

Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

CNSC Regulatory Research on Geological Disposal

Peter Elder, Vice-President and Chief Science Officer Technical Support Branch October 10, 2017 Kingston, ON

DECOVALEX-2019 Workshop

E-doc 5333759

CANADA 150

Content

 The Canadian Nuclear Safety Commission: Canada's regulator

- Two current initiatives for geological disposal in Canada
- Rationale and overview of CNSC research on geological disposal
- Current research projects and progress
 Acronyms

Canadian Nuclear Safety Commission

The Canadian Nuclear Safety Commission (CNSC):

- regulates the use of nuclear energy and materials to protect health, safety, security and the environment
- implements Canada's international commitments on the peaceful use of nuclear energy
- disseminates objective scientific, technical and regulatory information to the public

 The CNSC regulates all nuclear facilities and activities in Canada throughout the nuclear fuel cycle

Two Current Geological Disposal Initiatives

Both crystalline and sedimentary rock types are being considered

Rationale and Overview of CNSC Research

- Geological disposal projects typically last decades from conceptualization to implementation
- Early involvement of regulator: an international best practice to keep abreast of technological, social and regulatory best practices
- Independent regulatory research: important component of this involvement
- Leveraging through national and international collaborations, while retaining in-house expertise
- Objective of regulatory research: build the CNSC's in-house knowledge in order to make well-informed licensing recommendations
- Summary of research findings is available on the <u>CNSC website</u>

Chronology of CNSC Research (1)

- The chronology of CNSC research is summarized in a <u>chart</u> that shows:
 - the relationship between independent research from the CNSC and geological initiatives developed by the proponents
 - the way the CNSC's research results were used in the review of the proponents' submissions and in providing recommendations to the relevant authorities

 The Atomic Energy Control Board's (AECB – the CNSC's predecessor) research started in the late 1970s to prepare for the review of AECL's concept of geological disposal of used nuclear fuel in crystalline rocks

Chronology of CNSC research (2)

- The AECB concluded in 1996 that the AECL concept is acceptable and recommended that Canada proceed to site selection
- The AECB/CNSC has conducted research from 1996 to present. The results have and will continue to enable the CNSC to provide science-based recommendations on:
 - OPG's proposal for a DGR for LILW in sedimentary rock; it was found that based on multiple lines of evidence, the proposed DGR would provide for the long-term protection of people and the environment
 - The NWMO's site selection process for Canada's used nuclear fuel and future application for a construction licence on a selected site

CNSC Coordinated Assessment and Research Program

Current Research Projects

Integration of experimentation and modelling to verify the safety case

Geomechanics

- Developed constitutive models for Opalinus clay, Tournemire shale and Cobourg limestone
- The models were used and validated in the simulation of laboratory and field tests consisting of excavation, water and gas injection

Geomechanics of Cobourg Limestone – Triaxial Tests with Permeability Measurement

The hydraulic-mechanical response is well simulated by the model. The model is a reliable tool for assessing the excavation damage zone.

The Behaviour of Bentonite Seals

- Simulation of heater experiment (HE), Mont-Terri URL
- Simulation of SEALEX experiment, Tournemire URL
- Experimental program on effects of brine on bentonite seals

Swelling Pressure of Bentonite

- Very high salinity is found in porewaters of Canadian sedimentary rocks
- Swelling pressure tests at Queen's University shows a substantial reduction of the swelling potential of bentonite infiltrated with brine

Effects of brine on the performance of bentonite seals must be taken into account in the Canadian Program

DECOVALEX

- The CNSC has been involved since 1992 a very fruitful collaboration with fellow researchers in THMC coupled processes
- The CNSC's current involvement in D- 2019:
 - gas flow in low-permeability materials
 - induced slip of a fault

Glaciation Modelling

- During the last million years, Canada has been subjected to nine glacial cycles
- For each cycle, the ice sheet imposes a surface load of 30–40 MPa, leading to:
 - substantial increase in hydraulic gradients
 - redistribution of natural tracers by advection, dispersion and diffusion
- The CNSC developed and validated a mathematical model for the THMC response to the past nine glacial cycles of the sedimentary rock at a DGR for LILW proposed by OPG

Conclusions from Glaciation Modelling

- Mathematical modelling and field data at a proposed LILW DGR site provide multiple lines of evidence that:
 - the host and cap formations at the site of the proposed DGR for LILW and their groundwater have been unaffected by nine cycles of glaciation over the last million years
 - the deep groundwater system in the host and cap rock formations at the site is hundreds of million of years old and virtually stagnant – transport of solutes is diffusion dominated
 - the Great Lakes are features resulting from Quaternary glaciation cycles – surface water bodies such as the Great Lakes have remained isolated from the deep groundwater

Natural and Anthropogenic Analogues Review (1)

- Bridging the gap between laboratory experiments and modelled safety assessment time frames that are usually in excess of 10000 years
 - analogue studies increase
 confidence in DGR safety
 providing data on geological
 and spatial scales that can't
 be replicated in
 experiments (for example, next slide)

Natural and Anthropogenic Analogues Review (2) Potential Canadian source term analogue – Kiggavik, Nunavut

Image of core samples from the End Uranium Deposit, Kiggavik, Nunavut,
 Canada. Area 1 shows uranium minerals along a fracture, and areas 2 and
 3 show secondary uranium mineralization within a clay-rich matrix.

Natural and Anthropogenic Analogues Review (3)

- Review conclusion and implications:
 - analogues provide input into the long-term safety case and increase public confidence in deep geological disposal concepts at all project stages
 - national analogues may build more public support for a DGR because of geographical and cultural familiarity
 - analogues which are site-specific are even more powerful; for example, natural tracers and past glaciation
 - integrating analogue information with other studies (e.g., hydrogeological and geomechanical studies), including laboratory experiments, can account for the range of temporal and spatial time scales

Fracture Research in Southern Ontario

- Investigating potential for fault reactivation in southern Ontario by studying fracturing and fracture-filling minerals:
 - field-based study on the stability of the geosphere
 - absolute age dating of fracture-fill minerals
 - support seismic hazard assessment

Fracture Infill-Analytical Approach and Conclusions

Analytical approach:

- field mapping and structural analysis: 35 calcite veins sampled from 15 outcrops; trace element geochemistry on 33 samples
- stable isotope analysis of $\delta13C$ and $\delta18O$ on 37 samples
- radiometric dating
- Scientific conclusions:
 - Fluids are likely derived from distal sources and mobilized at ~100 Ma, via inherited joint sets from basement-seated structures in the Grenvillian basement
 - Hypothesized plate reorganization at 100 Ma

The fractures are millions of years old and have not been reactivated

Concluding Remarks

- CNSC research on the safety of geological disposal dates from the late 1970s
- The CNSC collaborates with national and international institutions
- Regulatory research:
 - builds independent expertise
 - adds to the CNSC's credibility
 - provides a solid scientific basis to the CNSC's licensing decisions and recommendations

Recent Publications

- G. Su, T.S. Nguyen, E. Haghighat, S. Pietruszczak, D. Labrie, J-D. Barnichon, and H. Abdi, 2016. Characterizing the mechanical behaviour of the Tournemire argillite. Geological Society of London, Special Publications: <u>SP443 Radioactive Waste</u> <u>Confinement: Clays in Natural and Engineered Barriers</u>. <u>http://sp.lyellcollection.org/cgi/reprint/SP443.20v1.pdf?ijkey=PYP8oeb2w1U2GID&keytype=finite</u>
- Z. Li, T.S. Nguyen, G. Su and J.D. Barnichon, 2016: Development of a visco-elastoplastic model for a bedded argillaceous rock from triaxial tests, *Canadian Geotechnical Journal*, doi: 10.1139/cgj-2016-0100
- J. Spalding, D.A. Schneider, J. Brown, 2016. Long-term stability at the edge of the Canadian Shield: insights from calcite-filled fracture inherited from basement structures, southern Ontario, Canada. GACMAC 2016 poster.
- M. Fayek and J.L. Brown, 2015. Natural and Anthropogenic Analogues for High-Level Nuclear Waste Disposal Repositories: A Review. Canadian Nuclear Safety Commission RSP-310. 59p.
- T.S. Nguyen and D.A. Le, 2014, Development of a constitutive model for a bedded argillaceous rock from triaxial and true triaxial tests, Canadian Geotechnical Journal, d.o.i. 10.1139/cgj-2013-0323
- T.S. Nguyen and D.A. Le, 2014, Simultaneous gas and water flow in a bedded argillaceous rock, *Canadian Geotechnical Journal*, d.o.i. 10.1139/cgj-2013-0457
- D.A. Le and T.S. Nguyen, 2014, Hydromechanical response of a bedded argillaceous rock formation to excavation and water injection, *Canadian Geotechnical Journal*, d.o.i. 10.1139/cgj-2013-0324
- T.S. Nguyen, Z. Li, J.D. Barnichon and B. Garitte, 2017. Modelling a heater experiment for radioactive waste disposal, Environmental Geotechnics, doi.org/10.1680/jenge.15.00060
- O. Nasir, T.S. Nguyen, J.D. Barnichon and A. Millard, 2017. Simulation of hydromechanical behaviour of bentonite seals for containment of radioactive wastes, Canadian Geotechnical Journal, <u>doi.org/10.1139/cgi-2016-0102</u>
- M.H.B. Nasseri, M. Tibbo, M. Sehizadeh, S. Ye, R.P. Young, G. Su and T.S. Nguyen, 2016, "Coupled hydro-mechanical properties of Cobourg limestone with special reference to excavation damaged zones", European Geosciences Union fall meeting, Vienna
- T.S. Nguyen, Z. Li, G. Su and M. Herod, 2017. Swelling of bentonite hydrated with brine- a double porosity model, poster presentation, GEOPROC conference 2017
- T.S.Nguyen, Z.Li and M. Herod, 2017. Effects of glaciation on the rock formations around a proposed nuclear waste repository, oral presentation, GEOPROC conference 2017.

Acronyms

- AECL: Atomic of Energy of Canada Limited
- APM: Adaptive Phased Management
- DGR: Deep Geological Repository
- OPG: Ontario Power Generation
- NWMO: Nuclear Waste Management Organization
- THMC: Thermal-Hydrological-Mechanical-Chemical
- URL: Underground Research Laboratory
- LILW: Low- and Intermediate-Level Waste

Canadian Nuclear

Commission canadienne Safety Commission de sûreté nucléaire

Questions?

Thank You!

