 − α)2.

However, for nonlinear problems it is impossible to maintain energy of the system throughout

computations (Argyris and Mlejnek, 1991).

139



7.3 Work Performed, Subtasks

Modeling of input energy. Energy flux can be calculated using Aki and Richards (2002);

Trifunac (2008):

Eflux = ρAc

∫ t

0

u̇2
i dt (7.1)

Outgoing kinetic energy can be obtained from outgoing wave field wi, (from DRM, Bielak

et al. (2003)), while the difference then represents the incoming kinetic energy that needs to be

dissipated within SSI region.

Alternatively, using DRM, mechanical seismic wave energy enters the SSI system through a

closed surface Γ that encompasses soil volume as well as foundation system and the structure,

thus providing a way to calculate all of the energy that enters the system, as shown in Figure 7.2.

Kinetic energy flux through closed surface Γ includes both incoming and outgoing waves and
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Figure 7.2: Geometry of the SSI system.

can be calculated using DRM:

Eflux =
[
0;−MΩ+

be ü
0
e −KΩ+

be u
0
e;M

Ω+
eb ü

0
b +KΩ+

eb u
0
b

]
i
× ui (7.2)

where MΩ+
be , MΩ+

eb , KΩ+
be , KΩ+

eb are mass and stiffness matrices, respectively for a single layer of

elements just outside of the boundary Γ, while ü0
e and u0

e are accelerations and displacements

from a free field model for nodes belonging to that layer of elements.

Modeling of radiation dissipation. From the DRM, outside wave field wi is followed and

energy calculated for every node just outside surface Γ, Enode = (mnode × w2
e)/2. Energy of all
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the nodes outside of Γ is then simply added.

Modeling of energy dissipation in soil/rock. Two main energy dissipation mechanisms in

soil and rock are modeled

• Frictional (elastic-plastic, displacement proportional) energy dissipation mech-

anism. Proper way of modeling this energy dissipation mechanism in soil and rock is

done by using the incremental elastic-plastic theory. Pisanò Material model (Pisanò and

Jeremić, 2014) is used for that purpose. Energy dissipation modeling is based on accurate

calculation of plastic work for each part of soil and rock domain adjacent to the NPP. This

is done through calculation of plastic work

W soil/rock =

∫
V

∫ tn+1

tn

σijdε
pl
ijdV (7.3)

where integration is done for each time increment and each element volume, σij is the

current stress state at each integration (Gauss) point within each finite element, and dεplij

is the increment of plastic strain at the current increment.

• Viscous (velocity proportional) energy dissipation mechanism. There are two main

approaches to modeling viscous energy dissipation, namely (a) using Rayleigh damping,

which is phenomenological approach, assigning damping ratios to individual finite elements

or groups of elements and (b) using fully coupled modeling of pore fluid that interacts

with porous solid (soil and rock skeleton). We use the second approach. Modeling viscous

damping for soil and rock using fully coupled approach is based on physics of interacting

media (fluid and porous solid) and is modeled using coupled finite elements (Jeremić et al.,

2008; Taiebat et al., 2010, 2009). To this end, the so called u-p-U finite elements are used

(Jeremić et al., 2008, 1989-2016). These elements feature an analytical approach to the

pore fluid – porous solid interaction, done through a (physics based) damping matrix

(not based on Rayleigh damping) that models viscous energy dissipation based on relative

movement of pore fluid and soil/rock skeleton. Such modeling approach ensure that the

calculated energy dissipation is physics based and verifiable. This approach is used in this

project to calculated (assess) energy dissipation amounts for viscous dissipation mechanism.
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Similar to the frictional energy dissipation approach, viscous dissipation approach can also

be done for each finite element, in each time step, thus allowing for precise (detailed)

spatial and temporal following of viscous dissipation. However, viscous energy dissipation

represents a small part of totally dissipated energy when strong material nonlinearities are

present.

Modeling of energy dissipation in soil/rock – foundation contact zone. Using contact

finite element that models both slip and gap, dissipation from two mechanisms is calculated:

• Frictional component of energy dissipation. The energy dissipation during slipping is

calculated by integrating nonlinear cyclic response loops of the contact–slipping element.

Calculated is dissipated energy for each element (region of soil/rock–foundation contact)

at each time step.

• Viscous component of energy dissipation. The energy dissipation during gaping

(pumping of water in and out of soil/rock pores) is calculated using viscous damping

in the top layers of soil/rock, Saturated soil/rock is modeled using u-p-U finite elements,

which allows direct calculation of the viscous damping from a physics based damping ma-

trix (Jeremić et al., 2008). The coupling of pore water and porous solid (soil/rock skeleton)

results in Evc = n2k−1(U̇i − u̇i)2 energy loss per unit volume in unit time (Jeremić et al.,

1989-2016). Thus, again, viscous energy losses, are calculated for each location and for

each time step.

Numerical energy dissipation (positive and negative). This mode of energy dissipation is

carefully followed as it influences results of simulations in a significant way (Argyris and Mlejnek,

1991; Krenk, 2006).

Numerical damping (energy dissipation or energy production) is caused by the numerical in-

tegration algorithm used for integrating equations of motion, within the finite element method.

When a spatial (discretization of a continuum into finite element mesh) and temporal (time step-

ping) discretization if done for a continuum problem (solids and structures) the new, discretized

system contains artificial, higher modes of vibration that are caused by the discretization process.
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It is convenient to devise a time domain integration methods that can damp out those higher

order modes. Two methods are most commonly used for such purpose, the Newmark method

(Newmark, 1959) and the Hilber-Hughes-Taylor (HHT) α method (Hilber et al., 1977). Both

methods can be made non-dissipative (no energy dissipation, and no damping of higher order

(artificial) modes), by proper choice of integration parameters (β = 0.25, γ = 0.5 for Newmark

and α = 0.0 for HHT method). However, it is beneficial to remove (damp out) those higher

order, artificial modes in order to obtain as accurate as possible dynamic response of the soil/rock

– structure NPP system.

Both methods can be used to dissipate higher frequency modes for linear elastic models

by changing constants so that for Newmark method numerical energy dissipation is obtained

for γ ≥ 0.5, β = 0.25(γ + 0.5)2, while for HHT method energy dissipation is obtained for

−0.33̇ ≤ α ≤ 0, γ = 0.5(1− 2α), β = 0.25(1− α)2.

When the response is nonlinear (elastic-plastic for example), the time integration algorithm

can even have negative energy damping (production of energy) (Argyris and Mlejnek, 1991).

A parametric study is underway with variation of integration parameters and observation of

energy dissipation for limited amount of plasticity.

7.4 Illustrative Example

7.4.1 Example #1

Figure 7.3 shows simple illustrative results of energy dissipation calculations for a simple nonlinear

soil column, as function of time. It is noted that most of the energy is dissipated toward the

surface layers, since that is where the soil experiences most nonlinearities due to low confinement.

Figure 7.4 shows results for the same example, this time as a function of depth. The

significant surface dissipation is even more obvious in this plot. Please also note small jumps

in dissipation where the material changes from denser to looser, these impedance boundaries

usually enhance strains, and hence finite elements at those boundaries experience more nonlinear

response.
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Figure 7.3: Energy dissipation in a vertical column of soil, total energy dissipation in time.
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Figure 7.4: Energy dissipation in a vertical column of soil, energy dissipation in the depth.

7.4.2 Example #2

In this example, a full NPP model with nonlinear soil was subjected to seismic motions and

energy dissipation followed in the inelastic/nonlinear soil domain. Figure 7.5 shows incremental

energy dissipation in one time instant under a realistic model of an NPP.
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Figure 7.5: Incremental energy dissipation under an NPP, at one time increment.

Energy dissipation at this time instance is localized to one of the edges of the NPP foundation

slab. In general, it is noted that most dissipation happens under slab edges.
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Chapter 8

Task 4.6: Buoyancy Modeling

8.1 Summary of Findings for Task 4.6

The main findings are:

• Buoyant forces are always present when foundations are located under the water table.

• Simple modeling of buoyant forces by using a single, resultant buoyant force (obtained by

integrating volume of a foundation that is under water table) can only be used if foundation

(beneath water table) is rigid, and if pore fluid pressures in soil beneath foundation do not

change during an earthquake. This is rarely (if ever!) the case.

• Mechanical behavior of fully saturated, fully coupled soil (soil skeleton and pore fluid) be-

neath the foundation, plays a crucial role in development and dynamic changes of buoyant

pressure and consequentially, buoyant forces.

• Water pumping, during dynamic shaking of an NPP (up and down motions, rocking), does

create dynamic buoyancy effects.

• A significant problem in modeling buoyancy effects, where dynamics of soils and the contact

zone control buoyancy pressures/forces, is the lack of test data. That is, there are only

very few tests for dynamic behavior of saturated contacts. and all of them are not element

tests, rather they are tests on a small model or full scale full foundations under water
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(Allmond et al., 2011) and as such lack detailed measurements of local, element level

behavior.

8.2 Methodology

For NPP structures on surface or embedded foundations, with water table that extends over

the lowest level of foundation, a buoyant pressure/forces occurs. These buoyant force act on a

foundation concrete or on an impermeable barrier that protects concrete from the underground

water. These buoyant forces are usually present for both surface and embedded foundation

(Kennedy, 2009-2014), where water table is higher than the lowest foundation level,

For self weight and other static loads, and if we assume infinitely stiff structures, buoyant

force B can be calculated and applied as a single resultant force directed upward. This is what is

currently done for analyzing NPPs (Kennedy, 2009-2014). Calculation of static buoyant force1

is given as:

B = ρwgV (8.1)

where ρw = 999.972 kg/m3 is the mass density of water (at temperature of +4oC with small

changes of less than 1% up to +40oC), g = 9.81 m/s2 is the gravitational acceleration, and V

is the volume of displaced fluid (volume of foundation under water table).

There are a number of effects that the presence of buoyant forces will have on static, and

more importantly dynamic behavior of NPPs.

8.3 Work Performed, Subtasks

8.3.1 Background

Provided here is a brief overview of the problem of modeling buoyant forces.

Buoyant forces are resulting from foundations located below water table, in saturated soil

and rock. These follower forces (Felippa, 1993-2015) change dynamically as foundation (and the

1Static buoyant force calculation is based on the Archimedes principle: ”Any object immersed in water is

buoyed up by a force equal to the weight of water displaced by the object”.
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structure over it) undergo dynamic motions during earthquake.

For NPP structures founded on soil and permeable rock, with water table above base of

concrete foundation, vertical motions and rocking response creates a potential for uplift and

opening of the gap, which is significantly affected by the buoyant force. During uplifting motion

of the NPP, the pore fluid at the base of a foundation in soil/rock (beneath foundation concrete

or beneath impermeable barriers) is ”sucked” into the gap (between soil/rock and the foundation

concrete) thus reducing potential for lifting up. This reduction in potential for lifting up is due

to dynamic change in buoyant pressure/force due to ”suction”. Fluid volume that is sucked from

the soil/rock creates a significant change in pore fluid pressures in soil/rock, and consequentially

a pressure gradient, causing water in soil/rock pores to move, change the buoyant pressure and

forces and thus add to the nonlinear effects.

Similarly, with bottom of foundation below water table and with vertical motions and rocking

response creating a potential for uplift and now closing of the gap, is significantly affected by

the buoyant force too. After uplifting motions, when the NPP structure and its foundation, are

”falling” back to the ground, water that was ”sucked” up into the gap, experiences significant

increase in pressure, thus crating excess buoyant pressures, that, in extreme cases, can cause

part of foundation to ”float”, or totally loose contact with the base soil/rock. Fluid volume is

pumped back into the soil/rock, creating high pressure gradients (and potentially temporarily

liquefying top layers of soil even for very dense soil), changing buoyant pressures and forces and

thus adding to the nonlinear effects of Buoyant forces.

The excess pore water pressures or the suction, created in the zone between foundation and

underlying soil/rock strongly affect shear deformation as well, due the the changes in contact

forces between foundation and soil/rock. In addition, during shear deformation of soil/rock

just beneath NPP foundation, dilatancy effects (in dense soil and rock) change (reduce) the

void space in soil/rock skeleton, and this changes (reduces) the pore fluid pressures (for dense

soil and fissured rock, mostly found under NPP foundations). Such reduction in pore fluid

pressure (”suction”) reduces buoyant pressures/forces, and creates additional nonlinear buoyant

pressure/force effects.

All of these different scenarios create conditions for changes in (static) buoyant force, making

this force fully dynamic and nonlinearly changing during dynamic motions.
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8.3.2 Modeling Approach

The modeling of buoyancy forces was achieved with two different (yet closely related) approaches.

Approach #1. In cases where a sharp contrast in permeability between soil/rock and foun-

dation concrete exists, that is, where permeability of foundation concrete is much different than

permeability of underlying soil (usual case), buoyant forces will be modeled directly, by this sharp

contrast in permeability (Cheng and Jeremić, 2009b). Using sharp contrast approach, the buoy-

ant forces are created by providing physical permeabilities for soil (and some highly permeable

rock) and for concrete which is quite impermeable (but not absolutely impermeable, permeability

of concrete is couple of orders of magnitude lower than that of soil or permeable rock). When the

water tries to move (natural process due to pore water pressure gradient) from soil toward foun-

dation concrete (due to static water pressure gradient or during dynamic/earthquake events),

it is restricted by the low permeability of the concrete. A region of pressure (hydrostatic for

static loading, or a different, dynamic pressure that results from dynamic behavior of soil/rock)

is formed. This pressure acts as a buoyant force on the concrete foundation.

However, this approach only works well when there is no gap opening. In addition to that,

there are modeling problems, with high pressure gradient close to the boundary between soil/rock

and concrete, modeler needs to carefully mesh that region, to overcome too large pressure

gradients in single layer of finite elements. A better approach, with or without gap opening is to

use special coupled contact finite element described below.

Approach #2. Use of special coupled contact finite element, that explicitly models water dis-

placements and pressures and allows for explicit gap opening, filling of gap with water, slipping

(frictional) when the gap is closed, and pumping of water as gap opens and closes, is recom-

mended. This contact element incorporates the pore water pressure information, as well as the

information about the displacement (movement) of pore water within a gap. It is based on a

dry version of the contact element and has two important new features

• Pore water pressure values from one side of the special coupled contact element (saturated

soil/rock side) will be communicated (direct transfer) to the other (concrete) side of this

element. With this water pressure information available, the applied water pressure will
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be acting on the foundation (concrete) finite elements. Foundation finite element will

integrate pressure field on a given face (or faces) of the element and will create a buoyant

(nodal) forces. Integration of pressure on an element face into buoyant forces is done using

standard finite element procedure for calculating nodal forces (these are the buoyant forces

in our case) from face pressures:

F buoyant
Ia =

∫
Sm

f buoyanta HI dS
m (8.2)

where F buoyant
Ia is the buoyant force at each node of the foundation finite element, fSa is

the distribution of buoyant pressures on a face the foundation finite element, and HI is

a standard shape function of the foundation finite element (in our case, linear for 8 node

brick, or quadratic for a 27 node brick). The integration is performed over a surface area

Sm of each finite element face where buoyant pressures are present.

With buoyant forces acting at the bottom (or sides) of a foundation, a proper reduction

(change) of contact pressures (forces) will be calculated, according the the effective stress

principle (Terzaghi et al., 1996). This means that the slipping (frictional) criteria of the

contact element will have all the necessary information about the normal forces (now

reduced because of buoyant forces) and will determine is the contact will slip and remain

attached (at the location of that contact element).

• Gap opening (physical values obtained from simulations) are used to create suction and

compression pore/gap water field. This is achieved by connecting the displacements of the

pore fluid from soil/rock finite elements (we will be using u-p-U finite elements for soil/rock

modeling (Jeremić et al., 2008)), to the contact element node on the opposite side of the

special coupled contact element. This way, if the gap opens, and the contact element

now features an opening, the water displacements from the soil/rock side of the contact

element is ”pulled” to follow the uplifting foundation. This water movement creates a

pressure gradients in the soil/rock elements beneath, which is accurately modeled using

fully coupled u-p-U finite elements for soil/rock (Jeremić et al., 2008; Jeremić and Cheng,

2009).
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8.4 Illustrative Example

A single brick u-p-U finite element is used to model an oedometer compression shown in Figure

8.1. Horizontal displacements and pore pressure are fixed in each node in order to guarantee

the one-dimensional and dry conditions. As the ground is modeled as an un-deformable and

impermeable layer (1,2,3,4), vertical soil and fluid displacements are fixed. The time-history

displacement, shown in Figure 8.2, is applied in vertical direction to each node of the top surface

(9,10,11,12). The time-history normal force induced in each contact element is represented in

Figure 8.1 and compared with the one obtained with the dry brick element. It is worth noting

that the normal force patterns are overlapped: this is due to the fact that excess pore pressure

is fixed to zero and the oedometer stiffness are the same in the two cases.

Parameter Symbol Value

Young’s Modulus E [kPa] 1.5 · 1010

Poisson ratio ν [-] 0.0

Solid particle bulk modulus Ks [kPa] 3.6 · 107

Fluid bulk modulus Kf [kPa] 2.17 · 106

Solid density ρs [Mg/m3] 2.7

Fluid density ρf [Mg/m3] 1.0

Porosity n [-] 1.0 · 10−8

Darcy permeability K [m/s] 1.0 · 103

Table 8.1: Soil parameters.

In what follows an overview of coupled modeling is presented, while more information can be

found in recent publications (Jeremić et al., 2008; Shahir et al., 2012; Taiebat et al., 2010)
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Figure 8.1: Single eight-node brick element. The nodes of the bottom surface are connected

to the ground floor through contact elements. Vertical time-history displacement applied to the

nodes of the top surface.

8.5 Fully Coupled Formulation for Porous Solid – Pore

Fluid

8.5.1 u-p-U Formulation

Background For single-phase material encountered in structural mechanics, the response un-

der ultimate load (failure) can be predicted using very simple calculations, at least for static

problems. But for soil mechanics, simple, limit-load calculations can not be fully justified under

static situation. However, for problems of soil dynamics, the use of simplified methods is almost

never admissible.

As the strength of the soil can be determined once the pore water pressures are known, it is

possible to reduce the soil mechanics problem to that of the behavior a single phase. Then we

can use again the simple, single-phase analysis approaches. Now we will introduce the concept

of effective stress.

The relationship between effective stress, total stress and pore pressure is (assume tensile
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Figure 8.2: Input signal: time history of displacement, acceleration and velocity.

Figure 8.3: Normal force vs time in each contact element. u-formulation represents the results

for a dry element whereas upU-formulation represents the results obtained through the model

shown in Figure 8.1.

components of stress as positive and compressive pressure, p is positive) (Zienkiewicz et al.,

1999a)

σ
′′

ij = σij + αδijp (8.3)
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where σ
′′
ij is effective stress tensor, σij is total stress tensor, δij is Kronecker delta. δij = 1,

when i=j, and δij = 0, when i 6= j. For isotropic materials, α = 1 −KT/KS. KT is the total

bulk modulus of the solid matrix, KS is the bulk modulus of the solid particle. For most of the

soil mechanics problems, as the bulk modulus KS of the solid particles is much larger that that

of the whole material, α ≈ 1 can be assumed. Equation (8.3) becomes

σ
′′

ij = σij + δijp (8.4)

Governing Equations of Porous Media Before proceeding with the general equations, we

introduce the associated notation. In this we have

• σij the total Cauchy stress in the mixture at any instant

• ui the displacement of the solid skeleton

• wi the pseudo-displacement of the fluid phase relative to the skeleton of solid

• p the pore water pressure

• εij = 1
2
(dui,j + duj,i) the strain increment of the solid phase

• ωij = 1
2
(dui,j − duj,i) the rotation increment of the solid phase

• ρ, ρs, ρf the densities of the mixture, and the solid phase and water respectively

• n the porosity

• θ = −ẇi,i the rate at which volume of water changes per unit total volume of mixture

With these definitions, and others introduced as necessary, we can write the governing equa-

tion of the coupled system.

The Equilibrium Equation of the Mixture. The overall equilibrium or momentum balance

equation for the soil-fluid ’mixture’ can be written as (Zienkiewicz et al., 1999a)

σij,j − ρüi − ρf [ẅi + ẇjẇi,j] + ρbi = 0 (8.5)
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Where üi is the acceleration of the solid part, bi is the body force per unit mass, ẅi + ẇjẇi,j

is the fluid acceleration relative to the solid part, ẅi is local acceleration, ẇjẇi,j is convective

acceleration.

The underlined terms in the above equation represent the fluid acceleration relative to the

solid and convective terms of this acceleration. Generally this acceleration is so small that we

shall frequently omit it. And for static problems, equation(8.5) only consists of the first and last

terms.

For fully saturated porous media (no air inside), from definition

ρ =
Mt

Vt

=
Ms +Mf

Vt

=
Vsρs + Vfρf

Vt

=
Vf
Vt
ρf +

Vt − Vf
Vt

ρs

= nρf + (1− n)ρs

ρ = nρf + (1− n)ρs (8.6)

where Mt, Ms and Mf are the mass of total, solid part and fluid part respectively. Vt, Vs and

Vf are the volume of total, solid part and fluid part respectively.

The Equilibrium Equation of the Fluid. For the pore fluid, the equation of momentum

balance can be written as (Zienkiewicz et al., 1999a)

− p,i −Ri − ρf üi − ρf [ẅi + ẇjẇi,j]/n+ ρfbi = 0 (8.7)

where R is the viscous drag forces. It should be noted that the underlined terms in (8.7) represent

again the convective fluid acceleration and are generally small. Also note that, throughout report,

the permeability k is used with dimensions of [length]3[time]/[mass], which is different from

the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K/ρfg, where g is the gravitational acceleration

at which the permeability is measured. Assuming the Darcy seepage law: nẇ = Ki, here i is
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the head gradient. Seepage force is then R = ρfgi. R can be written as

Ri = k−1
ij ẇj or Ri = k−1ẇi (8.8)

kij or k are Darcy permeability coefficients for anisotropic and isotropic conditions respec-

tively.

Flow Conservation Equation. The final equation is supplied by the mass conservation of the

fluid flow (Zienkiewicz et al., 1999a)

ẇi,i + αε̇ii +
ṗ

Q
+ n

ρ̇f
ρf

+ ṡ0 = 0 (8.9)

The first term of equation(8.9) is the flow divergence of a unit volume of mixture. The second

term is the volume change of the mixture. In the third term, Q is relative to the compressibility

of the solid and fluid. The underlined terms represent change of density and rate of volume

expansion of the solid in case of thermal changes. They are generally negligible.

1

Q
≡ n

Kf

+
α− n
Ks

∼=
n

Kf

+
1− n
Ks

(8.10)

where Ks and Kf are the bulk moduli of the solid and fluid phases respectively.

Thus, we got the total mixture equilibrium equation (8.5), fluid equilibrium equation(8.7) and

the flow conservation equation (8.9) for saturated soil. By omitting the convective acceleration

(the underline terms in (8.5) and (8.7)), density variation and the volume expansion due to the

thermal change (the underline terms in (8.9)), the equations of the total coupled system can be

further simplified, they are summarized as below

σij,j − ρüi − ρf ẅi + ρbi = 0 (8.11)

− p,i −Ri − ρf üi −
ρf ẅi
n

+ ρfbi = 0 (8.12)

ẇi,i + αε̇ii +
ṗ

Q
= 0 (8.13)
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8.5.2 Modified Governing Equations.

Solid Part Equilibrium Equation. First of all, a new variable Ui is introduced in place of the

relative pseudo-displacement wi, it is defined as

Ui = ui + UR
i = ui +

wi
n

(8.14)

Figure 8.4: Fluid mechanics of Darcy’s flow (wi) versus real flow (Ui = wi/n).

Insertion of definition (8.14) into equation (8.11)(8.12) and subtraction of [n× (8.12)] from

equation (8.11) leads to the equation of skeleton equilibrium

σij,j − ρüi + ρbi + np,i + nRi + nρf üi − nρfbi = 0 (8.15)

By substituting ρ = (1− n)ρs + nρf

σij,j − (1− n)ρsüi − nρf u̇i + (1− n)ρsbi + nρfbi + np,i + nRi + nρf üi − nρfbi = 0

σij,j + np,i + (1− n)ρsbi − (1− n)ρsüi + nRi = 0 (8.16)

By using the definition of effective stress (8.3),(8.15) becomes

σ
′′

ij,j − (α− n)p,i + (1− n)ρsbi − (1− n)ρsüi + nRi = 0 (8.17)

Fluid Part Equilibrium Equation. The fluid part equilibrium equation can be obtained simply

by [n× (8.12],i.e.

− np,i − nRi − nρf üi − ρf ẅi + nρfbi = 0

−np,i − nRi − nρf (üi +
ẅi
n

) + nρfbi = 0 (8.18)
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From equation (8.14), we have

Üi = üi +
ẅi
n

(8.19)

so that equation (8.18) becomes:

− np,i + nρfbi − nρf Üi − nRi = 0 (8.20)

Mixture Balance of Mass. By differentiating equation (8.14) in time space, we have

ẇi,i = nU̇i,i − nu̇i,i (8.21)

Notice that ε̇ii = u̇i,i, so that equation (8.21) becomes

ẇi,i = nU̇i,i − nε̇ii (8.22)

By substituting (8.22) to (8.13), we obtain

nU̇i,i − nε̇ii + αε̇ii +
ṗ

Q
= 0 (8.23)

or:

− nU̇i,i = (α− n)ε̇ii +
1

Q
ṗ (8.24)

Thus we got the whole set of modified governing equations (8.17),(8.20) and (8.24). They are

summarized as below

σ
′′

ij,j − (α− n)p,i + (1− n)ρsbi − (1− n)ρsüi + nRi = 0 (8.25)

− np,i + nρfbi − nρf Üi − nRi = 0 (8.26)

− nU̇i,i = (α− n)ε̇ii +
1

Q
ṗ (8.27)

From the modified equation set (8.25),(8.26) and (8.27), we can see that only üi occurs in

the first equation,and only Üi in the second, thus leading to a convenient diagonal form in

discretization.

Now we have a complete equation system given by (8.25),(8.26) and (8.27). With the basic

definitions introduced earlier, there are three essential
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1. solid displacement u

2. pore pressure p

3. absolute fluid displacement U

The boundary conditions imposed on these variables will complete the problem. These

boundary conditions are: For the momentum balance part, on boundary Γt, traction ti(t)(or

σijnj), where ni is the i-th component of the normal to the boundary is specified. On boundary

Γu, the displacement ui is given. For the fluid part, again the boundary is divided into two parts.

On Γp, the pressure p is specified, on Γw, the normal outflow ẇn is specified. For impermeable

boundary a zero value for the outflow should be specified.

The boundary conditions can be summarized below

Γ = Γt ∪ Γu

ti = σijnj = ti on Γ = Γw

ui = ui on Γ = Γu (8.28)

and

Γ = Γp ∪ Γw

p = p on Γ = Γp

nTw = wn on Γ = Γw (8.29)

8.5.3 Numerical Solution of the u-p-U Governing Equations

The solutions to the problems governed by the above equations can be solved using the Finite

Element Method.
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Matrix form of the governing equations The numerical forms of governing equations can

be written together in the matrix form as
Ms 0 0

0 0 0

0 0 Mf



ü

p̈

Ü

+


C1 0 −C2

0 0 0

−CT
2 0 C3



u̇

ṗ

U̇

+


KEP −G1 0

−GT
1 −P −GT

2

0 −G2 0



u

p

U



=


f s

0

f f


(8.30)

or in index form
(Ms)KijL 0 0

0 0 0

0 0 (Mf )KijL



üLj

p̈N

ÜLj

+


(C1)KijL 0 −(C2)KijL

0 0 0

−(C2)LjiK 0 (C3)KijL



u̇Lj

ṗN

U̇Lj



+


(KEP )KijL −(G1)KiM 0

−(G1)LjM −PMN −(G2)LjM

0 −(G2)KiL 0



uLj

pM

ULj

 =


f
solid

Ki

0

f
fluid

Ki


(8.31)
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where

Ms = (Ms)KijL =

∫
Ω

Nu
K(1− n)ρsδijN

u
LdΩ

Mf = (Mf )KijL =

∫
Ω

NU
KnρfδijN

U
L dΩ

C1 = (C1)KijL =

∫
Ω

Nu
Kn

2k−1
ij N

u
LdΩ

C2 = (C2)KijL =

∫
Ω

Nu
Kn

2k−1
ij N

U
L dΩ

C3 = (C3)KijL =

∫
Ω

NU
Kn

2k−1
ij N

U
L dΩ

KEP = (KEP )KijL =

∫
Ω

Nu
K,mDimjnN

u
L,ndΩ

G1 = (G1)KiM =

∫
Ω

Nu
K,i(α− n)Np

MdΩ

G2 = (G2)KiM =

∫
Ω

nNU
K,iN

p
MdΩ

P = PNM =

∫
Ω

Np
N

1

Q
Np
MdΩ

(8.32)

f
solid

Ki = (fu1 )Ki − (fu4 )Ki + (fu5 )Ki

f
fluid

Ki = −(fU1 )Ki + (fU2 )Ki

(fu1 )Ki =

∫
Γt

Nu
Knjσ

′′

ijdΓ

(fu4 )Ki =

∫
Γp

Nu
K(α− n)nipdΓ

(fu5 )Ki =

∫
Ω

Nu
K(1− n)ρsbidΩ

(fU1 )Ki =

∫
Γp

nNU
KnipdΓ

(fU2 )Ki =

∫
Ω

nNU
KρfbidΩ (8.33)

Here we have Nu,Np,NU as the shape functions of skeleton, pore pressure and fluid, ρ,ρs,ρf are

the density of the total, the solid and the fluid phases, respectively, n is the porosity, and by its

definition ρ = (1 − n)ρs + nρf , the symbol ni is the direction of the normal on the boundary,
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u is the displacement of the solid part, p is pore pressure and U is the absolute displacement

of the fluid part. Equation (8.30) represents the general form (u − p − U) for coupled system

which can be written in a familiar form as

Mẍ + Cẋ + Kx = f (8.34)

where x represents the generalized unknown variable. Solution of this equation for each time

step will render unknown field for given initial and boundary conditions.

8.5.4 Buoyant Forces: Surface Loads for Solid Bricks

Pore fluid pressures, determined through a dynamic analysis, and available from coupled finite

elements, as described above are then used to develop buoyant pressures and consequentially,

buoyant nodal forces. These buoyant forces are developed from surface loads on foundation

finite elements that are modeled using brick finite elements.

In order to apply surface load on brick elements, equivalent nodal forces have to be applied

instead of the surface load. The equivalent force of the i-th node Fi is given by the following

equation with shape function Ni and load distribution function f .

Fi =

∫
S

fNids (8.35)

When we assume the load distribution is uniform, it turns into

Fi = f

∫
S

Nids (8.36)

Furthermore, when the magnitude of the load per unit area is 1, and the size of the element

is 1× 1× 1, equivalent nodal forces are given as shown in Figure 8.5 for 8 node brick element,

20 brick element, and 27 nodes brick element.

Figure 8.5 shows cases of normal loads on vertical upper surface (with nodes: 1, 2, 3, 4 for

8 node brick; 1, 2, 3, 4, 9, 10, 11, and 12 for 20 node brick; and 1, 2, 3, 4, 9, 10, 11, 12 and

26 for the 27 node brick).

Nodal loads from uniform surface loads for 27 node brick are obtained as:
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a)  

1F
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b)  
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c)  

1F
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11F

12F

26F

10F

Figure 8.5: Nodal loads for brick elements: (a) F1 = F2 = F3 = F4 = +1/4; (b) F1 =

F2 = F3 = F4 = − 1
12

, F9 = F10 = F11 = F12 == +1
3

; (c) F1 = F2 = F3 = F4 = + 1
36

,

F9 = F10 = F11 = F12 == +1
9
, F36 = 4

9
.

• for nodes 1, 2, 3, and 4, N
(e)
i = 1

8
(1 + ξξi)(1 + ηηi)(1 + µµi)(ξξi)(ηηi)(µµi)∫ +1

−1

NidS =

=
1

8
(1 + µµi)(µµi)

∫ +1

−1

∫ +1

−1

(1 + ξξi)(1 + ηηi)(ξξi)(ηηi)(ηηi)dξdη

=
1

8
(1 + µµi)(µµi)(ξi)

2(ηi)
2(

2

3
)2

=
1

18
(1 + µµi)(µµi)(ξi)

2(ηi)
2 (8.37)

• for nodes 9, 10, 11 and 12, N
(e)
i = 1

4
(1− ξ2)(1 + ηηi)(1 + µµi)(ηηi)(µµi)∫ +1

−1

NidS =

=
1

4
(1 + µµi)(µµi)

∫ +1

−1

(1− ξ2)(1 + ηηi)(ηηi)dξdη

=
1

8
(1 + µµi)(µµi)(ηi)

2(
4

3
)(

2

3
)

=
2

9
(1 + µµi)(µµi)(ηi)

2 (8.38)
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• for nodes 26 N
(e)
i = 1

2
(1− ξ2)(1− η2)(1 + µµi)(µµi)∫ +1

−1

NidS =

=
1

4
(1 + µµi)(µµi)

∫ +1

−1

∫ +1

−1

(1− ξ2)(1− η2)dξdη

=
1

8
(1 + µµi)(µµi)(

4

3
)(

4

3
)

=
8

9
(1 + µµi)(µµi) (8.39)
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Chapter 9

Task 4.7: Piled Foundations

9.1 Summary of Findings for Task 4.7

The main findings are:

• Seismic behavior of piles and pile groups can (should) be modeled using all the piles in a

pile group, with nonlinear response of soil, nonlinear pile and the nonlinear pile-soil contact

zone

• In some cases, when seismic motions are not too strong, some of the above nonlinearities

can be neglected (for example piles will likely remain linear)

• Seismic behavior of piles and pile groups should be modeled using full solid and structural

element and not P-Y springs. Noted P-Y springs are developed for monotonic, single plane

loading of single piles in uniform soil and such are really not meant for cyclic, 3D analysis

of piles and pile groups

• Large pile foundation groups (for example, under a complete NPP), that have end bearing

(pile ends on a rock at depth) stiffen up NPP structural system almost as if NPP is sitting

of a rock foundation, without any influence of a contact (for a slab foundation, contact of

concrete and rock beneath)

• For large pile groups, leading and trailing piles can take a large portion of side (shear and

bending) loading, while middle piles can be shielded to a large extent.
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9.2 Methodology

Modeling of a single pile and pile groups relies on three main components:

• Modeling of a pile itself. This is mostly done using linear elastic beam-column elements

(in general with moment bending around two main cross section axes, torsional (polar)

moment twist, shear along two main cross section axes and the axial loading). Material for

piles is usually steel, reinforced concrete or reinforced concrete in steel casings. In addition,

for design basis motions, it is expected that piles will remain linear. On the other hand,

if piles are expected to develop nonlinear deformation (plastic hinges), nonlinear beam

elements can be used. It is advisable to use displacement based nonlinear beam elements,

that is available in the Real ESSI Simulator program.

• Modeling of soil surrounding the pile (without the pile-soil contact zone). Any elastic

(linear or nonlinear) or elastic plastic material model can be used for modeling soil. In

general, for most design basis seismic motions, and with the stiffness introduced by the

large number of piles under an NPP, it is not expected that soil surrounding large pile

group will develop any significant inelastic deformation.

• Modeling of pile-soil contact zone. This zone will develop inelastic (elastic-plastic, nonlin-

ear) before surrounding soil and/or pile(s). As such, it is always a advisable to always use

a nonlinear contact model for modeling of this zone. This is particularly important as the

interface of a stiff concrete and soft soil will most certainly produce inelastic deformation,

even for very small seismic motions.

As usual, it is always a good idea to simulated full nonlinear response, allowing for nonlinear

behavior of all the above three components, and then analyze results and decide if some of the

nonlinearities really do not play any significant role in the response

9.2.1 Modelling approach

Modeling of large pile groups is done using tree approaches:
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Full Detailed Modelling

This approach allows for detailed modeling of all three main sources of nonlinearities (inelastici-

ties) as noted above. With this approach, a model is developed using:

• Solid (dry or saturated), elastic or elastic-plastic finite elements for soil. An opening is

developed to house volume of a beam element used to model a pile. In other words, volume

occupied by a pile, a pile that is modeled using a beam-column element (which means that

the element is really just a line), is explicitly modeled.

• Contact finite elements (dry or saturated) for the pile-soil contact zone, where the contact

is developed between connecting elements (elements that connect beam-column element

and span across the volume (opening) of the pile to solid element.

• Beam finite elements for pile modeling, with connecting element that replace a volume of

the pile and connect beam-column finite element nodes with nodes of solids.

Full Contact Simplified Modelling

Using this approach a model is developed using:

• Solid (dry or saturated), elastic or elastic-plastic finite elements for soil.

• Interaction finite elements (dry or saturated) for the pile-soil contact zone. These contact

elements are not explicitly modeling actual normal/gaping and slipping contact. Their

purpose is to mimic overall response of a pile-soil interaction, in a sense of P-Y springs.

Caution should be exercised with use of these elements as their formulation is not based on

rational mechanics, rather it is based on observations of experiments (preferably full scale,

centrifuge experiments do not scale up!) and then some generalizations and simplifications.

• Beam finite elements for pile modeling. These finite elements are similar to the previous

case, can be linear elastic or fully nonlinear. However, due to simplified interaction of pile

and the soil, use of high fidelity nonlinear beam-column finite elements does necessarily

increase accuracy of modeling. This is based on a fact that simplified modeling of pile-soil
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interaction (see item above) might not provide high enough fidelity to warrant use of high

fidelity beam-column finite elements.

Simplified Stiffness Only Modelling

Using this approach a model is developed using:

• Solid (dry or saturated), elastic or elastic-plastic finite elements for soil.

• Beam finite elements for pile modeling. These finite elements are similar to the first case,

and can be linear elastic or fully nonlinear. However, due to lack of modeling of interaction

of a pile and the soil, there is no need to use nonlinear beam-column finite elements.

This approach works well for large pile groups (similar to what might be used for an NPP) as

it is expected that such large pile group will prevent any (significant or any at all) nonlinearity

of soil and contact zone (and certainly will not allow for nonlinearity of piles in a pile group).

9.2.2 Modeling Details

Presented are few examples of pile and pile group models in dry and saturated soils.

Piles in Uniform, Liquefiable Soil

In using detailed modeling of piles in their interaction with the soil, it is necessary to carefully

model pile, volume that that pile is occupying (since pile is modeled using a beam-column

element, which is represented by a line with no volume), contact zone and the volume of soil

adjacent to the pile. Figure 9.1 (Cheng and Jeremić, 2009a,b) shows one such model where

phases of construction of a pile (from a pile group) are depicted.

Figure 9.2 (Cheng and Jeremić, 2009a,b) shows details of a connection of pile with connecting

beam elements to solid finite elements modeling soil. This figure represent connection to coupled

finite element used to model saturated soil, and the contact element is placed between the beam

element and the solid element.
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Figure 9.1: Left: Three dimensional finite element mesh featuring initial soil setup, where all the

soil elements are present. The gray region of elements is excavated (numerically) and replaced

by a pile during later stages of loading; Right: Side view of the pile-soil model.
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Figure 9.2: Schematic description of coupling of displacement DOFs (ui) of beam-column

element (pile) with displacement DOFs (ui) of u-p-U elements (soil).

This particular model was used to investigate behavior of piles in liquefiable soils. This might

be of particular importance for NPPs and other nuclear facilities that are founded on piles and

are located close to bodies of water, which means that water table is close to the surface.

169



As reported by Cheng and Jeremić (2009b), behavior of piles in liquefiable soils needs to be

done using higher than usual modeling sophistication. For example, six models were developed

to investigate behavior of piles in liquefiable ground and to compare deformation and response

of level and sloping ground with and without piles.

Six models were developed. First three models (model numbers I, II and III) were for level

ground, while last three models (model numbers IV, V, and VI) were for sloping ground. First

in each series of models (model I for level ground and model IV for sloping ground) were left

without the second loading stage, without a pile–column system. Other four models (numbers II,

III, V and VI) were analyzed for all three loading stages. Second in each series of models (models

number II and V) had all displacements and rotations of pile–column top (where additional mass

representing superstructure was placed) left free, without restraints. Thus, these two models

represent lateral behavior of a structure. Third in each series of models (model numbers III and

VI) had rotations in y directions fixed at the pile–column top, thus representing longitudinal

behavior of a structure. Modeling longitudinal behavior of a structure by restraining rotations

perpendicular to the structure is appropriate if the stiffness of a structure is large enough, which

in this case it was, as it was assumed to be a post–tensioned concrete box girder, so that

realistically, the top of a column does not rotate (much) during application of loads. Table 9.1

summarizes models described above.

Figures (9.3) through (9.5) show the Ru time history for up to 30 seconds, for elements (at

one of Gauss point) e1, e3, e5 and e7 (refer to right side of Figure (9.1)). It is important to

note that Ru is defined as the ratio of the difference of initial mean and current mean effective

stresses over the initial mean effective stress:

Ru =
p′initial − p′current

p′initial

where mean effective stress is defined as p′ = σ′kk/3. This is different from traditional definition

for Ru, that uses ratio of excess pore pressure over the initial mean effective stress (p′initial).

However, these two definitions are essentially equivalent, as soil is in the state of liquefaction

for Ru = 1 (so that p′current = 0), while there is no excess pore pressure for Ru = 0 (so that

p′initial = p′current). However, the former definition is advocated here as it avoids the interpolation

of pore pressure or extrapolation of the stresses (as the latter definition requires), since for the
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Table 9.1: Cases descriptions.

Case Model sketch Descriptions

I horizontal ground, no pile

II horizontal ground, single pile, free column head

III horizontal ground, single pile, no rotation at column head

IV sloping ground, no pile

V sloping ground, single pile, free column head

VI sloping ground, single pile, no rotation at column head

u-p-U element, stresses are available at Gauss points while pore pressures are available element

nodes. In particular, Figure 9.3 shows Ru time histories for four points for models I (level ground

without pile) and model IV (sloping ground without pile). It is noted that differences are fairly

small. It is interesting to observe that lower layers do not liquefy as supply of pore fluid for

initial void ratio of e0 = 0.8 is too small, and the pore fluid dissipation upward seems to be to

rapid. On the other hand, the upper soil layers do reach close to or liquefaction state (Ru = 1).

This is primarily due to the propagation of pore fluid pressure/volume from lower layers upward

(pumping effect) and, in addition to that, to a local excess pore fluid production. These results

can also be contrasted with those of Jeremić et al. (2008), where similar pumping scenario has

been observed. The main difference between soil used by Jeremić et al. (2008) and here is in the

coefficient of permeability. Namely, here k = 1.0×10−4 m/s was used (Čubrinovski et al., 2008;

Uzuoka et al., 2008) while Jeremić et al. (2008) used k = 5.0 × 10−4 m/s. It is important to

note that other values of permeability for Toyoura sand have also been reported (Sakemi et al.,

1995), but current value was chosen based on Čubrinovski (2007 –).

In addition to that, similar to Jeremić et al. (2008), sloping ground case shows larger Ru
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Figure 9.3: Ru times histories for elements e1 (top element), e3, e5, and e7 (bottom element)

Gauss point) for Cases I (level ground, no pile) and IV (sloping ground, no pile).
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spikes, since there is static shear force (stress) that is always present from gravity load on a

slope. This static gravity on a slope will result in an asymmetric horizontal shear stresses in

the down–slope direction during cycles of shaking. This asymmetric shear stress induces a more

dilative response for down–slope shaking which will help soil regain its stiffness in the dilative

parts of the loading cycles. This observation can be used to explain smaller Ru spikes for the

sloping ground case. Of course, this asymmetry in loading will result in larger accumulation of

down–slope deformation.

While Ru ratios for level and sloping ground cases are fairly similar along the depth of the

model, the response changes when the pile is present. Figure (9.4) shows Ru responses at

four different points (along the depth) approximately midway between the pile and the model

boundary, in the plane of shaking (see location of those elements in Figure (9.1) on page 169).

In comparison to behavior without the pile (Figure (9.3)), it is immediately obvious that addition

of a pile with a mass on top reduces Ru during shaking for the top element (e1). This is to

be expected as presence of a pile–column–mass (PCM) system changes the dynamics of the

top layers of soil significantly enough to reduce total amount of shear. This is particularly true

for the top layers of soil as effects of column–mass tend to create compressive and extensive

movements (compression when the PCM system moves toward soil and extension, and possibly

even tension, when PCM system moves away from soil). However, this extension, or possible

tension, is not directly observable in presented plots since array of elements where we follow Ru

(e1, e3, e5, e7) is some distance away from the pile–soil interface. Middle layers (e3 and e5), on

the other hand, display similar response to that of Cases I and IV, as shown in Figure (9.3). It

is noted that in a case with of sloping ground with pile, the Ru measurements are always larger

that those for level ground (this is also observed for Cases III and VI, as shown in Figure (9.5)).

This is expected as presence of a pile in loose sand, and particularly the dynamic movement of a

pile during seismic shaking, create an additional shearing deformation field (in the soil adjacent

to the pile) that provides for additional (faster) compression of soil skeleton and thus creates

additional volume of pore fluid, that is then distributed to adjacent soil (adjacent to the pile).

Particularly interesting are Ru results for soil element e7, which is located below pile tip level

(see Figure (9.1)). Observed Ru for Case V in element e7 is significantly larger than for the same

element for Case II. Similarly, simulated Ru is larger than what was observed in cases without
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Figure 9.4: Ru times histories for elements e1, e3, e5, and e7 (upper Gauss point) for Cases
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a pile (see bottom of Figure (9.3)). This increase in Ru for Case V (sloping ground with pile)

is explained by noting that the pile “reinforces” upper soil layers and thus prevents excess shear

deformation in the upper 12.0 m of soil (above pile tip). The reduction of deformation in upper

layers of soil (top 12.0 meters) results in transfer of excessive soil deformation to soil layers below

pile tip (where element e7 is located). This, in turn, results in a much larger and faster shearing

of those lower loose soil layers. This significantly larger shearing results in a much higher Ru.

Deformed shape, shown in Figure (9.6) for Case V, reinforces this explanation, showing much

large shearing deformation in lower soil layers, below pile tip. Same observation can be made for

Case VI, shown in Figure (9.6).

Observation similar to the above, for Cases II and V can be made for Cases III and VI, results

for which are shown in Figure (9.5). One noticeable difference in Ru results between cases with
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Figure 9.5: Ru times histories for elements e1, e3, e5, and e7 (upper Gauss point) for Cases III

(level ground, with pile, no rotation of pile head) and VI (sloping ground, with pile-column, no

rotation of column head).

free column head (Cases II and V) and cases with fixed rotation column head (Cases III and VI) is
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in significantly larger (and faster) development of Ru close to soil surface for a stiffer, no rotation

column cases (Cases III and VI). This much larger Ru observed in a “stiffer” PCM system setup,

is due to larger shearing deformation that develops in soils adjacent to the pile during shaking.

The stiffer PCM system can displace less (because of additional no rotation condition on column

top) while the soil beneath is undergoing shaking (same demand in all cases), thus resulting in

larger relative shearing of soil, which then results in larger and faster pore pressure development

close to the soil surface, where the column no rotation effect is most pronounced.

A number of deformation modes is observed for both level and sloping ground cases, with

or without PCM system. Figure (9.6) shows deformation patterns and excess pore pressures in

symmetry plane for all six cases over a period of eighty seconds. A number of observation can

be made on both deformation patterns, excess pore fluid patterns and their close coupling.

Level Ground without Pile (Case I). Excess pore pressures and deformations in symmetry

plane for level ground without a pile are shown in Figure (9.6) (I). At the very beginning (at

t = 2 s) there is initial development of excess pore fluid pressure in the middle soil layers. This

expected, as the self weight loading stage has densified lower soil layers enough so that their

response is not initially contractive enough to produce excess pore pressure. Top soil layers, on

the other hand, have a drainage boundary (top surface) too close to develop any significant excess

pore pressures. As seismic shaking progresses (for t = 5, 10 s), the excess pore pressure increases,

and starts developing in lower soil layers as well. It should be noted that a small non-uniformity

in results is present. For example, zones of variable, nonuniform excess pore pressures on the

lower mid and right side for Case I at t = 10 s develop. Nonuniform mesh (many small, long

elements in the middle, large elements outside this middle zone) may introduce small numerical

errors in results which can be observed by slightly nonuniform results at t = 10 s and t = 15 s. It

should be noted that results for excess pore pressure shown for first 13 seconds (during shaking)

in Figure (9.6) (I) are transient in nature, that is, seismic waves are traveling throughout the

domain (model) during shaking (first 13 seconds) and slight oscillations in vertical stresses are

possible. This oscillations will contribute to the (small) non-uniformity of excess pore pressure

results. After the shaking (after 15 seconds) resulting excess pore pressure field is quite uniform.
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Figure 9.6: Time sequence of deformed shapes and excess pore pressure in symmetry plane of a

soil system. Deformation is exaggerated 15 times; Color scale for excess pore pressures (above)

is in kN/m2. Graph of ground motions used is placed below appropriate time snapshots and is

matching for t = 2, 5, 10, 15, 20 seconds while at t = 80 seconds there is no seismic shaking.
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Level Ground with Pile (Cases II and III). Excess pore pressures and deformations in

symmetry plane for models with PCM system and with two different boundary conditions at

top of column in level ground are shown in Figures (9.6) (II and III). One of the interesting

observations is significant shearing and excess pore pressure generation adjacent to the pile tip.

The reason for this is that pile is too short, that is, pile tip has significant horizontal displacements

during shaking. Those pile tip displacements shear the soil, resulting in excess pore pressure

generation. As soon as there is time for dissipation, this localized excess pore pressure dissipates

to adjacent soil, and then, after shaking has ceased (at t = 13 s and later), it slowly dissipates

upward. Addition of pile into the model (construction), with a highly impermeable elements

(that mimic permeability of concrete) is apparent as there is a low excess pore pressure region

in the middle of model, where pile is located.

Sloping Ground without Pile (Case IV). Excess pore pressures and deformation in symmetry

plane for sloping ground without pile is shown in Figures (9.6) (IV). It is noted that initially the

excess pore pressure starts developing in middle soil layers,similar to the Case I above. Bottom

layers start developing excess pore pressure only after significant shear deformation occurs (at

t = 10 s) at approximately 2/3 of the model depth. Lower layers have densified enough during

self weight stage of loading that initial shaking is not strong enough to create excess pore water

pressure, rather, those layers are fed by the excess pore pressure from above. Lower soil layers

also do not develop much deformation, while middle and upper layers together develop excessive

horizontal deformation.

Sloping Ground with Pile (Cases V and VI). Excess pore pressures and deformation in

symmetry plane for sloping ground with PCM system are shown in Figures (9.6) (V and VI).

Similar to the above cases (II and III), pile is too short and there is again excessive shearing

of soil at the pile tip, suggesting large movement of that pile tip. In addition to that, pile

introduces significant stiffness to upper 12 meters of soil (along the length of pile) and helps

reduce deformation of those upper soil layers. Down-slope gravity load is thus transferred to

lower soil layers (below pile tip) which exhibit most of the deformation. It should be noted that

soil in middle and upper layers (adjacent to pile) does deform, just not as much as the soil below
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pile tip. The predominant mode of deformation of middle soil layers is shearing in horizontal

plane, around the pile. Deformation in horizontal plane is not significant as the pile is short in

this examples (as mentioned above) and does not have enough horizontal support at the bottom.

The deformation pattern of a soil – pile system is such that pile experiences significant rotation,

and deforms with the soil that moves down-slope. If the pile was longer, and if it had significant

horizontal support at the bottom, the middle and upper soil layers would have showed more

significant flow around the pile in horizontal planes.

Piles in Layered Soils

Particular attention has to be taken for piles and pile groups in layered soils. In most cases, soils

are naturally deposited in layers and proper modeling of layering is very important, particularly

when layers are many and not very thick, Recent work in this area by Yang and Jeremić (2002);

Yang and Jeremić (2005) shows that for layers of stiff sand and softer clay, reduction of stiffness

and ultimate strength of soil can be significant.

Presented in this subsection are representative results related to the behavior of piles in

uniform and layered soil systems. These results were first published by Yang and Jeremić (2002);

Yang and Jeremić (2005); Jeremić et al. (1989-2016).

Pile Models. A number of static pushover tests for single pile models were simulated using

uniform soil and layered soil setups. Figure 9.7 shows the model setups. There are four main

setups. Two of these are dealing with uniform sand and clay soils, while two others are featuring

layered soils. In particular, the case # 1 is a uniform soft clay soil, case # 2 includes top and

bottom layers of soft clay with an in–between layer of medium dense sand. On the other hand,

case # 3 features uniform medium dense sand soil, while case # 4 features top and bottom

layers of medium dense sand with an in–between layer of soft clay. Detailed layering setup is

given in Figure 9.7.

Figure 9.8 shows the finite element mesh for all four cases. Based on symmetry, only half of

the model is meshed. Twenty node brick elements are used for both soil, pile and interface. It

should be noted that these quadratic elements exhibit high accuracy even for high aspect ratios

and can model accurately bending of solid piles with two layers of elements. During mesh design
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Figure 9.7: (a) Single pile models, dimensions and layers of case #1 and #2. (b) Single pile

models, dimensions and layers of case #3 and #4.

stage, a study was performed to decide on appropriate (balanced) mesh size. That study showed

that a much larger mesh, with many more elements (with lower aspect ratios) would account

for a fairly small change in results, so it was decided that the current mesh is sufficient for our

analysis.

The square pile, with a width of 0.429 m, consist of four elements (per cross subsection) with

the elastic property of aluminum. The fine mesh in the upper part of the model is to provide

data points for the computation of shear forces and p − y curves of sufficient reliability as well

as for the investigation of layering effects. The sides and bottom of the model are fixed with the

exception of the symmetric boundary, which is only supported in Y direction. The interface layer

between aluminum pile and surrounding soil is represented by one thin layer of elements. The

purpose of this layer is to mimic the installation effects on piles (drilled or driven). It also serves a

purpose of a simplified interface which allows for tension cut-off (gaping) and controlled, coupled

horizontal and vertical stiffness. All interface elements were simulated by Drucker–Prager model

with a friction angle of 25o, and a dilation angle of 0o.
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Figure 9.8: Mesh of single pile model, side view, top eight layers of finite elements are either

clay or sand (depending on the cases), middle eight layers of finite elements are sand or clay

(again depending on the cases) and the bottom is all uniform clay or sand, interface zone around

the aluminum pile is also present.
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Plastic Zones. The static pushover test were conducted using load control at pile head.

The final plastic zones are depicted in Figures 9.9, 9.10. Plastic zones are actually presented by

plastified Gauss points. In particular, Figure 9.9(a) shows developed plastic zones for the uniform

clay soil (case # 1). It is interesting to note that the plastic zone propagates fairly deep while

it does not extend far from the pile in clay. Moreover, compression side (right side) features

much larger plastic zone while the plastic zone for the extension side (left side) is confined to

the interface layer and a few Gauss points outside the interface layer. The case with clay and

sand layer in–between is shown in Figure 9.9(b). The main difference is that the plastic zone is

even smaller than for uniform clay layer. It is worth mentioning that this case, which includes

sand layer, is stiffer than the uniform clay case, thus displacements are smaller in clay and the

plastic zone does not propagate as much as in uniform clay soil.

a) b)

Figure 9.9: The plastic zones for (a) case # 1, and (b) case # 2 at lateral loading of 400kN.

Figure 9.10(a)(b) shows plastic zones at the end of loading process for sand and sand and

clay soils. In particular, Figure 9.10(a) shows the plastic zone for uniform sand. It is interesting

to note that the plastic zone propagates toward the surface with the collapse mechanics similar

to the active and passive failure. In this case of course the system is 3D and so the failure

propagation angles do not match the active and passive failure angles, however the difference
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between active and passive zones propagation angles is almost exactly π/2. Figure 9.10(b) shows

plastic zone for the case # 4 which includes a layer of clay between −1.72m and −3.44m (Z

coordinate, origin is in the pile center at the ground surface) . It is noted that the plastic zone

is deeper, but not as nicely defined as in the previous case.

a) b)

Figure 9.10: The plastic zones of case 3 and 4 at lateral loading of 400kN.

p− y Curves. Results from static pushover tests on piles were used to generate p− y curves.

The bending moments derived by integrating vertical stresses are numerically differentiated once

and twice to compute the shear force and pressure diagrams, respectively. Direct integration of

shear stresses was also performed to check results and it was found that shear forces were within

5% accuracy. The combination of calculated pressures (p) and displacements obtained from the

finite element solution, allowed for generation of p− y curves at various depths along the pile.

In what follows, presented are generated p− y curves for both uniform soils (sand and clay)

as well as for layered systems. It is noted that the graphical presentation of results for bending

moments, shear forces and lateral pressures (load) on a pile beam are shown with 10 lines, each

one representing results for one increment (1/10) of the total load.
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Uniform Clay Soil. Figure 9.11 shows bending moments, shear forces and pressures along the

depth of a pile in clay soil. It should be noted that the maximum bending moment, as well as

the switching of sign for shear force, moves quite a bit from the depth of approximately −1.7m

all the way to the depth of −3.4m. Pressure distribution shows that the top layers are already at

the ultimate values of pressures and thus the pressure diagram propagates downward. There is a

slight fluctuation of pressures at the depths of 4−5m, which is attributed to the small numerical

problems while doing double differentiations.
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Figure 9.11: Bending moment, shear force and pressure distributions for the uniform clay profile.

Figure 9.12 shows generated p − y curves for uniform clay layer. It is obvious that most of

the clay (at least until the depth of −2.6m) has reached its peak resistance.

Uniform Sand Soil. Figure 9.13 shows bending moments, shear forces and pressures for a pile

in a uniform sand soil. In this case it is interesting to note that the maximum bending moment,

as well as the change of sign for the shear force is moving only between the depths −1.8m and

−2.0m. Moreover, the pressure diagram shows steady increase (with top layers reaching ultimate

pressures) until the depth of −1.7m and then steadily decreases, and changes sign at greater

depths (below −4.0m).
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Figure 9.12: Calculated p− y curves for the uniform clay profile.
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Figure 9.13: Bending moment, shear force and pressure distributions for the uniform sand profile.

185



Figure 9.14 shows generated p− y curves for the uniform sand case. It is interesting to note

that only the top layer at the depth of about −0.3m will reach the ultimate pressure. All the

other sand material is far away from corresponding ultimate pressures. It is also worth noting

that the displacements in the case of uniform sand are much smaller (almost twice as small)

than what has been observed in uniform clay case.
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Figure 9.14: Calculated p− y curves for the uniform sand profile.

Clay Soil with a Layer of Sand. Figure 9.15 shows bending moments, shear forces and

pressures for a layered soil case. In this case a layer of sand extends from −1.72m to −3.44m.

The rest of soil is soft clay. It is interesting to note a large jump in pressures for the sand layer

(as expected) and that the pressures in the top clay layer (from the surface to −1.7m) reaches

ultimate values. Small non–uniform distribution of the pressures at the interface of sand and

clay at −3.44m is attributed to the coarseness of the finite element mesh. In comparing Figure

9.15 with the results for uniform clay case (Figure 9.11) it is obvious that the sand layer arrests

the propagation of deformation and forces in depth and fixes the maximum moment to approx.

−2.1m.
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Figure 9.15: Bending moment, shear force and pressure distributions for the clay soil with a

sand layer.

Figure 9.16 shows generated p− y curves for the layered case (single layer of sand in clay).

The p− y curves were generated only for the top layer of clay and middle layer of sand, to the

depth of −2.7m. It is interesting to note that the p− y curve for clay at the depth of −1.61m

(close to the sand layer) exhibits strong hardening, unlike similar curve for the uniform clay soil,

in Figure 9.12. The increase in pressure (transversal loading on the pile) between uniform clay

(Fig. 9.12) and clay underlain by a medium dense sand layer (Fig. 9.16) at the displacement of

0.06m is more than two times.

Sand Soil with a Layer of Clay. Figure 9.17 shows bending moments, shear forces and

transversal pressures for a case where a layer of soft clay is present within sand soil. Unlike the

case of uniform sand soil (Figure 9.13) the presence of soft clay layer will change the depth of

maximum moment by almost 1m (from −2.0m to −3.0m). In addition to that, the distribution

of pressures on a pile is changed significantly, as seen in the right plot of Figure 9.17. The

reduction of pressures will extend into the sand layer and present significant influence of soft clay

on pressures in sand.
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Figure 9.16: Calculated p− y curves for the clay soil underlain by a medium dense sand layer.
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Figure 9.17: Bending moment, shear force and pressure distributions for the sand soil with a

soft clay layer.
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Figure 9.18 shows generated p − y curves for the case of sand with a soft clay layer. It is

noted that the p − y curves for sand that is some distance away from the interface with clay

are much the same as for the uniform sand case. However, the p − y curves in sand close to

the interface are changed in some cases significantly. For example, the p− y curve at depth of

−1.61m is showing pressure of approx. p = 265kN/m at the displacement of 0.042m for the

uniform sand case, while the same p− y curve, still in sand, has a drop in pressure at the same

displacement to p = 140kN/m. Similar trend is observed for other p − y curves close to the

interface of sand with clay.
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Figure 9.18: Calculated p− y curves for the sand soil underlain by a soft clay layer.

Pile Groups

Pile groups bring certain additional complexities to pile modeling, For example, for a pile group

that features more than 2 piles, interaction between piles becomes very important, as front piles

tend to pick up majority of loading, while piles in the middle of a pile group are ”shaded” and

loaded with only relatively small portion of average load. Figure 9.19 (Yang and Jeremić, 2003)

shows a setup for a 4× 3 pile group.
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Figure 9.19: Layout of 4× 3 pile group: a) top view, b) side view.

Figure 9.20 shows a finite element model for such simple pile group.

Figure 9.20: Finite element mesh for half of 4× 3 pile group.

It is noted that while this pile group is fairly small when compared with a significantly larger

pile groups that are potentially placed under NPPs and other nuclear facilities, conclusions on

load distribution are very similar.

Figure 9.21 shows variation of percentage of transversal load taken by different piles in this
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pile group. It is noted that leading row piles taken majority of loading during transversal loads,
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Figure 9.21: Variations of percentage of total load taken by each row in the 4× 3 group.

almost twice as much as piles behind them, and more than twice as much as piles further behind.
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Chapter 10

Task 4.8: Recommendations Regarding

Safety Importance of Phenomena 4.1 –

4.7, and Methods to Take Them Into

Account
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Executive Summary of Findings for Safety Importance of

Analyzed Phenomena

Provided here is a summary of recommendations regarding safety importance of phenomena 4.1

– 4.7. It is important to note that summary provides most likely outcomes and recommendations,

however, as always with nonlinear analysis, it is recommended to perform full nonlinear analysis

for each SSI NPP system and carefully analyze contributions and safety importance of different

parts of the system.

4.1 Full, 3D, inclined, body and surface seismic wave fields: Safety concern is that if full

(realistic) 3D seismic wave field is not taken into account, some motions are not taken

into account, thus (artificially) reducing demand on NPP! Combinations of 100%, 40%

in horizontal directions, and 40% in vertical direction do not necessarily convey the real

picture of motions as they miss rotational components of motions.

These real 3D ground motions effects that are omitted from current modeling can reduce

accuracy of results and render results on unsafe side.

4.2 Incoherence modeling: Safety concern is that current state of art/practice models and

motions that are developed using these models do not necessarily cover extended range of

incoherent motions from which these models have been developed. In addition, there are

concerns over ergodicity, directivity effects, local geology effects.

High fidelity modeling of wave propagation from source, through rock to local site offers

much more accuracy and resolution (provided that geology is known in some detail!) and

should at least be used in conjunction with current incoherence models, and possible should

be used to constrain and expand currently used incoherence models.

These modeling concerns with current incoherence modeling can render results on unsafe

side and should be carefully investigated on a case by case basis.

4.3 Soil/rock nonlinearities: currently these nonlinearities are not taken into account in profes-

sional practice, and yet, these nonlinearities can, in some cases, reduce seismic demand on

NPPs. In some special (somewhat rare) cases demand can also increase. In conclusion, as
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with any nonlinear modeling, particular NPP SSI models have to be analyzed as accurately

as possible to determine if modeling of nonlinearities/inelasticity is beneficial or detrimental

to seismic response of NPPs.

4.4 Slipping and gaping at foundation–soil/rock contact: Much like the case of soil/rock

nonlinearities/inelasticity, contact can dissipate much seismic energy and by not modeling

it, potential beneficial effects are not taken into account. A word of caution is in order,

however, as usual reduction of demand is for horizontal motions, while vertical motions

can be amplified, depending on axial contact (plasticity and viscous damping) properties.

4.5 Timing and location of energy dissipation: If modeled properly, energy dissipation timing

and location can provide great insight in dynamic life on an NPP SSI system. In addi-

tion, knowledge of timing and location of energy dissipation can help improve safety and

economy of NPP SSI systems.

4.6 Buoyancy effects: These very important effects need to be modeled properly as buoyant

forces will change dynamically, during earthquakes, and can have either beneficial (isola-

tion) or detrimental (loss of stability) effects.

4.7 Piles and Pile groups: Modeling of pile groups under NPPs can be done using a number

of more or less sophisticated approaches. The main safety concern is if a less sophisticate

modeling approach is used, results obtained might not be representative of the actual

behavior of an NPP founded on piles.
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10.1 Task 4.1: Full 3D, Inclined, Body and Surface Seis-

mic Input

10.1.1 Safety Importance

The importance of properly modeling input motions cannot be overstated. Using simplified

methodology, where only motions in one single directions are taken into account can lead to

underestimating seismic demand and thus developing results that are on the unsafe side.

A simple example was developed to illustrate the importance of modeling full 3D motions

with both body and surface waves and is available through this web site (this example cannot

be presented on paper as it comprises a number of animations of simulated results):

http://sokocalo.engr.ucdavis.edu/~jeremic/6D_vs_1D_ESSI_for_NPPs/

In the above example, given combination of body and surface waves produces significant

differences in motions (displacements and accelerations) in the containment and auxiliary build-

ings. Realistic 3D seismic motions do produce larger demand/influences, and thus, use of 1D

motions (even it they are combined with a rule of 100% in one horizontal direction, 40% in other

horizontal direction and 40% in vertical direction) might not be on the safe side.

10.1.2 Methods to Take into Account

The best method to take into account full 3D seismic motions, that include body and surface

waves is the Domain Reduction Method (Bielak et al., 2003; Yoshimura et al., 2003), as described

in detail in this report.
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10.2 Task 4.2: Incoherence Modeling

10.2.1 Safety Importance

Proper modeling of incoherence in seismic motions is of great importance. Incoherence in seismic

motions is a real phenomena that is observed in measurements on closely spaced measuring

stations. There are four main sources of incoherence for seismic ground motions (Zerva, 2009):

• Wave passage effects,

• Attenuation effects,

• Scattering effects,

• Extended source effects

When incoherent effects are modeled using site specific geology, site specific seismic sources,

a highly accurate ground motions are obtained. Such incoherent ground motions do consist

of both body and surface seismic waves, and feature wave passage and attenuation effects,

while proper modeling of geology accounts for scattering effects, and proper modeling of source

characteristics accounts for extended source effects.

On the other hand, currently predominant incoherence modeling approach is use of statistical

models that are developed using measured incoherent motions from few sites, mostly in Taiwan

and U.S.A. (California). Use of those models is appropriate if one can assume that ergodic

assumption holds. That is, models are developed by using data from a number of earthquakes

at these (very) few sites. Then, these models are used to (extrapolate and) predict incoherence

at various other sites. Moreover, data recorded at original sites does not account for earthquake

directivity effects. In other words, incoherence will be quite different between two points if

earthquake epicenter is positioned along the line connecting these two points, or if the earthquake

epicenter is at an equal distance from those two points (that is, if it is perpendicular to the line

connecting two measurement points). For a number of earthquakes measured at two chosen

points, differences in directivity, and path of earthquake waves from sources at different locations,

will create a significant spread of data. Hence current models are developed as statistical models.

Since current models allow for development of a large number instances of incoherent motions, it
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would be appropriate to use a large number of incoherent motions in modeling of SSI for NPPs.

That is currently not the case! Currently, statistical models are used to develop (very) few

incoherent motions, and those motions are used to excite NPP models. By doing so, realistic

incoherent motions that were measured and used to developed original statistical incoherent

motion models, are being averaged. Such average incoherent motions (or averaged incoherences)

are then used to to perform dynamic analysis of NPP SSI systems. This approach might be

reducing motions and/or incoherences and as such might not be on a safe side.

10.2.2 Methods to Take into Account

High Fidelity Numerical Modeling: Probably the best method to take incoherent motions

into account is to

• Develop a good knowledge about the geology of site (preferably, a detailed picture of

distribution of materials in a volume of subsurface geology that is deemed important to

the dynamic response of the soil/rock-structure interaction (SSI) NPP system)

• Develop a good knowledge about (number of) potential source(s),

• Develop a reasonable (high fidelity) seismic ground motions that take into account as best

as possible knowledge about geology and source(s)

• Develop high fidelity models of the SSI NPP system,

• Apply developed ground motions and analyze obtained SSI for a given NPP

This approach provides for a much higher confidence that results are properly developed and

relies on a minimal number of simplifying assumptions that reduce modeling uncertainty.

Current, State of Practice Approach: Currently used methods rely, as noted above, on

statistical models developed from observations of incoherence at a very limited number of sites

around the world (in Taiwan and California mostly). While these models have so far been almost

exclusively used, it is highly advisable to carefully examine their assumptions and use them

with great care, while having in mind all the above potential problems. It would be great if in
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addition to using statistical incoherence models (with all the potential problems as described

above) a real measured values of incoherence are used and applied to SSI problems. These real,

measured, values of incoherence, need to be chosen to cover high an low extremes of incoherence

in such a way to excite extreme SSI behavior (high and low). This way, one can claim that both

beneficial and detrimental incoherence effects have been taken into account and that an NPP

under consideration has been numerically (in silico) tested.
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10.3 Task 4.3: Soil/Rock Nonlinearities

10.3.1 Safety Importance

Soil and Rock adjacent to NPP foundations undergoes nonlinear, inelastic deformation for even

very small loads and seismic motion levels. It can be proven analytically that for any granular

material, there does not exist elastic (linear or nonlinear) behavior (Mindlin and Deresiewicz,

1953). In addition to that, a large number of tests on various types of rock material provides

evidence that even rock tends to have nonlinear, inelastic response for even small deformation

levels (Stavrogin et al., 2001). The decision to make a simplifying assumption of linear elasticity1

is upon numerical modeler.

The main problem with using a linear elastic assumption for soil and rock adjacent to NPP

foundation is the loss of a potential to dissipate seismic energy by that same soil and rock. As

seismic motions excite inelastic response of soil and rock, seismic energy, that is propagating

from within the soil and rock (as body and surface waves) is dissipated within that soil and rock.

This seismic energy dissipation reduces the amount of seismic energy that reaches the NPP, and

thus might have a beneficial effect. In addition to dissipating seismic energy, inelastic effects

(plastification) of soil and rock will likely change the frequency content of seismic ground motions

(in most cases, high frequencies will be cut off, while low frequencies might be amplified).

In that sense, it is believed that nonlinear, inelastic behavior of soils and rock will mostly

be beneficial to the safety of NPPs as seismic motions will be reduced due to seismic energy

dissipation within soil and rock domain.

10.3.2 Methods to Take into Account

For 3D modeling and simulation of SSI for NPPs, it is highly recommended that full 3D elastic-

plastic material models be used. The usual use of 1D equivalent linear or nonlinear material

models is not recommended as their generalization from 1D to 3D is questionable.

1It is very important to note that methods that rely on the so called equivalent elastic models are indeed fully

linear elastic approaches, where the linear elastic constant(s) is (are) developed based on a secant approach upon

estimating (!) the highest strain level for a nonlinear response of a material (soil).
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The other problem that is present is that data that is available for calibration of these 3D

elastic plastic models is usually only stiffness degradation (G/Gmax and damping curves. There

is no volume change data, and this represents a serious drawback as shearing response of soil

(during shear wave propagation) is very much a function of such volume change. This serious

problem with a lack of data is reported in this report as well (see Chapter 5 on page 61.

The most appropriate way to take nonlinear behavior of soil and rock into account is to use

material models that can be calibrated using stiffness degradation and damping curves. One

such model, called Pisanò model (Pisanò and Jeremić, 2014) was developed.
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10.4 Task 4.4: Contact Problem, Slipping and Gaping

10.4.1 Safety Importance

In addition to nonlinear, inelastic behavior of soil and rock adjacent to structural foundations,

contact zone (soil/rock – foundation concrete) shows even more potential for dissipating seis-

mic energy. Contact zone, where a stiff foundation concrete interacts with softer soil and rock

beneath, will exhibit nonlinear, inelastic response for even smallest seismic excitation, unless spe-

cial measure are taken to ”glue” foundation concrete to the rock beneath (using post-tensioned

cables, grouting, etc.). Usually contact of soil and rock to the foundation concrete is used to

prevent ground water to penetrate foundation concrete, and for that purpose, plastic sheets are

placed between soil/rock and concrete. These plastic sheets decrease effective friction resistance

and almost create an (unintended) base isolated structure. Even without these plastic sheets,

contact zone will exhibit significant nonlinear, inelastic response.

This nonlinear, inelastic response serves similar function as the nonlinear/inelastic response

of soil and rock adjacent structural foundation. Seismic energy that propagates from within

soil and rock toward the structural foundations will be, dissipated, in part, within the contact

zone. In addition to dissipating seismic energy, and preventing that energy from propagating

further into the structure, nonlinear/inelastic response of the contact zone will alter frequencies

of seismic motions propagating through the NPP system (usually, lowering high frequency for

horizontal while increasing high frequencies for vertical motions).

10.4.2 Methods to Take into Account

Proper modeling of contact problem that features a normal (axial) response (with gap closing

opening capabilities) that is fully coupled to the shear/slip response requires formulation of

contact element that takes all those physical phenomena into account. Details of our formulation

and implementation of one such element is given in this report (see Chapter 6 on page 109.

It is also very important to note that for contact modeling where contact zone is under water

table and is fully saturated, a special contact element is developed/used which explicitly takes

into the account pore fluid pressures in soil beneath contact zone, as well as water within the
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contact zone.

There were a number of proposal to use linear elastic finite element programs for modeling

contact nonlinearity, by resorting to secant stiffness. It is important to not that while such

simplification might be acceptable for very minor nonlinearity in the contact zone, that is for

a very small seismic motions, any larger nonlinearity simply cannot be modeled using secant

approach for two main reasons:

• Secant stiffness approach needs to a-priori determine level of straining in order to decide

(choose) secant stiffness. This choice is not unique and will be a function of an overall

response, which for a nonlinear system changes in every incremental (time) step.

• By choosing secant stiffness, the system becomes linear elastic, and thus the main potential

benefit of nonlinear/inelastic contact, dissipation of seismic energy is completely lost.
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10.5 Task 4.5: Timing and Location of Energy Dissipation

10.5.1 Safety Importance

Input of seismic energy and its dissipation within the soil/rock structure interaction system for

an NPP controls the dynamic response. Seismic response successes and failures for NPPs (and

other structures) are controlled by timing and location of energy dissipation. Energy can be

dissipated in a number of different ways. For example, energy dissipation in structural, systems

and components (SSCs) results in damage (and even failure) of those SSCs. If, on the other

hand, seismic energy is dissipated in the soil/rock volume or in the soil/rock–foundation contact

zone, then less seismic energy will propagate to the SSCs, and thus potentially reduce damage

accumulated in SSCs.

It is thus very important to gain accurate understanding where and when is energy being

dissipated within NPP SSI system. It is also important to note that if finite elements used do

not allow fro modeling of nonlinear/inelastic behavior, energy dissipation will not be accurately

measured/analyzed. For example if part of the SSI system finite element model uses linear elastic

finite elements, it is very likely that, since those elastic finite elements cannot dissipate seismic

energy, seismic energy will be redistributed to other parts of the finite element model that can

dissipate energy. While this redistribution might not be much of a problem for parts of the

model (SSI system) that are expected to remain close to elastic (for example structure), in other

instances, where some parts of SSI system are modeled as elastic (while we know that these parts

will have significant nonlinear/inelastic deformation), then energy dissipation results will be much

skewed and will not be accurate at all. There is a fine line that needs to be followed in choosing

which part of SSI NPP system to model as linear and which part as truly nonlinear/inelastic.

It would be best if all parts of the SSI NPP system are modeled with highly accurate models,

that can allow realistic nonlinear/inelastic behavior, and allow those models to show that, for

example, structure will remain elastic (for the most part it will remain elastic, even for stronger

earthquakes, as shown by recent experiences from Japanese earthquakes).
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10.5.2 Methods to Take into Account

It is preferable to follow energy dissipation for each finite element in the finite element mesh,

and to record dissipation for each time step of a dynamic analysis. This is the philosophy that

is developed and implemented in the Real ESSI Simulator.

It is emphasized again that in addition to real, physical dissipation of energy that is modeled

using high fidelity finite element models, there exist numerical energy dissipation. This numerical

energy dissipation is an artifact of numerical integration of equations of motion. While numer-

ical energy dissipation can be used in linear analysis to damp (dissipate) out energy (usually

higher frequencies) artificially introduced into the system by the finite element discretization, for

nonlinear systems, energy can also be produced. This feature has to be carefully followed and

sensitivity studies have to be performed to establish effects of numerical energy dissipation on

simulation results.
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10.6 Task 4.6: Buoyancy Effects

10.6.1 Safety Importance

Buoyancy effects are always present when water table is above lower levels of foundation. This

is usually the case, as NPPs are mostly located close to bodies of water. Fully saturated soil

and rock beneath NPP foundation will closely interact with dynamically excited NPP structure.

Water from soil/rock will create uplift forces that will reduce effective (normal) stress between

foundation concrete and soil/rock. This reduction in effective stress will reduce shear forces

(stress) that is necessary to slip foundation relative to soil/rock. In addition, reduction of

effective stress will also allow for easier formation of gaps, and uplift of foundation slab.

Current modeling approach for buoyant forces uses a single static force, calculated using

Archimedes principle and applied at the center of volume of submerged part of the NPP system.

However, in reality, buoyant force will change dynamically as pore fluid pressures in soil/rock under

foundation slab, change during dynamic shaking. This dynamic change of pore fluid pressure

adjacent to the foundation slab (including lower foundation surface and walls of embedded

foundations) will create dynamic change in buoyant pressures, which will results in a dynamic

change in buoyant force(s). This dynamic change of buoyant force(s) can (significantly) affects

dynamic response of an NPP. In general one cannot make statements about the benefits or

detriments of such dynamically changing buoyant force, each case (NPP model) has to be

analyzed and conclusions drawn on a case by case basis. Examples that are forthcoming will

demonstrate these beneficial or detrimental effects.

10.6.2 Methods to Take into Account

Instead of a single static buoyant force, water pressures that develop from pore water pressures in

saturated soil/rock adjacent to foundation slab and walls need to be integrated. Buoyant (fluid)

pressures (forces) will results from such integration and will be appropriately distributed along

foundation and submerged wall surfaces. Pressure distributions thus developed will contribute

to the proper buoyant forces, which will affect different parts of an NPP in a different way since

foundation slab and walls are flexible.
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In addition, during earthquakes, pore fluid pressures in soil and rock adjacent to foundation

slab and walls, will dynamically change, and will hence change (dynamically) buoyant forces.

Details of modeling of buoyant forces are given in Chapter 7 on page 136.
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10.7 Task 4.7: Piles and Pile Groups

10.7.1 Safety Importance

As noted in this report, inclusion of pile foundation stem from inadequacy of soil beneath an

NPP to properly support such NPP during service and extreme loading events (earthquakes).

The main concern is the weak soil that the main reason for inclusion of piles.

Another approach is to use the so called P-Y springs. This approach works well only for

monotonic (slow) loading of piles in one plane (pushover analysis) and does not work well for

dynamic 3D analysis and as such is discouraged.

10.7.2 Methods to Take into Account

Proper modeling of large pile groups relies on a hierarchy of method from very high sophistication

to somewhat lower sophistication methods. Three main approaches are described in detail in

Chapter 9 on page 165.
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Chapter 11

Task 4.9: Verification and Validation

11.1 Summary of Findings for Task 4.9

Task 4.9 is dealing with a very important subject of verification and validation (V&V) of numerical

modeling and simulation tools/programs. A number of verification activities are recommended.

The main findings are related to verification procedures that are recommended (and they

should probably be mandatory!) for modeling and simulation, and for validation procedures that

are recommended (as there is a general lack of quality validation data!). A list of procedures is

provided below that cover all the components of modeling and simulation and is applicable any

numerical analysis of NPP systems, structures and components. It is noted that verification and

validation procedures are designed in time domain domain, and that for numerical analysis tools

that operate in frequency domain, it is required that V&V procedures need to prove/demonstrate

adequacy in time domain, since real earthquake soil structure interaction behavior takes place in

time domain.

• Source code verification has to be provided in order to prove that the program is free of

any bugs and inconsistencies that can diminish results. Modeling and simulation program,

written in any programming language (C, C++, FORTRAN, etc/) need to perform source

code verification with all the necessary steps, described in some detail in section 11.3 on

page 215.

• Verification and validation for constitutive problems addresses issues related to material
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modeling and integration of constitutive integration algorithms for nonlinear/inelastic ma-

terial modeling. Constitutive integration algorithms need to be verified in detailed, while

material modeling needs to be validated in detail. In addition, seismic energy dissipation

is verified at constitutive level calculations. Examples for these activities are provided in

section 11.4 on page 216.

• Verification and validation for static and dynamic finite element level solution advancement

algorithms address issues related to static and dynamic incremental iterative algorithms that

advance (drive) the incremental modeling process forward. This algorithms can introduce

(unwanted or wanted) numerical damping/energy production, and as such need to be

fully tested against available analytic or very accurate solutions (for example a number

of solution do exist for simple systems in books by Hughes and by Argyris and Mlejnek).

Examples of verification activities are provided in section 11.5 on page 223.

• Verification and validation for static and dynamic behavior of single phase, solid elements

addresses modeling using solid finite elements. Addressed is accuracy of modeling of

various states of stress (uniaxial, multiaxial) and resulting accuracy of stresses, forces

and displacements for different models where very accurate or analytic solutions exist

(for example, a number of thin and thick plate and shell solution do exist in books by

Timoshenko and by Girkmann). Examples of verification activities are provided in section

11.6 on page 229.

• Verification and validation for static and dynamic behavior of structural elements addresses

similar set of issues as previous activity, where forces and displacements for structural

elements (truss, beam, shell) are verified against very accurate and/or analytic solutions

for trusses, beams and shells (plates, wall elements and combinations). Examples of

verification activities are provided in section 11.7 on page 242.

• Verification and Validation for Static and Dynamic Behavior of Special Elements addresses

issues with contact elements, for both dry and saturated conditions. Of particular interest

here is the accuracy of modeling of axial (normal force – gap) and frictional/slipping

behavior, as these element are known to misbehave for combination of axial and shear
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loads. Examples of verification activities for these elements are provided in section 11.8

on page 255.

• Verification and Validation for Coupled, Porous Solid – Pore Fluid Problems addresses

issues with solid finite element that model both porous solid and pore fluid, as is very

important for soil and rock. In addition, these coupled elements form a basis for modeling

coupled contact, where the contact zone (concrete foundation – soil/rock beneath) is

beneath water table. Details of verification and validation for these elements is provided

as a link to my recent papers, that address these issues, in section 11.9 on page 267.

• Verification and Validation for Seismic Wave Propagation Problems address issues of proper

propagation of seismic waves of predetermined frequency range through finite element

models. In addition this activity addresses accuracy and adequacy of seismic input, that

encompasses body and surface waves, into finite element models. Examples of these

verification activities are provided in section 11.10 on page 268.

In addition to comparison with very accurate and analytic solutions, errors tables/plots are

also developed. These error table/plots are important as they are used to emphasize that

numerical methods used in modeling and simulations are based on approximate methods and

that all the obtained results do contain errors. Numerical modelers and analysts need to be

aware of these errors and need to address them in presenting their results.

11.2 Introduction to Verification and Validation

Verification and validation (V&V) for numerical modeling and simulation represents a basic

development task without which no results of such modeling and simulation should be presented.

It is important to set the definitions for V&V (Oberkampf et al., 2002):

• Verification: The process of determining that a model implementation accurately repre-

sents the developer’s conceptual description and specification. It is a mathematics issue.

Verification provides evidence that the model is solved correctly.
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• Validation: The process of determining the degree to which a model is accurate repre-

sentation of the real world from the perspective of the intended uses of the model. It is a

physics issue. Validation provides evidence that the correct model is solved.

With the development of advanced modeling and simulation numerical tools, there is an

increased interest in V&V activities, (Roache, 1998; Oberkampf et al., 2002; Oberkampf, 2003;

Oden et al., 2005; Babuška and Oden, 2004; Oden et al., 2010a,b; Roy and Oberkampf, 2011)

Importance of V&V activities cannot be overstated! V&V activities and procedures are the

primary means of assessing accuracy in modeling and computational simulations. V&V activities

and procedures are the tools with which we build confidence and credibility in modeling and

computational simulations. Without proper V&V, numerical modeling and simulation results

can not/should not be used for design, licensing or any other activity that relies on those results.

Errors, inconsistencies and bug in numerical modeling and simulation programs are present and

need to be removed and/or documented. A well known study by Hatton and Roberts (1994);

Hatton (1997) reveals that all the software (in engineering, databases, control, etc.) contains

errors, that can be removed if proper program development procedures are followed. More

importantly, the first step is a realization that software/program probably/likely has some errors,

bugs and that finding those errors and bugs needs to be done before the program start being

used in decision making (design, licensing, etc.). In addition, numerical modeling and simulation

are based on approximations and thus approximation errors are always present in results. Those

errors need to be documented and information about those errors needs to be presented to

potential users of numerical modeling and simulation programs.

The role of V&V activities can be explained by simple graphs. For example graph in Fig-

ure 11.1 (developed after Oberkampf et al. (2002)) shows that mathematical models and com-

puter implementation try to mimic reality.

Slightly different view V&V activities is presented by Oden et al. (2010a), as shown in

Figure Oden et al. (2010a). In this view, V&V must be available as it is a prerequisite for proper

numerical modeling and simulation. Results from such V&V-ed modeling and simulations, are

then used to gain knowledge about behavior of infrastructure objects. Such knowledge is then

used to make (design, licensing, etc.) decisions.
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Figure 11.1: Role of Verification and Validation per Oberkampf et al. (2002).

Figure 11.2: Role of Verification and Validation per Oden et al. (2010a).

11.2.1 Detailed Look at Verification and Validation

A detailed view of V&V is presented in Figure 11.3. It is important to note that the ”Real World”

is meant to represent a high fidelity knowledge about the realistic behavior of our infrastructure

objects. Such behavior is represented by conceptual model that is then used as a basis for

verification. Physical testing of unit problems or small components of the complete model are

used for validation.
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Figure 11.3: Detailed view of V&V.

Verification. The process of determining that a model implementation accurately represents

the developer’s conceptual description and specification.

Main goals of verification are to:

• Identify and remove errors in computer coding

– Numerical algorithm verification

– Software quality assurance practice

• Quantification of the numerical errors in computed solution

Validation: The process of determining the degree to which a model is accurate represen-

tation of the real world from the perspective of the intended uses of the model.

Main goals of validation are to:

• Tactical goal: Identification and minimization of uncertainties and errors in the computa-

tional model

• Strategic goal: Increase confidence in the quantitative predictive capability of the compu-

tational model
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Figure 11.4: Detailed view of Verification.
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Figure 11.5: Detailed view of Validation.

11.2.2 Prediction

Numerical prediction then uses computational model to foretell the state of a physical system

under consideration under conditions for which the computational model has not been validated.

Validation does not directly make a claim about the accuracy of a prediction as:

• Computational models are easily misused (unintentionally or intentionally),

• It will depend on how closely related are the conditions of the prediction and specific cases
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in validation database, and

• How well is physics of the problem understood.

11.2.3 Forward Toward Verification and Validation

In what follows, a set of verification and validation examples are presented. It is noted that a

complete or nearly complete set of verification examples exists (nearly complete as any time new

closed form solution is discovered, it is used for further verification), while validation only exists

where fully documented, controlled validation experiments are present.

It is noted that presented are select verification example as full presentation of all the example

would take much space. The main aim here is to present verification methodology and to show

illustrative verification examples. Full set of examples is available and it is run frequently, during

regular verification checks of the Real ESSI Simulator program.

11.3 Source Code Verification

Source code verification is very important component of verification process. This verification

component tends to reveal problems with programming and various simple bugs that can destroy

accuracy of results. Hatton (1997) reports that a large majority (if not all) of programs have

a number of pre-coded problems that need to be analyzed and cleared/fixed before further

verification and validation is to proceed. There are two main types of source code verification:

• Software Quality Assurance aims to clear all software coding (programming) errors.

Proper following of good software practice ensures that these errors are minimized, and

hopefully completely eliminated. A number of activities have to be undertaken in order

to assure software quality. For example, all the warnings from compilers (use of multiple

compilers is recommended) have to be resolved. In addition source code coverage has to be

documented, that is, what part of code was covered during testing, and, more importantly,

what part of code was not covered. Moreover, various tools exist to check consistency

of code for managing memory (memory leaks), that guaranty consistency of variables and

arrays.
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• Numerical Algorithm Verification aims to verify errors in numerical algorithms used.

This is needed in order to quantify numerical error introduced in solutions, and in particular

sensitivity of solutions to such numerical errors.

11.4 Verification and Validation for Constitutive Problems

11.4.1 Verification of Constitutive Integration

Presented is an example of accuracy analysis of the implicit constitutive algorithm. Examples

for a simple model (von-Mises) for accuracy analysis are demonstrated to verify general implicit

algorithm. Convergence performance analysis is conducted.

Error Assessment

There are various error measures for the integration algorithms. Manzari and Prachathananukit

(2001) used the relative stress norm by Equation 11.1,

δr =

√
(σij − σ∗ij)(σij − σ∗ij)√

σ∗pqσ
∗
pq

(11.1)

where σ∗ij is the ‘exact’ stress solution, and σij the calculated stress solution. Alternatively,

Jeremić and Sture (1997) used the normalized energy norm by Equation 11.2,

δn =

∥∥σij − σ∗ij∥∥
‖punit‖

(11.2)

where ‖σij‖2 = σijDijklσkl, and Dijkl is the elastic compliance fourth-order tensor, punit is the

‘unit’ energy norm for normalization.

The relative stress norm by Equation 11.1 is more reasonable since two points having the

same
∥∥σij − σ∗ij∥∥ but different σ∗pqσ

∗
pq should have different error measures. However, this norm

becomes singular and possible meaningless when σ∗pqσ
∗
pq is close to zero. The normalized energy

norm by Equation 11.2 have no such singularity problem but it may give the same error index

for two points having the same
∥∥σij − σ∗ij∥∥ but different σ∗pqσ

∗
pq. In this work, we use these two

error measure methods, but for simplicity, Equation (11.2) is modified into

δr =

√
(σij − σ∗ij)(σij − σ∗ij)√

σ0
pqσ

0
pq

(11.3)
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where σ0
pqσ

0
pq is evaluated at some non-zero initial isotropic stress state. That is, the normalized

error is evaluated by Equation 11.3, and the relative error is evaluated by Equation 11.1.

In presented examples, the initial stress state point is set p0 = 100 kPa, q0 = 0 kPa, θ0 = 0,

which is the σ0
pq in Equation 11.3. The one-step predicted stress state point for the implicit

algorithm is within the range of 0.1 ≤ p ≤ 100 kPa, 0 ≤ q ≤ 100 kPa, 0 ≤ θ ≤ π/3. The

‘exact’ solution is actually unknown for most elasto-plastic problems. Here the ‘exact’ solution is

simply replaced by 50 sub step solution of the explicit algorithm in the same one-step prediction

incremental. All these error evaluations are within the material constitutive level.

The test example presents Von-Mises model with the uniaxial yield strength k = 50 kPa,

where linear elasticity parameters are Young’s modulus E = 1×105 kPa, and Poisson’s ratio

ν = 0.25.

Figures 11.6 and 11.7 show the iso-error maps for the von-Mises model with linear isotropic

hardening. The linear hardening modulus H = 2×104 kPa. The blue lines represents the yield

surface boundary. It can be seen that the error magnitudes are as small as 10−10 to 10−9, which

implies that the solutions by implicit algorithm for this linear isotropic hardening Von-Mises

model are numerically accurate.
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Figure 11.6: Normalized iso-error maps of Von-Mises model with linear isotropic hardening.

Figures 11.8 and 11.9 show the iso-error maps for the Von-Mises model with Armstrong-

Frederick translational kinematic hardening. The hardening parameters are ha = 5×104 kPa and

217



0 50 100 150 200
0

20

40

60

80

100

p (kPa)

q 
(k

P
a)

5e
−0

10

5e−010 5e−
010

1e
−00

9

1e
−0

09

1.
5e

−0
09

2e
−0

09

(a) At θ = 0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

θ (rad)

q 
(k

P
a)

1e−010

2e−010
3e−010
4e−010

5e−010
6e−010

(b) At p = 100 kPa

Figure 11.7: Relative iso-error maps of Von-Mises model with linear isotropic hardening.

Cr = 2.5×103. It can be seen that errors are very small which proves the good performance of the

implicit algorithm. The iso-error map gives a good trend, i.e., the further away from the yield

surface, the errors become more pronounced; the normalized errors are pressure-independent,

which fits well the feature of Von-Mises model; the iso-error lines in the q− θ figure are parallel

to the yield surface and are independent of the Lode’s angle θ, which again fits well with Von-

Mises model which is only q-related.
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Figure 11.8: Normalized iso-error maps of Von-Mises model with Armstrong-Frederick kinematic

hardening.
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Figure 11.9: Relative iso-error maps of Von-Mises model with Armstrong-Frederick kinematic

hardening.

11.4.2 Validation of Constitutive Model Predictions

Dafalias Manzari Material Model

Validation is performed by comparing experimental (physical) results and numerical (constitu-

tive) simulations for the Toyoura sand. The material parameters used are from Dafalias and

Manzari (2004a) and are listed in Table (11.1). Several simulated results are compared with

the experimental data published by Verdugo and Ishihara (1996).

Figure (11.10) presents both loading and unloading triaxial drained test simulation results

for a relatively low triaxial isotropic pressure of 100 kPa but with different void ratios of e0 =

0.831, 0.917, 0.996 at the end of isotropic compression. During the loading stage, one can

observes the hardening and then softening together with the contraction and then dilation for the

denser sand, while only hardening together with contraction for the looser sand. The significance

of the state parameter to the soil modeling is clear from the very different responses with different

void ratios at the same triaxial isotropic pressure.

Figure (11.10) also shows both loading and unloading triaxial drained test simulation results

for a relatively high triaxial isotropic pressure of 500 kPa but with different void ratio of e0=0.810,

0.886, 0.960 at the end of isotropic compression. Similar phenomenon are observed as with tests

(physical and numerical) for relatively low triaxial isotropic pressure. However, due to the higher
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Figure 11.10: Left: Experimental data; Right: Simulated results.

220



Table 11.1: Material parameters of Dafalias-Manzari model.

material parameter value material parameter value

Elasticity G0 125 kPa Plastic modulus h0 7.05

v 0.05 ch 0.968

Critical sate M 1.25 nb 1.1

c 0.712 Dilatancy A0 0.704

λc 0.019 nd 3.5

ξ 0.7 Fabric-dilatancy zmax 4.0

er 0.934 cz 600.0

Yield surface m 0.01

confinement pressure, the stress-strain responses are higher at the same strain, which proves the

significant pressure dependent feature for the sands.

Figure (11.11) presents both loading and unloading triaxial undrained test simulation results

for a dense sand with the void ratio of e0=0.735 at the end of isotropic compression but with

different isotropic compression pressures of p0 = 100, 1000, 2000, 3000 kPa. During the loading

stage, one observes that each of responses are close to the critical state line for the very various

range of isotropic compression pressures. For the higher isotropic compression pressure, the

contraction response with softening is clearly observed, while for the smaller isotropic compression

pressure, it is a dilation response without softening.

Close matching of physical testing data with constitutive predictions represents a satisfactory

validation of our material model. This validation with previous verification gives us confidence

that predictions (presented in next section) represent well the real, prototype behavior.
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Figure 11.11: Left: Experimental data; Right: Simulated results.
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11.5 Verification and Validation for Static and Dynamic

Finite Element Level Solution Advancement Algo-

rithms

11.5.1 Verification for Dynamic Solution Advancement

Newmark solution advancement algorithm for dynamic problems (Newmark, 1959) relies on

parameters β and γ to control accuracy and numerical damping. For cases where

γ ≥ 1

2
, β ≥ 1

4
(γ +

1

2
)2 (11.4)

the procedure is unconditionally stable and second-order accurate.

Different values for γ and β can be used to create various integration methods:

• For γ = 0.5 (and corresponding β = 0.25) there is no numerical damping.

• Any γ value greater than 0.5 will introduce numerical damping.

• Trapezoidal rule or average acceleration method for β = 1/4 and γ = 1/2,

• Linear acceleration method for β = 1/6 and γ = 1/2,

• Explicit, central difference method for β = 0 and γ = 1/2.

• Strongest numerical damping values is obtained for values β = 1 and γ = 2/3, as spectral

ratio ρ∞ = 0 (Hughes (1987), page 502)

Following Argyris and Mlejnek (1991); Hughes (1987), to calculate numerical damping ξ and

numerical period elongation ω̄ a amplification matrix A is constructed. It proves convenient to

define amplification matrix A for the Hilber Hughes Taylor (HHT) family of algorithms and then

obtain the same matrix for Newmark algorithm by setting γ = 0:

A =
1

D


1 + αβΩ2 1 1

2
− β

−γΩ2 1− (1 + α)(γ − β)Ω2 1− γ − (1 + α)(1
2
γ − β)Ω2

−Ω2 −(1 + α)Ω2 −(1 + α)(1
2
− β)Ω2

 (11.5)
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where

D =1 + (1 + α)βΩ2

Ω =ω4t

ω =(K/M)
1
2

(11.6)

The eigenvalue of amplification matrix A are two complex conjugate roots λ1,2 and a so-called

spurious root λ3 which satisfy |λ3| < |λ1,2| ≤ 1. The roots λ1,2 are

λ1,2 = A±Bi (11.7)

Then, the analytic damping ratio ξ and analytic period ω̄ become

ξ̄ =− ln(A2 +B2)

ω̄ =Ω̄/4t

Ω̄ =arctan(B/A)

(11.8)

Verification Example Description.

A single degree of freedom (SDOF) example is developed to verify the Newmark algorithm as

implemented within the Real ESSI simulator. The example, shown in Fig.(11.12) has a stiffness

and mass to have a natural period of T = 1s. In the first loading stage, the beam is loaded with

a horizontal force to generate an initial displacement. The second loading stage then removes

initial load and the beam start free vibrations.

Figure 11.12: Verification example description.

The results are listed and plotted below.
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Table 11.2: Verification results for the Newmark solution advancement algorithm.

dt/T γ Measured ξ Analytic ξ Measured T shift Analytic T shift

0.005 0.5 0.0030 0.0000 0.0000 0.0001

0.01 0.5 0.0030 0.0000 0.0000 0.0003

0.05 0.5 0.0037 0.0000 0.0101 0.0082

0.1 0.5 0.0034 0.0000 0.0309 0.0321

0.005 0.6 0.0035 0.0016 0.0000 0.0001

0.01 0.6 0.0042 0.0031 0.0000 0.0003

0.05 0.6 0.0160 0.0155 0.0101 0.0084

0.1 0.6 0.0296 0.0295 0.0309 0.0329

0.005 0.7 0.0042 0.0031 0.0000 0.0001

0.01 0.7 0.0063 0.0063 0.0000 0.0004

0.05 0.7 0.0311 0.0309 0.0101 0.0091

0.1 0.7 0.0590 0.0590 0.0309 0.0356

0.005 0.8 0.0051 0.0047 0.0000 0.0001

0.01 0.8 0.0093 0.0094 0.0000 0.0004

0.05 0.8 0.0465 0.0464 0.0101 0.0103

0.1 0.8 0.0882 0.0886 0.0309 0.0399

0.005 0.9 0.0063 0.0063 0.0000 0.0001

0.01 0.9 0.0130 0.0126 0.0000 0.0005

0.05 0.9 0.0618 0.0618 0.0101 0.0120

0.1 0.9 0.1180 0.1181 0.0417 0.0460

Verification Results for Newmark Solution Advancement Algorithm.
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Figure 11.13: Comparison for Newmark algorithm with γ = 0.5. Left: Damping ratio compari-

son, Right: Period shift comparison.

Figure 11.14: Comparison for Newmark algorithm with γ = 0.6. Left: Damping ratio compari-

son, Right: Period shift comparison.
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Figure 11.15: Comparison for Newmark algorithm with γ = 0.7. Left: Damping ratio compari-

son, Right: Period shift comparison.

Figure 11.16: Comparison for Newmark algorithm with γ = 0.8. Left: Damping ratio compari-

son, Right: Period shift comparison.
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Figure 11.17: Comparison for Newmark algorithm with γ = 0.9. Left: Damping ratio compari-

son, Right: Period shift comparison.
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11.6 Verification and Validation for Static and Dynamic

Behavior of Single Phase Solid Elements

11.6.1 Verification of Static, Single Phase Solid Modeling and Simu-

lation

Verification of 8 node brick cantilever beam (static)

Problem description: Length=10m, Force=4N, E=100000Pa, I = 1
12

Theoretical displacement:

d =
PL3

3EI
=

4× 1000

3× 100000× 1
12

= 0.16m (11.9)

Numerical simulation results:

1m element size (10 elements):

error =
0.16− 0.1072

0.16
= 33% (11.10)

5m element size (2 elements):

error =
0.16− 0.011911

0.16
= 92.5% (11.11)

10m element size (1 element):
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error =
0.16− 0.00315

0.16
= 98% (11.12)

Verification of 27 node brick cantilever beam (static)

Problem description: Length=10m, Force=9N, E=100000Pa, I = 1
12

Theoretical displacement:

d =
PL3

3EI
=

9× 1000

3× 100000× 1
12

= 0.36m (11.13)

Numerical simulation results:

1m element size (10 elements):

error =
0.361721− 0.36

0.36
= 0.47% (11.14)

5m element size (2 elements):
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error =
0.36− 0.345719

0.36
= 3.96% (11.15)

10m element size (1 element):

error =
0.36− 0.279989

0.36
= 22% (11.16)

Verification of 27NodeBrick cantilever beam for different Poisson’s ratio

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0−

0.49. The force direction was shown in Figure (11.18).

Figure 11.18: Problem description for cantilever beams of different Poisson’s ratios.

The theoretical solution for ν = 0.0 was calculated below, while the solution for other

Poisson’s ratio is calculated by the similar process.
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Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL

GAv

=
FL3

3E bh3

12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N/m2 × 1
12
m4

+
100N × 6m

10
2
× 107N/m2 × 1m2 × 5

6

= 8.64× 10−4m+ 0.144× 10−4m

= 8.784× 10−4 m

(11.17)

The rotation angle at the end:

θ =
FL2

2EI
=

100N × 62m2

2× 108N/m2 × 1
12
m4

= 2.16× 10−4 rad = 0.0124° (11.18)

The 27NodeBrick elements for cantilever beams of different Poisson’s ratios are shown in

Figure (11.19).

Figure 11.19: Model for 27NodeBrick cantilever beam with different Poisson’s ratio.

All the displacement results are listed in Tables (11.3) - (11.5).
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Table 11.3: Displacement results for 27NodeBrick cantilever beams with element side length 1

m.

Poisson’s

ratio

27NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.755E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.34%

0.05 8.757E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.39%

0.10 8.751E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.54%

0.15 8.735E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.80%

0.20 8.708E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 1.19%

0.25 8.667E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 1.74%

0.30 8.608E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 2.50%

0.35 8.520E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 3.57%

0.40 8.385E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 5.18%

0.45 8.147E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 7.96%

0.49 7.711E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 12.94%
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Table 11.4: Displacement results for 27NodeBrick cantilever beams with element side length 0.5

m.

Poisson’s

ratio

27NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.804E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.23%

0.05 8.808E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.19%

0.10 8.805E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.08%

0.15 8.796E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.12%

0.20 8.778E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.40%

0.25 8.752E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.78%

0.30 8.715E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 1.28%

0.35 8.663E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 1.95%

0.40 8.588E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 2.89%

0.45 8.465E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 4.36%

0.49 8.248E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 6.88%
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Table 11.5: Displacement results for 27NodeBrick cantilever beams with element side length

0.25 m.

Poisson’s

ratio

27NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.797E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.15%

0.05 8.801E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.11%

0.10 8.799E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.01%

0.15 8.792E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.16%

0.20 8.778E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.40%

0.25 8.758E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.71%

0.30 8.730E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 1.12%

0.35 8.692E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 1.63%

0.40 8.641E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 2.29%

0.45 8.567E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 3.21%

0.49 8.452E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 4.58%
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Verification of 27NodeBrick square plate with four edges clamped

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped. The load is the uniform normal pressure on a plate.

The plate flexural rigidity is

D =
Eh3

12(1− ν2)
=

108N/m2 × 13m3

12× (1− 0.32)
= 9.1575× 106 N ·m (11.19)

The theoretical solution is

d = αc
qa4

D
= 0.00406× 100N/m2 × 204m4

9.1575× 106 N ·m
= 2.2015× 10−3m (11.20)

where αc is a coefficient, which depends on the ratio of plate length to width. In this problem,

the coefficient1 αc is 0.00406.

The 27NodeBrick are shown in Figure (11.20) - (11.25).

Figure 11.20: 27NodeBrick edge clamped square plate with element side length 10m.

The results are listed in Table (11.6).

The errors are listed in Table (11.7).

The errors are plotted in Figure (11.26).

The ESSI model fei files for the table above are here

1Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page120, 1959.
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Figure 11.21: 27NodeBrick edge clamped square plate with element side length 5m.

Figure 11.22: 27NodeBrick edge clamped square plate with element side length 2m.

Figure 11.23: 27NodeBrick edge clamped square plate with element side length 1m.
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Figure 11.24: 27NodeBrick edge clamped square plate with element side length 0.5m.

Figure 11.25: 27NodeBrick edge clamped square plate with element side length 0.25m.

Table 11.6: Results for 27NodeBrick square plate with four edges clamped.

Element type 27NodeBrick 27NodeBrick 27NodeBrick
Theoretical

displacement
Number of layers 1layer 2layers 4layers

Element side length Height:1.00m Height:0.50m Height:0.25m

10m 4.82E-004 m 4.82E-004 m 4.82E-004 m 2.20E-03 m

5m 1.97E-003 m 1.98E-003 m 1.98E-003 m 2.20E-03 m

2m 2.25E-003 m 2.26E-003 m 2.26E-003 m 2.20E-03 m

1m 2.28E-003 m 2.29E-003 m 2.29E-003 m 2.20E-03 m

0.5m 2.29E-003 m 2.30E-003 m 2.30E-003 m 2.20E-03 m

0.25m 2.29E-003 m 2.30E-003 m - 2.20E-03 m
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Table 11.7: Errors for 27NodeBrick square plate with four edges clamped.

Element type 27NodeBrick 27NodeBrick 27NodeBrick

Number of layers 1layer 2layers 4layers

Element side length Height:1.00m Height:0.50m Height:0.25m

10m 78.11% 78.10% 78.10%

5m 10.67% 10.19% 10.16%

2m 2.23% 2.79% 2.83%

1m 3.56% 4.16% 4.22%

0.5m 3.96% 4.58% 4.65%

0.25m 4.08% 4.70% -

Figure 11.26: 27NodeBrick square plate with edge clamped˙ Displacement error versus Number

of side division
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Verification of 27NodeBrick circular plate with all edges simply supported

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1− ν2)
=

108N/m2 × 13m3

12× (1− 0.32)
= 9.1575× 106 N ·m (11.21)

The theoretical solution2 is

d =
(5 + ν)qa4

64(1 + ν)D
=

(5 + 0.3)× 100N/m2 × 104m4

64× (1 + 0.3)× 9.1575× 106 N ·m
= 6.956× 10−3m (11.22)

The 27NodeBrick are shown in Figure (11.27) - (11.32).

Figure 11.27: 27NodeBrick edge simply supported circular plate with element side length 10m.

The results are listed in Table (11.8).

The errors are listed in Table (11.9).

The errors are plotted in Figure (11.33).

The ESSI model fei files for the table above are here

2Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 11.28: 27NodeBrick edge simply supported circular plate with element side length 5m.

Figure 11.29: 27NodeBrick edge simply supported circular plate with element side length 2m.

Figure 11.30: 27NodeBrick edge simply supported circular plate with element side length 1m.
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Figure 11.31: 27NodeBrick edge simply supported circular plate with element side length 0.5m.

Figure 11.32: 27NodeBrick edge simply supported circular plate with element side length 0.25m.

Table 11.8: Results for 27NodeBrick circular plate with four edges simply supported.

Element type 27NodeBrick 27NodeBrick
Theoretical

displacement
Number of layers 2layers 4layers

Number of diameter divisions Height:0.50m Height:0.25m

4 7.259E-03 m 7.261E-03 m 6.956E-03 m

12 7.083E-03 m 7.084E-03 m 6.956E-03 m

20 7.064E-03 m 7.065E-03 m 6.956E-03 m

40 7.018E-03 m 7.019E-03 m 6.956E-03 m

60 7.029E-03 m 7.030E-03 m 6.956E-03 m

80 7.032E-03 m 7.034E-03 m 6.956E-03 m

11.7 Verification and Validation for Static and Dynamic

Behavior of Structural Elements

11.7.1 Verification of Shell (Felippa-ANDES) Finite Element Modeling

and Simulation

The verification and validation of the behavior of the ANDES (Assumed Natural Deviatoric

Strain) shell finite element implemented in essi is described in this section. The verification is
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Table 11.9: Errors for 27NodeBrick circular plate with four edges simply supported.

Element type 27NodeBrick 27NodeBrick

Number of layers 2layers 4layers

Number of diameter divisions Height:0.50m Height:0.25m

4 4.36% 4.38%

12 1.82% 1.83%

20 1.56% 1.57%

40 0.88% 0.90%

60 1.04% 1.06%

80 1.09% 1.11%

Figure 11.33: 27NodeBrick circular plate with edge simply supported Displacement error versus

Number of side division, Left: error scale 0% - 5%, Right: Error scale 0% - 100%.

split up into several cases intended to test different aspects of the implementation. The tests are

based on well-known closed form solutions to elasticity problems which can be modelled using

shells. Further, the verification is divided into static and dynamic tests.

Static Tests

The purpose of the static tests is to verify that the stiffness matrices generated by the 4 Node

ANDES Shell are useful to approximate well known cases of solutions to beam theory.

Tests are done to verify the bending component and the membrane component independently,

243



because the behavior of both is assumed de-coupled in this linear implementation.

Bending Component Verification These tests compare the bending performance of a simple

mesh of ANDES shells for the case of simple (Bernoulli) beam examples.

1

2

3

4

5

...

Mesh

Test 1 Test 2 Test 3 Test 4

Test 1: Concentrated transversal tip load For a prismatic beam made of a homogeneous

elastic isotropic material of modulus of elasticity E, cross section I and length L we have that,

under Bernoulli-Euler theory, the displacement at the tip due to a concentrated load P is

δtip =
PL3

3EI

and for this test case’s geometry

δtip =
qBL3

3EBh3/12
=

4qL3

Eh3

With the purpose of measuring the errors as percent agreement with the theoretical results,

the load q is computed such that the tip displacement is 100 units. Thus, in terms of the

geometry of the problem.

q = 100× Eh3

4L3

This force is translated into nodal equivalent forces by applying half the total load qB to

each tip node in the vertical direction and fixing the x direction rotational degrees of freedom

for the tip nodes.

The parameters chosen for this case are
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1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson 's ratio
4 L = 1*m; // Beam length
5 B = 0.2*m; // Beam width
6 rho = 0*kg/m^3; // Mass density

For different number of subdivisions, here are the results of the tip displacement.

Nsubd uz

2 96.2118

7 100.096

13 100.068

19 100.039

25 100.024

31 100.016

37 100.012

Nsubd uz

42 100.009

48 100.007

54 100.006

60 100.005

66 100.004

72 100.003

77 100.003

Nsubd uz

83 100.002

89 100.002

95 100.002

101 100.002

107 100.001

112 100.001

The element displays sensitivity to the aspect ratio of its sides. Indeed, choosing a different

set of parameters

1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson 's ratio
4 L = 1*m; // Beam length
5 B = 0.2*m; // Beam width
6 rho = 0*kg/m^3; // Mass density

yields slightly different results

Nsubd uz

2 93.7897

7 99.5267

13 99.8587

19 99.9409

25 99.9713

31 99.985

37 99.992

Nsubd uz

42 99.9958

48 99.998

54 99.9993

60 100.

66 100.001

72 100.001

77 100.001

Nsubd uz

83 100.001

89 100.001

95 100.001

101 100.001

107 100.001

112 100.001
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Test 2: Concentrated tip moment Analogous to the previous test, for a cantilever beam

with a tip moment the tip rotation is

θtip =
ML

EI

and for this test case’s geometry

θtip =
mBL

EBh3/12
=

12mL

Eh3

In this case, the parameters are selected such that this tip rotation is of 100 units. Execution

of the test case shows that with Nsubd = 2 the theoretical value is met with 100% accuracy.

This is because the moment field is constant inside the beam and the elements are capable of

reproducing this field with accuracy.

Test 3: Concentrated mid-span transversal load This case is similar to test case 1. The

accuracy for 2 elements is 96.2% agreement with the theoretical solution. For Nsubd = 4 (4

elements total) the accuracy climbs to 99.7%. The test file for this case can be found in

Test 4: Transversal distributed load The distributed load is generated by accelerating the

beam transversally with an acceleration which produces a 100 (unit) displacement. This provides

an indirect test to the mass matrix which will be further tested in dynamic tests. The uniformly

distributed load q which produces the δtip unit displacement and the corresponding tip rotation

are

q = 8
EI

L4
δtip and θytip =

4

3L
δtip

from this value, the required acceleration is computed as

a =
q

ρBH

where ρ is the unit-weight of the material used to compute the mass matrix.

For two subdivisions (6 nodes) the results of the two nodes located at the tip of the beam

are
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1 Node : 5
2 ux = 0.000000 , rx = 30.550500
3 uy = 0.000000 , ry = -133.333000
4 uz = 102.541000 , rz = 0.000000
5 Node : 6
6 ux = 0.000000 , rx = -30.550500
7 uy = 0.000000 , ry = -133.333000
8 uz = 102.541000 , rz = 0.000000

First, a 2.5% accuracy is reached in the tip displacement. Second, it is noteworthy to mention

that the current formulation of the mass matrix will produce rotations around the x axis for the

nodes. One reason for this is that the chosen mass matrix is not consistent with the stiffness

matrix instead, it is borrowed from a similar element 3 4 5. The reason behind this decision is

the fact that the very accurate ANDES stiffness formulation lacks a displacement interpolation

scheme which is necessary to produce a consistent mass matrix. Furthermore, restraining these

x rotation degrees of freedom does not lead to an improved solution.

For 4 subdivisions, the results at the tip are:

1 Node : 9
2 ux = 0.000000 , rx = 31.671000
3 uy = 0.000000 , ry = -133.333000
4 uz = 100.891000 , rz = 0.000000
5 Node : 10
6 ux = 0.000000 , rx = -31.671000
7 uy = 0.000000 , ry = -133.333000
8 uz = 100.891000 , rz = 0.000000

and for 20.

1 Node : 41
2 ux = 0.000000 , rx = 32.095800
3 uy = 0.000000 , ry = -133.333000
4 uz = 100.039000 , rz = 0.000000
5 Node : 42
6 ux = 0.000000 , rx = -32.095800

3The First ANDES Elements: 9-DOF Plate Bending Triangles Carmello Militello & Carlos

A. Felippa December 1989 Report No. CU-CSSC-89-22
4Chapter 32 of Felippa’s Lecture Notes Finite element templates for bending
5C. A. Felippa and P. G. Bergan, A triangular plate bending element based on an

energy-orthogonal free formulation, Comp. Meth. Appl. Mech. Engrg., 61, 129160,

1987.
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7 uy = 0.000000 , ry = -133.333000
8 uz = 100.039000 , rz = 0.000000

and back to 2 subdivisions but this time with an aspect ratio L/B = 2, by changing B so that

the expected tip displacement remains the same, we get

1 Node : 5
2 ux = 0.000000 , rx = 3.890200
3 uy = 0.000000 , ry = -133.333000
4 uz = 99.810100 , rz = 0.000000
5 Node : 6
6 ux = 0.000000 , rx = -3.890200
7 uy = 0.000000 , ry = -133.333000
8 uz = 99.810100 , rz = 0.000000

which shows that the effect of the inconsistent mass matrix is ameliorated for elements with a

better aspect ratio. The elements in this case are square in shape since L/B = 2 and Nsubd = 2.

In conclusion increasing accuracy for bending problems not only involves making the elements

smaller but also improving their aspect ratio. This is especially critical in dynamic problems (or

self weight problems).
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Membrane Component Verification These tests compare the performance of the membrane

component of the ANDES Shell by modelling simple beams and comparing the approximation

with Bernoulli-beam theoretical results.

1

2

3

4

5

6

7

8

Mesh

Test 5 Test 6 Test 7 Test 8

Test 5: Longitudinal tip load The parameters used to test this case are,

1 h = 0.2*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson 's ratio
4 L = 30*m; // Beam length
5 B = 3*m; // Beam width
6 rho = 0.0*kg/m^3; // Mass density
7 delta_tip = 100*m; // Target tip displacement
8

9 Nsubd = 2; // Number of side subdivisions

the tip load was computed to give δtip = 100 from

Ftip =
AE

L
δtip

Additionally, the tip rotation degrees of freedom about z axis (rz) are fixed to enforce the

uniform loading condition. The results for 2 subdivisions observed at the two tip nodes is

1 Node : 5
2 ux = 100.000000 , rx = 0.000000
3 uy = -0.000000 , ry = 0.000000
4 uz = 0.000000 , rz = 0.000000
5 Node : 6
6 ux = 100.000000 , rx = 0.000000
7 uy = -0.000000 , ry = 0.000000
8 uz = 0.000000 , rz = 0.000000
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Test 6: Longitudinal self-weight load As in test 4, the distributed load for this test was

generated by using an acceleration field with a magnitude such that it generates 100 units of

displacement in dof ux. The required body force q (per unit length) is derived from linear

elasticity to be

q =
2EA

L2
δtip

from which the acceleration is found to be given by a =
q

ρBH
. The tip nodes are fixed to move

only in the x direction. The model parameters used for this test are,

1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson 's ratio
4 L = 1*m; // Beam length
5 B = 1*m; // Beam width
6 rho = 100*kg/m^3; // Mass density
7 delta_tip = 100*m; // Target tip displacement
8

9 Nsubd = 2; // Number of side subdivisions

and the tip displacements

1 Node : 5
2 ux = 100.000000 , rx = 0.000000
3 uy = 0.000000 , ry = 0.000000
4 uz = 0.000000 , rz = 0.000000
5 Node : 6
6 ux = 100.000000 , rx = 0.000000
7 uy = 0.000000 , ry = 0.000000
8 uz = 0.000000 , rz = 0.000000

Which means that in the quadratic displacement field coming from a uniform external load can

be captured exactly by this element.

Test 7: Transversal tip load This test is identical to test 1, except the beam mesh is

placed sideways so that the membrane component is used instead of the bending one. Since the

membrane part can capture deformation due to shear, the ratio L/B is set to 10 so that this

does not affect the results.

1 h = 0.2*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
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3 nu = 0.0; // Poisson 's ratio
4 L = 10*m; // Beam length
5 B = 1.0*m; // Beam height
6 rho = 0*kg/m^3; // Mass density
7 d_tip = 100*m; // Target tip displacement
8

9 Nsubd = 10; // Number of side subdivisions

Results at the tip show less than 1% error with theoretical results when shear component is made

small.

1 Node : 21
2 ux = -7.513920 , rx = 0.000000
3 uy = -100.650000 , ry = 0.000000
4 uz = 0.000000 , rz = -15.072400
5 Node : 22
6 ux = 7.513920 , rx = 0.000000
7 uy = -100.650000 , ry = 0.000000
8 uz = 0.000000 , rz = -15.072400

It would be interesting to test this component vs. a beam theory which incorporates deformation

due to shear such as Timoshenko beams.

Test 8: Transversal self-weight load This test is analogous to test 4, except the membrane

component is being tested instead of the bending. Again, the L/B ratio is kept at 10 to avoid

shear deformation creeping into the results perceptively.

1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson 's ratio
4 L = 10*m; // Beam length
5 B = 0.5*m; // Beam width
6 rho = 100*kg/m^3; // Mass density
7 delta_tip = 100*m; // Target tip displacement
8

9 Nsubd = 10; // Number of side subdivisions

Displacement results at the tip nodes show less than 1% error when compared to Bernoulli beam

theory.

1 Node : 21
2 ux = 3.325110 , rx = 0.000000
3 uy = 99.780900 , ry = 0.000000
4 uz = 0.000000 , rz = 13.301200

251



5 Node : 22
6 ux = -3.325110 , rx = 0.000000
7 uy = 99.780900 , ry = 0.000000
8 uz = 0.000000 , rz = 13.301200
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Dynamic Tests

The purpose of the dynamic tests is to verify that the mass matrix adopted for these elements

(which is not consistent with the stiffness) is adequate for Dynamic analysis. Also tested herein

are the geometric transformations.

Again, the tests are divided into bending and membrane components which are tested inde-

pendently. Also, an eigenvalue analysis is performed to verify accordance with theoretical results

for continuous Bernoulli beams. Finally, geometric transformations are tested by performing an

eigenvalue analysis for the same (unrestrained) beam in different orientations (pitch, yaw and

roll) which should have invariant eigenvalues.

Bending Component
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Membrane Component
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11.8 Verification and Validation for Static and Dynamic

Behavior of Special Elements

11.8.1 Verification of Static and Dynamic Contact Element Modeling

and Simulation

Solution verification of the contact element formulation and its implementation is presented in

what follows. Analytical simple solutions for the frictional contact element are used to verify

numerical solutions obtained by application of the developed model. The examples provided

show the response of the contact element in several situations. Initially, the element is tested

by connecting two nodes that each have 3dof, subsequently, the element is even implemented to

simulate a contact between two nodes that each have 7dof and two nodes with different dofs:

3dof for the first one and 7dof for the second one.

The parameters used for the contact element are listed in Table 11.10.

Truss Examples

The first example (Figure 11.35) represents five nodes: 1,2,3,4,5. Nodes 2,3,4,5 are con-

nected by three truss elements and a contact element links node 1 and 2. All degrees of freedom
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Parameter Value

CN [kN/m] 10420

vmax [m] 0.001

KT [kN/m] 1e7

µ [-] 0.6

Table 11.10: Contact element parameters.

Figure 11.34: Input signal: time history of displacement, acceleration and velocity.
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of nodes 1,3,4,5 are fixed, whereas a sine wave displacement time-history (Figure 11.34) is

applied to node 2 along x direction and the normal force acting within the contact element is

recorded. The results, represented in Figure 11.36, show the normal response of this new contact

element. As the time-step decreases, the force-displacement curves tends to be similar to the

one represented by (6.4).

Figure 11.35: System composed of one contact element and three truss elements. A sine wave

displacement time-history is applied to node (2).

Figure 11.36: Normal force vs normal-relative displacement in contact element.

The second example (Figure 11.37) shows the tangential response of this new contact ele-

ment. The geometry of the problem is the same as Figure 11.35, but an axial force (p = 1140
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kN), constant in time, and a sine wave time-history displacement are applied to node 2. The re-

sults, represented in Figure 11.38, show that the response is not dependent on the time-step used

for the analysis. Due to the elastic-perfectly-plastic behavior, associated with Mohr-Coulomb

yield criteria, the maximum shear force (tmax) that the contact element can sustain is 684 kN ,

equal to tmax = µ · p = 0.6 · 1140kN .

Figure 11.37: Same system used in Figure 11.35. A normal force constant in time (F = 1140

kN) and a sine wave displacement time history are applied to node (2).

Figure 11.38: p = 1140 kN. Transversal force in the contact element vs transversal-relative

displacement
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Single Brick Element Examples

The contact element is now used to connect each node (5,6,7,8) of the bottom face of an eight

node hexahedral element (hex8) to the corresponding node attached to the ground (1,2,3,4).

A linear elastic constitutive model is used for the eight node brick and the parameters are

listed in Table 11.11.

Parameter Value

E [kPa] 1.5e10

ν [-] 0.0

Table 11.11: Brick Element Parameters

In the first example (Figure 11.39) the time-history displacement, shown in Figure 8.2, is

applied in the vertical direction to each node of the top surface of the brick element (9,10,11,12)

and the time-history normal force induced in each contact element is represented in Figure 11.40.

It is worth noting that the normal force is positive if the displacement of the top surface is

downward, whereas it is zero if the detachment occurs caused by the upward movement.

Through the second example, shown in Figure 11.41, the transversal response of the contact

elements is highlighted. The vertical normal force (Fv = 50kN), constant in time, and a hori-

zontal time-history displacement are applied to each node of the top surface and the transversal

response is shown in Figure 11.42. As stated in section 11.8.1, the maximum shear force that

the contact element can sustain is is 30 kN , equal to tmax = µ · p = 0.6 · 50kN .

The third example is focused on the transversal response of the contact element under

variable normal forces. In fact, a sine wave time-history horizontal displacement and a vertical

force are applied to each node of the top surface of the brick. The normal force is variable in

time according to the factor (Fact(t)) shown in Figure 11.44 and the vertical force is computed

as Fv(t) = Fact(t) · Fv,max, and Fv,max equal to 50 kN. The response of the contact element,

shown in Figure 11.45, is independent of the time-step used for the analysis emphasizing the

correct numerical implementation.

259



Figure 11.39: Eight-node brick element over four contact elements. A sine wave time-history

vertical displacement applied to each node of the top surface.

Figure 11.40: Normal force vs time in each contact element.
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Figure 11.41: Eight-node brick element over four contact elements. Fv= 50 kN and a sine wave

time-history horizontal displacement applied to each node of the top surface.

Figure 11.42: Transversal force vs transversal relative-displacement in the contact element with

normal force F equal to 50 kN.
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Figure 11.43: Eight-node brick element over four contact elements. Variable vertical force

(Fv(t)) and a sine wave time-history horizontal displacement applied to each node of the top

surface.

Figure 11.44: Time-history of the normal force factor Fact(t).
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Figure 11.45: Variable normal force. Transversal force vs transversal relative-displacement in

each contact element.

Double Brick Element Examples

Few other examples are produced taking in consideration two brick elements. The constitutive

model used for these two brick elements is linear elastic with the same parameters listed in Table

11.11. Vertical and horizontal time-history displacement are applied to the top surface, shown

in Figure 11.46 and Figure 11.47, and variable vertical forces are considered in the example

represented in Figure 11.48. The results are the same shown in Figure 11.40, Figure 11.42 and

Figure 11.43.
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Figure 11.46: Two eight-node brick elements connected by four contact elements. Vertical

time-history displacement applied to the nodes of the top surface.

Figure 11.47: Two eight-node brick elements connected by four contact elements. Vertical force,

equal to 50 kN and constant in time, and horizontal time-history displacement applied to the

nodes of the top surface.

Figure 11.48: Two eight-node brick elements connected by four contact elements. Vertical force,

variable in time, and horizontal time-history displacement applied to the nodes of the top surface.
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11.8.2 Verification of Static and Dynamic Coupled (Saturated) Con-

tact Element Modeling and Simulation

Dry u-p-U Contact to the ground

A single brick u-p-U finite element is used to model an oedometer compression shown in Figure

11.49. Horizontal displacements and pore pressure are fixed in each node in order to guarantee

the one-dimensional and dry conditions. As the ground is modeled as an un-deformable and

impermeable layer (1,2,3,4), vertical soil and fluid displacements are fixed. The time-history

displacement, shown in Figure 8.2, is applied in vertical direction to each node of the top surface

(9,10,11,12).

The time-history normal force induced in each contact element is represented in Figure 11.40

and compared with the one obtained with the dry brick element with u formulation, shown in

Figure 11.39. It is worth noting that the normal force patterns are perfectly overlapped: this

is due to the fact that excess pore pressure is fixed to zero and the oedometer stiffness are the

same in the two cases.

Parameter Symbol Value

Young’s Modulus E [kPa] 1.5 · 1010

Poisson ratio ν [-] 0.0

Solid particle bulk modulus Ks [kPa] 3.6 · 107

Fluid bulk modulus Kf [kPa] 2.17 · 106

Solid density ρs [Mg/m3] 2.7

Fluid density ρf [Mg/m3] 1.0

Porosity n [-] 1.0 · 10−8

Darcy permeability K [m/s] 1.0 · 103

Table 11.12: Soil parameters.
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Figure 11.49: Single eight-node brick element. The nodes of the bottom surface are connected

to the ground floor through contact elements. Vertical time-history displacement applied to the

nodes of the top surface.

Figure 11.50: Normal force vs time in each contact element. u-formulation represents the

results shown in Figure 11.40 whereas upU-formulation represents the results obtained through

the model shown in Figure 11.49.

266



11.9 Verification and Validation for Coupled, Porous Solid

– Pore Fluid Problems

Full verification and validation of coupled finite element modeling is given in our very recent

papers and Tasiopoulou et al. (2015a) and Tasiopoulou et al. (2015b) and will not be detailed

here.
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11.10 Verification and Validation for Seismic Wave Prop-

agation Problems

Verification of seismic wave propagation is split into two main components:

• Verification of wave propagation through discrete finite element mesh,

• Verification of seismic wave input into finite element models.

Validation of seismic wave propagation relies on carefully documented seismic events. One

such example will be shown, from a Lotung seismic array, using an earthquake from 1986.
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11.10.1 Verification of the Seismic Input (Domain Reduction Method)

for 3D, Inclined Seismic Wave Fields

Inclined, 3D Seismic Waves in a Free Field

In this section verification of the 3D wave propagation problem using Domain Reduction Method

will be studied. In order to do so, a finite element model with dimensions of 10000m× 50m×

5000m is considered. Two cases are studied here with the source of motion (fault) to be located

at (x = 3000m, y = 0, z = 3000m) and (x = 3000m, y = 0, z = 3000m). Figures (11.51) and

(11.52) show these two models respectively.

0m 5000m 10000m

5000m

0m

2000m

20
00

m

Fault

Figure 11.51: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of

45◦ with respect to the top middle point of the model

The size of the elements is chosen to be 50m in all directions for both cases in order to reduce

the computational time. The soil parameters are: shear wave velocity of 700m/s, density of

1800kg/m3, and Poisson’s ration of 0.1. Analyses for the fault slip model are done by applying

the motion at the nodes of one element. This is done in order to represent the the wave

propagation starting from the fault using Multiple Support Excitation. This is representing the

first stage of analysis of DRM in which a big model including the fault is considered for free field

case in order to obtain the required motions for DRM layer. For simulating the second stage of

DRM, a smaller model with dimensions of 240m× 5m× 70m is considered as shown in Figure

(11.53). The size of the plastic bowl is 200m× 5m× 50m. Size of the elements for this model

is chosen to be 5m.
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Figure 11.52: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of

34◦ with respect to the top middle point of the model

0m

0m

70m

240m

DRM Layer

Figure 11.53: Domain to be analyzed for the 2nd analysis stage of DRM with smaller size

comparing to the original model
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Displacement and acceleration time histories of corresponding nodes of DRM layer are ob-

tained by interpolating between the the results obtained from the first model. These displacement

and accelerations are used to calculate the effective forces as an input for DRM analysis. Input

motions to be used here are Ricker wave, Morgan Hill, and Kocaeli earthquakes. The maximum

allowable frequency to be propagated through this model can be calculated based on Equation

(11.23):

∆h ≤ λ/10 = Vs/(10 fmax) (11.23)

Based on the shear wave velocity of 700m/s and element size of 50m, maximum allowable

frequency to be propagated through this model would be 1.4Hz for the original model and based

on element size of 5m would be 14Hz for the DRM model.

Ricker Wavelets Figure (11.54) show the displacement time history and FFT of Ricker wave

of 2nd order with dominant frequency of 1Hz and maximum amplitude occurring at 1 second.
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Figure 11.54: Displacement time history and FFT of Ricker wave with dominant frequency of

1Hz

The first case to be studied here is the one with the fault source located at (x = 3000m, y =

0, z = 3000m) which has the angle of 45◦ with respect to the top middle point of the model.

Results to be discussed here are comparison of displacement and acceleration time histories at

the top middle point of the model (x = 5000m, y = 0, z = 5000m) between the fault slip and
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DRM models. Comparison of displacement time histories in X and Z directions are shown in

Figure (11.55). As it can be observed, the results of DRM model matches perfectly with the

ones obtained from the fault slip model.

Figure (11.57) is the displacement and acceleration time history of a point located outside

of DRM layer in X direction (x = 10m, y = 0, z = 40m). As mentioned before in definition of

DRM, no motion should come out of the DRM layer in case of free field. As shown in these

figures, displacement and acceleration time histories at this point are zero which verifies this

fact.
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Figure 11.55: Comparison of displacements for top middle point using Ricker wave (f = 1Hz)

as an input motion

The same motion is applied to the model with fault source located at (x = 2000m, y =

0, z = 3000m) which has the angle of 34◦ with respect to the top middle point of the model.

Displacement time histories of the top middle point show the perfect match between results

obtained from fault slip model with the ones obtained from DRM mode.

As shown in Figure (11.59), the second motion to be used for analysis is Ricker wave with

frequency of 0.5Hz and maximum amplitude occurring at 3 seconds. Figure (11.60) shows the

displacement time histories of X and Z directions for the same point as before (x = 5000m, y =

0, z = 5000m). As it is shown, results of the fault slip and DRM model are the same which

verifies the solution from DRM formulation for this motion as well.
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Figure 11.56: Comparison of accelerations for top middle point using Ricker wave (f = 1Hz)

as an input motion
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Figure 11.57: Displacement and acceleration time history for a point outside of DRM layer in

(x) direction
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Figure 11.58: Comparison of displacements for top middle point using Ricker wave (f = 1Hz)

as an input motion
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Figure 11.59: Displacement time history and FFT of Ricker wave with dominant frequency of

0.5Hz
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Figure 11.60: Comparison of displacements for top middle point using Ricker wave (f = 0.5Hz)

as an input motion

The third motion to be used is Ricker wave with frequency of 2Hz and maximum amplitude

happening at 1 second as shown in Figure (11.61). Comparison of displacement time histories

between the fault slip and DRM model has been done and shown in Figure (11.62) along X and

Z directions respectively.

In this case, results do not match for the top middle point of the model. The main reason is

due to the frequency of the motion. The maximum allowable frequency to be propagated in the

fault slip model is 1.4Hz while it is 14Hz in DRM model. Dominant frequency of the Ricker

wave as input motion is 2Hz. Frequencies above the 1.4Hz can not be propagated in the fault

slip model while they will propagate in the DRM model. this can change the characteristics of

the motion propagating through the model and is the main reason of differences between the

obtained results.
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Figure 11.61: Displacement time history and FFT of Ricker wave with dominant frequency of

2Hz
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Figure 11.62: Comparison of displacements for top middle point in X and Z direction using

Ricker wave (f = 2Hz) as an input motion.
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11.10.2 Validation: Lotung Large Scale Seismic Test (LLSST) Earth-

quake 07

Presented here is validation of seismic wave propagation using data from an earthquake that

was recorded at Lotung site in 1986. To date, this is only recorded earthquake which featured

only two horizontal components, while the vertical component was very small. Validation is done

using 1D data, which is actually wrong as soil has seen a full 2D set of motions, however this

seismic event is used in every validation presentation. The purpose of using this example here is

to show that modeling of this (famous) 2D motion earthquake, in 1D only is possible using Pisano

model. However, it is noted, that despite good (excellent) matching of data and simulations,

there is still an unresolved question of actual earthquake featuring 2D motions, while only 1D

motions are used. This is particularly important as modeling is done using nonlinear/inelastic

material, for which principle of superposition does not apply.

Introduction

Figure 11.63 shows the G/Gmax and Damping data used for Pisano model.

Input motion and input method

We use the data from Lotung Large Scale Seismic Test (LLSST) which is operated by TaiPower

and IES during the period from 1985 to 1990. We choose event 07 to validate modeling.

Results

Results present comparison of recorded and simulated motions at different depths.
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Figure 11.63: G/Gmax and Damping Curves
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Figure 11.64: Time history comparison at different depths
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Figure 11.65: Fourier spectrum comparison at different depths
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Figure 11.66: Response spectrum comparison at different depths (damping ratio 5%)
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Chapter 12

Summary

Earthquake Soil Structure Interaction (ESSI) during earthquakes represent a complex phenomena

that requires highly sophisticated experts and high fidelity numerical modeling and simulation

tools for proper analysis. Improvements in seismic design (and retrofit) and of soil structure

system, and in particular for very important objects, like Nuclear Power Plants (NPPs), are only

possible if design and licensing experts have access to high fidelity simulation data. Such data

allows experts to make proper design and licensing decisions, that are based on low modeling

uncertainty results. The main goal of developed numerical prediction (modeling and simulations)

tools is to predict and inform rather than (force) fit. Development of the Real ESSI Simulator,

a system for high fidelity modeling and simulation of ESSI behavior epitomizes this philosophy.
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Appendix A

Real ESSI Program and Computer

Latest version of the Real ESSI Program is installed on CNSC-CCSN parallel computer. In

addition to that, a system was setup so that future updates of the Real ESSI Program can be

easily downloaded over the Internet and installed on the CNSC-CCSN computer. It is noted

that initial plan was to add additional nodes to the parallel computer, in order to speed up

execution of the program. Recent developments in template metaprogramming and advanced

use of computers resources made it possible to speed up program and fit large problems in a

current parallel computer. Addition of other nodes, connected via network would have actually

slowed down computations. In view of such developments, effort was focused on optimizing code

so that it runs most efficiently on current parallel computer.

It is anticipated that, as new capabilities become available (for example, nonlinear structural

elements) in the Real ESSI Program, updates will be available and down-loadable by the CNSC-

CCSN over Internet. Regular updates will be available approximately every three months.
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Appendix B

Program Command Manual

B.1 Introduction

This section overviews a command language used for model input and analysis. Presented are

all the commands, both those that are fully tested and running and also those that are in testing

phase (work but have not been fully verified). For example, all the planned material models and

finite element commands are presented, although, or example, seismic isolator elements are not

fully available yet.

It is important to note that an up to date command manual (Domain Specific Language

manual) is maintained at the Real ESSI web site.

Syntax is used to self-document models, provide physical-unit safety, provide common flow

control structures, provide modularity to scripting via user functions and “include” files, and

provide an interactive environment within which models can be created, validated and verified.

Although finite element analysis within a computer is unitless, this command language uses

units, in order to enforce consistency of input data. The language provides modularity through

the include directive/command. This allows complex analysis cases to be parameterized into

modules which can be reused in other models.
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B.2 Domain Specific Language (DSL), English Language

Binding

Main features of the command language are:

• Each command line has to end with a semicolon (;)

• Models have to be named: model name "model_name_string";

• Comment on a line begins with either // or ! and last until the end of current line.

• Units are required (see more below) for all quantities and variables.

• Include statements allow splitting source into several files

• All variables are double precision with a unit attached.

• All standard arithmetic operations are implemented, and are unit sensitive.

• Internally, all units are represented in the base SI units (m - s - kg).

• The syntax ignores extra white spaces, tabulations and newlines. Wherever they appear,

they are there for code readability only. (This is why all commands need to end with a

semicolon).

B.2.1 Running the Program

From the command line type essi, to get to the prompt.

Command line output

Real ESSI

Compiled: Apr 29 2013 at 10:06:52
Now: Apr 29 2013 at 10:07:33

Static startup tips:
* Remember: Every command ends with a semicolon ';'.
* Type 'help;' to display available commands.
* Type 'quit;' or 'exit;' to finish.
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* Run 'essi -h- to see available command line options.

Input: STDIN

ESSI >

at which point ESSI starts in interactive mode. From here, commands can be input manually or

a file may be included via the include command which is as follows.

1 include "foobar.fei";

to include the file foobar.fei.

Additionally, one can pass a file to the command line ESSI call to execute a file immediately

by issuing essi -f foobar.fei to execute essi with foobar.fei as input. After executing

the file, the interpreter will continue in interactive mode unless the command line flag -n or

--no-interactive is set. A list of command line options is available by calling essi from the

command line as essi -h.

Command line output

Real ESSI

Compiled: Apr 29 2013 at 10:06:52
Now: Apr 29 2013 at 10:08:28

Static startup tips:
* Remember: Every command ends with a semicolon ';'.
* Type 'help;' to display available commands.
* Type 'quit;' or 'exit;' to finish.
* Run 'essi -h- to see available command line options.

Real ESSI: Real Earthquake -Soil -Structure -Interaction ←↩
Simulator

Usage: essi [-h -n -c -f FILENAME]
-c --cpp -output : Output cpp version of the ←↩

analysis done.
-f --filename [FILENAME] : Input file name in FEI format.
-h --help : Print this message.
-n --no -interactive : Disable interactive mode.
-s --set -variable : Set a variable from the command ←↩

line.
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To exit ESSI, type bye; in the prompt. If bye; command is included at the end of a script,

the essi program will exit upon execution of the script regardless of any errors which occur during

execution.

B.2.2 Variables, basic units and flow control

Variables are defined using the assignment (=) operator. For example,

1 x = 7; // Results in the variable x be set to 7 (←↩
unitless)

2 y = 3.972e+2; // Scientific notation is available.

The language contains a list of reserved keywords. Throughout this documentation, reserved

keywords are highlighted in blue or red.

All standard arithmetic operations are available between variables. These operations can be

combined arbitrarily and grouped together with parentheses.

1 a = x + y; // Addition
2 b = x - y; // Subtraction
3 c = x*y; // Product
4 d = x/y; // Quotient
5 e = y%x; // Modulus (how many times x fits in y)

The ’print’ command can be used to display the current value of a variable.

1 print x;
2 print y;
3 print a;
4 print b;
5 print c;
6 print d;
7 print e;

Command line output

x = 7 []
y = 397.2 []
a = 404.2 []
b = -390.2 []
c = 2780.4 []
d = 0.0176234 []
e = 5.2 []
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Here the “unit” (sign) [] means that the quantities are unitless. The command ’whos’ is

used to see all the currently defined variables and their values. After executing all the above

code ’whos;’ produces the following output.

Command line output

ESSI > whos;

Declared variables:
* GPa = 1 [GPa]
* Hz = 1 [Hz]
* Km = 1 [km]
* MPa = 1 [MPa]
* N = 1 [N]
* Pa = 1 [Pa]

a = 404.2 []
b = -390.2 []
c = 2780.4 []

* cm = 1 [cm]
d = 0.0176234 []
e = 5.2 []

* g = 9.81 [m*s^-2]
* kN = 1 [kN]
* kPa = 1 [kPa]
* kg = 1 [kg]
* m = 1 [m]
* mm = 1 [mm]
* ms = 1 [ms]
* ns = 1 [ns]
* s = 1 [s]

x = 7 []
y = 397.2 []

* = locked variable

Along with the variables which were defined above, several predefined variables appear (shown

with a preceding asterisk to show they are locked variables which cannot be modified). The

purpose of these locked variables are to provide names for units. The units for variable are

shown between the brackets. Note that unit variables have the same name as their unit, which

is not the case for user defined variables. Variables prepended by a star (*) are locked variables

which can’t be modified.

For example, the variable ’m’ defines the ’meter’. So to define a new variable L1 which has

meter units we do:
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1 L1 = 1*m; // Defines L1 to 1 m.
2 L2 = 40*mm; // Defines L2 to be 40 millimeters.

Even though L2 was created with millimeter units, it is stored in base units.

print L2; displays

Command line output

L2 = 0.04 [m]

As additional examples, let us define few forces:

1 F1 = 10*kN;
2 F2 = 300*N;
3 F3 = 4*kg*g;

Here g is the predefined acceleration due to gravity.

Arithmetic operations do check (and enforce) for unit consistency. For example, foo =←↩

L1 + F1; produces an error because units are not compatible. However, bar = L1 + L2←↩

+ L3; is acceptable. On the other hand, multiplication, division and modulus, always work

because the result produces a quantity with new units (except when the adimensional quantity

is involved).

1 A = L1*L2;
2 pressure = F1 / A;

Units for all variables are internally converted to SI units (kg−m−s) and stored in that unit

system. Variables can be displayed using different units by using the [] operator. This does not

change the variable, it just displays the value of variable with required unit. For example,

1 print pressure; // Print in base SI units.
2 print pressure in Pa; //Print in Pascals
3 print pressure in kPa; // Print in KiloPascals

Command line output

pressure = 250000 [kg*m^-1*s^-2]

pressure = 250000 [Pa]

pressure = 250 [kPa]

The DSL provides functions to test the physical units of variables. For example,

304



print isForce(F1);

Will print an adimensional 1 because F1 has units of force. While,

print isPressure(F);

will print an adimensional 0. The language also provides comparison of quantities with same

units (remember all values are compared in SI Units).

print F1 > F2;

will print an adimensional 1 since F1 is greater than F2.

The program flow can be controlled with if and while statements, ie:

1 if (isForce(F1))
2 {
3 print F1; // This will be executed
4 };
5

6 if (isForce(L1))
7 {
8 print L1; // This will not.
9 };

Note the necessary semicolon (;) at the closing brace. Unlike C/C++, the braces are always

necessary. Closing colon is also always necessary.

The “else” statement is also available:

1 if (isForce(L1))
2 {
3 print L1; // This will not execute
4 }
5 else
6 {
7 print L2; // This will execute instead
8 };

While loops are also available:

1 i = 0;
2 while( i < 10)
3 {
4 print i;
5 i = i +1;
6 };
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B.2.3 Modeling

This section details ESSI modeling commands. Angle brackets <> are used for quantity or variable

placeholder, that is, they indicate where user input goes. Within the angle brackets, the expected

unit type is given as well, ie. <L> means the command expects an input with a value and a

length unit. The symbol <.> represents the adimensional quantity.

In addition to that, the vertical bar | (“OR” sign)) is used to separate two or more keyword

options, i.e. [a|b|c] is used indicate keyword options a or b or c. The symbol |...| is used

to denote where several long options exist and are explained elsewhere (an example of this is

available below in a material model definitions).

All commands require unit consistency. Base units, SI or other can be used as indicated

below:

• length, symbol L, units [m, in, ft]

• mass, symbol M , units [kg, lb],

• time, symbol T , units [s]

Derived units can also be used:

• angle, symbol rad (radian), unit [dimensionless, L/L]

• force, symbol N (Newton), units [N, kN,MN,M ∗ L/T 2],

• stress, symbol Pa (Pascal), units [Pa, kPa,MPa,N/L2,M/L/T 2]

• strain, symbol (no symbol), units [L/L]

• mass density, symbol (no symbol), units [M/L3]

• force density, symbol (no symbol), units [M/L2/T 2]

Starting a new loading stage

new loading stage "loading_stage_name_string";

Example, starting a new loading stage called ”self weight loading stage”: new loading ←↩

stage "self weight loading stage";.
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Modeling: Material Models

General command for adding constitutive material models:

1 add material # <.> type |...|
2 algorithm = explicit | implicit
3 mass_density = <M/L^3>
4 (more model dependent parameters) ;

• Material number # (or alternatively No) is a distinct integer number used to uniquely

identify this material.

• Algorithm type used to integrate constitutive equations

• Mass density should be defined for each material (even if only static analysis is performed,

for example if self weight is to be used as a loading stage).

• Depending on material model, there will be additional material parameters that are defined

for each material model/type below:

Choices for material_type are listed below
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Material Model: linear_elastic_isotropic_3d,

for which a full command is:

1 add material # <.> type linear_elastic_isotropic_3d
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material (units: stress)

• poisson_ratio is a Poisson’s ratio [dimensionless]
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Material Model: linear_elastic_crossanisotropic

for which a full command is:

1 add material # <.> <material_number >
2 type linear_elastic_crossanisotropic
3 mass_density = <M/L^3>
4 elastic_modulus_horizontal = <F/L^2>
5 elastic_modulus_vertical = <F/L^2>
6 poisson_ratio_h_v = <.>
7 poisson_ratio_h_h = <.>
8 shear_modulus_h_v = <F/L^2>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus_horizontal is an anisotropic modulus of elasticity for horizontal plane

of a material [F/L2]

• elastic_modulus_vertical is an anisotropic modulus of elasticity for vertical direction

of a material [F/L2]

• poisson_ratio_h_v is a Poisson’s ratio for horizontal-vertical directions [dimensionless]

• poisson_ratio_h_h is a Poisson’s ratio for horizontal-horizontal directions [dimension-

less]

• shear_modulus_h_v is a shear modulus for horizontal-vertical directions [F/L2]
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Material Model: non_linear_elastic_isotropic_3d (command syntax is in develop-

ment) ,

...
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Material Model: von_mises_perfectly_plastic,

for which a full command is:

1 add material # <.> type vonmises_perfectly_plastic
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 initial_confining_stress = <F/L^2>
7 algorithm = explicit (or) implicit
8 number_of_subincrements = <.>
9 maximum_number_of_iterations = <.>

10 tolerance_1 = <.>
11 tolerance_2 = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material [stress]

• poisson_ratio is a Poisson’s ratio [dimensionless]

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress].

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• algorithm can be explicit or implicit.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: von_mises_perfectly_plastic_accelerated,

for which a full command is:

1 add material # <.> type ←↩
vonmises_perfectly_plastic_accelerated

2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 initial_confining_stress = <F/L^2>
7 maximum_number_of_iterations = <.>
8 tolerance_1 = <.>
9 tolerance_2 = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material [stress]

• poisson_ratio is a Poisson’s ratio [dimensionless]

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress].

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: von_mises_isotropic_hardening,

for which a full command is:

1 add material # <.> type vonmises_isotropic_hardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 isotropic_hardening_rate = <.>
7 initial_confining_stress = <F/L^2>
8 algorithm = explicit (or) implicit
9 number_of_subincrements = <.>

10 maximum_number_of_iterations = <.>
11 tolerance_1 = <.>
12 tolerance_2 = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material [stress]

• poissons_ration is a Poisson’s ratio [dimensionless]

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress]

• isotropic_hardening_rate is the rate of isotropic hardening

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• algorithm can be explicit or implicit.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance
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• tolerance_2 Implicit: residual tolerance
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Material Model: von_mises_isotropic_hardening_accelerated,

for which a full command is:

1 add material # <.> type ←↩
vonmises_isotropic_hardening_accelerated

2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 isotropic_hardening_rate = <.>
7 initial_confining_stress = <F/L^2>
8 maximum_number_of_iterations = <.>
9 tolerance_1 = <.>

10 tolerance_2 = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material [stress]

• poissons_ration is a Poisson’s ratio [dimensionless]

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress]

• isotropic_hardening_rate is the rate of isotropic hardening

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: von_mises_kinematic_hardening,

1 add material # <.> type vonmises_kinematic_hardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 armstrong_frederick_ha = <.>
7 armstrong_frederick_cr = <.>
8 initial_confining_stress = <F/L^2>
9 algorithm = explicit (or) implicit

10 number_of_subincrements = <.>
11 maximum_number_of_iterations = <.>
12 tolerance_1 = <.>
13 tolerance_2 = <.>;

where:

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress]

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in from of sum of normal stresses that

are positive in tension.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: vonmises_linear_kinematic_hardening,

1 add material # <.> type vonmises_linear_kinematic_hardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 kinematic_hardening_rate = <.>
7 initial_confining_stress = <F/L^2>
8 algorithm = explicit (or) implicit
9 number_of_subincrements = <.>

10 maximum_number_of_iterations = <.>
11 tolerance_1 = <.>
12 tolerance_2 = <.>;

where:

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress]

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in from of sum of normal stresses that

are positive in tension.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: von_mises_kinematic_hardening_accelerated,

1 add material # <.> type ←↩
vonmises_kinematic_hardening_accelerated

2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 armstrong_frederick_ha = <.>
7 armstrong_frederick_cr = <.>
8 initial_confining_stress = <F/L^2>
9 algorithm = explicit (or) implicit

10 number_of_subincrements = <.>
11 maximum_number_of_iterations = <.>
12 tolerance_1 = <.>
13 tolerance_2 = <.>;

where:

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress]

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in from of sum of normal stresses that

are positive in tension.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: vonmises_linear_kinematic_hardening_accelerated,

1 add material # <.> type ←↩
vonmises_linear_kinematic_hardening_accelerated

2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 kinematic_hardening_rate = <.>
7 initial_confining_stress = <F/L^2>
8 algorithm = explicit (or) implicit
9 number_of_subincrements = <.>

10 maximum_number_of_iterations = <.>
11 tolerance_1 = <.>
12 tolerance_2 = <.>;

where:

• von_mises_radius is the radius of von Mises yield surface in (deviatoric) stress space

[stress]

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in from of sum of normal stresses that

are positive in tension.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: druckerprager_perfectly_plastic, material with Drucker-Prager

yield surface with no hardening or softening. A full command for this material model is:

1 add material # <.> type druckerprager_perfectly_plastic
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_angle = <.>
6 initial_confining_stress = <F/L^2>
7 algorithm = explicit or implicit
8 number_of_subincrements = <.>
9 maximum_number_of_iterations = <.>

10 tolerance_1 = <.>
11 tolerance_2 = <.>;

where

• druckerprager_angle coefficient related to the soil friction angle.

M =
6 sinφ

3− sinφ
(B.1)

• initial_confining_stress Initial confining stress [F/L2]

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: druckerprager_perfectly_plastic_accelerated, accelerated ma-

terial with Drucker-Prager yield surface with no hardening or softening. Full command is:

1 add material # <.> type ←↩
druckerprager_perfectly_plastic_accelerated

2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_angle = <.>
6 initial_confining_stress = <F/L^2>
7 number_of_subincrements = <.>
8 maximum_number_of_iterations = <.>
9 tolerance_1 = <.>

10 tolerance_2 = <.>;

where

• druckerprager_angle coefficient related to the soil friction angle.

M =
6 sinφ

3− sinφ
(B.2)

• initial_confining_stress Initial confining stress [F/L2]

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: drucker_prager_isotropic_hardening, material with Drucker-Prager

yield surface with isotropic hardening of the yield surface. Full command is:

1 add material # <.> type druckerprager_isotropic_hardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_angle = <.>
6 isotropic_hardening_rate = <.>
7 initial_confining_stress = <F/L^2>
8 algorithm = explicit (or) implicit
9 number_of_subincrements = <.>

10 maximum_number_of_iterations = <.>
11 tolerance_1 = <.>
12 tolerance_2 = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material [stress]

• poissons_ration is a Poisson’s ratio [dimensionless]

• druckerprager_angle coefficient related to the soil friction angle.

M =
6 sinφ

3− sinφ
(B.3)

• isotropic_hardening_rate is the rate of isotropic hardening

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• algorithm can be explicit or implicit.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations
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• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: drucker_prager_isotropic_hardening_accelerated, accelerated

material with Drucker-Prager yield surface with isotropic hardening of the yield surface. Full

command is:

1 add material # <.> type druckerprager_isotropic_hardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_angle = <.>
6 isotropic_hardening_rate = <.>
7 initial_confining_stress = <F/L^2>
8 number_of_subincrements = <.>
9 maximum_number_of_iterations = <.>

10 tolerance_1 = <.>
11 tolerance_2 = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material [stress]

• poissons_ration is a Poisson’s ratio [dimensionless]

• druckerprager_angle coefficient related to the soil friction angle.

M =
6 sinφ

3− sinφ
(B.4)

• isotropic_hardening_rate is the rate of isotropic hardening

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

324



• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: druckerprager_kinematic_hardening, material with Drucker-Prager

yield surface with kinematic hardening of the yield surface. Full command is:

1 add material # <.> type druckerprager_kinematic_hardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_angle = <.>
6 armstrong_frederick_ha = <.>
7 armstrong_frederick_cr = <.>
8 initial_confining_stress = <F/L^2>
9 algorithm = explicit or implicit

10 number_of_subincrements = <.>
11 maximum_number_of_iterations = <.>
12 tolerance_1 = <.>
13 tolerance_2 = <.>;

where

• mass_density is the mass density of material [M/L3]

• druckerprager_angle coefficient related to the soil friction angle.

M =
6 sinφ

3− sinφ
(B.5)

• armstrong_frederick_ha [F/L2]

• armstrong_frederick_cr [F/L2]

• initial_confining_stress Initial confining stress [F/L2]

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: druckerprager_kinematic_hardening_accelerated, accelerated

material with Drucker-Prager yield surface with kinematic hardening of the yield surface. Full

command is:

1 add material # <.> type ←↩
druckerprager_kinematic_hardening_accelerated

2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_angle = <.>
6 armstrong_frederick_ha = <F/L^2>
7 armstrong_frederick_cr = <F/L^2>
8 initial_confining_stress = <F/L^2>
9 number_of_subincrements = <.>

10 maximum_number_of_iterations = <.>
11 tolerance_1 = <.>
12 tolerance_2 = <.>;

where

• mass_density is the mass density of material [M/L3]

• druckerprager_angle coefficient related to the soil friction angle.

M =
6 sinφ

3− sinφ
(B.6)

• armstrong_frederick_ha [F/L2]

• armstrong_frederick_cr [F/L2]

• initial_confining_stress Initial confining stress [F/L2]

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: rounded_mohr_coulomb, (command syntax is in development)

. . .

328



Material Model: cam_clay Full command is

1 add material # <.> type camclay
2 mass_density = <M/L^3>
3 reference_void_ratio = <.>
4 critical_stress_ratio_M = <.>
5 lambda = <.>
6 kappa = <.>
7 poisson_ratio = <.>
8 minimum_bulk_modulus = <F/L^2>
9 pressure_reference_p0 = <F/L^2>

10 initial_confining_stress = <F/L^2>
11 algorithm = explicit or implicit
12 number_of_subincrements = <.>
13 maximum_number_of_iterations = <.>
14 tolerance_1 = <.>
15 tolerance_2 = <.>;

where

• mass_density is the mass density of material [M/L3]

• reference_void_ratio e0 void ratio at the reference pressure, [dimensionless]

• critical_stress_ratio_M Cam-Clay slope of the critical state line in stress space, [di-

mensionless]

• lambda Cam-Clay normal consolidation line slope, (unit: dimensionless)

• kappa Cam-Clay unload-reload line slope, (unit: dimensionless)

• minimum_bulk_modulus

• pressure_reference_p0 p0 Cam-Clay parameter. Tip of the yield surface in q-p space.

[F/L2]

• initial_confining_stress initial confining (mean) pressure

• algorithm use explicit or implicit constitutive integration.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations
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• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model:cam_clay_accelerated

A full command is

1 add material # <.> type camclay_accelerated
2 mass_density = <M/L^3>
3 reference_void_ratio = <.>
4 critical_stress_ratio_M = <.>
5 lambda = <.>
6 kappa = <.>
7 poisson_ratio = <.>
8 minimum_bulk_modulus = <F/L^2>
9 pressure_reference_p0 = <F/L^2>

10 initial_confining_stress = <F/L^2>
11 number_of_subincrements = <.>
12 maximum_number_of_iterations = <.>
13 tolerance_1 = <.>
14 tolerance_2 = <.>;

where

• mass_density is the mass density of material [M/L3]

• reference_void_ratio e0 void ratio at the reference pressure, [dimensionless]

• critical_stress_ratio_M Cam-Clay slope of the critical state line in stress space, [di-

mensionless]

• lambda Cam-Clay normal consolidation line slope, (unit: dimensionless)

• kappa Cam-Clay unload-reload line slope, (unit: dimensionless)

• minimum_bulk_modulus

• pressure_reference_p0 p0 Cam-Clay parameter. Tip of the yield surface in q-p space.

[F/L2]

• initial_confining_stress initial confining (mean) pressure

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations
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• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: sanisand2004, Full command is:

1 add material # <.> type sanisand2004
2 mass_density = <M/L^3>
3 e0 = <.>
4 sanisand2004_G0 = <.>
5 poisson_ratio = <.>
6 sanisand2004_Pat = <.>
7 sanisand2004_p_cut = <.>
8 sanisand2004_Mc = <.>
9 sanisand2004_c = <.>

10 sanisand2004_lambda_c = <.>
11 sanisand2004_xi = <.>
12 sanisand2004_ec_ref = <.>
13 sanisand2004_m = <.>
14 sanisand2004_h0 = <.>
15 sanisand2004_ch = <.>
16 sanisand2004_nb = <.>
17 sanisand2004_A0 = <.>
18 sanisand2004_nd = <.>
19 sanisand2004_z_max = <.>
20 sanisand2004_cz = <.>
21 initial_confining_stress = <F/L^2>
22 algorithm = explicit (or) implicit
23 number_of_subincrements = <.>
24 maximum_number_of_iterations = <.>
25 tolerance_1 = <.>
26 tolerance_2 = <.>;

where

• MaterialNumber: Number of the ND material to be used ;

• mass_density is the mass density of material [M/L3]

• sanisand2004_e0 initial void ratio

• sanisand2004_G0 elastic shear modulus

• poisson_ratio Poisson’s ratio

• sanisand2004_Pat atmospheric pressure

• sanisand2004_p_cut pressure cut-off ratio
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• sanisand2004_Mc

• sanisand2004_c tension-compression strength ratio

• sanisand2004_lambda_c parameter for critical state line

• sanisand2004_xi parameter for critical state line

• sanisand2004_ec_ref reference void for critical state line

• sanisand2004_m opening of the yield surface

• sanisand2004_h0 bounding surface parameter

• sanisand2004_ch bounding surface parameter

• sanisand2004_nb bounding surface parameter

• sanisand2004_A0 dilatancy parameter

• sanisand2004_nd dilatancy parameter

• sanisand2004_z_max fabric parameter

• sanisand2004_cz fabric parameter

• initial_confining_stress is the initial confining stress p = −1/3σii and it is positive

in compressions (since there is that − (minus) sign in front of sum of normal stresses (σii

indicial notation summation convention applies) that are positive in tension [stress].

• algorithm can be explicit or implicit.

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: sanisand2008

Full command is

1 add material # <.> type sanisand2008
2 mass_density = <M/L^3>
3 e0 = <.>
4 sanisand2008_G0 = <.>
5 sanisand2008_K0 = <.>
6 sanisand2008_Pat = <.>
7 sanisand2008_k_c = <.>
8 sanisand2008_alpha_cc = <.>
9 sanisand2008_c = <.>

10 sanisand2008_lambda = <.>
11 sanisand2008_ec_ref = <.>
12 sanisand2008_m = <.>
13 sanisand2008_h0 = <.>
14 sanisand2008_ch = <.>
15 sanisand2008_nb = <.>
16 sanisand2008_A0 = <.>
17 sanisand2008_nd = <.>
18 sanisand2008_p_r = <.>
19 sanisand2008_rho_c = <.>
20 sanisand2008_theta_c = <.>
21 sanisand2008_X = <.>
22 sanisand2008_z_max = <.>
23 sanisand2008_cz = <.>
24 sanisand2008_p0 = <F/L^3>
25 sanisand2008_p_in = <F/L^3>
26 algorithm = explicit (or) implicit
27 number_of_subincrements = <.>
28 maximum_number_of_iterations = <.>
29 tolerance_1 = <.>
30 tolerance_2 = <.>;

where

• MaterialNumber: Number of the ND material to be used ;

• Algorithm: Explicit (=0) or Implicit (=1) ;

• rho: density ;

• e0: initial void ratio at zero strain ;
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• G0: Reference elastic shear modulus [stress];

• K0: Reference elastic bulk modulus [stress];

• sanisand2008_Pat: atmospheric pressure for critical state line ;

• sanisand2008_k_c: cut-off factor; for p < kcPat, use p = kcPat for calculation of G; (a

default value of kc = 0.01 should work fine) ;

• sanisand2008_alpha_cc: critical state stress ratio ;

• sanisand2008_c: tension-compression strength ratio ;

• sanisand2008_lambda: parameter for critical state line ;

• sanisand2008_xi: parameter for critical state line ;

• sanisand2008_ec_ref: reference void for critical state line, ; ec = erlambda(pc/Pat)
xi ;

• sanisand2008_m: opening of the yield surface ;

• sanisand2008_h0: bounding surface parameter ;

• sanisand2008_ch: bounding surface parameter ;

• sanisand2008_nb: bounding surface parameter ;

• sanisand2008_A0: dilatancy parameter ;

• sanisand2008_nd: dilatancy parameter ;

• sanisand2008_p_r: LCC parameter ;

• sanisand2008_rho_c: LCC parameter ;

• sanisand2008_theta_c: LCC parameter ;

• sanisand2008_X: LCC parameter ;

• sanisand2008_z_max: fabric parameter ;
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• sanisand2008_cz: fabric parameter ;

• sanisand2008_p0: yield surface size ;

• sanisand2008_p_in ;

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations

• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive

points) Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance
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Material Model: saniclay (command syntax is in development) ,

. . .
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Material Model: pisano,

Full command is

1 add material # <.> type pisano
2 elastic_modulus = <F/L^2>
3 poisson_ratio = <.>
4 M_in = <F/L^2>
5 kd_in = <.>
6 xi_in = <.>
7 h_in = <.>
8 m_in = <.>
9 mass_density = <M/L^2>

10 initial_confining_stress = <F/L^2>
11 beta_min = <.>;

where

. . .
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Material Model: uniaxial_fiber_elastic for which a full command is:

1 add material # <.> type uniaxial_elastic
2 elastic_modulus = <F/L^2>
3 viscoelastic_modulus = <mass / length / time > ;
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Material Model: uniaxial_fiber_concrete02 for which a full command is:

1 add material # <.> type uniaxial_concrete02
2 compressive_strength = <F/L^2>
3 strain_at_compressive_strength = <.>
4 crushing_strength = <F/L^2>
5 strain_at_crushing_strength = <.>
6 lambda = <.>
7 tensile_strength = <F/L^2>
8 tension_softening_stiffness = <F/L^2>;
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Material Model: uniaxial_fiber_steel01 for which a full command is:

1 add material # <.> type uniaxial_steel01
2 yield_strength = <F/L^2>
3 elastic_modulus = <F/L^2>
4 strain_hardening_ratio = <.>
5 a1 = <.>
6 a2 = <.>
7 a3 = <>
8 a4 = <.> ;
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Material Model: uniaxial_fiber_steel02 for which a full command is:

1 add material # <.> type uniaxial_steel02
2 yield_strength = <F/L^2>
3 elastic_modulus = <F/L^2>
4 strain_hardening_ratio = <.>
5 R0 = <.>
6 cR1 = <.>
7 cR2 = <.>
8 a1 = <.>
9 a2 = <.>

10 a3 = <>
11 a4 = <.> ;
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Modeling: Nodes

Nodes can be added to the finite element model:

1 add node # <.> at (<L>,<L>,<L>) with <.> dofs;

For example:

1 add node No 1 at (1.0*m, 2.5*m, 3.33*m) with 3 dofs;

adds a node number 1 at coordinates x = 1.0m, y = 2.5m and z = 3.33m, with 3 dofs.

Nodes can also be removed from the finite element model (for example during excavation):

1 remove node No (or #) <.>;

Nodal masses can be added using:

1 add mass to node # <.>
2 mx = <M>
3 my = <M>
4 mz = <M>
5 Imx = <M*L^2>
6 Imy = <M*L^2>
7 Imz = <M*L^2>;

or

1 add mass to node # <.>
2 mx = <M>
3 my = <M>
4 mz = <M>;
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Modeling: Finite Elements

The basic structure of all element commands is

1 add element No (or #)
2 type <finite_element_type >
3 with nodes (<.>, ..., <.>)|
4 {element dependent parameters };

Elements can be removed using:

1 remove element # <.>;

Choices for finite_element_type are listed below
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Finite Element: Finite Element: truss,

for which a full command is:

1 add element No (or #) <element_number > type truss
2 with nodes (n1, n2)
3 use material No (or #) <material_number >
4 section_area <section_area > [unit];
5 mass_density <mass_density > [unit];

where

• No (or #) <element_number> is a unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type truss is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• use material No (or #) is the material number which makes up the element. Material

has to be a uniaxial material, and it can be either elastic or one of the elastic-plastic

materials defined for uniaxial behavior.

• section_area is the cross section area [L2]
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Finite Element: beam_elastic, linear elastic Euler-Bernoulli 3D beam element with end

offsets and consistent mass matrix. The full command is:

1 add element # <.> type beam_elastic with nodes (<.>, <.>)
2 cross_section = <L^2>
3 elastic_modulus = <F/L^2>
4 shear_modulus = <F/L^2>
5 torsion_Jx = <length^4>
6 bending_Iy = <length^4>
7 bending_Iz = <length^4>
8 mass_density = <M/L^3>
9 xz_plane_vector = (<.>, <.>, <.> )

10 joint_1_offset = (<L>, <L>, <L> )
11 joint_2_offset = (<L>, <L>, <L> );

Global coordinates

Lo
ca

l c
oordinates

x

y

z

x

y

z

Node 2

Node 1

joint_1_offset = (dx, dy, dz)

dx

dy

dz

dx

dy

dzjoint_2_offset = (dx, dy, dz)

 xz_plane_vector = (vx, vy, vz ):
Is used to orient the 'web' of the element. It is
given global coordinate system and is contained
within the local x-z plane of the beam.

where

• No (or #) <element_number> is a unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type beam_elastic is the element type
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• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector a vector which defines the orientation of the local (beam coordinate

system) xz plane in global coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection

node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection

node 2, [L]
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Finite Element: beam_elastic_lumped_mass,

linear elastic Euler-Bernoulli 3D beam element with end offsets and lumped mass matrix.

The full command is:

1 add element # <.> type beam_elastic_lumped_mass with nodes ←↩
(<.>, <.>)

2 cross_section = <L^2>
3 elastic_modulus = <F/L^2>
4 shear_modulus = <F/L^2>
5 torsion_Jx = <length^4>
6 bending_Iy = <length^4>
7 bending_Iz = <length^4>
8 mass_density = <M/L^3>
9 xz_plane_vector = (<.>, <.>, <.> )

10 joint_1_offset = (<L>, <L>, <L> )
11 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type beam_elastic_lumped_mass is the element type

• with nodes (n1, n2) are the 2 nodes defining this element

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector unit vector which defines the orientation of the web of the beam in

global coordinates.
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• joint_1_offset vector defining the rigid offset between end of beam and connection

node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection

node 2, [L]
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Finite Element: beam_displacement_based

1 add element # <.> type beam_displacement_based with nodes ←↩
(<.>, <.>)

2 number_of_integration_points = <.>
3 section_number = <.>
4 mass_density = <M/L^3>
5 integration_rule = Lobatto | Legendre | Radau | ←↩

NewtonCotes
6 xz_plane_vector = (<.>, <.>, <.> )
7 joint_1_offset = (<L>, <L>, <L> )
8 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type beam_displacement_based is the element type

• with nodes (n1, n2) are the 2 nodes defining this element

• number_of_integration_points is number of integration points to be used along the

beam element

• section_number is the number of predefined section

• mass_density mass per unit volume of the material, [M/L3]

• integration_rule integration rule to be used among Lobatto, Legendre, Radau, or

NewtonCotes.

• xz_plane_vector unit vector which defines the orientation of the web of the beam in

global coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection

node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection

node 2, [L]
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Finite Element: beam_9dof_elastic

1 add element # <.> type beam_9dof_elastic
2 with nodes (<.>, <.>)
3 cross_section = <L^2>
4 elastic_modulus = <F/L^2>
5 shear_modulus = <F/L^2>
6 torsion_Jx = <length^4>
7 bending_Iy = <length^4>
8 bending_Iz = <length^4>
9 mass_density = <M/L^3>

10 xz_plane_vector = (<.>, <.>, <.> )
11 joint_1_offset = (<L>, <L>, <L> )
12 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type beam_9dof_elastic is the element type

• with nodes (n1, n2) are the 2 nodes defining this element, where the first node (n1)

is the one with 3 DOFs and the second (n2) is the one with 6 DOFs

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector unit vector which defines the orientation of the web of the beam in

global coordinates.
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• joint_1_offset vector defining the rigid offset between end of beam and connection

node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection

node 2, [L]

This beam has zero stiffness components for torsion. It should be used either as a connection

of solid and another beam element or in case of being used on its own, the corresponding dof

for torsion (dof 7) Should be fixed!

Node 1 should have 3 dofs while node 2 should have 6 dofs.
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Finite Element: 4NodeShell_ANDES, ANDES based 3D shell element including drilling

degrees of freedom. Made up by patching together 4 ANDES shell triangle elements (and then

averaging two and two squares made up two and two triangles). The full command is:

1 add element # <.> type 4NodeShell_ANDES
2 with nodes (<.>, <.>, <.>)
3 use material # <.>
4 and acceleration field # <.>
5 thickness = <L> ;

Node numbering

is counter-clockwise

x y

z

r2

r1

r3
Normal to element

Orthogonal to r3 and 

contained in the XY-plane

= r3xr1

Local axis definition

in general

x y

z

r1

r3

Paralell to z

Local axis definition

if r3 is nearly vertical

Paralell to y

Paralell to x

r2

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• material # <.> number of a previously defined material. (see add material ...)

• acceleration field # <.> number of a previously defined acceleration field to use for

self weight (see add acceleration field ...)

• thickness shell thickness, [L]
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Finite Element: 3NodeShell_ANDES

1 add element # <.> type 3NodeShell_ANDES
2 with nodes (<.>, <.>, <.>)
3 use material # <.>
4 and acceleration field # <.>
5 thickness = <L> ;

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

355



Finite Element: 8_node_brick, for which a full command is:

1 add element No (or #) <element_number > type 8NodeBrick
2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8)
3 use material No (or #) <material_number >
4 and
5 acceleration field No (or #) <acceleration_field_number←↩

>;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type 8NodeBrick is the element type.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8) are the 8 nodes for this element, in

the order as per figure below

r1

r2

r3

1

23

4

5

6
7

8

• use material No (or #) is the material number which makes up the element (nonlinear

elastic or elastic-plastic material properties for each integration (Gauss) point will evolve

independently as the element deforms).
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• and acceleration field No (or #) is the acceleration field used to develop body

forces for the element (gravity for example). This command will be extracted from element

command and will be moved to a different location (loading section).

Example add eight node brick, number 1 with nodes 1, 2, 3, 4, 5, 6, 7, 8, made up of material

number 1 and loaded with body force field number 1

add element No 1 type 8NodeBrick

with nodes (1, 2, 3, 4, 5, 6, 7, 8)

use material No 1 and

acceleration field 1;

357



Finite Element: 8_node_brick_elastic, for which a full command is:

1 add element No (or #) <element_number > type 8←↩
NodeBrick_elastic

2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8)
3 use material No (or #) <material_number >
4 and
5 acceleration field No (or #) <acceleration_field_number←↩

>;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type 8NodeBrick_elastic is the element type. It is used if linear elastic material is

used (stiffness creation is much faster). It this case, the stiffness and mass matrices will

not be updated at each step.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8) are the 8 nodes for this element, in

the order as per figure below

r1

r2

r3

1

23

4

5

6
7

8

• use material No (or #) is the material number which makes up the element. This

element will work with linear elastic material only.
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• and acceleration field No (or #) is the acceleration field used to develop body

forces for the element (gravity for example). This command will be extracted from element

command and will be moved to a different location (loading section).

Example add eight node brick, number 1 with nodes 1, 2, 3, 4, 5, 6, 7, 8, made up of material

number 1 and loaded with body force field number 1

add element No 1 type 8NodeBrick_elastic

with nodes (1, 2, 3, 4, 5, 6, 7, 8)

use material No 1 and

acceleration field 1;
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Finite Element: 20_node_brick, for which a full command is:

1 add element No (or #) <element_number > type 20 NodeBrick
2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8,
3 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16 ,
4 n17 , n18 , n19 , n20 )
5 use material No (or #) <material_number >
6 and
7 acceleration field No (or #) <acceleration_field_number←↩

>;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type 20NodeBrick is the element type. 20NodeBrick_elastic can be used if elastic

material is used. It this case, the stiffness and mass matrices will not be updated at each

step.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20) are the 20 nodes

for this element, written in the order defined as per figure below
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• use material No (or #) is the material number which makes up the element (nonlinear

elastic or elastic-plastic material properties for each integration (Gauss) point will evolve

independently as the element deforms)

• and acceleration field No (or #) is the acceleration field used to develop

body forces for the element (gravity for example). This command will be extracted from

element command and will be moved to a different location (loading section).
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Finite Element: 20_node_brick_elastic, for which a full command is:

1 add element No (or #) <element_number > type 20←↩
NodeBrick_elastic

2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8,
3 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16 ,
4 n17 , n18 , n19 , n20 )
5 use material No (or #) <material_number >
6 and
7 acceleration field No (or #) <acceleration_field_number←↩

>;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type 20NodeBrick_elastic is the element type, and is used if linear elastic material is

used. It this case, the stiffness and mass matrices will not be updated at each step.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20) are the 20 nodes

for this element, written in the order defined as per figure below
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• use material No (or #) is the linear elastic material number which makes up the ele-

ment.

• and acceleration field No (or #) is the acceleration field used to develop

body forces for the element (gravity for example). This command will be extracted from

element command and will be moved to a different location (loading section).
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Finite Element: 27_node_brick, for which a full command is:

1 add element No (or #) <element_number >
2 type 27 NodeBrick
3 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8 ,
4 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16←↩

,
5 n17 , n18 , n19 , n20 , n21 , n22 , n23 ,
6 n124 , n25 , n26 , n27 )
7 use material No (or #) <material_number >
8 and
9 acceleration field No (or #) <←↩

acceleration_field_number >;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type 27NodeBrick is the element type.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20)

n21, n22, n23, n24, n25, n26, n27) are the 27 nodes for this element, written in

the order defined as per this figure

• use material No (or #) is the material number which makes up the element (nonlinear

elastic and/or elastic-plastic material properties for each integration (Gauss) point will

evolve independently as the element deforms)

• and acceleration field No (or #) is the acceleration field used to develop

body forces for the element (gravity for example). This command will be extracted from

element command and will be moved to a different location (loading section).
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Finite Element: 27_node_brick_elastic, for which a full command is:

1 add element No (or #) <element_number >
2 type 27 NodeBrick_elastic
3 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8 ,
4 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16←↩

,
5 n17 , n18 , n19 , n20 , n21 , n22 , n23 ,
6 n124 , n25 , n26 , n27 )
7 use material No (or #) <material_number >
8 and
9 acceleration field No (or #) <←↩

acceleration_field_number >;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type 27NodeBrick_elastic is the element type and is used if elastic material is used.

It this case, the stiffness and mass matrices will not be updated at each step.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20)
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n21, n22, n23, n24, n25, n26, n27) are the 27 nodes for this element, written in

the order defined as per this figure
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• use material No (or #) is the linear elastic material number which makes up the ele-

ment .

• and acceleration field No (or #) is the acceleration field used to develop

body forces for the element (gravity for example). This command will be extracted from

element command and will be moved to a different location (loading section).
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Finite Element: variable_node_brick_8_to_20, for which a full command is:

1 add element No (or #) <element_number > type ←↩
variable_node_brick_8_to_20

2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8 ,
3 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16←↩

,
4 n17 , n18 , n19 , n20)
5 use material No (or #) <material_number >
6 and
7 acceleration field No (or #) <←↩

acceleration_field_number >;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type variable_node_brick_8_to_20 is the element type

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20)

are the 8 to 20 nodes for this element, written in the order defined as per this figure. Nodes

1-8 are obligatory, while any other nodes can be used but do not have to, the element will

automatically pick proper shape functions. This element is good for transitions in meshing.
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• material No (or #) is the material number which makes up the element (nonlinear

elastic and/or elastic-plastic material properties for each integration (Gauss) point will
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evolve independently as the element deforms)

• acceleration field No (or #) is the acceleration field used to develop body forces

for the element (gravity for example). This command will be extracted from element

command and will be moved to a different location (loading section).
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Finite Element: variable_node_brick_8_to_27, for which a full command is:

1 add element No (or #) <element_number > type ←↩
variable_node_brick_8_to_27

2 using <.> Gauss points each direction
3 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8 ,
4 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16←↩

,
5 n17 , n18 , n19 , n20 , n21 , n22 , n23 , ←↩

n24 , n25 , n26 , n27)
6 use material No (or #) <material_number >
7 and
8 acceleration field No (or #) <←↩

acceleration_field_number >;

(This acceleration field part of element command is bound to be moved to loading)

where:

• No (or #) <element_number> is the unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type variable_node_brick_8_to_27 is the element type

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20,

n21, n22, n23, n24, n25, n26, n27)

are the 8 to 27 nodes for this element, written in the order defined as per this figure. Nodes

1-8 are obligatory, while any other nodes can be used but do not have to, the element will

automatically pick proper shape functions. This element is good for transitions in meshing.

• material No (or #) is the material number which makes up the element (nonlinear

elastic and/or elastic-plastic material properties for each integration (Gauss) point will

evolve independently as the element deforms)

• acceleration field No (or #) is the acceleration field used to develop body forces

for the element (gravity for example). This command will be extracted from element

command and will be moved to a different location (loading section).
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Finite Element: penalty_element_for_applying_generalized_displacement

for which a full command is:

1 add element # <.>
2 type penalty_for_applying_generalized_displacement
3 with node (<.>)
4 stiffness = <corresponding unit to dof >;
5 dof [DOFTYPE ];

where

• No (or #) <element_number> is a unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type penalty_for_applying_displacement is the element type

• with node (n1) is the number of pre-existing node

• stiffness penalty stiffness to be used for the element. If the dof is ux, uy, uz, Ux, Uy, or

Uz, the corresponding stiffness unit is [M/T 2]. If the dof is rx, ry, or rz, the corresponding

stiffness has the unit of moment [ML2/T 2]. If the dof is p, the corresponding stiffness

has the unit of stress [M/LT 2].
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• DOFTYPE is the dof to be constrained from the existing node (ux, uy, uz, rx, ry, rz, Ux, Uy,

Uz, p)
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Finite Element: penalty element

A full command is:

1 add element # <.> type penalty
2 with nodes (<.> , <.>)
3 stiffness = <corresponding unit to dof >;
4 dof to constrain [DOFTYPE]

where

• No (or #) <element_number> is a unique element integer number (does not have to

be sequential, any unique positive integer number can be used)

• type penalty is the element type

• with node (n1 , n2) is the number of pre-existing nodes

• stiffness penalty stiffness to be used for the element. If the dof is ux, uy, uz, Ux, Uy, or

Uz, the corresponding stiffness unit is [M/T 2]. If the dof is rx, ry, or rz, the corresponding

stiffness has the unit of moment [ML2/T 2]. If the dof is p, the corresponding stiffness

has the unit of stress [M/LT 2].

• DOFTYPE is the dof to be constrained between nodes (ux, uy, uz, rx, ry, rz, Ux, Uy, Uz, p)
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Finite Element: 8NodeBrick_up

A full command is:

1 add element # <.> type 8NodeBrick_up
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>)
3 use material # <.> and acceleration field No (or #) <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

Note that, the permeability k is used with dimensions of [length]3[time]/[mass], which is

different from the usual soil mechanics convention, where the permeability has the dimension of

velocity, i.e. [length]/[time]. Their values are related by k = K/ρfg, where g is the gravitational

acceleration at which the permeability is measured.
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Finite Element: 8NodeBrick_upU

for which a full command is:

1 add element # <.> type 8NodeBrick_upU
2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8)
3 use material # <.> and acceleration field No (or #) <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^2>
7 rho_f = <M/L^2>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;
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Finite Element: 20NodeBrick_upU

for which a full command is:

1 add element # <.> type 20 NodeBrick_upU
2 with nodes (n1, n2, n3, n4 , n5 , n6, n7, n8,
3 n9 , n10 , n11 , n12 , n13 , n14 , n15 , n16 ,
4 n17 , n18 , n19 , n20)
5 use material # <.> and acceleration field No (or #) <.>
6 porosity = <.>
7 alpha = <.>
8 rho_s = <M/L^3>
9 rho_f = <M/L^3>

10 k_x = <L^3*T/M>
11 k_y = <L^3*T/M>
12 k_z = <L^3*T/M>
13 K_s = <F/L^2>
14 K_f = <F/L^2>;

Note that, the permeability k is used with dimensions of [length]3[time]/[mass], which is

different from the usual soil mechanics convention, where the permeability has the dimension of

velocity, i.e. [length]/[time]. Their values are related by k = K/ρfg, where g is the gravitational

acceleration at which the permeability is measured.
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Finite Element: 27NodeBrick_upU (command syntax is in development) ,

. . .
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Finite Element: contact

A full command is:

1 add element # <.> type contact
2 with nodes (<.>, <.>)
3 normal_stiffness = <F/L^2>
4 tangential_stiffness = <F/L^2>
5 friction_ratio = <.>
6 contact_plane_vector = (<.>, <.>, <.> );
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Finite Element: neoprene_rubber_isolator_element (command syntax is in develop-

ment) ,

. . .
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Finite Element: led_core_rubber_isolator_element (command syntax is in develop-

ment) ,

. . .
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Finite Element: frictional_pendulum_isolator_element_01

(command syntax is in development) ,

. . .
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Finite Element: frictional_pendulum_isolator_element_03

(command syntax is in development) ,

. . .
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Modeling: Damping

Two types of damping are available

First, define the damping.

1 add damping # <.> type Rayleigh with a0 = <1/time > a1 = <←↩
time > stiffness_to_use

2 = Initial_Stiffness -or- Current_Stiffness -or- ←↩
Last_Committed_Stiffness;

1 add damping # <.> type Caughey3rd
2 with a0 = <T> a1 = <1/time > a2 = <.> stiffness_to_use = [←↩

Initial_Stiffness ][ Current_Stiffness ][←↩
Last_Committed_Stiffness ];

1 add damping # <.> type Caughey4th
2 with a0 = <T> a1 = <1/time > a2 = <.> a3 = <.> ←↩

stiffness_to_use = [Initial_Stiffness ][ Current_Stiffness ][←↩
Last_Committed_Stiffness ];

then apply it to the element or node.

1 add damping # <.> to element # <.>;

1 add damping # <.> to node # <.>;
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Modeling: Constraints, Supports, Master-Slave Connections, etc.

1 fix node # <node_number > dofs [ux uy ux p Ux Uy Uz rx ry rz ←↩
all];

where at least one of the DOF fixity codes (ux uy ux p Ux Uy Uz rx ry rz all) has to

be invoked. These codes are

• ux, translation in x direction (for solid phase only in u− p− U and u− p elements)

• uy, translation in y direction (for solid phase only in u− p− U and u− p elements)

• uz, translation in z direction (for solid phase only in u− p− U and u− p elements)

• Ux, translation of pore fluid phase in x direction (for u− p− U elements)

• Uy, translation of pore fluid phase in y direction (for u− p− U elements)

• Uz, translation of pore fluid phase in z direction (for u− p− U elements)

• rx, rotation around x axes (for structural elements)

• ry, rotation around y axes (for structural elements)

• rz, rotation around z axes (for structural elements)

• all, all applicable DOFs for a given node

Example fix translation x and y for node #3 fix node # 3 dofs ux uy;

Example fix all appropriate DOFs for node #7. fix node # 7 dofs all;

1 free node # <.> dofs [ux uy ux p Ux Uy Uz rx ry rz]

1 add constraint equaldof with
2 master node # <.> and
3 slave node # <.>
4 dof to constrain <.>;

1 remove constraint equaldof node # <.>
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1 add single point constraint to node # <.>
2 dof to constrain <dof_type >
3 constraint value of <.>
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Modeling: Static Loads, Self Weight and other Acceleration/Inertia Related Forces

1 add acceleration field No <acceleration field number >
2 ax = <acceleration in x direction >*[L/T^2]
3 ay = <acceleration in y direction >*[L/T^2]
4 az = <acceleration in z direction >*[L/T^2];

Example adding acceleration induced loading field for (some) elements add acceleration←↩

field No 1

ax = 0*m/s^2

ay = 0*m/s^2

az = -9.81*m/s^2;
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Modeling: Nodal Loads

The general signature to add loads is

1 add load # <.> to node # <.>
2 type <load type > <direction > = <force_amplitude >
3 {more parameters };

The load # is a unique number assigned to each load. The node # is the number of a

node which has already been defined. The load type refers to the functional form in time or

pseudotime (for static analysis) and can be any of the list

• linear Constant rate time dependence.

• path Use an arbitrary function defined in an external file.

Each force type except linear have additional parameters which will be explained later.

The force direction refers to the degree of freedom the force will be added to. These force

directions are the conjugate in energy of the DOFs defined earlier. These are,

• Fx, force in x direction 1

• Fy, force in y direction 1

• Fz, force in z direction 1

• F_fluid_x, force to the pore fluid phase in x direction 2

• F_fluid_y, force to the pore fluid phase in y direction 2

• F_fluid_z, force to the pore fluid phase in z direction 2

• Mx, moment about x axes 3

• My, moment about y axes 3

• Mz, moment about z axes 3

1Applies to solid phase only when connected to coupled elements
1Applies to fluid phase when connected to coupled elements
0For elements with rotational DOFs, i.e. beams, shells
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Example command for adding three linear forces (fx = −10 ∗ kN, fy = −10 ∗ kN, fz =

−10 ∗ kN) to node # 1:

1 add load # 1 to node 1 type linear Fx = -10*kN;
2 add load # 2 to node 1 type linear Fy = -10*kN;
3 add load # 3 to node 1 type linear Fz = -10*kN;

The force type refers to the functional dependence in time (or pseudotime) that the force

will have. The possible functional forms have been listed before. Listed are additional parameters

which define these forces.

1. linear Receives no extra parameters. In this case the magnitude of the force is interpreted

as the magnitude of the force after one second of time (or pseudotime) has passed.

2. path

1 add load # <.> to node # <.> type path_series FORCETYPE = <←↩
force or moment scale factor > series_file = "STRING";

1 add load # <.> to node # <.> type path_time_series FORCETYPE ←↩
= <force or moment scale factor > time_step = <T> ←↩
series_file = "STRING";
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Modeling Loads: Selfweight

1 add load # <.>
2 to element # <.>
3 type self_weight;
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Modeling: Brick Surface Load

Surface of 8 node brick element with same pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , ←↩
<.> , <.> , <.>) with magnitude <.>;

Surface of 8 node brick element with different pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , ←↩
<.> , <.> , <.>) with magnitudes (<.> , <.> , <.> , <.>);

Surface of 20 node brick element with same pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , ←↩
<.> , <.> , <.>, <.>, <.>, <.>, <.>) with magnitude <.>;

Surface of 20 node brick element with different pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , ←↩
<.> , <.> , <.>, <.>, <.>, <.>, <.>) with magnitudes (<.> ←↩
, <.> , <.> , <.>, <.>, <.>, <.>, <.>);

Surface of 27 node brick element with same pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , ←↩
<.> , <.> , <.>, <.>, <.>, <.>, <.>, <.>) with magnitude ←↩
<.>;

Surface of 27 node brick element with different pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , ←↩
<.> , <.> , <.>, <.>, <.>, <.>, <.>, <.>) with magnitudes ←↩
(<.> , <.> , <.> , <.>, <.>, <.>, <.>, <.>, <.>);
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Modeling: Motion Time Histories

If the time increment is constant during the analysis, the following command can be used (the

input files will have only one column corresponding to displacement, velocity, or acceleration):

1 add imposed motion # <.> to node # <.> dof DOFTYPE
2 time_step = <T>
3 displacement_scale_unit = <L>
4 displacement_file = "filename"
5 velocity_scale_unit = <L/T>
6 velocity_file = "filename"
7 acceleration_scale_unit = <L/L^2>
8 acceleration_file = "filename";

If the time increment is defined in the files or it might not be changed with constant increment

during the analysis, the following command can be used (the input files will have two columns.

The first column is the time while the second column will have corresponding displacement,

velocity, or acceleration):

1 add imposed motion # <.> to node # <.> dof DOFTYPE
2 displacement_scale_unit = <displacement >
3 displacement_file = "filename"
4 velocity_scale_unit = <velocity >
5 velocity_file = "filename"
6 acceleration_scale_unit = <acceleration >
7 acceleration_file = "filename";
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Modeling: Domain Reduction Method

1 add domain reduction method loading # <.>
2 time_step = <T>
3 scale_factor = <.>
4 number_of_steps = <.>
5 number_of_drm_nodes = <.>
6 number_of_drm_elements = <.>
7 x_max = <L>
8 x_min = <L>
9 y_max = <L>

10 y_min = <L>
11 z_max = <L>
12 z_min = <L>
13 element_file = "filename"
14 nodes_file = "filename"
15 displacement_file = "filename"
16 acceleration_file = "filename";
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Modeling: Penalty Displacements

First the penalty element should be defined and the displacement time history should be added

to the penalty element using the following commands depending on the type of the displacement

input:

1 add penalty displacement # <.> to element # <.> DOFTYPE = <L←↩
> type linear;

1 add penalty displacement # <.> to element # <.> dof DOFTYPE ←↩
type path_series time_step = <T> scale_factor = <.> ←↩
series_file = "STRING";

1 add penalty displacement # <.> to element # <.> dof DOFTYPE ←↩
type path_time_series scale_factor = <.> series_file = "←↩
STRING";
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Modeling: Removing loads and motions

Loads and motions can be removed using:

1 remove load # <.>

1 remove imposed motion # <.>
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B.2.4 Simulation
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Simulation: Solvers

1 define solver ProfileSPD (or) profilespd | UMFPack (or) ←↩
umfpack;
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Simulation: Static Solution Advancement

1 simulate <.> steps using static algorithm;
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Simulation: Dynamic Solution Advancement

1 simulate <.> steps using transient algorithm time_step = <T←↩
>;

1 simulate <.> steps using variable transient algorithm
2 time_step = <T>
3 minimum_time_step = <.>
4 maximum_time_step = <.>
5 number_of_iterations = <.>

397



Simulation: Generalized Eigenvalue Analysis

At any given point in an analysis a generalized eigenvalue of the system can be performed, based

on the current mass and tangent stiffness matrices. The command to do this is.

1 simulate using eigen algorithm number_of_modes = <.>;

The first number of modes eigenvalues are displayed on screen after the analysis is performed.

If more eigenvalues are requested than degrees-of-freedom the system has, the excess reported

values are set to NaN (not a number).
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Simulation: Solution Integrators

1 define static integrator displacement_control
2 using node # <.> dof DOFTYPE increment <L>;

1 define load factor increment <.>;

1 define dynamic integrator Newmark
2 with gamma = <.> beta = <.>;

1 define dynamic integrator Hilber_Hughes_Taylor
2 with alpha = <.>;
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Simulation: Solution Algorithms

1 define algorithm With_no_convergence_check (or) ←↩
with_no_convergence_check | Newton (or) newton | ←↩
Modified_Newton (or) modified_newton;
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Simulation: Convergence Criteria

1 define convergence test
2 Norm_Displacement_Increment|Energy_Increment|Norm_Unbalance ←↩

tolerance = <L>
3 verbose_level = <0>|<1>|<2>;
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Simulating: Response and State

For saving the response of the model including nodal displacements, element forces, and element

stresses in mysql format, the following command can be used:

1 save response of model type mysql
2 databasename <.>
3 host <.>
4 username <.>
5 password <.>
6 port <.>
7 socket <.>

For saving the state of the analysis in mysql format, the following command can be used:

1 save state of model type mysql
2 commit # <.>
3 databasename <.>
4 host <.>
5 username <.>
6 password <.>
7 port <.>
8 socket <.>
9 clientFlag <.>;

Restoring the state of the analysis from mysql format, can be done using the following

command:

1 restore state of model type mysql
2 commit # <.>
3 databasename <.>
4 host <.>
5 username <.>
6 password <.>
7 port <.>
8 socket <.>
9 clientFlag <.>;

The input arguments are:

• commit #

• databasename: Name of the database to be created/used in mysql

• host: Name/IP of the computer which the database will be created/used (for the local
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computer ”localhost” can be used)

• username: Username on the mysql server

• password: Password corresponding to the username to be used on mysql server (if no

password is setup up leave it empty)

• port: mysql port (default is 3306)

• socket: path to mysql.sock file

• clientFlag
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B.2.5 Checking the Mesh

1 check mesh filename;
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