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Estimating Event Probabilities using Zero Failure Data 

Karl Breitung 
Researcher, TU Munich, Germany 

Marc A. Maes 
Professor, University of Calgary, Canada, and UGent, Belgium 

ABSTRACT: In a rather well publicized June 2013 CBC broadcast, the safety of a specific series of 
Canadian onshore gas pipeline joints was declared “absolute” by one proponent, since, historically, no 
incidents or failures had ever been reported for that site. An opponent then argued that the face value of 
this risk could never be zero, but “very small”. The objective of the present paper is to review just how 
small, and at which confidence level, one can sensibly consider the actual incidence rate to be. A 
comparison of the most popular approaches and a comprehensive test for consistency, point to the 
superiority of the Bayesian estimator together with a non-central posterior probability interval. 

 

1. INTRODUCTION 
A common scenario in the context of data mining 
and explorative statistics of accidents/failures, is 
that the analyst runs into data segments or 
subsets that have zero reported incidents. Is it 
legitimate to construct, with a specified 
confidence, an upper limit pU for which we can 
claim that the “true” incident probability p will 
not exceed this value?  

A typical example concerns pipeline rupture 
and leak statistics (TSB, 2013): out of thousands 
of pipeline joints n a large majority of joints are 
observed to have no recorded incidents. There is 
often confusion about which confidence intervals 
apply in a case like this. Some analysts replace 
the zero incident case X = 0 by X = 1 because it 
is “easier” to analyze and because it is after all 
“conservative”.  

Others suggest that if, in the case of a 
binomial model, n consecutive trials have not 
resulted in any failure (X = 0), then we should 
prudently assume that the (n+1)-th will; 
subsequently this pessimistic estimate is used for 
prediction. 

2. ESTIMATION FOR ZERO INCIDENTS 
One fundamental problem is related to the setting 
of the problem and to its formulation. In this 

paper we consider a binomial model originating 
from a setup where n units are monitored and 
incidents are observed within each unit. It also 
applies to the case where n sections of a 
continuous system such as a pipeline are tested 
and X are found to be faulty. The analysis for a 
Poisson model is entirely similar. 

Suppose we are to estimate for a sequence 
of n independent Bernoulli trials, the probability 
of failure p if X failures have been observed in 
this sequence. The (frequentist) estimator for p is: 

 𝑝̂ = 𝑋
𝑛

   (1) 

which suggests that, if no failures were observed, 
the estimator is zero. 

In a Bayesian setting, one starts from a prior 
distribution for the parameter p. Usually, the 
conjugate prior Beta distribution fpr is used with 
pdf: 

 𝑓pr(𝑝) = 1
𝐵(𝑎,𝑏)

𝑝𝑎−1(1 − 𝑝)𝑏−1   (2) 

where B(a,b) = (Г(a)Г(b))/Г(a+b) is the Beta 
function. The random variable with this pdf has a 
mean equal to a/(a+b) and a standard variance 
equal to ab/(a+b)2(a+b+1). Its shape is 
determined by the parameters a and b. Taking a 
= b = 1 gives a uniform distribution over the unit 
interval. Sometimes also the Jeffrey’s prior with 
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a = b = 0.5 is used, but here we will consider 
only the uniform prior, since it has some 
optimality properties as shown in the following. 
From this we then calculate the posterior using 
the likelihood of observations:  

 ℓ(𝑋|𝑝) = �𝑛𝑋�𝑝
𝑋(1 − 𝑝)𝑛−𝑋      (3) 

yielding: 

𝑓post(𝑝|𝑋, 𝑛) = 

= 1
𝐵(𝑋+1,𝑛−𝑋+1)

𝑝𝑋(1 − 𝑝)𝑛−𝑋    (4) 

The Bayes estimator for a parameter is the 
mean of the posterior distribution fpost. Then the 
Bayes estimator for the probability p is in the 
case X = 0:  

 𝑝̂ = 1
𝑛+2

 (5) 

These results can be found in any standard 
text about Bayesian methods, e.g. in Press (1989), 
p. 40. 

So in the Bayesian setting the estimator is 
not equal to zero for X = 0 as in the frequentist 
case.  

The next issue concerns the derivation of 
sensible confidence intervals for the probability p. 
This poses also significant problems in the case 
X = 0. 

3. THE CLOPPER-PEARSON CONFIDENCE 
INTERVALS 

The standard method for determining such 
intervals is described in detail in Clopper and 
Pearson (1934). They derive confidence intervals 
for the probability p in a frequentist setting. 
Unfortunately, this procedure does not give very 
satisfactory results for the case X = 0. In this case 
the confidence interval for the level α is in fact a 
confidence interval for the level α/2, i.e. it is too 
large. 

The original objective (Clopper and Pearson, 
1934) is to calculate for a given confidence level 
α and an observed number of failures X as the 
lower bound pL for the confidence interval, the 
value pL for which:  

 ∑ �
𝑛
𝑗� 𝑝𝐿

𝑗(1 − 𝑝𝐿)𝑛−𝑗 = (1−𝛼)
2

 𝑛
𝑗=𝑋      (6) 

and as the upper bound pU the value for which:  

 ∑ �
𝑛
𝑗� 𝑝𝑈

𝑗 (1 − 𝑝𝑈)𝑛−𝑗 = (1−𝛼)
2

 𝑋
𝑗=0  (7) 

One has for the sums using integration by 
parts: 
 ∑ �

𝑛
𝑗� 𝑝

𝑗(1 − 𝑝)𝑛−𝑗 = 𝑛
𝑗=𝑋       

= ∫ 𝑡𝑋−1(1−𝑡)𝑛−𝑋

𝐵(𝑋,𝑛−𝑋+1)
𝑑𝑑𝑝

0  (8) 

as well as 
 ∑ �

𝑛
𝑗� 𝑝

𝑗(1 − 𝑝)𝑛−𝑗 = 𝑋
𝑗=0   

= ∫ (1−𝑡)𝑛−𝑋−1𝑡𝑋

𝐵(𝑋+1,𝑛−𝑋)
𝑑𝑑1

𝑝   (9) 

So both bounds fulfilling the equations 
above can be found by inverting the incomplete 
Beta function with the respective parameters k 
and n – k + 1. 

The authors do not consider in the paper the 
case of X = 0 separately, but from the diagrams 
one sees that the lower bound is simply set to 
zero, since the sum on the left side of Eq. (6) is 
equal to unity, so the equation cannot be fulfilled. 
Therefore the confidence level is determined by 
the second equation only resulting in an interval 
with confidence level α/2. So its probability 
content is larger and it is longer. 

The Bayesian probability interval [pL, pU] 
for a specified “confidence” level α can be 
retrieved from the posterior pdf (4): 

 Pr(𝑝𝐿 < 𝑝 < 𝑝𝑈|𝑋, 𝑛) =    

= ∫ 𝑓post
𝑝𝑈
𝑝𝐿

(𝑝|𝑋, 𝑛)𝑑𝑑 = 𝛼 (10) 

For X = 0, the lower bound pL can be set to 
zero, without distorting the highest posterior 
density interval too much, so that pU can be 
found from inverting the incomplete beta pdf 
with parameters X + 1 and n – X + 1 (Box and 
Tiao, 1992): 

 
 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 3 

 ∫ 𝑓post
𝑝𝑈
0 (𝑝|𝑋, 𝑛)𝑑𝑑 =     

= ∫ 𝑝𝑋(1−𝑝)𝑛−𝑋

𝐵(𝑋+1,𝑛−𝑋+1)
𝑑𝑑 =𝑝𝑈

0 𝛼  (11) 

4. COMPARISON OF METHODS 
In Pires and Amado (2008) a whole menagerie of 
about twenty different methods for calculating 
confidence intervals for the binomial proportions 
are presented. They are then compared with 
respect to criteria such as mean coverage 
probability and expected length.  

For a given method with number i, which 
produces the confidence interval [Li(j), Ui(j)] for 
j successes in n experiments, the coverage 
probability CP for given n and given p is given 
by the summation: 

 CP(𝑝, 𝑛, 𝑖) = 

= ∑ �
𝑛
𝑗�𝑗=0 𝑝𝑗(1 − 𝑝)𝑛−𝑗𝐼[𝐿𝑖(𝑗),𝑈𝑖(𝑗)](𝑝) (12) 

with IA the indicator function for the interval A. 
For a fixed n, the mean coverage probability is 
found as: 

 𝔼�CP(𝑛, 𝑖)� = ∫ CP(𝑝, 𝑛, 𝑖)𝑑𝑑1
0    (13) 

Then the expected length of an interval 
calculated with method i, given p and n is:  

 Eℓ(𝑝, 𝑛, 𝑖) = 

= ∑ �
𝑛
𝑗�𝑗=0 𝑝𝑗(1 − 𝑝)𝑛−𝑗�𝑈𝑖(𝑗) − 𝐿𝑖(𝑗)� (14) 

Integrating over the parameter p gives then 
the overall expected length: 

 𝔼�Eℓ(𝑝, 𝑛, 𝑖)� = ∫ Eℓ(𝑝, 𝑛, 𝑖)1
0 𝑑𝑑 = 

 = ∑ �
𝑛
𝑗�𝑗=0 ∫ 𝑝𝑗(1 − 𝑝)𝑛−𝑗�𝑈𝑖(𝑗) − 𝐿𝑖(𝑗)�

1
0 𝑑𝑑   

  (15) 

The coverage probabilities CP are shown for 
n = 40 and n = 400 in Pires and Amado (2008). 
These functions show quite erratic behavior as 
function of p. 

The twenty methods given in Pires and 
Amado (2008) are compared considering mean 
coverage probability, maximum and minimum 

coverage probability and then also mean, 
minimum and maximum length of the intervals. 
A method which is optimal for all possible 
criteria cannot be found, so mean coverage 
probability and mean length seem to be the most 
useful ones. The mean coverage should be as 
close as possible to the nominal coverage for 
which the intervals are constructed and the 
length of the intervals should be minimal. 

Consider now these two quality criteria for 
possible confidence intervals:  

1. the mean coverage probability is to be as near 
as possible to the nominal coverage 
probability.  

2. its length should be as short as possible.  
 
Due to the definition of the Bayesian 

confidence interval its mean coverage probability 
is always equal to the nominal. Considering the 
second criterion of mean length the Bayesian 
highest posterior density interval is always 
optimal, see p. 190 in Pires and Amado (2008). 

So the Bayesian approach using a posterior 
based on a uniform prior distribution gives 
“optimal” intervals if the criteria selected are the 
mean coverage probability and the mean length 
of the interval. 

In their conclusions Pires and Amado (2008) 
consider only central intervals thereby excluding 
the Bayesian intervals citing computational 
challenges related to non-central intervals. The 
exclusion of non-central intervals is not really 
justifiable, since nowadays the computational 
effort in computing such intervals has largely 
become irrelevant. For these non-central 
intervals no clear optimal methods are singled 
out. 

5. NEED FOR CONSISTENT METHODS 
Consider once more the case where no failure 
has been observed till now. Let us assume two 
different methods for estimating the probability 
of such a failure have been applied, resulting in 
two different estimates of the probability: 
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 𝑝̂1 > 𝑝̂2 (16) 
From this follows that we can use for 

estimate of p: 

 𝑝 ≈ 𝑝̂1 (17) 

 𝑝 ≈ 𝑝̂2 (18) 

Subtracting the equations and dividing by 
𝑝̂1 − 𝑝̂2 gives: 

 0 ≈ 1 (19) 
So one can derive from such inconsistent 

estimation methods false statements and ex falso 
sequitur quodlibet. How can we improve this 
situation? 

There have been proposals to improve the 
estimator in the case of zero observations by 
adding “virtual” observations. For example, if in 
n trials no failure has been observed, then we 
might assume that the first failure is just around 
the corner, i.e. it happens at the next trial. So the 
estimator for p is then: 

 𝑝̂1 = 1
𝑛+1

= 1
𝑛
− 1

𝑛(𝑛+1)
 (20) 

But for large n this is approximately equal 
to 1/n, so we here give almost the same 
probability weight to a case where no failures 
have been observed as to a case where one 
failure has been observed in n trials for which the 
estimator is: 

 𝑝̂2 = 1
𝑛
 (21) 

If this is now plugged into a series system 
with k identical components, we would have as 
estimate for the failure Fk of the system in case 1:  

 Pr(𝐹𝑘1)� ≈ 𝑘
𝑛+1

= 𝑘
𝑛
− 𝑘

𝑛(𝑛+1)
 (22) 

whereas in the second case: 

 Pr(𝐹𝑘2)� ≈ 𝑘
𝑛
 (23) 

which for large n is almost the same. So for 
small k we see that the probability of failure here 
is estimated as almost the same in spite of the 
fact that we have no failure observed in the first 

case. This leads to an unjustified and 
“conservative” shift of resources. 

The only reasonable recourse is to apply a 
fully Bayesian setting (Eqs. (2) to (5) above). 
Furthermore, one should also consider the actual 
context of the problem. For instance, if the data 
base is spatial in its structure – as in the case of 
pipeline incidents Canada-wide (TSB, 2013) – 
then a spatially hierarchical analysis can be 
performed where evidence of reported incidents 
is to a certain optimal extent “shared” over all 
assets resulting in a more relaxed treatment of 
“zero” incidents. 
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Estimating the Probability of Rare Events: Addressing Zero
Failure Data

John Quigley1,∗ and Matthew Revie1

Traditional statistical procedures for estimating the probability of an event result in an esti-
mate of zero when no events are realized. Alternative inferential procedures have been pro-
posed for the situation where zero events have been realized but often these are ad hoc, rely-
ing on selecting methods dependent on the data that have been realized. Such data-dependent
inference decisions violate fundamental statistical principles, resulting in estimation proce-
dures whose benefits are difficult to assess. In this article, we propose estimating the proba-
bility of an event occurring through minimax inference on the probability that future samples
of equal size realize no more events than that in the data on which the inference is based. Al-
though motivated by inference on rare events, the method is not restricted to zero event data
and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use
of the minimax procedure provides a risk adverse inferential procedure where there are no
events realized. A comparison is made with the MLE and regions of the underlying proba-
bility are identified where this approach is superior. Moreover, a comparison is made with
three standard approaches to supporting inference where no event data are realized, which
we argue are unduly pessimistic. We show that for situations of zero events the estimator can
be simply approximated with 1

2.5n , where n is the number of trials.

KEY WORDS: Binomial; minimax; zero event

1. INTRODUCTION

Point estimates of the probability of rare events
inform risk mitigation strategies and ALARP anal-
ysis.(1) Classical inferential approaches to estimat-
ing the probability of events occurring, namely, the
ratio of occurrences to opportunities, provides an
optimistic estimate when zero events have been re-
alized. The resulting point estimate of 0 for the prob-
ability of an event being realized is problematic for
risk analysis as it removes all resulting consequences
from a risk analysis study. As such, alternative infer-
ence procedures have been proposed.

1 Department of Management Science, University of Strathclyde,
Glasgow G1 1QE, Scotland.

∗Address correspondence to Dr. John Quigley, Department of
Management Science, University of Strathclyde, Glasgow G1
1QE, Scotland; tel: +44-141-548-3152; j.quigley@strath.ac.uk.

Using expert judgment for supporting inference
is appropriate if expertise is available (see Ref. 2
for review). However, there are two shortcomings
with this approach. First, for low-frequency events,
providing a subjective probability distribution on
the probability of an event being realized requires
a level of precision to be meaningful that is cog-
nitively burdensome. Second, to utilize a Bayesian
inference mechanism requires the prior distribu-
tion to be elicited with no knowledge of the data
upon which the prior assessment will be updated.
If the prior has been elicited at the point when
the inference is required, there can be no updat-
ing. In this case, the inference must rely entirely
on the subjective assessment. Expert judgment can
provide meaningful insight but with such shortcom-
ings for rare events, data-driven methods are also
desirable.

1120 0272-4332/11/0100-1120$22.00/1 C© 2011 Society for Risk Analysis
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Estimating the Probability of Rare Events 1121

There have been several data-driven approaches
proposed for assessing the probability of an event
being realized given zero events have been realized.
However, each suffers from ad hockery, in so far as
they are proposed to be applied given the situation
that zero events have been realized. This presents
two shortcomings hampering the confidence of the
decisionmakers. First, switching between methods
depending on the data can result in incoherent infer-
ence. Second, without a transparent methodological
basis for an approach, it cannot be adequately cri-
tiqued. As such, they require more faith on the part
of the decisionmakers.

In Section 2, we provide a brief summary of
the data-driven methods for inference proposed for
background. Section 3 provides a summary of the
minimax criteria for inference, which will form the
basis of the proposed method within this article. Sec-
tion 4 provides the derivation of the proposed ap-
proach. Section 5 provides a comparison with the
maximum likelihood estimate (MLE) whereas in
Section 6 a comparison is provided with alternatives
given zero events are realized. Section 7 provides a
summary and conclusion.

2. BACKGROUND

There are alternative methods to the MLE, that
is, the ratio of events realized to opportunities, that
have been proposed for the situation of zero event
data and within this section we provide a brief cri-
tique. A common criticism we have with many of
these approaches is that they have been developed
for the situation of zero event data only and as such
would require the analyst to switch to an alternative
procedure if at least one event were realized. Some
approaches are derived with a Bayesian methodol-
ogy using an uninformative prior distribution, typi-
cally a uniform distribution over [0,1] on the prob-
ability of an event being realized. However, such
an assumption is questionable, particularly in low-
frequency events, resulting in overly conservative es-
timates as the estimate is pulled toward the mean of
the prior, that is, 1

2 .
The International Standard IEC(3) propose a

lower one-sided confidence limit for zero event data
under an exponential distribution. Confidence inter-
vals are derived from the principle that the data are
random and once realized will be used within a for-
mula to provide an interval. This interval will con-
tain the true underlying parameter value with a given

probability. The intervals are not known a priori.
However, if we only apply this procedure when we
have zero event data then the intervals are always
known a priori. As such it is not clear what criteria
are being used to derive this estimate and its mean-
ing is questionable.

Bailey(4) presented a review of five methods
for inferring the probability of an event given zero
events have been realized. Two were based on
confidence interval methodology and one on using
a uniform prior, which have similar criticisms as
previously discussed. One proposed using the MLE
assuming there had been one event realized, thus
providing an overestimate, but without any rigorous
derivation we are not provided with guidance as to
the extent of the pessimism. The approach recom-
mended was Equation (1):

δB = 1 − 0.5
1
n , n = 1, 2, . . . (1)

This method is applied in explosives testing for
zero event data (Ref. 5, as cited by Ref. 4). The rea-
soning underpinning this approach is that given zero
events have been observed in a sample size of n, the
probability that this observed outcome would be re-
alized as opposed to all other outcomes is assigned
a probability of 0.5. The purpose of Bailey’s review
was to compare Equation (1) with the four alterna-
tive methods. He concluded that there was little dif-
ference in the resulting estimates and that Equation
(1) could be viewed as an approximation of the me-
dian of the posterior distribution obtained through
applying Bayesian methodology with an uninforma-
tive prior. In concluding, he generalized Equation (1)
to facilitate using alternative values rather than 0.5.

A shortcoming with Equation (1) is that the
value 0.5 is obtained through a belief that the proba-
bility of realizing the same outcome from a repeated
experiment is 0.5. Although we can substitute dif-
ferent probability values, we are applying a subjec-
tive probability approach to addressing this situation
and although the use of expert judgment is laudable
it does mean that it is not a data-driven approach.
Moreover, its evaluation should be concerned with
an accompanying elicitation protocol.

An alternative method for estimating the proba-
bility when zero events have been realized is the Rule
of Three also known as Hanleys Rule,(6,7) which rec-
ommends Equation (2) as an estimator:

δRof3 = 3
n
, n ≥ 30. (2)
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1122 Quigley and Revie

This approach can be derived as an approxima-
tion to a Bayesian approach where a uniform prior is
assumed for the underlying probability and the 95th
percentile is derived from the posterior distribution,
as well as from a frequentist approach, where the
probability of observing the data realized is assigned
0.05, both resulting in Equation (2) as an estimate of
the underlying probability. As such, this approach is
used to obtain an upper bound of the probability and
as a point estimate will be overly conservative.

The notion of developing inference on the prob-
ability of the same data being realized in a repeated
experiment was also considered more rigorously by
Dewoody et al.(8). The underlying method in this ap-
proach was to apply Bayesian methodology with an
uninformative prior. We will develop an inferential
procedure from a frequentist perspective for infer-
ring the probability of no more events being realized
in a repeated experiment of identical size than that
realized in the experiment upon which the inference
is based. As such we will not restrict our study to zero
events and develop procedures for the entire sample
space.

3. REVIEW OF MINIMAX ESTIMATION

We concern this study with estimating the prob-
ability of an event being realized from data gen-
erated from a binomial distribution, which assumes
that there will be n independent trials or opportu-
nities for the event to be realized, each statistically
independent and identically distributed with prob-
ability p. We will develop our procedures about a
quadratic loss function and as such the accuracy of
the estimate will be measured by the risk function of
Equation (3):

R(g(p), δ) = E[(g(p) − δ(X))2], (3)

where p is the probability of an event being realized,
0 ≤ p ≤ 1; g (p) is the real-valued function whose
value at p is to be estimated, that is, the estimand;
n is the sample size, that is, number of observations;
X is the random variable taking on values in a sam-
ple space according to a binomial distribution with
cumulative distribution function (CDF) F (X; n, p);
and δ is a real-valued function of the sample space
used to estimate g (p).

If our criteria was to choose a procedure, that is,
δ, to minimize the expected risk function for estimat-
ing the probability of failure, that is, p, then g (p)
would equal p and δ could be shown to equal the

MLE Equation (4):

δMLE(X) = X
n

. (4)

The risk function, Equation (3), for this situation
can be shown to be Equation (5). This corresponds to
the variance of the MLE as it is an unbiased estimate
of p:

R(p, δMLE) = p(1 − p)
n

. (5)

Upon inspection of Equation (5), we see that the
risk is not constant for all p. This risk is maximized at
0.5.

The minimax estimator can be obtained through
applying a more risk adverse criteria. For this ap-
proach we seek the estimator with the best worst
case. Formally, we express this in Equation (6):

δMM = arg min
δ

max
p

R(g (p) , δ) . (6)

The minimax estimator for the parameter p can
be show to be:(9)

δMM (X) = X
n

√
n

1 + √
n

+ 1
2

1
1 + √

n
. (7)

The risk function for this situation can be shown
to be Equation (8):

R(p, δMM) = 1
4

1(
1 + √

n
)2 . (8)

Comparing Equation (5) with Equation (8) it
can be shown that the minimax procedure outper-
forms the MLE around p = 0.5. However, the min-
imax introduces a bias, pulling the estimate toward
0.5. In addition, for large sample sizes the improve-
ment achieved in this region, i.e., 0.5, is negligible.
Although the minimax procedure would overcome
the problem of a non-zero estimate when confronted
with the zero event data issue, the performance is
poor with small values of p.

Encouraged with its ability to outperform the
MLE in certain regions as well as maintaining a risk
adverse inferential procedure we will develop a min-
imax approach for estimating the value of the CDF
rather than the probability of an event being realized
and determine the value of p associated with the es-
timate of the CDF.

4. MINIMAX FOR THE CDF

In keeping with the work of Dewoody et al. we
will initially seek to estimate the probability of no
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Estimating the Probability of Rare Events 1123

Fig. 1. Expectation of the CDF of a binomial showing sensitivity
to changes when p is small.

more than the observed number of events being re-
alized, that is, CDF. An important distinction is that
we do not condition on there being zero events real-
ized in the data. As such we are not considering the
situation of zero failures; however, we are motivated
by high-reliable/low-frequency events/items.

Pursuing criterion of minimizing the expected
risk for the CDF would result in using the expected
CDF as the estimate. Fig. 1 illustrates the expecta-
tion of the CDF for n = 1, 10, 100. We see this varies
with p, which means that we need to know p before
we could estimate it. Asymptotically, these curves ap-
proach 0.5, which would result in an estimate for the
underlying probability as with Equation (1). How-
ever, the convergence is slow and we are concerned
with low-frequency events. Note that for small val-
ues of p, the mean of the CDF is high and sensitive to
changes in p.

The approach we propose to estimate p is to first
estimate the CDF associated with either X or (n −
X), depending on which is smaller. This is to avoid
the situation where all events have been realized as
the CDF is 1. The resulting risk function is expressed
in Equation (9):

R = E
[(

F (Y; n, p) − F̂0
)2
∣∣∣ Z = X

]
E [I (Z = X)]

+ E
[(

F (Y; n, 1 − p) − F̂1
)2
∣∣∣ Z = n − X

]
× E [1 − I (Z = X)] , (9)

where

Z = min(X, n − X),

I(Z = X) =
{

1, if Z = X,

0, i f Z �= X,

F(Y; n, p) =
Y∑

i=0

n!
(n − i)!i!

pi (1 − p)n−i ,

0 ≤ p ≤ 1, n ∈ N, Y = 0, 1, . . . , n.

We then apply a minimax criteria to R for the
estimators

(
F̂0, F̂1

)
and solve for p.

For the remainder of the article we focus on F̂0;
however, all of the analysis can be easily adapted to
be expressed for F̂1. Fig. 2 illustrates the relationship
between the underlying parameter p, candidate esti-
mates of the CDF, that is, F̂0, and the risk function for
a sample of 10 for the situation where 0 ≤ X ≤ [ n

2 ],
that is, Z = X. This figure shows that for values of p
at 0 the risk is very high with a low F̂0, but low when
F̂0 is high. Alternatively, when p is 0.5 a high value
of F̂0 results in a large risk. The risk associated with
high values of p are very low, reflecting a low prob-
ability of realizing a number of events in the interval
0 ≤ X ≤ [ n

2 ].
The risk when p equals 0 is (1 − F̂0)2, which is a

decreasing function of F̂0. When we consider values
of p that are nearer to 0.5, we see from Fig. 2 that the
risk has a local minimum about F̂0 equal to 0.4. For
a minimax criteria we seek a value of F̂0 that min-
imizes the maximum risk. We find such a value by
equating the risk when p equals 0 to the risk when p
equals values greater than 0 and solve for F̂0. An ex-
pression for this is provided in Theorem 1, as well as
showing that the minimax estimate will be the mini-
mum of these iso-risk points with respect to p. This is
due to the risk continuously decreasing as a function
of F̂0 when p equals 0 so after it hits its first iso-risk
point, the risk associated with that particular value of
p will be increasing as a function of F̂0 so the maxi-
mum risk will also be rising. In Theorem 2, we show
that as the sample sizes increases toward infinity the
minimax estimator of the CDF approaches 2

3 .

THEOREM 1: The minimax estimate of the CDF of the
binomial distribution evaluated at a random event X
is:

F̂0 = min
p

F̂p,
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1124 Quigley and Revie

Fig. 2. Illustrates the risk in relationship to the underlying probability p and the estimate of the CDF F̂0 for a sample size of 10 showing a
minimum maximum risk at F̂0 equal to 0.7.

where

F̂p = A− B
C

, (10)

Proof. See Appendix A.
Using numerical methods we evaluated the min-

imax estimate F̂0 for sample sizes from 1 to 50. These
are presented in Table I.

Upon inspection, there are four small but curious
features of the estimates. At sample sizes 9, 11, 13, 15,
and 17, F̂0 experiences a small local maximum. This is
very slight, not even noticeable to four decimal places
for sample sizes 15 and 17.

We see from Theorem 2 that the minimax esti-
mate of the CDF, that is, F̂0, approaches 2

3 as n goes
to infinity.

A = 1 −
[ n

2 ]∑
y=0

F(y; n, p) f (y; n, p)

B =

√√√√√√
⎛
⎜⎝1 −

[ n
2 ]∑

y=0

F(y; n, p) f (y; n, p)

⎞
⎟⎠

2

−
(

1 − F
([n

2

]
; n, p

))⎛⎜⎝1 −
[ n

2 ]∑
y=0

(
F (y; n, p)2

)
f (y; n, p)

⎞
⎟⎠

C = 1 − F
([n

2

]
; n, p

)
.

THEOREM 2:

lim
n→∞ F̂p =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
3
, p <

1
2
,

7
4

− 2

√
55

192
= 0.67956, p = 1

2

1, p >
1
2
.

(11)
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Table I. Minimax Estimates of the CDF
of a Binomial Distribution F̂0

n F̂0 n F̂0 n F̂0 n F̂0 n F̂0

1 0.7500 11 0.7065 21 0.6925 31 0.6868 41 0.6836
2 0.7413 12 0.7021 22 0.6910 32 0.6860 42 0.6831
3 0.7340 13 0.7022 23 0.6910 33 0.6860 43 0.6831
4 0.7276 14 0.6989 24 0.6897 34 0.6853 44 0.6827
5 0.7236 15 0.6989 25 0.6897 35 0.6853 45 0.6827
6 0.7195 16 0.6963 26 0.6886 36 0.6847 46 0.6823
7 0.7172 17 0.6963 27 0.6886 37 0.6847 47 0.6822
8 0.7120 18 0.6942 28 0.6877 38 0.6841 48 0.6819
9 0.7123 19 0.6942 29 0.6876 39 0.6841 49 0.6819
10 0.7063 20 0.6925 30 0.6868 40 0.6836 50 0.6815

Proof. See Appendix B.

Simply, when X ≤ n
2 we propose Equation (12)

for obtaining inference on p where F̂0 is obtained
from Table I or asymptotically estimated as 2

3 :

p̂ =
{

p
∣∣∣F (X; n, p) = F̂0, X ≤

[n
2

]}
. (12)

And when X > n
2 we propose the following estimate

for p:

p̂ = 1 −
{

p

∣∣∣∣F (n − X; n, p) =
∧
F0, X >

[n
2

]}
. (13)

Therefore, for situations where there are zero
events realized we propose Equation (14):

p̂ = F̂0

1
n . (14)

In Section 5, we will compare the inference pro-
cedure of Equation (12) with the MLE of Equation
(5) generally. In Section 6, we will compare the infer-
ence when zero events are realized, that is, (Equation
14) with alternatives such as, Equation (1) as well as
the uninformative prior.

5. COMPARISON WITH MLE

In this section, a comparison will be made be-
tween the estimators for p obtained using the ap-
proach described with Equation (12) and δMLE ex-
pressed in Equation (1). The comparison is in three
parts. First, we compare the difference between the
two estimators. Second, we evaluate for bias. Finally,
we make a comparison based on accuracy.

5.1. Relationship with the MLE

We explored the relationship between the esti-
mate for p using p̂ and δMLE for sample sizes rang-
ing up to 100. The relationships appeared linear and

Table II. Estimated Slope and Associated R2 from Estimating
Relation Between δMLE and p̂ Showing Close

Linear Relationship

Sample F̂0
1
n

size (n) (i.e., intercept) bn R2

10 0.0342 0.8581 0.9956
20 0.0182 0.8886 0.9972
30 0.0124 0.9047 0.9978
40 0.0095 0.9152 0.9982
50 0.0076 0.9228 0.9985
60 0.0064 0.9286 0.9987
70 0.0055 0.9301 0.9998
80 0.0048 0.9369 0.9989
90 0.0043 0.9401 0.9990
100 0.0039 0.9423 0.9991

so we pursued fitting linear models. As p̂ is nonzero
when δMLE is 0, we had an intercept and we used least
squares to estimate the slope to fit a model of the
form in Equation (15):

p̂ ≈ F̂0

1
n + bn

X
n

, X = 0, 1, . . . ,
[n

2

]
. (15)

We calculated 10 regression models for sample
sizes 10, 20, . . . , 100. The results are summarized in
Table II. Note the R2 is very high, suggesting a good
fit.

We see from Table II that as the sample size in-
creases the slope increases toward 1, the intercept
decreases, and the difference between the two esti-
mates decreases.

We explored the relationship between the slope
estimates in Table II with sample size and derived the
following relationship empirically:

1
bn

≈ 1 + 0.4622
n0.439

, 10 ≤ n ≤ 100

R2 = 0.999.
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1126 Quigley and Revie

Table III. Summary of Difference Between p̂ and δMLE for
Nonzero Data

Sample
Size (n) Max Min Median

10 0.0190 −0.0378 −0.0061
20 0.0258 −0.0270 −0.0036
30 0.0253 −0.0258 −0.0025
40 0.0240 −0.0243 −0.0019
50 0.0228 −0.0230 −0.0015
60 0.0216 −0.0218 −0.0013
70 0.0206 −0.0207 −0.0011
80 0.0198 −0.0198 −0.0010
90 0.0190 −0.0190 −0.0009
100 0.0183 −0.0183 −0.0008

The R2 is high, suggesting a good approximation
to this relationship over this range of data showing
convergence at a rate o(

√
n).

Asymptotically, we have the following result.

THEOREM 3:

lim
n→∞ p̂ = δMLE.

Proof. See Appendix C.

Finally, we made a comparison between the dif-
ferences obtained by sample size for nonzero data,
that is, data in which at least one event is realized. Ta-
ble III provides a summary of the difference between
the two estimators for nonzero data. Fig. 3 illustrates
the absolute relative difference between the two es-
timators expressed in Equation (16) for nonzero
data:

Relative difference =
∣∣∣∣ p̂ − δMLE

δMLE

∣∣∣∣ (16)

In summary, we have established evidence of
a linear relationship between p̂ and δMLE with p̂
greater than δMLE when X = 0 and less than δMLE

when X = n. Asymptotically, the two estimators con-
verge. For nonzero data, the difference expressed rel-
ative to δMLE is greatest when there is one event. For
the sample sizes considered, this relative difference
was about 0.15.

5.2. Bias

The MLE is the only unbiased estimator for p.(9)

Fig. 4 is an illustration of the bias associated with p̂

expressed as a function of p; that is, we express bias
as E[ p̂ − p]. We see that for a sample size of 10 the
bias is between ±0.04 and with a sample size of 50 it
is ±0.02.

5.3. Accuracy

For the purpose of comparing accuracy, we
compare the ratio of the root mean squared error
(RMSE) between δMLE and p̂. The RMSE is defined
in the following:

Ratio of RMSE =

√√√√√√√
E
[
(δMLE − p)2

]

E

[(
∧
p−p

)2
] .

Fig. 5 illustrates the ratio of the RMSE for the
δMLE and p̂ for various sample sizes and parameter
values for p.

The results in Fig. 5 are not surprising. With very
low values of p relative to the sample size, the MLE
will assign a value of 0 as its point estimate. As the
sample size increases, the accuracy of p̂ improves rel-
ative to the δMLE. Table IV provides a summary of
the range of values for p where p̂ outperforms δMLE

as well as the maximum of the ratio, that is, where
δMLE performs relatively the poorest, as well as the
local minimum. We use a local minimum as the abso-
lute minimum occurs at p equal to 0 or 1, where the
RMSE of the MLE is 0.

5.4. Summary of Comparison

For many applications, the difference between p̂
and δMLE when nonzero data have been realized will
be considered negligible and as such each could be
considered an approximation of the other. However,
p̂ is a biased estimator of p; its bias is greatest when p
is 0 (or 1) as it is assigning estimates that are greater
than 0 (less than 1).

6. COMPARISON WITH ALTERNATIVES
TO ZERO EVENT DATA

Assuming zero event data are realized, we com-
pare the different estimates obtained with p̂ as com-
pared to the method recommended by Bailey, that
is, δB (Equation (1)), the method of applying a non-
informative uniform prior and applying Bayes The-
orem, denoted here by δU = 1

n+2 , and the Rule of
Three method denoted by δRof3 (Equation (2)). We
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Estimating the Probability of Rare Events 1127

Fig. 3. Difference between p̂ and δMLE relative to δMLE for nonzero events illustrating difference in relation to sample size.

Fig. 4. Bias associated with p̂ illustrating
intervals of over- and underestimation.

establish the limiting relationship between the esti-
mators:

lim
n→∞

δB

p̂
=

1 −
(

1
2

) 1
n

1 −
(

2
3

) 1
n

= ln (2)
ln (3) − ln (2)

= 1.7095,

(17)
lim

n→∞
δU

p̂
=

1
n + 2

1 −
(

2
3

) 1
n

= 1
ln (3) − ln (2)

= 2.4663,

(18)
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1128 Quigley and Revie

Fig. 5. Comparison of ratio of RMSE of
p̂ to δMLE showing neither estimator
consistently outperforming the other.

Table IV. Summary of Comparison
Between p̂ and δMLE

Sample Interval Where p̂ Length of (Local) Minimum Maximum of
Size (n) Outperforms δMLE Interval of Ratio Ratio

10 (0.0271,0.3844) (0.6891,0.9729) 0.6412 0.9456 1.1710
20 (0.0136,0.3256) (0.7085,0.9864) 0.5899 0.8565 1.1853
30 (0.0091,0.3152) (0.7054,0.9909) 0.5917 0.8234 1.1878
40 (0.0068,0.3036) (0.7083,0.9932) 0.5817 0.8053 1.1890
50 (0.0055,0.2814) (0.7224,0.9945) 0.5481 0.7936 1.1896
60 (0.0045,0.2516) (0.7486,0.9954) 0.4939 0.7853 1.1901
70 (0.0039,0.2255) (0.7745,0.9961) 0.4431 0.7791 1.1904
80 (0.0034,0.2042) (0.7958,0.9966) 0.4015 0.7741 1.1906
90 (0.0030,0.1865) (0.8135,0.9970) 0.3669 0.7701 1.1908
100 (0.0027,0.1717) (0.8283,0.9973) 0.3379 0.7668 1.1910

lim
n→∞

δRof3

p̂
=

3
n(

2
3

) 1
n

= 3
ln(2) − ln(3)

= 7.3989. (19)

We have demonstrated in Section 4 that estimates
of the CDF less than that associated with p̂ will
increase the risk for small values of p and as the
estimator p̂ will provide a smaller estimate of the
probability of failure compared with the other three
methods for all values of sample size we propose
that these alternative methods are overly conser-
vative.

The limit (Equation (18)) of the ratio between
uniform prior, that is, δU and p̂ of 2.4663, suggests
a simple approximation to p̂ for zero event data ex-
pressed in (Equation (20)):

p̂ ≈ 1
2.5n

, when zero events are realized. (20)

In Table V, we provide a comparison between
this approximation and the actual estimator p̂, show-
ing the error is less than 0.01 for sample sizes of 8 or
more.

Table V. Comparison of Error Associated with Simple,
Approximation of Estimator for Zero Events Realized

Sample Size Error
(n) p̂ 1

2.5n ( 1
2.5n − p̂)

1 0.2500 0.4000 0.1500
2 0.1390 0.2000 0.0610
3 0.0979 0.1333 0.0354
4 0.0764 0.1000 0.0236
5 0.0627 0.0800 0.0173
6 0.0534 0.0667 0.0133
7 0.0464 0.0571 0.0108
8 0.0416 0.0500 0.0084
9 0.0370 0.0444 0.0074
10 0.0342 0.0400 0.0058

7. SUMMARY AND CONCLUSIONS

This work is motivated by risk analysis involving
rare events where objective data-driven approaches
are desired by decisionmakers and standard proce-
dures such as MLE provide undesirable point es-
timates of 0. We argue that standard approaches
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for dealing with the zero event failure data are
unconvincing as they are ad hoc and lack a rational
basis. We derived and compared a conservative in-
ferential approach using minimax criteria, which re-
sulted in nonzero point estimates when 0 events are
realized but could be applied for any realization of
data. With Theorems 1 and 2 we showed convergence
of the estimator with respect to sample size and pro-
vided a simple approach to finding the estimate. In
short, simple applications of spreadsheets such as Ex-
cel will be able to solve for the estimator.

The comparison between the proposed estima-
tor, that is, p̂, and the MLE, that is, δMLE, showed
little difference in the actual estimate except when
there are 0 events realized. Thus, strengthening the
recommendation of the approach more generally, as
the MLE can be considered an approximation to this
estimate for nonzero events data.

APPENDIX A

Proof . Throughout the following we will denote
F(y; n, p) as F(y) and f (y; n, p) as f (y) for suc-
cinctness.

In Part A we show that for fixed values of p > 0
the expected risk has a local minima with respect to
the estimate of the CDF, i.e. Fp, in the interval (0, 1)
but for p = 0, risk is minimised at F0 = 1. In Part B
we establish that the expected risk for any fixed value
of p > 0 is equal to the expected risk for p = 0 if we
use the estimator F̂p as expressed in Theorem 1. In
Part C we show that the equality occurs only once
in the interval F̂p ∈ [0, 1] and at a point when the

expected risk is rising for p > 0 but decreasing for
p = 0. Finally, to establish Theorem 1 we argue that
as risk is continuously dropping when p = 0 the Min-
imax estimate will be realised at the minimum F̂p.

Part A
The expected risk function (equation) is min-

imised at (A.1), which can be shown through stan-
dard application of differential calculus.

Fmin,p =

[ n
2 ]∑

y=0

F (y) f (y)

F
([n

2

]) = E
[

F (Y)
∣∣Y ≤

[n
2

]]
(A.1)

As this is an expectation of a CDF it is in the
interval [0, 1] and will equal 1 if p = 1.

Part B
We equate the expected risk for a fixed value of

p > 0 with the expected risk when p = 0, which re-
sults in a quadratic equation in terms of the estimate
of the CDF, i.e. F̂p.

(
1 − F̂p

)2 =
[ n

2 ]∑
y=0

(
F (y) − F̂p

)2
f (y)

Using the standard equation to solve a quadratic,
we obtain the expression for F̂p (10). We choose the
negative of the square root as the positive root would
correspond to an estimate of F̂p that would exceed 1.

Part C
We establish that F̂p ≥ Fmin,p.
First we re-parameterise F̂p expressing it in

terms of Fmin ,p.

F̂p − Fp,min

=

(
1 − F

([n
2

])
Fp,min

)
−

√√√√√√(
1 − F

([n
2

])
Fp,min

)2
−
(

1 − F
([n

2

]))⎛⎜⎝1 −
[ n

2 ]∑
y=0

(
F (y)2

)
f (y)

⎞
⎟⎠

1 − F
([n

2

]) − Fp,min.

A little arithmetical manipulation we express the
difference in the following form.

F̂p − Fp,min =

1 − Fp,min −

√√√√√√(
1 − F

([n
2

])
Fp,min

)2
−
(

1 − F
([n

2

]))⎛⎜⎝1 −
[ n

2 ]∑
y=0

(
F (y)2

)
f (y)

⎞
⎟⎠

1 − F
([n

2

])
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We will now establish that there is no real root to
this difference.

F̂p − Fp,min = 0

→ 1 − Fp,min =

√√√√√√(
1 − F

([n
2

])
Fp,min

)2
−
(

1 − F
([n

2

]))⎛⎜⎝1 −
[ n

2 ]∑
y=0

(
F (y)2

)
f (y)

⎞
⎟⎠

This implies

1 − 2Fp,min + (Fp,min)2
> 1 −

(
1 − F

([n
2

]))

×

⎛
⎜⎝1 −

[ n
2 ]∑

y=0

F (y)2 f (y)

⎞
⎟⎠− 2F

([n
2

])
Fp,min

+
(

F
([n

2

])
Fp,min

)2

→
(

1 − F
([n

2

]))⎛⎜⎝1 −
[ n

2 ]∑
y=0

F (y)2 f (y)

⎞
⎟⎠

−2
(

1 − F
([n

2

]))
Fp,min

+ (Fp,min)2
(

1 − F
([n

2

])2
)

> 0

→

⎛
⎜⎝1 −

[ n
2 ]∑

y=0

F (y)2 f (y)

⎞
⎟⎠− 2Fp,min

+ (Fp,min)2
(

1 + F
([n

2

]))
> 0

The limits of the left hand side of this expression
for p are:

lim
p→0

⎛
⎜⎝1 −

[ n
2 ]∑

y=0

F (y)2 f (y)

⎞
⎟⎠− 2Fp,min

+ (Fp,min)2
(

1 + F
([n

2

]))
= 0

lim
p→1

⎛
⎜⎝1 −

[ n
2 ]∑

y=0

F (y)2 f (y)

⎞
⎟⎠− 2Fp,min

+ (Fp,min)2
(

1 + F
([n

2

]))
= 1

This expression can be re-expressed in terms of
expectations with the following inequalities guaran-
teeing the expression is positive in the interval p ∈
[0, 1]

1 − F
([n

2

])
E
[

F (Y)2
∣∣∣Y ≤

[n
2

]]
−2E

[
F (Y)

∣∣Y ≤
[n

2

]]
+
(

E
[

F (Y)
∣∣Y ≤

[n
2

]])2

×
(

1 + F
([n

2

]))
= 1 − 2E

[
F (Y)

∣∣Y ≤
[n

2

]]
+
(

E
[

F (Y)
∣∣Y ≤

[n
2

]])2
− F

([n
2

])
× E

[
F (Y)2

∣∣∣Y ≤
[n

2

]]
−
(

E
[

F (Y)
∣∣Y ≤

[n
2

]])2

=
(

1 − E
[

F (Y)
∣∣Y ≤

[n
2

]])2
− F

([n
2

])
× Var

[
F(Y)|Y ≤

[n
2

]]
> 0

�

APPENDIX B

Proof. By the central limit theorem,(10) we know the
CDF of a binomial distribution with a mean of np and
a standard deviation of

√
np (1 − p) appropriately

scaled converges to the normal distribution. More
precisely:

lim
n→∞ F(y; n, p) = �

(
y − np√

np(1 − p)

)
,

lim
n→∞ f (y; n, p) = lim

n→∞ F(y; n, p) − F(y − 1; n, p)

= d�

(
y − np√

np(1 − p)

)
,

where � (.) is the CDF of a standard normal distribu-
tion.

As such

[ n
2 ]∑

y=0

F (y; n, p) f (y; n, p) →
∫ �([ n

2 ])

0
�

×
(

x − np√
np (1 − p)

)
d�

(
x − np√

np (1 − p)

)
= �

([ n
2

])2

2

and
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[ n
2 ]∑

y=0

(
F (y; n, p)2

)
f (y; n, p) →

∫ �([ n
2 ])

0
�

×
(

x − np√
np (1 − p)

)2

d�

(
x − np√

np (1 − p)

)
= �

([ n
2

])3

3

Moreover,

lim
n→∞ �

⎛
⎜⎝

[n
2

]
− np√

np (1 − p)

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, p <
1
2
,

1
2
, p = 1

2
,

0, p >
1
2
.

Therefore, applying Slutzky’s Theorem(10) we
substitute the limits into the equation and apply
L’Hopitals rule for the situation where p < 1

2 and ob-
tain the following:

lim
n→∞ Fp

= lim
n→∞

(
1 −∑[ n

2 ]
y=0 F (y; n, p) f (y; n, p)

)
−
√(

1 −∑[ n
2 ]

y=0 F (y; n, p) f (y; n, p)
)2

−
(

1 − F
([n

2

]
; n, p

))(
1 −∑[ n

2 ]
y=0

(
F (y; n, p)2

)
f (y; n, p)

)

1 − F
([n

2

]
; n, p

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
3
, p <

1
2
,

7
4 − 2

√
55
192

, p = 1
2
,

1, p >
1
2
.

APPENDIX C

Proof. Asymptotically, we have the following:

lim
n→∞ P

(
X − np√

np (1 − p)
< z

)
= � (z) .

Using the asymptotic limit established in Theo-
rem 2, we know the z value that corresponds to the
2
3 percentile, that is, z = 0.4307. As such we have the
following:

X − np̂√
np̂ (1 − p̂)

= 0.4307

→ ( p̂)2 (n2 + 0.1855n
)

− p̂n (2X + 0.1855) + X2 = 0

→ p̂ =

(2X + 0.1855) ±
√

0.7421X + 0.0344 − 0.7421
n

X2

2(n + 0.1855)

=
δMLE + 0.0928

n

1 + 0.1855
n

±

√
n
(

0.7421δMLE (1 − δMLE) + 0.0344
n

)
2 (n + 0.1855)

.

Therefore,

lim
n→∞ p̂ = δMLE.

�

�

REFERENCES

1. Bedford T, Cooke R. Probabilistic Risk Analysis: Foundations
and Methods. Cambridge University Press, 2001.

2. Bedford T, Quigley J, Walls L. Expert elicitation for re-
liable system design. Statistical Science, 2006; 21(4):428–
450.

3. British Standard. Equipment reliability testing—BS IEC:
60605-4:2001, 2001.

4. Bailey RT. Estimation from zero-failure data. Risk Analysis,
1997; 17(3):375–380.

5. Potter JL, Mughal TM. Sensitivity Testing of Explosives
and Propellants at Cryogenic Temperatures, h241-12-20-073.
Magna, UT: Hercules Aerospace Co., 1992.



1132 Quigley and Revie

6. Hanley J, Lippman-Hand A. If nothing goes wrong, is every-
thing all Right? Interpreting zero numerators. Journal of the
American Medical Association, 1983; 249(13):1743–1745.

7. Eypasch E, Lefering R, Kum C, Troidl H. Probability of ad-
verse events that have not yet occurred: A statistical reminder.
British Medical Journal, 1995; 311:619–620.

8. Dewoody Y, Gururaj VT, Martin C. Assessing risk for rare
events. Journal of Applied Statistics, 1999; 26(6):681–687.

9. Lehmann EL, Casella G. Theory of Point Estimation
(Springer Texts in Statistics). New York: Springer, 1998.

10. Arnold SF. Mathematical Statistics. New Jersey: Prentice-
Hall, 1990.

Nikos_C51
Stamp


	CMD 21-H113.A - Staff response.pdf
	Staff Response - 2 Breitung  Maes Estimating Event Probabilities using Zero Failure Data.pdf
	1. Introduction
	2. Estimation for zero incidents
	3. The Clopper-Pearson Confidence Intervals
	4. Comparison of Methods
	5. Need for Consistent Methods
	6. References



