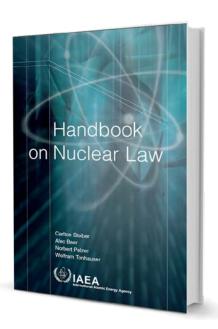


The Nuclear Regulatory Body **Excellence in Regulatory Oversight**

Lisa Thiele Senior General Counsel, **Canadian Nuclear Safety Commission** July 11, 2018

26 June – 3 August, 2018 Busan and Gyeongju, South Korea

Learning Objectives


- Identifying the characteristics of a good national nuclear regulator
- Necessary regulatory powers and functions
- Understanding regulatory independence and its importance to safety
- Importance of international cooperation for regulators
- The Canadian example how the Canadian Nuclear Safety Commission (CNSC) functions, some lessons learned
- Some concluding thoughts for further consideration and discussion

Principles of Nuclear Law

- Safety
- Security
- Responsibility
- Permission
- Continuous control
- Compensation

- Sustainable development
- Compliance
- Independence
- Transparency
- International cooperation

National Nuclear Regulatory Law

- Purpose
 - generally, to provide for the protection of workers and the public, to preserve the environment and maintain security
- Scope depends on the State's nuclear activities
- Reflects the 11 principles of nuclear law, as well as:
 - the implementation of the State's international treaty commitments
 - key international instruments' standards
- Responsibility for safety
 - regulatory body sets standards, enforces them
 - operator is primarily responsible for safety

Important Characteristics of a Regulatory Body

- Independent of operators, promoters
- Technical competence and statutory authority:
 - licensing, setting standards, inspection, enforcement
- Financial resources to do its job
- Safety decisions are adequately insulated
- Role to coordinate with other bodies
- Role to involve public in decision making

Unique Challenges of Nuclear Regulation

- Fear of radiation
- Proliferation and terrorism
- An accident anywhere is an accident everywhere
 - international cooperation is key
- Managing radioactive waste
- Timespan of regulation is much longer than other sectors
 - from environmental assessments to nuclear waste management
- Lifecycle regulating calls for a long view

Different Regulatory Approaches

- Many different forms/structures for regulatory bodies commission/board, single administrator, etc.
- Different funding models government budget or recovery of fees from regulated entities
- Different decision-making structures recommend or decide
- Different licensing short- or long-term, lifecycle considerations
- Prescriptive or performance-based regulation
- Technical support either within regulator or separately accessible

Basic Regulatory Functions

- To develop appropriate regulations
- To authorize activities licensing regime
- To verify compliance with law, regulations, authorization
- To enforce requirements with legal powers
- To act transparently and inclusively public involvement, dissemination of information
- To cooperate with other regulators at home and elsewhere

Canadian Nuclear

Effective Nuclear Regulation

International Atomic Energy Agency and Nuclear Energy Agency provide guidance, national law sets out structure for regulatory body

Some positive attributes of a nuclear regulator

- Openness, transparency, public involvement
- Safety focus for decisions
- Independence and neutrality
- Technical competence
- Regulatory safety oversight culture
- Science-based decision making
- Continuous improvement peer review

Our Mandate

- Regulates the use of nuclear energy and substances to protect health, safety, security and the environment
- Implements Canada's international commitments on the peaceful uses of nuclear energy
- Disseminates objective scientific, technical and regulatory information to the public

Nuclear Safety and Control Act – clear, modern legislation

The CNSC Regulates All Nuclear Facilities And Activities in Canada from cradle to grave

Uranium mines and mills

(

Nuclear research and educational activities

Uranium fuel fabrication and processing

Transportation of nuclear substances

Nuclear power plants

Nuclear security and safeguards

Nuclear substance processing

Import and export controls

Industrial and medical applications

Waste management facilities

Commission Hearing Process

Canadian Nuclear Safety Commission

- Quasi-judicial administrative tribunal
- Up to seven permanent Commission members experts with different areas of specialization
- Commission members are independent, appointed "on good behaviour" for fixed terms
- Commission Reports to Parliament through Minister of Natural Resources
- Commission holds public hearings, invites interventions, offers participant funding, webcasts
- Decisions are reviewable only by Federal Court of Canada

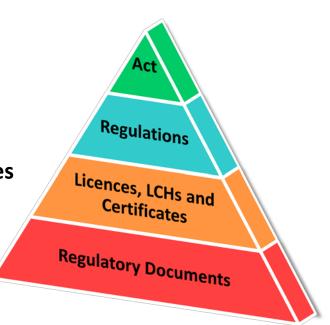
Transparent, science-based decision making

The CNSC's Regulatory Framework

Nuclear Safety and Control Act

Enabling legislation

Regulations

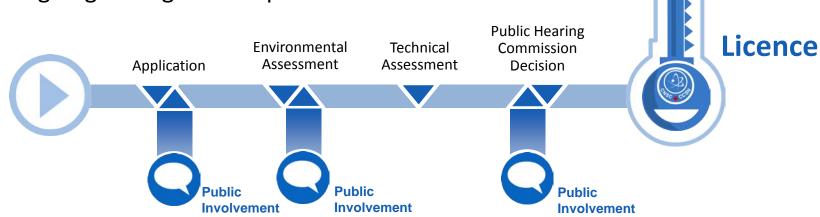

Commission-made general legal requirements

Licences, licence conditions handbooks, certificates

Facility and/or activity specific requirements

Regulatory documents

Include requirements and guidance


The CNSC's Regulatory Licensing Process

CNSC's Licensing Process

- Continuous Environmental monitoring
- Ongoing Aboriginal and public involvement

...ensures only qualified applicants are Licensed

Safety and Control Areas (SCAs)

Safety and control areas are the technical topics CNSC staff use across all regulated facilities and activities to assess, evaluate, review, verify and report on regulatory requirements and performance.

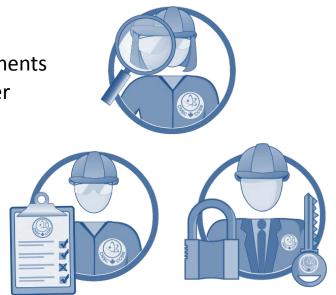
Ensuring the safe operation of Canada's nuclear sites

Management	Management System
	Human Performance Management
	Operating Performance
Facility and Equipment	Safety Analysis
	Physical Design
	Fitness for Service
Core Control Processes	Radiation Protection
	Conventional Health and Safety
	Environmental Protection
	Emergency Management and Fire Protection
	Waste Management
	Security
	Safeguards and Non-Proliferation
	Packaging and Transport

CNSC expert staff ensure...

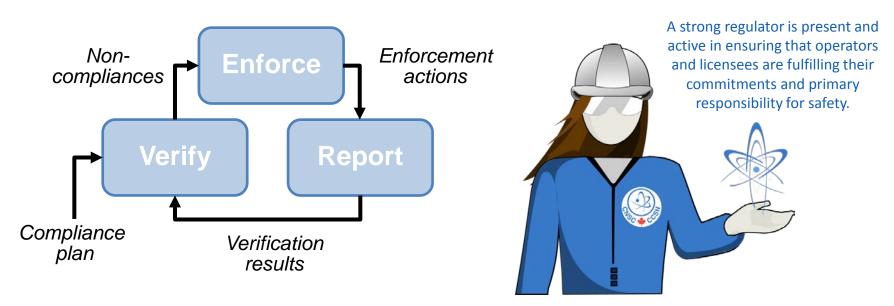
The CNSC will only issue a licence when the applicant:

- is deemed qualified to carry on the activity that the licence will authorize
- has demonstrated that they will protect the health and safety of persons and the environment
- has demonstrated that they will maintain national security
- has confirmed that they will adhere to international obligations to which Canada has agreed.


... that licensees will comply with regulatory requirements

Compliance Verification

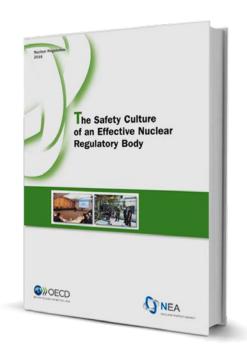
CNSC staff:


- Inspect and evaluate how licensees ensure compliance with the CNSC's regulatory requirements
- Have resident onsite inspectors at nuclear power plants every day
- Perform independent process evaluations and field inspections based on baseline compliance plans
- Review licensee self-reporting (requirements established by the CNSC in licensing basis)
- Follow up with licensees to ensure that corrective actions are implemented

The CNSC's role: Ongoing Compliance

Strong Regulatory Oversight Throughout Lifecycle

Compliance and Enforcement


CNSC authorities are exercised on a graded approach

- Recommendation Based on best practices
- Request Regulations require a response
- Order Any measure to serve the purposes of the statute
- Licensing action Amendment, suspension, revocation
- Administrative monetary penalties (AMPs)
- Prosecution for regulatory offence Includes whistleblower protection

Regulatory Safety Oversight Culture

- Leadership for safety is to be demonstrated at all levels in the regulatory body
- All staff of the regulatory body have individual responsibility and accountability for exhibiting behaviours that set the standard for safety
- The culture of the regulatory body promotes safety, and facilitates cooperation and open communication
- Implementing a holistic approach to safety is ensured by working in a systematic manner
- Continuous improvement, learning, and self-assessment are encouraged at all levels in the organization

Potential Threats to Regulatory Safety Oversight Culture

- Regulatory capture: Concern for advancing the interests of the industry
- Politicizing of the mission: Concerned with optics of decisions, not continuous improvement
- Punitive organizational culture: Inhibits the vertical flow of information through hierarchy
- "Siloed" culture: Inhibits the horizontal flow of information across regulatory teams
- Bureaucratic inertia and organizational complacency
- Toleration of inadequate capacity and competency
- Adoption of a compliance mentality: Applying checklists instead of managing the dynamic nature of hazards and risks
- Over-preoccupation with active failures: Focus on individual non-compliance events, rather than on identifying and addressing the systemic root causes of failures

Regulatory Safety Oversight Culture – CNSC Self-Assessment

- CNSC is one of very few regulators to have conducted a safety culture self-assessment
- Designed with help from safety culture expert Dr.
 Mark Fleming; compared against the Nuclear
 Energy Agency's The Safety Culture of an Effective
 Nuclear Regulatory Body; assessment
 methodology aligned to IAEA SRS No.83
- Strengths, Areas for Improvement,
 Recommendations against the 5 Principles
- Management Action Plan includes a follow up assessment in 3 to 5 years

Case Studies

Regulatory Issues and Lessons Learned

NRU Reactor Shutdown 2007

- Disagreement over the status of an emergency pump
- Shutdown resulted in a 40% loss in supply of world's most used medical isotope
- Resulted in multiple CNSC appearances before Parliament, an Act of Parliament and a directive from the government
- Led to the establishment of the CNSC Administrative Monetary Penalty (AMP) Program

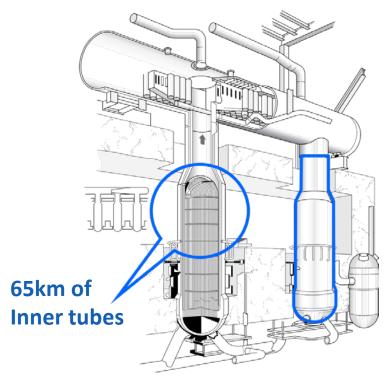
Highlighted importance of communications, clarity of processes and regulatory requirements

Emergency Diesel Generator (June 2008). Photo courtesy Chalk River Laboratories.

Canadian Nuclear

Waste Management: Steam Generators

- Application to transport 16 minimally radioactive decommissioned steam generators to Sweden for recycling
- CNSC found that the transport would be safe
- Good environmental stewardship
 - Three R's: Reduce, Reuse, Recycle
- Even though transport was approved, applicant decided to put project on hold in response to public opposition
 - Final decision rests with the licensee


A good example of the result of misinformation and why it is important to communicate with stakeholders

Steam Generators in safe storage state. Photo courtesv Bruce Power.

Chec cos

Waste Management: Steam Generators

Total Radioactive Material = 4 grams

Canada

Waste Management: Deep Geologic Repository

Long-term, safe solution for lowand intermediate-level radioactive waste

 Mop heads, rags, protective clothing, resins, filters, steam generators

Waste Management: Deep Geologic Repository

10 years of public participation, including consideration by a joint review panel

- 33 days of hearings, 246 participants,
 20,000 pages of information reviewed
- Panel report submitted May 6, 2015

Vocal opposition in Canada and U.S. based on mistrust of the science

Still awaiting environmental assessment decision

Fukushima Daiichi Accident

CNSC took immediate action

- Directed operators to verify robustness of plants (in less than 48 hours) after the accident)
- Source of information for Canadians and internationally
- CNSC Fukushima Task Force
- External Advisory Committee
- Public Hearings were not limited to NPPs only, they covered all major facilities

An accident anywhere is an accident everywhere

Fukushima Lessons Learned

The CNSC took immediate action

- Directed operators to verify robustness of plants
- Source of information for Canadians and internationally
- CNSC Fukushima Task Force, External Advisory Committee, International Regulatory Review Service (IRRS) mission

CNSC action plan

- Assess vulnerability and strengthen resiliency
- Not limited to nuclear power plants, but covered all major facilities
- Enhance emergency response
- Improve regulatory framework and processes
- Enhance international collaboration
- Enhance communications and public education

Fukushima Lessons Learned

CNSC played key role internationally

- IAEA Action Plan on Nuclear Safety
- Enhancing international peer review process
- IAEA Fukushima Report DG lessons learned
- Enhanced accident prevention, improved mitigation of accident consequence, public protection

Global safety is the responsibility of all stakeholders, government, independent regulators and industry

For Further Thought

- What kind of nuclear regulatory body should be cultivated, and how?
- Nuclear safety is a national matter, but a global concern so how do we enhance and assure
 - improvements in nuclear safety worldwide Convention on Nuclear
 Safety peer review
 - accountability and transparency of regulators IAEA IRRS, regulatory cooperation and information sharing
 - International cooperation industry, regulatory bodies, national governments, international organizations

Questions?

Thank You!

Connect With Us

Join the conversation

nuclearsafety.gc.ca

